

ESTEC Contract No 4000103890/11/NL/CB

“ASN.1 Space Certifiable Compiler Extensions”

«ACN User Manual»

issued

2015-05-22

 Document Ref: ACN-UM
Global Id: NRP-SPACE-ESA-4000103890-ACN-UM

 Version: 2.1
 Editing tool: Microsoft Word 2007
 Authors: George Mamais (g_mamais@neuropublic.gr)
 Maxime Perrotin (maxime.perrotin@esa.int)
 Reviewers: Thanassis Tsiodras (a_tsiodras@neuropublic.gr)

Neuropublic SA

Aitolikou & 11 Sfaktirias Str, 185 45

Piraeus, GREECE

Phone: +30 210 4101010 Fax: +30 210 4101013

mailto:gmamais@semantix.gr
mailto:ttsiodras@semantix.gr

ACN User Manual

TABLE OF CONTENTS

Neuropublic SA .. 1

TABLE OF CONTENTS .. 2

ACRONYMS AND ABBREVIATIONS ... 3

1. WHAT IS ACN? ... 4

2. SHORT INTRODUCTION TO ACN .. 5

3. ACN ENCODING PROPERTIES ... 7

3.1. size property .. 7
3.1.1. Fixed form ... 7
3.1.2. Variable size with length specified in external field ... 7

3.2. encoding property .. 8

3.3. endianness property ... 8

3.4. align-to-next property .. 9

3.5. encode-values property .. 9

3.6. true-value and false-value properties ... 10

3.7. present-when property ... 10

3.8. determinant property ... 11

4. ENHANCED OPTIONS .. 13

4.1. Fields introduced in the ACN grammar ... 13

4.2. Parameterized encodings and deep field access ... 14
4.2.1. Length determinant is below current node .. 14
4.2.2. Length determinant is above current node .. 15
4.2.3. Length determinant is in completely different subtree .. 16

Neuropublic SA Page 2

ACN User Manual

ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute
API Application Programming Interface

ASN.1 Abstract Syntax Notation 1
ASN1scc ASN.1 space certifiable compiler

AST Abstract Syntax Tree
BER Basic Encoding Rules

EAST Enhanced Ada SubseT
ECN Encoding Control Notation
ESA European Space Agency

ESTEC European Space Research and Technology Centre
PER Packed Encoding Rules
XML eXtensible Markup Language
XSD XML Schema Documentation

Neuropublic SA Page 3

ACN User Manual

1. WHAT IS ACN?

ASN.1 is a language for defining data structures (i.e. messages) in an abstract manner. An
ASN.1 specification is independent of the programming language (C/C++, Ada etc), the
hardware platform or even the encoding method used to serialize the defined messages.
The encoding mechanism, i.e. how bits and bytes are written over the wire, is determined
by the ASN.1 encoding. Although the standardized ASN.1 encodings may offer some
important benefits such as speed and compactness for PER or decoding robustness for BER,
there is no way for the designer to control the final encoding (i.e the format at the bit
level). This is a problem for situations where there is legacy binary protocol and we must
replace one of the communicating parties using ASN.1 encoders/decoders (i.e. when the
other, legacy system, must remain unchanged).

ACN is a proprietary ASN.1 encoding which addresses the above need: it allows protocol
designers to control the format of the encoded messages at the bit level.

The main features of ACN are:

• Easy to learn, with simple and clear syntax but also with enough power to cover
complex cases

• Encoding instructions are written in a separate file, so that the original ASN.1
grammar remains unpolluted

• Fields which do not carry semantic information but are used only during the
decoding process (e.g. length fields, choice determinants etc) may either appear in
the ASN.1 grammar or introduced only in the ACN specification.

The sections that follow showcase ACN through easy to follow code examples.

Neuropublic SA Page 4

ACN User Manual

2. SHORT INTRODUCTION TO ACN

Every ASN.1 type has a set of encoding properties that can be set in order to achieve the
desired binary encoding. These properties control certain aspects of the encoding process
such as: the size of type being encoded, how values are encoded (twos-complement vs
positive integer encoding, etc), the presence/absence of a certain field etc.

These properties are assigned to ASN.1 types using a pair of square brackets (“[“ and “]”)
as seen in Listing 2. The encoding properties assignment is carried out in a separate file –
the ACN file, so that the original ASN.1 grammar remains “clean” from encoding
specifications.

Here is a simple ASN.1 grammar:

MYMOD DEFINITIONS AUTOMATIC TAGS::= BEGIN
 MyInt ::= INTEGER (-100 .. 100)
 MyInt2 ::= INTEGER (0 .. 1000)
 MySeq ::= SEQUENCE {
 a1 INTEGER (1..20),
 a2 INTEGER (-10 .. 20),
 a3 MyInt,
 a4 MyInt2
 }
END

Listing 1: Sample ASN.1 grammar

and here is an example ACN encoding for this grammar:

MYMOD DEFINITIONS ::= BEGIN

 --ACN allows constant definitions
 CONSTANT WORDSIZE ::= 32
 --We can make basic math with ACN constants
 CONSTANT LARGEST-INT ::= 2^^(WORDSIZE - 1)-1

 --MyInt will be encoded as twos complement integer.
 --Size will be 1 byte
 MyInt[size 8, encoding twos-complement]

 -- If no encoding properties are present, then
 -- encoding properties will be automatically populated
 -- so that the behavior matches the one of uPER i.e.
 -- size 10, encoding pos-int
 MyInt2 []

 -- encoding properties for types defined
 -- within constructed types (i.e. fields)
 MySeq [] {
 a1 [],
 a2 [size 32, encoding twos-complement, endianness little],
 a3 [],
 a4 []
 }
END

Listing 2: Sample ACN grammar for the ACN grammar of Listing 1

By looking at the above code example, we see the following:

• For each ASN.1 module there is one ACN module with the same name.
• We can optionally define some integer constant values (WORDSIZE, LARGEST-INT

etc) which can be referenced by the rest of the ACN specification.

Neuropublic SA Page 5

ACN User Manual

• The ACN module contains the types (i.e. the type references) declared in the ASN.1
module followed by the encoding properties.

• The encoding properties may be absent. (The pair of open close brackets [] must
be present though). In this case, the encoding properties have values which are
calculated as follows:

o Referenced types inherit the properties of their base types
o For non referenced types (or referenced types whose base types have no

encoding properties), the encoding properties are automatically populated
with such values as to mimic the behavior of uPER.

• For types declared within constructed types such as SEQUENCE / CHOICE /
SEQUENCE OF, the encoding properties are declared after the component names

• The encoding properties are declared at type reference level. If a new type is
declared in the ASN.1 grammar based on an existing type reference, then the new
type inherits from the base type its encoding properties.

Neuropublic SA Page 6

ACN User Manual

3. ACN ENCODING PROPERTIES

3.1. size property

The size encoding property controls the size of the encoding type. It comes in four forms:

3.1.1. Fixed form
This form is used when the size of the encoded type is fixed and known at compile time

Syntax

 size intExpr – the units are provided in the table below

Example

 size 10

 size WORDSIZE/2 -- WORDSIZE is an ACN constant defined before

The following table lists the ASN.1 types where the fixed form can be applied as well as the
corresponding count unit.

Asn1 Type Count unit of intExpr

Integer Bits

Enumerated Bits

Bit String Bits

Octet String Octets

IA5String Characters

Numeric String Characters

Sequence/set Of Elements of sequence/set of

Table 1: ASN.1 types where the size property can be applied

3.1.2. Variable size with length specified in external field
This form of size property is functionally equivalent with the previous one. The main
difference is that the length field is an external field provided in the ACN grammar

Syntax

 size field

Example

size length length is an integer field defined in the same scope with the
encoded type

size header.length header is a sequence type defined in the same scope with
the encoded type and which contains an integer type
component named length

Neuropublic SA Page 7

ACN User Manual

This form of size property can be applied to bit string, octet string, character strings and
sequence/set of types.

3.2. encoding property

The encoding property can be applied only to integer, enumerated and real types.

Syntax

 encoding encvalue

 where encvalue is one of pos-int, twos-complement, BCD, ASCII, IEEE754-1985-32
and IEEE754-1985-64

Example

 encoding pos-int

 encoding BCD

Encoding value Applicable ASN.1 types Remarks

pos-int Integer, enumerated The ASN.1 integer must have constraints
so that only positive values are allowed.
Otherwise the compiler will report an
error.

twos-complement Integer, enumerated

ASCII Integer, enumerated The ASCII code of the sign symbol (‘+’ or
‘-‘) is encoded first (mandatory) followed
by the ASCII codes of the decimal digits of
the encoded value. For example, the value
456 will be encoded in the four ASCII
codes: 42 (i.e. ‘+’), 52, 53, 54.

BCD Integer, enumerated The ASN.1 integer must have constraints
so that only positive values are allowed.
Otherwise the compiler will report an
error.

IEEE754-1985-32 Real http://en.wikipedia.org/wiki/IEEE_754-
1985

IEEE754-1985-64 Real (same link as above)

Table 2: ASN.1 properties where the encoding property can be applied

3.3. endianness property

The endianness property can be applied only to fix size integers (and in particular when the
size is 16, 32 or 64 bits), enumerated and real types and determines the order of the

Neuropublic SA Page 8

http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/IEEE_754-1985

ACN User Manual

encoded bytes. For more information please refer to
http://en.wikipedia.org/wiki/Endianness

Syntax

 endianness endianness-value

 where endianness-value is big or little

Example

 endianness little

 endianness big (Default)

Encoding value Applicable ASN.1 types Remarks

Big Integer, enumerated,

Real

The 32 bit integer value 0xAABBCCDD will
be transmitted as follows:

0xAA, 0xBB, 0xCC, 0xDD

Little Integer, enumerated,

Real

The 32 bit integer value 0xAABBCCDD will
be transmitted as follows:

0xDD , 0xCC , 0xBB, 0xAA

Table 3: endianness property description

3.4. align-to-next property

This property can be applied to any ASN.1 type, and allows the type to be encoded at the
beginning of the next byte or word or double word of the encoded bit stream.

Syntax

 align-to-next alignValue

Example

 align-to-next byte -- 8 bits

 align-to-next word – 16 bits

 align-to-next dword – 32 bits

3.5. encode-values property

This property can be applied only to enumerated types and controls whether the enumerant
values will be encoded or their indexes. When present, the values (not indexes) of
enumerants will be encoded.

Example

 [encode-values]

Neuropublic SA Page 9

http://en.wikipedia.org/wiki/Endianness

ACN User Manual

3.6. true-value and false-value properties

These two mutually exclusive properties can be applied only to Boolean types and
determine what value will be used to encode TRUE or FALSE values.

Syntax

 true-value bitStringValue

 false-value bitStringValue

Example

 true-value ‘111’B

 false-value ‘0’B

3.7. present-when property

The present-when property is used in optional SEQUENCE components and in CHOICE
alternatives

In the case of OPTIONAL components the syntax is as follows:

Syntax

 Present-when booleanFld

 where booleanFld is a reference to a boolean field

Example

MySeq ::= SEQUENCE {
 alpha INTEGER,
 gamma REAL OPTIONAL
}

Listing 3: Sample ASN.1 grammar

MySeq[] {
 alpha [],
 beta BOOLEAN [],
 gamma [present-when beta, encoding IEEE754-1985-64]
}

Listing 4: ACN grammar for ASN.1 grammar of Listing 4

In the above example, gamma field is present only when beta is TRUE.

In the case of CHOICE alternatives the syntax is as follows

Syntax

 Present-when fld1==val1 fld2==val2 ... fldn==valn

Neuropublic SA Page 10

ACN User Manual

 where fldi is a reference to a an integer or string field and vali is constant integer or
string value.

Example

MYMOD DEFINITIONS AUTOMATIC TAGS::= BEGIN

 COLOR-TYPE ::= INTEGER (0..255)

 COLOR-DATA ::= CHOICE {
 green INTEGER (1..10),
 red INTEGER (1..1000),
 blue IA5String (SIZE(1..20))
 }

 MySeq ::= SEQUENCE {
 colorData COLOR-DATA
 }
END

Listing 5: Sample ASN.1 grammar

MYMOD DEFINITIONS ::= BEGIN

COLOR-TYPE [encoding pos-int, size 8]

MySeq [] {
 activeColor1 COLOR-TYPE [],
 activeColor2 COLOR-TYPE [],
 colorData <activeColor1, activeColor2> []
 }

COLOR-DATA<COLOR-TYPE:type1, COLOR-TYPE:type2> [] {
 green [present-when type1==1 type2==10],
 red [present-when type1==20 type2==20],
 blue [present-when type1==50 type2==20]
 }
END

Listing 6: ACN grammar for ASN.1 grammar of Listing 4

3.8. determinant property

The determinant property is an alternative (simpler) way to determine which choice
alternative is encoded. The encoded choice alternative is determined by an external
enumerated field which must have the same names in its enumerants as the names of the
choice alternatives.

Syntax

 determinant enumFld

Example

MYMOD DEFINITIONS AUTOMATIC TAGS::= BEGIN

 RGB ::= ENUMERATED {green, red, blue}

Neuropublic SA Page 11

ACN User Manual

 MySeq ::= SEQUENCE {
 beta BOOLEAN,
 colorData CHOICE {
 green REAL,
 red INTEGER,
 blue IA5String (SIZE(1..20))
 }
 }
END

Listing 7: Sample ASN.1 grammar

MYMOD DEFINITIONS ::= BEGIN

MySeq [] {
 activeColor RGB [],
 beta [],
 colorData [determinant activeColor]
}

END

Listing 8: ACN grammar for ASN.1 grammar of Listing 6

In the example above, the active alternative in colorData choice is determined by the
enumerated field activeColor.

Neuropublic SA Page 12

ACN User Manual

4. ENHANCED OPTIONS

4.1. Fields introduced in the ACN grammar

In some cases, the value for the encoding properties “size”, “present-when” and
“determinant-tag” may be another field. These fields do not carry semantic (i.e. application
specific) information but are used only in the decoding and encoding processes. Therefore
these fields may not exist in the ASN.1 grammar but introduced only in the ACN one. For
example, Listing 4 can be modified as follows:

MySeq ::= SEQUENCE {
 alpha INTEGER,
 gamma REAL OPTIONAL
}

Listing 9: The revised ASN.1 grammar of Listing 4. Field ‘beta’ is missing.

Seq[optionality manual] {
 alpha [],
 beta BOOLEAN [], -- exists only in the ACN file, not the ASN.1 one
 gamma [present-when beta, encoding IEEE754-1985-64]
}

Listing 10: Revised ACN grammar for the ASN.1 grammar of Listing 9. Field ‘beta’ along
with the type (BOOLEAN) is introduced.

Please notice that field ‘beta’ does not exist in the ASN.1 grammar but it was introduced
only in the ACN grammar.

Another way to introduce fields (e.g. for alignment, or to add a standard-imposed data
pattern in the encoding) is to use the NULL construct with the “pattern” encoding:

T-tc-packetID []
{
 ccsds-version-number NULL [pattern '000'B],
 packet-type NULL [pattern '1'B] ,
 has-data-fieldhdr NULL [pattern '1'B],
 apid []
}

Neuropublic SA Page 13

ACN User Manual

4.2. Parameterized encodings and deep field access

There are cases where the length field of a sequence of (or choice determinant, or
optionality determinant etc) is not at the same level (i.e. components of a common parent)
as the sequence of itself. Actually there are three distinct cases:

a) The length determinant is one or more levels more deeply than the SEQUENCE OF
b) The SEQUENCE OF is one or more levels more deeply than the length determinant
c) The length determinant and the SEQUENCE OF are located in completely different

nodes which just have a common ancestor.

These three cases are explained in more detail in the following sub-paragraphs

4.2.1. Length determinant is below current node
This case is illustrated in Figure 1. Field secondaryHeader, which is optional, is present
when the secHeaderFlag in the primaryHeader is true.

Figure 1. Deep field access – case a.

The corresponding ASN.1 / ACN grammar is:

--ASN.1 DEFINITION
 Packet ::= SEQUENCE {
 primaryHeader SEQUENCE {
 version INTEGER,
 seqNr INTEGER,
 secHeaderFlag BOOLEAN

},
secondaryHeader SEQUENCE {...} OPTIONAL

 }

-- Encodings definition
 Packet {
 primaryHeader[] {
 version [],
 seqNr [],
 secHeaderFlag []
 }
 secondaryHeader [present-when primaryHeader.secHeaderFlag]
 }

Listing 11: ACN grammar demonstrating access to fields at different levels

Packet

Primary
Header

Secondary
Header

(optional)
Version

SeqNr

SecHeaderFlag

Neuropublic SA Page 14

ACN User Manual

As shown in the example above, to access a “deep field” located in a child structure we
follow the C language notation i.e. fieldname.fieldname.fieldname etc. until we reach the
field we want.

4.2.2. Length determinant is above current node
This is the case where the array (sequence of_ is one or more levels more deeply than the
length determinant. For example, field “nrCalls”, which is a top level field, contains the
number of calls in the array “calls” located under “SourceData”. Obviously, the
“nrCalls” field is not accessible from the “calls” field. To overcome this issue, we must
make the SourceData structure parameterized. This case is shown in Figure 2.

Figure 2. Deep field access – case b.

The corresponding ASN.1 / ACN grammar is:

--ASN.1 DEFINITION

TAP2File ::= SEQUENCE {
 nrCalls INTEGER,
 data SourceData
}

SourceData ::= SEQUENCE {
 operatorID IA5String,
 calls SEQUENCE (SIZE(1..100))OF Call
}

--ACN DEFINITION

TAP2File {
 nrCalls [],
 data <nrCalls> [] -- nrCalls is passed as a parameter in SourceData
}

SourceData<INTEGER:nElements>
-- nElements is a parameter used in encoding/decoding
-- passed in from the levels above (in this case, TAP2File level)
{
 operatorID [],
 calls[size nElements] -- points to a parameter not a field
}

TAP2File

Source
DatanrCalls

OperatorID

Calls

Call1
Call2

CallN

Neuropublic SA Page 15

ACN User Manual

Listing 12: ACN grammar demonstrating parameterized encodings

Please note the “<>” in the encoding definition of the SourceData which contains the list
with the encoding parameters (in this example, just one).

4.2.3. Length determinant is in completely different subtree
This case is the combination of the two previous cases. A typical case is depicted in Figure
3. In this example, field “nCalls”, which is located under “header” record, contains the
number of calls in the “calls” array under “SourceData”.

Field nCalls (length determinant) and field calls (the SEQUENCE OF) are components of
two sibling structures (Header, SourceData) and have no access to each other.

Figure 3. Deep field access – case c.

To handle this case, we must apply the techniques of both previous cases. The
corresponding ASN.1 / ACN grammar would be:

--ASN.1 DEFINITION

TAP3File ::= SEQUENCE {
 header Header,
 data SourceData
}

Header ::= SEQUENCE {
 operatorID IA5String,
 nCalls INTEGER
}

SourceData ::= SEQUENCE {
 calls SEQUENCE (SIZE(1..100)) OF Call -- length field is contained in the header.nCalls
}

--ACN DEFINITION

TAP3File {
 header [] {},
 data <header.nCalls> [] -– header.nCalls is passed as a parameter
 -- in SourceData
}

Header[]{
 operatorID[],

TAP3File

Source
Data

Calls

Call1
Call2

CallN

Header

OperatorID

nCalls

Neuropublic SA Page 16

ACN User Manual

 nCalls[]
 }

SourceData<INTEGER:nElements> -- parameters
{
 calls[size nElements] – “size” points to a parameter, not a field
}

Listing 13: ACN grammar demonstrating parameterized encodings and deep field access

Neuropublic SA Page 17

	Table of Contents
	Acronyms and Abbreviations
	1. What is ACN?
	2. Short introduction to ACN
	3. ACN Encoding Properties
	3.1. size property
	3.1.1. Fixed form
	3.1.2. Variable size with length specified in external field

	3.2. encoding property
	3.3. endianness property
	3.4. align-to-next property
	3.5. encode-values property
	3.6. true-value and false-value properties
	3.7. present-when property
	3.8. determinant property

	4. Enhanced Options
	4.1. Fields introduced in the ACN grammar
	4.2. Parameterized encodings and deep field access
	4.2.1. Length determinant is below current node
	4.2.2. Length determinant is above current node
	4.2.3. Length determinant is in completely different subtree

