[ Index ] |
PHP Cross Reference of Unnamed Project |
[Summary view] [Print] [Text view]
1 =head1 NAME 2 3 perlebcdic - Considerations for running Perl on EBCDIC platforms 4 5 =head1 DESCRIPTION 6 7 An exploration of some of the issues facing Perl programmers 8 on EBCDIC based computers. We do not cover localization, 9 internationalization, or multi byte character set issues other 10 than some discussion of UTF-8 and UTF-EBCDIC. 11 12 Portions that are still incomplete are marked with XXX. 13 14 =head1 COMMON CHARACTER CODE SETS 15 16 =head2 ASCII 17 18 The American Standard Code for Information Interchange is a set of 19 integers running from 0 to 127 (decimal) that imply character 20 interpretation by the display and other system(s) of computers. 21 The range 0..127 can be covered by setting the bits in a 7-bit binary 22 digit, hence the set is sometimes referred to as a "7-bit ASCII". 23 ASCII was described by the American National Standards Institute 24 document ANSI X3.4-1986. It was also described by ISO 646:1991 25 (with localization for currency symbols). The full ASCII set is 26 given in the table below as the first 128 elements. Languages that 27 can be written adequately with the characters in ASCII include 28 English, Hawaiian, Indonesian, Swahili and some Native American 29 languages. 30 31 There are many character sets that extend the range of integers 32 from 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer). 33 One common one is the ISO 8859-1 character set. 34 35 =head2 ISO 8859 36 37 The ISO 8859-$n are a collection of character code sets from the 38 International Organization for Standardization (ISO) each of which 39 adds characters to the ASCII set that are typically found in European 40 languages many of which are based on the Roman, or Latin, alphabet. 41 42 =head2 Latin 1 (ISO 8859-1) 43 44 A particular 8-bit extension to ASCII that includes grave and acute 45 accented Latin characters. Languages that can employ ISO 8859-1 46 include all the languages covered by ASCII as well as Afrikaans, 47 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian, 48 Portuguese, Spanish, and Swedish. Dutch is covered albeit without 49 the ij ligature. French is covered too but without the oe ligature. 50 German can use ISO 8859-1 but must do so without German-style 51 quotation marks. This set is based on Western European extensions 52 to ASCII and is commonly encountered in world wide web work. 53 In IBM character code set identification terminology ISO 8859-1 is 54 also known as CCSID 819 (or sometimes 0819 or even 00819). 55 56 =head2 EBCDIC 57 58 The Extended Binary Coded Decimal Interchange Code refers to a 59 large collection of slightly different single and multi byte 60 coded character sets that are different from ASCII or ISO 8859-1 61 and typically run on host computers. The EBCDIC encodings derive 62 from 8 bit byte extensions of Hollerith punched card encodings. 63 The layout on the cards was such that high bits were set for the 64 upper and lower case alphabet characters [a-z] and [A-Z], but there 65 were gaps within each latin alphabet range. 66 67 Some IBM EBCDIC character sets may be known by character code set 68 identification numbers (CCSID numbers) or code page numbers. Leading 69 zero digits in CCSID numbers within this document are insignificant. 70 E.g. CCSID 0037 may be referred to as 37 in places. 71 72 =head2 13 variant characters 73 74 Among IBM EBCDIC character code sets there are 13 characters that 75 are often mapped to different integer values. Those characters 76 are known as the 13 "variant" characters and are: 77 78 \ [ ] { } ^ ~ ! # | $ @ ` 79 80 =head2 0037 81 82 Character code set ID 0037 is a mapping of the ASCII plus Latin-1 83 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used 84 in North American English locales on the OS/400 operating system 85 that runs on AS/400 computers. CCSID 37 differs from ISO 8859-1 86 in 237 places, in other words they agree on only 19 code point values. 87 88 =head2 1047 89 90 Character code set ID 1047 is also a mapping of the ASCII plus 91 Latin-1 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is 92 used under Unix System Services for OS/390 or z/OS, and OpenEdition 93 for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places. 94 95 =head2 POSIX-BC 96 97 The EBCDIC code page in use on Siemens' BS2000 system is distinct from 98 1047 and 0037. It is identified below as the POSIX-BC set. 99 100 =head2 Unicode code points versus EBCDIC code points 101 102 In Unicode terminology a I<code point> is the number assigned to a 103 character: for example, in EBCDIC the character "A" is usually assigned 104 the number 193. In Unicode the character "A" is assigned the number 65. 105 This causes a problem with the semantics of the pack/unpack "U", which 106 are supposed to pack Unicode code points to characters and back to numbers. 107 The problem is: which code points to use for code points less than 256? 108 (for 256 and over there's no problem: Unicode code points are used) 109 In EBCDIC, for the low 256 the EBCDIC code points are used. This 110 means that the equivalences 111 112 pack("U", ord($character)) eq $character 113 unpack("U", $character) == ord $character 114 115 will hold. (If Unicode code points were applied consistently over 116 all the possible code points, pack("U",ord("A")) would in EBCDIC 117 equal I<A with acute> or chr(101), and unpack("U", "A") would equal 118 65, or I<non-breaking space>, not 193, or ord "A".) 119 120 =head2 Remaining Perl Unicode problems in EBCDIC 121 122 =over 4 123 124 =item * 125 126 Many of the remaining seem to be related to case-insensitive matching: 127 for example, C<< /[\x{131}]/ >> (LATIN SMALL LETTER DOTLESS I) does 128 not match "I" case-insensitively, as it should under Unicode. 129 (The match succeeds in ASCII-derived platforms.) 130 131 =item * 132 133 The extensions Unicode::Collate and Unicode::Normalized are not 134 supported under EBCDIC, likewise for the encoding pragma. 135 136 =back 137 138 =head2 Unicode and UTF 139 140 UTF is a Unicode Transformation Format. UTF-8 is a Unicode conforming 141 representation of the Unicode standard that looks very much like ASCII. 142 UTF-EBCDIC is an attempt to represent Unicode characters in an EBCDIC 143 transparent manner. 144 145 =head2 Using Encode 146 147 Starting from Perl 5.8 you can use the standard new module Encode 148 to translate from EBCDIC to Latin-1 code points 149 150 use Encode 'from_to'; 151 152 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' ); 153 154 # $a is in EBCDIC code points 155 from_to($a, $ebcdic{ord '^'}, 'latin1'); 156 # $a is ISO 8859-1 code points 157 158 and from Latin-1 code points to EBCDIC code points 159 160 use Encode 'from_to'; 161 162 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' ); 163 164 # $a is ISO 8859-1 code points 165 from_to($a, 'latin1', $ebcdic{ord '^'}); 166 # $a is in EBCDIC code points 167 168 For doing I/O it is suggested that you use the autotranslating features 169 of PerlIO, see L<perluniintro>. 170 171 Since version 5.8 Perl uses the new PerlIO I/O library. This enables 172 you to use different encodings per IO channel. For example you may use 173 174 use Encode; 175 open($f, ">:encoding(ascii)", "test.ascii"); 176 print $f "Hello World!\n"; 177 open($f, ">:encoding(cp37)", "test.ebcdic"); 178 print $f "Hello World!\n"; 179 open($f, ">:encoding(latin1)", "test.latin1"); 180 print $f "Hello World!\n"; 181 open($f, ">:encoding(utf8)", "test.utf8"); 182 print $f "Hello World!\n"; 183 184 to get two files containing "Hello World!\n" in ASCII, CP 37 EBCDIC, 185 ISO 8859-1 (Latin-1) (in this example identical to ASCII) respective 186 UTF-EBCDIC (in this example identical to normal EBCDIC). See the 187 documentation of Encode::PerlIO for details. 188 189 As the PerlIO layer uses raw IO (bytes) internally, all this totally 190 ignores things like the type of your filesystem (ASCII or EBCDIC). 191 192 =head1 SINGLE OCTET TABLES 193 194 The following tables list the ASCII and Latin 1 ordered sets including 195 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f), 196 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the 197 table non-printing control character names as well as the Latin 1 198 extensions to ASCII have been labelled with character names roughly 199 corresponding to I<The Unicode Standard, Version 3.0> albeit with 200 substitutions such as s/LATIN// and s/VULGAR// in all cases, 201 s/CAPITAL LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/ 202 in some other cases (the C<charnames> pragma names unfortunately do 203 not list explicit names for the C0 or C1 control characters). The 204 "names" of the C1 control set (128..159 in ISO 8859-1) listed here are 205 somewhat arbitrary. The differences between the 0037 and 1047 sets are 206 flagged with ***. The differences between the 1047 and POSIX-BC sets 207 are flagged with ###. All ord() numbers listed are decimal. If you 208 would rather see this table listing octal values then run the table 209 (that is, the pod version of this document since this recipe may not 210 work with a pod2_other_format translation) through: 211 212 =over 4 213 214 =item recipe 0 215 216 =back 217 218 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \ 219 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod 220 221 If you want to retain the UTF-x code points then in script form you 222 might want to write: 223 224 =over 4 225 226 =item recipe 1 227 228 =back 229 230 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!"; 231 while (<FH>) { 232 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) { 233 if ($7 ne '' && $9 ne '') { 234 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9); 235 } 236 elsif ($7 ne '') { 237 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8); 238 } 239 else { 240 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8); 241 } 242 } 243 } 244 245 If you would rather see this table listing hexadecimal values then 246 run the table through: 247 248 =over 4 249 250 =item recipe 2 251 252 =back 253 254 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \ 255 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod 256 257 Or, in order to retain the UTF-x code points in hexadecimal: 258 259 =over 4 260 261 =item recipe 3 262 263 =back 264 265 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!"; 266 while (<FH>) { 267 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) { 268 if ($7 ne '' && $9 ne '') { 269 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9); 270 } 271 elsif ($7 ne '') { 272 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8); 273 } 274 else { 275 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8); 276 } 277 } 278 } 279 280 281 incomp- incomp- 282 8859-1 lete lete 283 chr 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC 284 ------------------------------------------------------------------------------------ 285 <NULL> 0 0 0 0 0 0 286 <START OF HEADING> 1 1 1 1 1 1 287 <START OF TEXT> 2 2 2 2 2 2 288 <END OF TEXT> 3 3 3 3 3 3 289 <END OF TRANSMISSION> 4 55 55 55 4 55 290 <ENQUIRY> 5 45 45 45 5 45 291 <ACKNOWLEDGE> 6 46 46 46 6 46 292 <BELL> 7 47 47 47 7 47 293 <BACKSPACE> 8 22 22 22 8 22 294 <HORIZONTAL TABULATION> 9 5 5 5 9 5 295 <LINE FEED> 10 37 21 21 10 21 *** 296 <VERTICAL TABULATION> 11 11 11 11 11 11 297 <FORM FEED> 12 12 12 12 12 12 298 <CARRIAGE RETURN> 13 13 13 13 13 13 299 <SHIFT OUT> 14 14 14 14 14 14 300 <SHIFT IN> 15 15 15 15 15 15 301 <DATA LINK ESCAPE> 16 16 16 16 16 16 302 <DEVICE CONTROL ONE> 17 17 17 17 17 17 303 <DEVICE CONTROL TWO> 18 18 18 18 18 18 304 <DEVICE CONTROL THREE> 19 19 19 19 19 19 305 <DEVICE CONTROL FOUR> 20 60 60 60 20 60 306 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61 307 <SYNCHRONOUS IDLE> 22 50 50 50 22 50 308 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38 309 <CANCEL> 24 24 24 24 24 24 310 <END OF MEDIUM> 25 25 25 25 25 25 311 <SUBSTITUTE> 26 63 63 63 26 63 312 <ESCAPE> 27 39 39 39 27 39 313 <FILE SEPARATOR> 28 28 28 28 28 28 314 <GROUP SEPARATOR> 29 29 29 29 29 29 315 <RECORD SEPARATOR> 30 30 30 30 30 30 316 <UNIT SEPARATOR> 31 31 31 31 31 31 317 <SPACE> 32 64 64 64 32 64 318 ! 33 90 90 90 33 90 319 " 34 127 127 127 34 127 320 # 35 123 123 123 35 123 321 $ 36 91 91 91 36 91 322 % 37 108 108 108 37 108 323 & 38 80 80 80 38 80 324 ' 39 125 125 125 39 125 325 ( 40 77 77 77 40 77 326 ) 41 93 93 93 41 93 327 * 42 92 92 92 42 92 328 + 43 78 78 78 43 78 329 , 44 107 107 107 44 107 330 - 45 96 96 96 45 96 331 . 46 75 75 75 46 75 332 / 47 97 97 97 47 97 333 0 48 240 240 240 48 240 334 1 49 241 241 241 49 241 335 2 50 242 242 242 50 242 336 3 51 243 243 243 51 243 337 4 52 244 244 244 52 244 338 5 53 245 245 245 53 245 339 6 54 246 246 246 54 246 340 7 55 247 247 247 55 247 341 8 56 248 248 248 56 248 342 9 57 249 249 249 57 249 343 : 58 122 122 122 58 122 344 ; 59 94 94 94 59 94 345 < 60 76 76 76 60 76 346 = 61 126 126 126 61 126 347 > 62 110 110 110 62 110 348 ? 63 111 111 111 63 111 349 @ 64 124 124 124 64 124 350 A 65 193 193 193 65 193 351 B 66 194 194 194 66 194 352 C 67 195 195 195 67 195 353 D 68 196 196 196 68 196 354 E 69 197 197 197 69 197 355 F 70 198 198 198 70 198 356 G 71 199 199 199 71 199 357 H 72 200 200 200 72 200 358 I 73 201 201 201 73 201 359 J 74 209 209 209 74 209 360 K 75 210 210 210 75 210 361 L 76 211 211 211 76 211 362 M 77 212 212 212 77 212 363 N 78 213 213 213 78 213 364 O 79 214 214 214 79 214 365 P 80 215 215 215 80 215 366 Q 81 216 216 216 81 216 367 R 82 217 217 217 82 217 368 S 83 226 226 226 83 226 369 T 84 227 227 227 84 227 370 U 85 228 228 228 85 228 371 V 86 229 229 229 86 229 372 W 87 230 230 230 87 230 373 X 88 231 231 231 88 231 374 Y 89 232 232 232 89 232 375 Z 90 233 233 233 90 233 376 [ 91 186 173 187 91 173 *** ### 377 \ 92 224 224 188 92 224 ### 378 ] 93 187 189 189 93 189 *** 379 ^ 94 176 95 106 94 95 *** ### 380 _ 95 109 109 109 95 109 381 ` 96 121 121 74 96 121 ### 382 a 97 129 129 129 97 129 383 b 98 130 130 130 98 130 384 c 99 131 131 131 99 131 385 d 100 132 132 132 100 132 386 e 101 133 133 133 101 133 387 f 102 134 134 134 102 134 388 g 103 135 135 135 103 135 389 h 104 136 136 136 104 136 390 i 105 137 137 137 105 137 391 j 106 145 145 145 106 145 392 k 107 146 146 146 107 146 393 l 108 147 147 147 108 147 394 m 109 148 148 148 109 148 395 n 110 149 149 149 110 149 396 o 111 150 150 150 111 150 397 p 112 151 151 151 112 151 398 q 113 152 152 152 113 152 399 r 114 153 153 153 114 153 400 s 115 162 162 162 115 162 401 t 116 163 163 163 116 163 402 u 117 164 164 164 117 164 403 v 118 165 165 165 118 165 404 w 119 166 166 166 119 166 405 x 120 167 167 167 120 167 406 y 121 168 168 168 121 168 407 z 122 169 169 169 122 169 408 { 123 192 192 251 123 192 ### 409 | 124 79 79 79 124 79 410 } 125 208 208 253 125 208 ### 411 ~ 126 161 161 255 126 161 ### 412 <DELETE> 127 7 7 7 127 7 413 <C1 0> 128 32 32 32 194.128 32 414 <C1 1> 129 33 33 33 194.129 33 415 <C1 2> 130 34 34 34 194.130 34 416 <C1 3> 131 35 35 35 194.131 35 417 <C1 4> 132 36 36 36 194.132 36 418 <C1 5> 133 21 37 37 194.133 37 *** 419 <C1 6> 134 6 6 6 194.134 6 420 <C1 7> 135 23 23 23 194.135 23 421 <C1 8> 136 40 40 40 194.136 40 422 <C1 9> 137 41 41 41 194.137 41 423 <C1 10> 138 42 42 42 194.138 42 424 <C1 11> 139 43 43 43 194.139 43 425 <C1 12> 140 44 44 44 194.140 44 426 <C1 13> 141 9 9 9 194.141 9 427 <C1 14> 142 10 10 10 194.142 10 428 <C1 15> 143 27 27 27 194.143 27 429 <C1 16> 144 48 48 48 194.144 48 430 <C1 17> 145 49 49 49 194.145 49 431 <C1 18> 146 26 26 26 194.146 26 432 <C1 19> 147 51 51 51 194.147 51 433 <C1 20> 148 52 52 52 194.148 52 434 <C1 21> 149 53 53 53 194.149 53 435 <C1 22> 150 54 54 54 194.150 54 436 <C1 23> 151 8 8 8 194.151 8 437 <C1 24> 152 56 56 56 194.152 56 438 <C1 25> 153 57 57 57 194.153 57 439 <C1 26> 154 58 58 58 194.154 58 440 <C1 27> 155 59 59 59 194.155 59 441 <C1 28> 156 4 4 4 194.156 4 442 <C1 29> 157 20 20 20 194.157 20 443 <C1 30> 158 62 62 62 194.158 62 444 <C1 31> 159 255 255 95 194.159 255 ### 445 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65 446 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66 447 <CENT SIGN> 162 74 74 176 194.162 128.67 ### 448 <POUND SIGN> 163 177 177 177 194.163 128.68 449 <CURRENCY SIGN> 164 159 159 159 194.164 128.69 450 <YEN SIGN> 165 178 178 178 194.165 128.70 451 <BROKEN BAR> 166 106 106 208 194.166 128.71 ### 452 <SECTION SIGN> 167 181 181 181 194.167 128.72 453 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ### 454 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74 455 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81 456 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82 457 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ### 458 <SOFT HYPHEN> 173 202 202 202 194.173 128.84 459 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85 460 <MACRON> 175 188 188 161 194.175 128.86 ### 461 <DEGREE SIGN> 176 144 144 144 194.176 128.87 462 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88 463 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89 464 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98 465 <ACUTE ACCENT> 180 190 190 190 194.180 128.99 466 <MICRO SIGN> 181 160 160 160 194.181 128.100 467 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101 468 <MIDDLE DOT> 183 179 179 179 194.183 128.102 469 <CEDILLA> 184 157 157 157 194.184 128.103 470 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104 471 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105 472 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106 473 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112 474 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113 475 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114 476 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115 477 <A WITH GRAVE> 192 100 100 100 195.128 138.65 478 <A WITH ACUTE> 193 101 101 101 195.129 138.66 479 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67 480 <A WITH TILDE> 195 102 102 102 195.131 138.68 481 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69 482 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70 483 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71 484 <C WITH CEDILLA> 199 104 104 104 195.135 138.72 485 <E WITH GRAVE> 200 116 116 116 195.136 138.73 486 <E WITH ACUTE> 201 113 113 113 195.137 138.74 487 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81 488 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82 489 <I WITH GRAVE> 204 120 120 120 195.140 138.83 490 <I WITH ACUTE> 205 117 117 117 195.141 138.84 491 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85 492 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86 493 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87 494 <N WITH TILDE> 209 105 105 105 195.145 138.88 495 <O WITH GRAVE> 210 237 237 237 195.146 138.89 496 <O WITH ACUTE> 211 238 238 238 195.147 138.98 497 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99 498 <O WITH TILDE> 213 239 239 239 195.149 138.100 499 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101 500 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102 501 <O WITH STROKE> 216 128 128 128 195.152 138.103 502 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ### 503 <U WITH ACUTE> 218 254 254 254 195.154 138.105 504 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ### 505 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112 506 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ### 507 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114 508 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115 509 <a WITH GRAVE> 224 68 68 68 195.160 139.65 510 <a WITH ACUTE> 225 69 69 69 195.161 139.66 511 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67 512 <a WITH TILDE> 227 70 70 70 195.163 139.68 513 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69 514 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70 515 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71 516 <c WITH CEDILLA> 231 72 72 72 195.167 139.72 517 <e WITH GRAVE> 232 84 84 84 195.168 139.73 518 <e WITH ACUTE> 233 81 81 81 195.169 139.74 519 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81 520 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82 521 <i WITH GRAVE> 236 88 88 88 195.172 139.83 522 <i WITH ACUTE> 237 85 85 85 195.173 139.84 523 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85 524 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86 525 <SMALL LETTER eth> 240 140 140 140 195.176 139.87 526 <n WITH TILDE> 241 73 73 73 195.177 139.88 527 <o WITH GRAVE> 242 205 205 205 195.178 139.89 528 <o WITH ACUTE> 243 206 206 206 195.179 139.98 529 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99 530 <o WITH TILDE> 245 207 207 207 195.181 139.100 531 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101 532 <DIVISION SIGN> 247 225 225 225 195.183 139.102 533 <o WITH STROKE> 248 112 112 112 195.184 139.103 534 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ### 535 <u WITH ACUTE> 250 222 222 222 195.186 139.105 536 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106 537 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112 538 <y WITH ACUTE> 253 141 141 141 195.189 139.113 539 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114 540 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115 541 542 If you would rather see the above table in CCSID 0037 order rather than 543 ASCII + Latin-1 order then run the table through: 544 545 =over 4 546 547 =item recipe 4 548 549 =back 550 551 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\ 552 -e '{push(@l,$_)}' \ 553 -e 'END{print map{$_->[0]}' \ 554 -e ' sort{$a->[1] <=> $b->[1]}' \ 555 -e ' map{[$_,substr($_,42,3)]}@l;}' perlebcdic.pod 556 557 If you would rather see it in CCSID 1047 order then change the digit 558 42 in the last line to 51, like this: 559 560 =over 4 561 562 =item recipe 5 563 564 =back 565 566 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\ 567 -e '{push(@l,$_)}' \ 568 -e 'END{print map{$_->[0]}' \ 569 -e ' sort{$a->[1] <=> $b->[1]}' \ 570 -e ' map{[$_,substr($_,51,3)]}@l;}' perlebcdic.pod 571 572 If you would rather see it in POSIX-BC order then change the digit 573 51 in the last line to 60, like this: 574 575 =over 4 576 577 =item recipe 6 578 579 =back 580 581 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\ 582 -e '{push(@l,$_)}' \ 583 -e 'END{print map{$_->[0]}' \ 584 -e ' sort{$a->[1] <=> $b->[1]}' \ 585 -e ' map{[$_,substr($_,60,3)]}@l;}' perlebcdic.pod 586 587 588 =head1 IDENTIFYING CHARACTER CODE SETS 589 590 To determine the character set you are running under from perl one 591 could use the return value of ord() or chr() to test one or more 592 character values. For example: 593 594 $is_ascii = "A" eq chr(65); 595 $is_ebcdic = "A" eq chr(193); 596 597 Also, "\t" is a C<HORIZONTAL TABULATION> character so that: 598 599 $is_ascii = ord("\t") == 9; 600 $is_ebcdic = ord("\t") == 5; 601 602 To distinguish EBCDIC code pages try looking at one or more of 603 the characters that differ between them. For example: 604 605 $is_ebcdic_37 = "\n" eq chr(37); 606 $is_ebcdic_1047 = "\n" eq chr(21); 607 608 Or better still choose a character that is uniquely encoded in any 609 of the code sets, e.g.: 610 611 $is_ascii = ord('[') == 91; 612 $is_ebcdic_37 = ord('[') == 186; 613 $is_ebcdic_1047 = ord('[') == 173; 614 $is_ebcdic_POSIX_BC = ord('[') == 187; 615 616 However, it would be unwise to write tests such as: 617 618 $is_ascii = "\r" ne chr(13); # WRONG 619 $is_ascii = "\n" ne chr(10); # ILL ADVISED 620 621 Obviously the first of these will fail to distinguish most ASCII machines 622 from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC machine since "\r" eq 623 chr(13) under all of those coded character sets. But note too that 624 because "\n" is chr(13) and "\r" is chr(10) on the MacIntosh (which is an 625 ASCII machine) the second C<$is_ascii> test will lead to trouble there. 626 627 To determine whether or not perl was built under an EBCDIC 628 code page you can use the Config module like so: 629 630 use Config; 631 $is_ebcdic = $Config{'ebcdic'} eq 'define'; 632 633 =head1 CONVERSIONS 634 635 =head2 tr/// 636 637 In order to convert a string of characters from one character set to 638 another a simple list of numbers, such as in the right columns in the 639 above table, along with perl's tr/// operator is all that is needed. 640 The data in the table are in ASCII order hence the EBCDIC columns 641 provide easy to use ASCII to EBCDIC operations that are also easily 642 reversed. 643 644 For example, to convert ASCII to code page 037 take the output of the second 645 column from the output of recipe 0 (modified to add \\ characters) and use 646 it in tr/// like so: 647 648 $cp_037 = 649 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' . 650 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' . 651 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' . 652 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' . 653 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' . 654 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' . 655 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' . 656 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' . 657 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' . 658 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' . 659 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' . 660 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' . 661 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' . 662 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' . 663 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' . 664 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ; 665 666 my $ebcdic_string = $ascii_string; 667 eval '$ebcdic_string =~ tr/' . $cp_037 . '/\000-\377/'; 668 669 To convert from EBCDIC 037 to ASCII just reverse the order of the tr/// 670 arguments like so: 671 672 my $ascii_string = $ebcdic_string; 673 eval '$ascii_string =~ tr/\000-\377/' . $cp_037 . '/'; 674 675 Similarly one could take the output of the third column from recipe 0 to 676 obtain a C<$cp_1047> table. The fourth column of the output from recipe 677 0 could provide a C<$cp_posix_bc> table suitable for transcoding as well. 678 679 =head2 iconv 680 681 XPG operability often implies the presence of an I<iconv> utility 682 available from the shell or from the C library. Consult your system's 683 documentation for information on iconv. 684 685 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv 686 shell utility from within perl would be to: 687 688 # OS/390 or z/OS example 689 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1` 690 691 or the inverse map: 692 693 # OS/390 or z/OS example 694 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047` 695 696 For other perl based conversion options see the Convert::* modules on CPAN. 697 698 =head2 C RTL 699 700 The OS/390 and z/OS C run time libraries provide _atoe() and _etoa() functions. 701 702 =head1 OPERATOR DIFFERENCES 703 704 The C<..> range operator treats certain character ranges with 705 care on EBCDIC machines. For example the following array 706 will have twenty six elements on either an EBCDIC machine 707 or an ASCII machine: 708 709 @alphabet = ('A'..'Z'); # $#alphabet == 25 710 711 The bitwise operators such as & ^ | may return different results 712 when operating on string or character data in a perl program running 713 on an EBCDIC machine than when run on an ASCII machine. Here is 714 an example adapted from the one in L<perlop>: 715 716 # EBCDIC-based examples 717 print "j p \n" ^ " a h"; # prints "JAPH\n" 718 print "JA" | " ph\n"; # prints "japh\n" 719 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n"; 720 print 'p N$' ^ " E<H\n"; # prints "Perl\n"; 721 722 An interesting property of the 32 C0 control characters 723 in the ASCII table is that they can "literally" be constructed 724 as control characters in perl, e.g. C<(chr(0) eq "\c@")> 725 C<(chr(1) eq "\cA")>, and so on. Perl on EBCDIC machines has been 726 ported to take "\c@" to chr(0) and "\cA" to chr(1) as well, but the 727 thirty three characters that result depend on which code page you are 728 using. The table below uses the character names from the previous table 729 but with substitutions such as s/START OF/S.O./; s/END OF /E.O./; 730 s/TRANSMISSION/TRANS./; s/TABULATION/TAB./; s/VERTICAL/VERT./; 731 s/HORIZONTAL/HORIZ./; s/DEVICE CONTROL/D.C./; s/SEPARATOR/SEP./; 732 s/NEGATIVE ACKNOWLEDGE/NEG. ACK./;. The POSIX-BC and 1047 sets are 733 identical throughout this range and differ from the 0037 set at only 734 one spot (21 decimal). Note that the C<LINE FEED> character 735 may be generated by "\cJ" on ASCII machines but by "\cU" on 1047 or POSIX-BC 736 machines and cannot be generated as a C<"\c.letter."> control character on 737 0037 machines. Note also that "\c\\" maps to two characters 738 not one. 739 740 chr ord 8859-1 0037 1047 && POSIX-BC 741 ------------------------------------------------------------------------ 742 "\c?" 127 <DELETE> " " ***>< 743 "\c@" 0 <NULL> <NULL> <NULL> ***>< 744 "\cA" 1 <S.O. HEADING> <S.O. HEADING> <S.O. HEADING> 745 "\cB" 2 <S.O. TEXT> <S.O. TEXT> <S.O. TEXT> 746 "\cC" 3 <E.O. TEXT> <E.O. TEXT> <E.O. TEXT> 747 "\cD" 4 <E.O. TRANS.> <C1 28> <C1 28> 748 "\cE" 5 <ENQUIRY> <HORIZ. TAB.> <HORIZ. TAB.> 749 "\cF" 6 <ACKNOWLEDGE> <C1 6> <C1 6> 750 "\cG" 7 <BELL> <DELETE> <DELETE> 751 "\cH" 8 <BACKSPACE> <C1 23> <C1 23> 752 "\cI" 9 <HORIZ. TAB.> <C1 13> <C1 13> 753 "\cJ" 10 <LINE FEED> <C1 14> <C1 14> 754 "\cK" 11 <VERT. TAB.> <VERT. TAB.> <VERT. TAB.> 755 "\cL" 12 <FORM FEED> <FORM FEED> <FORM FEED> 756 "\cM" 13 <CARRIAGE RETURN> <CARRIAGE RETURN> <CARRIAGE RETURN> 757 "\cN" 14 <SHIFT OUT> <SHIFT OUT> <SHIFT OUT> 758 "\cO" 15 <SHIFT IN> <SHIFT IN> <SHIFT IN> 759 "\cP" 16 <DATA LINK ESCAPE> <DATA LINK ESCAPE> <DATA LINK ESCAPE> 760 "\cQ" 17 <D.C. ONE> <D.C. ONE> <D.C. ONE> 761 "\cR" 18 <D.C. TWO> <D.C. TWO> <D.C. TWO> 762 "\cS" 19 <D.C. THREE> <D.C. THREE> <D.C. THREE> 763 "\cT" 20 <D.C. FOUR> <C1 29> <C1 29> 764 "\cU" 21 <NEG. ACK.> <C1 5> <LINE FEED> *** 765 "\cV" 22 <SYNCHRONOUS IDLE> <BACKSPACE> <BACKSPACE> 766 "\cW" 23 <E.O. TRANS. BLOCK> <C1 7> <C1 7> 767 "\cX" 24 <CANCEL> <CANCEL> <CANCEL> 768 "\cY" 25 <E.O. MEDIUM> <E.O. MEDIUM> <E.O. MEDIUM> 769 "\cZ" 26 <SUBSTITUTE> <C1 18> <C1 18> 770 "\c[" 27 <ESCAPE> <C1 15> <C1 15> 771 "\c\\" 28 <FILE SEP.>\ <FILE SEP.>\ <FILE SEP.>\ 772 "\c]" 29 <GROUP SEP.> <GROUP SEP.> <GROUP SEP.> 773 "\c^" 30 <RECORD SEP.> <RECORD SEP.> <RECORD SEP.> ***>< 774 "\c_" 31 <UNIT SEP.> <UNIT SEP.> <UNIT SEP.> ***>< 775 776 777 =head1 FUNCTION DIFFERENCES 778 779 =over 8 780 781 =item chr() 782 783 chr() must be given an EBCDIC code number argument to yield a desired 784 character return value on an EBCDIC machine. For example: 785 786 $CAPITAL_LETTER_A = chr(193); 787 788 =item ord() 789 790 ord() will return EBCDIC code number values on an EBCDIC machine. 791 For example: 792 793 $the_number_193 = ord("A"); 794 795 =item pack() 796 797 The c and C templates for pack() are dependent upon character set 798 encoding. Examples of usage on EBCDIC include: 799 800 $foo = pack("CCCC",193,194,195,196); 801 # $foo eq "ABCD" 802 $foo = pack("C4",193,194,195,196); 803 # same thing 804 805 $foo = pack("ccxxcc",193,194,195,196); 806 # $foo eq "AB\0\0CD" 807 808 =item print() 809 810 One must be careful with scalars and strings that are passed to 811 print that contain ASCII encodings. One common place 812 for this to occur is in the output of the MIME type header for 813 CGI script writing. For example, many perl programming guides 814 recommend something similar to: 815 816 print "Content-type:\ttext/html\015\012\015\012"; 817 # this may be wrong on EBCDIC 818 819 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for example 820 you should instead write that as: 821 822 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et alia 823 824 That is because the translation from EBCDIC to ASCII is done 825 by the web server in this case (such code will not be appropriate for 826 the Macintosh however). Consult your web server's documentation for 827 further details. 828 829 =item printf() 830 831 The formats that can convert characters to numbers and vice versa 832 will be different from their ASCII counterparts when executed 833 on an EBCDIC machine. Examples include: 834 835 printf("%c%c%c",193,194,195); # prints ABC 836 837 =item sort() 838 839 EBCDIC sort results may differ from ASCII sort results especially for 840 mixed case strings. This is discussed in more detail below. 841 842 =item sprintf() 843 844 See the discussion of printf() above. An example of the use 845 of sprintf would be: 846 847 $CAPITAL_LETTER_A = sprintf("%c",193); 848 849 =item unpack() 850 851 See the discussion of pack() above. 852 853 =back 854 855 =head1 REGULAR EXPRESSION DIFFERENCES 856 857 As of perl 5.005_03 the letter range regular expression such as 858 [A-Z] and [a-z] have been especially coded to not pick up gap 859 characters. For example, characters such as E<ocirc> C<o WITH CIRCUMFLEX> 860 that lie between I and J would not be matched by the 861 regular expression range C</[H-K]/>. This works in 862 the other direction, too, if either of the range end points is 863 explicitly numeric: C<[\x89-\x91]> will match C<\x8e>, even 864 though C<\x89> is C<i> and C<\x91 > is C<j>, and C<\x8e> 865 is a gap character from the alphabetic viewpoint. 866 867 If you do want to match the alphabet gap characters in a single octet 868 regular expression try matching the hex or octal code such 869 as C</\313/> on EBCDIC or C</\364/> on ASCII machines to 870 have your regular expression match C<o WITH CIRCUMFLEX>. 871 872 Another construct to be wary of is the inappropriate use of hex or 873 octal constants in regular expressions. Consider the following 874 set of subs: 875 876 sub is_c0 { 877 my $char = substr(shift,0,1); 878 $char =~ /[\000-\037]/; 879 } 880 881 sub is_print_ascii { 882 my $char = substr(shift,0,1); 883 $char =~ /[\040-\176]/; 884 } 885 886 sub is_delete { 887 my $char = substr(shift,0,1); 888 $char eq "\177"; 889 } 890 891 sub is_c1 { 892 my $char = substr(shift,0,1); 893 $char =~ /[\200-\237]/; 894 } 895 896 sub is_latin_1 { 897 my $char = substr(shift,0,1); 898 $char =~ /[\240-\377]/; 899 } 900 901 The above would be adequate if the concern was only with numeric code points. 902 However, the concern may be with characters rather than code points 903 and on an EBCDIC machine it may be desirable for constructs such as 904 C<if (is_print_ascii("A")) {print "A is a printable character\n";}> to print 905 out the expected message. One way to represent the above collection 906 of character classification subs that is capable of working across the 907 four coded character sets discussed in this document is as follows: 908 909 sub Is_c0 { 910 my $char = substr(shift,0,1); 911 if (ord('^')==94) { # ascii 912 return $char =~ /[\000-\037]/; 913 } 914 if (ord('^')==176) { # 37 915 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/; 916 } 917 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc 918 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/; 919 } 920 } 921 922 sub Is_print_ascii { 923 my $char = substr(shift,0,1); 924 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/; 925 } 926 927 sub Is_delete { 928 my $char = substr(shift,0,1); 929 if (ord('^')==94) { # ascii 930 return $char eq "\177"; 931 } 932 else { # ebcdic 933 return $char eq "\007"; 934 } 935 } 936 937 sub Is_c1 { 938 my $char = substr(shift,0,1); 939 if (ord('^')==94) { # ascii 940 return $char =~ /[\200-\237]/; 941 } 942 if (ord('^')==176) { # 37 943 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/; 944 } 945 if (ord('^')==95) { # 1047 946 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/; 947 } 948 if (ord('^')==106) { # posix-bc 949 return $char =~ 950 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/; 951 } 952 } 953 954 sub Is_latin_1 { 955 my $char = substr(shift,0,1); 956 if (ord('^')==94) { # ascii 957 return $char =~ /[\240-\377]/; 958 } 959 if (ord('^')==176) { # 37 960 return $char =~ 961 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/; 962 } 963 if (ord('^')==95) { # 1047 964 return $char =~ 965 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/; 966 } 967 if (ord('^')==106) { # posix-bc 968 return $char =~ 969 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/; 970 } 971 } 972 973 Note however that only the C<Is_ascii_print()> sub is really independent 974 of coded character set. Another way to write C<Is_latin_1()> would be 975 to use the characters in the range explicitly: 976 977 sub Is_latin_1 { 978 my $char = substr(shift,0,1); 979 $char =~ /[ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ]/; 980 } 981 982 Although that form may run into trouble in network transit (due to the 983 presence of 8 bit characters) or on non ISO-Latin character sets. 984 985 =head1 SOCKETS 986 987 Most socket programming assumes ASCII character encodings in network 988 byte order. Exceptions can include CGI script writing under a 989 host web server where the server may take care of translation for you. 990 Most host web servers convert EBCDIC data to ISO-8859-1 or Unicode on 991 output. 992 993 =head1 SORTING 994 995 One big difference between ASCII based character sets and EBCDIC ones 996 are the relative positions of upper and lower case letters and the 997 letters compared to the digits. If sorted on an ASCII based machine the 998 two letter abbreviation for a physician comes before the two letter 999 for drive, that is: 1000 1001 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII, 1002 # but ('dr.','Dr.') on EBCDIC 1003 1004 The property of lower case before uppercase letters in EBCDIC is 1005 even carried to the Latin 1 EBCDIC pages such as 0037 and 1047. 1006 An example would be that E<Euml> C<E WITH DIAERESIS> (203) comes 1007 before E<euml> C<e WITH DIAERESIS> (235) on an ASCII machine, but 1008 the latter (83) comes before the former (115) on an EBCDIC machine. 1009 (Astute readers will note that the upper case version of E<szlig> 1010 C<SMALL LETTER SHARP S> is simply "SS" and that the upper case version of 1011 E<yuml> C<y WITH DIAERESIS> is not in the 0..255 range but it is 1012 at U+x0178 in Unicode, or C<"\x{178}"> in a Unicode enabled Perl). 1013 1014 The sort order will cause differences between results obtained on 1015 ASCII machines versus EBCDIC machines. What follows are some suggestions 1016 on how to deal with these differences. 1017 1018 =head2 Ignore ASCII vs. EBCDIC sort differences. 1019 1020 This is the least computationally expensive strategy. It may require 1021 some user education. 1022 1023 =head2 MONO CASE then sort data. 1024 1025 In order to minimize the expense of mono casing mixed test try to 1026 C<tr///> towards the character set case most employed within the data. 1027 If the data are primarily UPPERCASE non Latin 1 then apply tr/[a-z]/[A-Z]/ 1028 then sort(). If the data are primarily lowercase non Latin 1 then 1029 apply tr/[A-Z]/[a-z]/ before sorting. If the data are primarily UPPERCASE 1030 and include Latin-1 characters then apply: 1031 1032 tr/[a-z]/[A-Z]/; 1033 tr/[àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ]/[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ]/; 1034 s/ß/SS/g; 1035 1036 then sort(). Do note however that such Latin-1 manipulation does not 1037 address the E<yuml> C<y WITH DIAERESIS> character that will remain at 1038 code point 255 on ASCII machines, but 223 on most EBCDIC machines 1039 where it will sort to a place less than the EBCDIC numerals. With a 1040 Unicode enabled Perl you might try: 1041 1042 tr/^?/\x{178}/; 1043 1044 The strategy of mono casing data before sorting does not preserve the case 1045 of the data and may not be acceptable for that reason. 1046 1047 =head2 Convert, sort data, then re convert. 1048 1049 This is the most expensive proposition that does not employ a network 1050 connection. 1051 1052 =head2 Perform sorting on one type of machine only. 1053 1054 This strategy can employ a network connection. As such 1055 it would be computationally expensive. 1056 1057 =head1 TRANSFORMATION FORMATS 1058 1059 There are a variety of ways of transforming data with an intra character set 1060 mapping that serve a variety of purposes. Sorting was discussed in the 1061 previous section and a few of the other more popular mapping techniques are 1062 discussed next. 1063 1064 =head2 URL decoding and encoding 1065 1066 Note that some URLs have hexadecimal ASCII code points in them in an 1067 attempt to overcome character or protocol limitation issues. For example 1068 the tilde character is not on every keyboard hence a URL of the form: 1069 1070 http://www.pvhp.com/~pvhp/ 1071 1072 may also be expressed as either of: 1073 1074 http://www.pvhp.com/%7Epvhp/ 1075 1076 http://www.pvhp.com/%7epvhp/ 1077 1078 where 7E is the hexadecimal ASCII code point for '~'. Here is an example 1079 of decoding such a URL under CCSID 1047: 1080 1081 $url = 'http://www.pvhp.com/%7Epvhp/'; 1082 # this array assumes code page 1047 1083 my @a2e_1047 = ( 1084 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15, 1085 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31, 1086 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97, 1087 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111, 1088 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214, 1089 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109, 1090 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150, 1091 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7, 1092 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27, 1093 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255, 1094 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188, 1095 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171, 1096 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119, 1097 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89, 1098 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87, 1099 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223 1100 ); 1101 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge; 1102 1103 Conversely, here is a partial solution for the task of encoding such 1104 a URL under the 1047 code page: 1105 1106 $url = 'http://www.pvhp.com/~pvhp/'; 1107 # this array assumes code page 1047 1108 my @e2a_1047 = ( 1109 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15, 1110 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31, 1111 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7, 1112 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26, 1113 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124, 1114 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94, 1115 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63, 1116 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34, 1117 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177, 1118 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164, 1119 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174, 1120 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215, 1121 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245, 1122 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255, 1123 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213, 1124 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159 1125 ); 1126 # The following regular expression does not address the 1127 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A') 1128 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge; 1129 1130 where a more complete solution would split the URL into components 1131 and apply a full s/// substitution only to the appropriate parts. 1132 1133 In the remaining examples a @e2a or @a2e array may be employed 1134 but the assignment will not be shown explicitly. For code page 1047 1135 you could use the @a2e_1047 or @e2a_1047 arrays just shown. 1136 1137 =head2 uu encoding and decoding 1138 1139 The C<u> template to pack() or unpack() will render EBCDIC data in EBCDIC 1140 characters equivalent to their ASCII counterparts. For example, the 1141 following will print "Yes indeed\n" on either an ASCII or EBCDIC computer: 1142 1143 $all_byte_chrs = ''; 1144 for (0..255) { $all_byte_chrs .= chr($_); } 1145 $uuencode_byte_chrs = pack('u', $all_byte_chrs); 1146 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm; 1147 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL 1148 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9 1149 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6& 1150 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S 1151 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@ 1152 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P`` 1153 ENDOFHEREDOC 1154 if ($uuencode_byte_chrs eq $uu) { 1155 print "Yes "; 1156 } 1157 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs); 1158 if ($uudecode_byte_chrs eq $all_byte_chrs) { 1159 print "indeed\n"; 1160 } 1161 1162 Here is a very spartan uudecoder that will work on EBCDIC provided 1163 that the @e2a array is filled in appropriately: 1164 1165 #!/usr/local/bin/perl 1166 @e2a = ( # this must be filled in 1167 ); 1168 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/; 1169 open(OUT, "> $file") if $file ne ""; 1170 while(<>) { 1171 last if /^end/; 1172 next if /[a-z]/; 1173 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) == 1174 int(length() / 4); 1175 print OUT unpack("u", $_); 1176 } 1177 close(OUT); 1178 chmod oct($mode), $file; 1179 1180 1181 =head2 Quoted-Printable encoding and decoding 1182 1183 On ASCII encoded machines it is possible to strip characters outside of 1184 the printable set using: 1185 1186 # This QP encoder works on ASCII only 1187 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge; 1188 1189 Whereas a QP encoder that works on both ASCII and EBCDIC machines 1190 would look somewhat like the following (where the EBCDIC branch @e2a 1191 array is omitted for brevity): 1192 1193 if (ord('A') == 65) { # ASCII 1194 $delete = "\x7F"; # ASCII 1195 @e2a = (0 .. 255) # ASCII to ASCII identity map 1196 } 1197 else { # EBCDIC 1198 $delete = "\x07"; # EBCDIC 1199 @e2a = # EBCDIC to ASCII map (as shown above) 1200 } 1201 $qp_string =~ 1202 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge; 1203 1204 (although in production code the substitutions might be done 1205 in the EBCDIC branch with the @e2a array and separately in the 1206 ASCII branch without the expense of the identity map). 1207 1208 Such QP strings can be decoded with: 1209 1210 # This QP decoder is limited to ASCII only 1211 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge; 1212 $string =~ s/=[\n\r]+$//; 1213 1214 Whereas a QP decoder that works on both ASCII and EBCDIC machines 1215 would look somewhat like the following (where the @a2e array is 1216 omitted for brevity): 1217 1218 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge; 1219 $string =~ s/=[\n\r]+$//; 1220 1221 =head2 Caesarian ciphers 1222 1223 The practice of shifting an alphabet one or more characters for encipherment 1224 dates back thousands of years and was explicitly detailed by Gaius Julius 1225 Caesar in his B<Gallic Wars> text. A single alphabet shift is sometimes 1226 referred to as a rotation and the shift amount is given as a number $n after 1227 the string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps 1228 on the 26 letter English version of the Latin alphabet. Rot13 has the 1229 interesting property that alternate subsequent invocations are identity maps 1230 (thus rot13 is its own non-trivial inverse in the group of 26 alphabet 1231 rotations). Hence the following is a rot13 encoder and decoder that will 1232 work on ASCII and EBCDIC machines: 1233 1234 #!/usr/local/bin/perl 1235 1236 while(<>){ 1237 tr/n-za-mN-ZA-M/a-zA-Z/; 1238 print; 1239 } 1240 1241 In one-liner form: 1242 1243 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print' 1244 1245 1246 =head1 Hashing order and checksums 1247 1248 To the extent that it is possible to write code that depends on 1249 hashing order there may be differences between hashes as stored 1250 on an ASCII based machine and hashes stored on an EBCDIC based machine. 1251 XXX 1252 1253 =head1 I18N AND L10N 1254 1255 Internationalization(I18N) and localization(L10N) are supported at least 1256 in principle even on EBCDIC machines. The details are system dependent 1257 and discussed under the L<perlebcdic/OS ISSUES> section below. 1258 1259 =head1 MULTI OCTET CHARACTER SETS 1260 1261 Perl may work with an internal UTF-EBCDIC encoding form for wide characters 1262 on EBCDIC platforms in a manner analogous to the way that it works with 1263 the UTF-8 internal encoding form on ASCII based platforms. 1264 1265 Legacy multi byte EBCDIC code pages XXX. 1266 1267 =head1 OS ISSUES 1268 1269 There may be a few system dependent issues 1270 of concern to EBCDIC Perl programmers. 1271 1272 =head2 OS/400 1273 1274 =over 8 1275 1276 =item PASE 1277 1278 The PASE environment is runtime environment for OS/400 that can run 1279 executables built for PowerPC AIX in OS/400, see L<perlos400>. PASE 1280 is ASCII-based, not EBCDIC-based as the ILE. 1281 1282 =item IFS access 1283 1284 XXX. 1285 1286 =back 1287 1288 =head2 OS/390, z/OS 1289 1290 Perl runs under Unix Systems Services or USS. 1291 1292 =over 8 1293 1294 =item chcp 1295 1296 B<chcp> is supported as a shell utility for displaying and changing 1297 one's code page. See also L<chcp>. 1298 1299 =item dataset access 1300 1301 For sequential data set access try: 1302 1303 my @ds_records = `cat //DSNAME`; 1304 1305 or: 1306 1307 my @ds_records = `cat //'HLQ.DSNAME'`; 1308 1309 See also the OS390::Stdio module on CPAN. 1310 1311 =item OS/390, z/OS iconv 1312 1313 B<iconv> is supported as both a shell utility and a C RTL routine. 1314 See also the iconv(1) and iconv(3) manual pages. 1315 1316 =item locales 1317 1318 On OS/390 or z/OS see L<locale> for information on locales. The L10N files 1319 are in F</usr/nls/locale>. $Config{d_setlocale} is 'define' on OS/390 1320 or z/OS. 1321 1322 =back 1323 1324 =head2 VM/ESA? 1325 1326 XXX. 1327 1328 =head2 POSIX-BC? 1329 1330 XXX. 1331 1332 =head1 BUGS 1333 1334 This pod document contains literal Latin 1 characters and may encounter 1335 translation difficulties. In particular one popular nroff implementation 1336 was known to strip accented characters to their unaccented counterparts 1337 while attempting to view this document through the B<pod2man> program 1338 (for example, you may see a plain C<y> rather than one with a diaeresis 1339 as in E<yuml>). Another nroff truncated the resultant manpage at 1340 the first occurrence of 8 bit characters. 1341 1342 Not all shells will allow multiple C<-e> string arguments to perl to 1343 be concatenated together properly as recipes 0, 2, 4, 5, and 6 might 1344 seem to imply. 1345 1346 =head1 SEE ALSO 1347 1348 L<perllocale>, L<perlfunc>, L<perlunicode>, L<utf8>. 1349 1350 =head1 REFERENCES 1351 1352 http://anubis.dkuug.dk/i18n/charmaps 1353 1354 http://www.unicode.org/ 1355 1356 http://www.unicode.org/unicode/reports/tr16/ 1357 1358 http://www.wps.com/texts/codes/ 1359 B<ASCII: American Standard Code for Information Infiltration> Tom Jennings, 1360 September 1999. 1361 1362 B<The Unicode Standard, Version 3.0> The Unicode Consortium, Lisa Moore ed., 1363 ISBN 0-201-61633-5, Addison Wesley Developers Press, February 2000. 1364 1365 B<CDRA: IBM - Character Data Representation Architecture - 1366 Reference and Registry>, IBM SC09-2190-00, December 1996. 1367 1368 "Demystifying Character Sets", Andrea Vine, Multilingual Computing 1369 & Technology, B<#26 Vol. 10 Issue 4>, August/September 1999; 1370 ISSN 1523-0309; Multilingual Computing Inc. Sandpoint ID, USA. 1371 1372 B<Codes, Ciphers, and Other Cryptic and Clandestine Communication> 1373 Fred B. Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1374 1998. 1375 1376 http://www.bobbemer.com/P-BIT.HTM 1377 B<IBM - EBCDIC and the P-bit; The biggest Computer Goof Ever> Robert Bemer. 1378 1379 =head1 HISTORY 1380 1381 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp. 1382 1383 =head1 AUTHOR 1384 1385 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 1386 with CCSID 0819 and 0037 help from Chris Leach and 1387 AndrE<eacute> Pirard A.Pirard@ulg.ac.be as well as POSIX-BC 1388 help from Thomas Dorner Thomas.Dorner@start.de. 1389 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and 1390 Joe Smith. Trademarks, registered trademarks, service marks and 1391 registered service marks used in this document are the property of 1392 their respective owners. 1393 1394
title
Description
Body
title
Description
Body
title
Description
Body
title
Body
Generated: Tue Mar 17 22:47:18 2015 | Cross-referenced by PHPXref 0.7.1 |