POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)s_expm1.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* expm1(x) 00030 * Returns exp(x)-1, the exponential of x minus 1. 00031 * 00032 * Method 00033 * 1. Argument reduction: 00034 * Given x, find r and integer k such that 00035 * 00036 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 00037 * 00038 * Here a correction term c will be computed to compensate 00039 * the error in r when rounded to a floating-point number. 00040 * 00041 * 2. Approximating expm1(r) by a special rational function on 00042 * the interval [0,0.34658]: 00043 * Since 00044 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... 00045 * we define R1(r*r) by 00046 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) 00047 * That is, 00048 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) 00049 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) 00050 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... 00051 * We use a special Reme algorithm on [0,0.347] to generate 00052 * a polynomial of degree 5 in r*r to approximate R1. The 00053 * maximum error of this polynomial approximation is bounded 00054 * by 2**-61. In other words, 00055 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 00056 * where Q1 = -1.6666666666666567384E-2, 00057 * Q2 = 3.9682539681370365873E-4, 00058 * Q3 = -9.9206344733435987357E-6, 00059 * Q4 = 2.5051361420808517002E-7, 00060 * Q5 = -6.2843505682382617102E-9; 00061 * (where z=r*r, and the values of Q1 to Q5 are listed below) 00062 * with error bounded by 00063 * | 5 | -61 00064 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 00065 * | | 00066 * 00067 * expm1(r) = exp(r)-1 is then computed by the following 00068 * specific way which minimize the accumulation rounding error: 00069 * 2 3 00070 * r r [ 3 - (R1 + R1*r/2) ] 00071 * expm1(r) = r + --- + --- * [--------------------] 00072 * 2 2 [ 6 - r*(3 - R1*r/2) ] 00073 * 00074 * To compensate the error in the argument reduction, we use 00075 * expm1(r+c) = expm1(r) + c + expm1(r)*c 00076 * ~ expm1(r) + c + r*c 00077 * Thus c+r*c will be added in as the correction terms for 00078 * expm1(r+c). Now rearrange the term to avoid optimization 00079 * screw up: 00080 * ( 2 2 ) 00081 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) 00082 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) 00083 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) 00084 * ( ) 00085 * 00086 * = r - E 00087 * 3. Scale back to obtain expm1(x): 00088 * From step 1, we have 00089 * expm1(x) = either 2^k*[expm1(r)+1] - 1 00090 * = or 2^k*[expm1(r) + (1-2^-k)] 00091 * 4. Implementation notes: 00092 * (A). To save one multiplication, we scale the coefficient Qi 00093 * to Qi*2^i, and replace z by (x^2)/2. 00094 * (B). To achieve maximum accuracy, we compute expm1(x) by 00095 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) 00096 * (ii) if k=0, return r-E 00097 * (iii) if k=-1, return 0.5*(r-E)-0.5 00098 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) 00099 * else return 1.0+2.0*(r-E); 00100 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) 00101 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else 00102 * (vii) return 2^k(1-((E+2^-k)-r)) 00103 * 00104 * Special cases: 00105 * expm1(INF) is INF, expm1(NaN) is NaN; 00106 * expm1(-INF) is -1, and 00107 * for finite argument, only expm1(0)=0 is exact. 00108 * 00109 * Accuracy: 00110 * according to an error analysis, the error is always less than 00111 * 1 ulp (unit in the last place). 00112 * 00113 * Misc. info. 00114 * For IEEE double 00115 * if x > 7.09782712893383973096e+02 then expm1(x) overflow 00116 * 00117 * Constants: 00118 * The hexadecimal values are the intended ones for the following 00119 * constants. The decimal values may be used, provided that the 00120 * compiler will convert from decimal to binary accurately enough 00121 * to produce the hexadecimal values shown. 00122 */ 00123 00124 #ifdef POK_NEEDS_LIBMATH 00125 00126 #include <libm.h> 00127 #include "math_private.h" 00128 00129 static const double 00130 one = 1.0, 00131 huge = 1.0e+300, 00132 tiny = 1.0e-300, 00133 o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ 00134 ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ 00135 ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ 00136 invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ 00137 /* scaled coefficients related to expm1 */ 00138 Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ 00139 Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ 00140 Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ 00141 Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ 00142 Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ 00143 00144 double 00145 expm1(double x) 00146 { 00147 double y,hi,lo,c,t,e,hxs,hfx,r1; 00148 int32_t k,xsb; 00149 uint32_t hx; 00150 00151 c = 0; 00152 GET_HIGH_WORD(hx,x); 00153 xsb = hx&0x80000000; /* sign bit of x */ 00154 if(xsb==0) y=x; else y= -x; /* y = |x| */ 00155 hx &= 0x7fffffff; /* high word of |x| */ 00156 00157 /* filter out huge and non-finite argument */ 00158 if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ 00159 if(hx >= 0x40862E42) { /* if |x|>=709.78... */ 00160 if(hx>=0x7ff00000) { 00161 uint32_t low; 00162 GET_LOW_WORD(low,x); 00163 if(((hx&0xfffff)|low)!=0) 00164 return x+x; /* NaN */ 00165 else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ 00166 } 00167 if(x > o_threshold) return huge*huge; /* overflow */ 00168 } 00169 if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ 00170 if(x+tiny<0.0) /* raise inexact */ 00171 return tiny-one; /* return -1 */ 00172 } 00173 } 00174 00175 /* argument reduction */ 00176 if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 00177 if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 00178 if(xsb==0) 00179 {hi = x - ln2_hi; lo = ln2_lo; k = 1;} 00180 else 00181 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} 00182 } else { 00183 k = invln2*x+((xsb==0)?0.5:-0.5); 00184 t = k; 00185 hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ 00186 lo = t*ln2_lo; 00187 } 00188 x = hi - lo; 00189 c = (hi-x)-lo; 00190 } 00191 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ 00192 t = huge+x; /* return x with inexact flags when x!=0 */ 00193 return x - (t-(huge+x)); 00194 } 00195 else k = 0; 00196 00197 /* x is now in primary range */ 00198 hfx = 0.5*x; 00199 hxs = x*hfx; 00200 r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); 00201 t = 3.0-r1*hfx; 00202 e = hxs*((r1-t)/(6.0 - x*t)); 00203 if(k==0) return x - (x*e-hxs); /* c is 0 */ 00204 else { 00205 e = (x*(e-c)-c); 00206 e -= hxs; 00207 if(k== -1) return 0.5*(x-e)-0.5; 00208 if(k==1) { 00209 if(x < -0.25) return -2.0*(e-(x+0.5)); 00210 else return one+2.0*(x-e); 00211 } 00212 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ 00213 uint32_t high; 00214 y = one-(e-x); 00215 GET_HIGH_WORD(high,y); 00216 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ 00217 return y-one; 00218 } 00219 t = one; 00220 if(k<20) { 00221 uint32_t high; 00222 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ 00223 y = t-(e-x); 00224 GET_HIGH_WORD(high,y); 00225 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ 00226 } else { 00227 uint32_t high; 00228 SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ 00229 y = x-(e+t); 00230 y += one; 00231 GET_HIGH_WORD(high,y); 00232 SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ 00233 } 00234 } 00235 return y; 00236 } 00237 00238 #endif