POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/expm1.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_expm1.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* expm1(x)
00030  * Returns exp(x)-1, the exponential of x minus 1.
00031  *
00032  * Method
00033  *   1. Argument reduction:
00034  *      Given x, find r and integer k such that
00035  *
00036  *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
00037  *
00038  *      Here a correction term c will be computed to compensate
00039  *      the error in r when rounded to a floating-point number.
00040  *
00041  *   2. Approximating expm1(r) by a special rational function on
00042  *      the interval [0,0.34658]:
00043  *      Since
00044  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
00045  *      we define R1(r*r) by
00046  *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
00047  *      That is,
00048  *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
00049  *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
00050  *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
00051  *      We use a special Reme algorithm on [0,0.347] to generate
00052  *      a polynomial of degree 5 in r*r to approximate R1. The
00053  *      maximum error of this polynomial approximation is bounded
00054  *      by 2**-61. In other words,
00055  *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
00056  *      where   Q1  =  -1.6666666666666567384E-2,
00057  *              Q2  =   3.9682539681370365873E-4,
00058  *              Q3  =  -9.9206344733435987357E-6,
00059  *              Q4  =   2.5051361420808517002E-7,
00060  *              Q5  =  -6.2843505682382617102E-9;
00061  *      (where z=r*r, and the values of Q1 to Q5 are listed below)
00062  *      with error bounded by
00063  *          |                  5           |     -61
00064  *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
00065  *          |                              |
00066  *
00067  *      expm1(r) = exp(r)-1 is then computed by the following
00068  *      specific way which minimize the accumulation rounding error:
00069  *                             2     3
00070  *                            r     r    [ 3 - (R1 + R1*r/2)  ]
00071  *            expm1(r) = r + --- + --- * [--------------------]
00072  *                            2     2    [ 6 - r*(3 - R1*r/2) ]
00073  *
00074  *      To compensate the error in the argument reduction, we use
00075  *              expm1(r+c) = expm1(r) + c + expm1(r)*c
00076  *                         ~ expm1(r) + c + r*c
00077  *      Thus c+r*c will be added in as the correction terms for
00078  *      expm1(r+c). Now rearrange the term to avoid optimization
00079  *      screw up:
00080  *                      (      2                                    2 )
00081  *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
00082  *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
00083  *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
00084  *                      (                                             )
00085  *
00086  *                 = r - E
00087  *   3. Scale back to obtain expm1(x):
00088  *      From step 1, we have
00089  *         expm1(x) = either 2^k*[expm1(r)+1] - 1
00090  *                  = or     2^k*[expm1(r) + (1-2^-k)]
00091  *   4. Implementation notes:
00092  *      (A). To save one multiplication, we scale the coefficient Qi
00093  *           to Qi*2^i, and replace z by (x^2)/2.
00094  *      (B). To achieve maximum accuracy, we compute expm1(x) by
00095  *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
00096  *        (ii)  if k=0, return r-E
00097  *        (iii) if k=-1, return 0.5*(r-E)-0.5
00098  *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
00099  *                     else          return  1.0+2.0*(r-E);
00100  *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
00101  *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
00102  *        (vii) return 2^k(1-((E+2^-k)-r))
00103  *
00104  * Special cases:
00105  *      expm1(INF) is INF, expm1(NaN) is NaN;
00106  *      expm1(-INF) is -1, and
00107  *      for finite argument, only expm1(0)=0 is exact.
00108  *
00109  * Accuracy:
00110  *      according to an error analysis, the error is always less than
00111  *      1 ulp (unit in the last place).
00112  *
00113  * Misc. info.
00114  *      For IEEE double
00115  *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
00116  *
00117  * Constants:
00118  * The hexadecimal values are the intended ones for the following
00119  * constants. The decimal values may be used, provided that the
00120  * compiler will convert from decimal to binary accurately enough
00121  * to produce the hexadecimal values shown.
00122  */
00123 
00124 #ifdef POK_NEEDS_LIBMATH
00125 
00126 #include <libm.h>
00127 #include "math_private.h"
00128 
00129 static const double
00130 one             = 1.0,
00131 huge            = 1.0e+300,
00132 tiny            = 1.0e-300,
00133 o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
00134 ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
00135 ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
00136 invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
00137         /* scaled coefficients related to expm1 */
00138 Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
00139 Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
00140 Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
00141 Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
00142 Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
00143 
00144 double
00145 expm1(double x)
00146 {
00147         double y,hi,lo,c,t,e,hxs,hfx,r1;
00148         int32_t k,xsb;
00149         uint32_t hx;
00150 
00151         c = 0;
00152         GET_HIGH_WORD(hx,x);
00153         xsb = hx&0x80000000;            /* sign bit of x */
00154         if(xsb==0) y=x; else y= -x;     /* y = |x| */
00155         hx &= 0x7fffffff;               /* high word of |x| */
00156 
00157     /* filter out huge and non-finite argument */
00158         if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
00159             if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
00160                 if(hx>=0x7ff00000) {
00161                     uint32_t low;
00162                     GET_LOW_WORD(low,x);
00163                     if(((hx&0xfffff)|low)!=0)
00164                          return x+x;     /* NaN */
00165                     else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
00166                 }
00167                 if(x > o_threshold) return huge*huge; /* overflow */
00168             }
00169             if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
00170                 if(x+tiny<0.0)          /* raise inexact */
00171                 return tiny-one;        /* return -1 */
00172             }
00173         }
00174 
00175     /* argument reduction */
00176         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
00177             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
00178                 if(xsb==0)
00179                     {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
00180                 else
00181                     {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
00182             } else {
00183                 k  = invln2*x+((xsb==0)?0.5:-0.5);
00184                 t  = k;
00185                 hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
00186                 lo = t*ln2_lo;
00187             }
00188             x  = hi - lo;
00189             c  = (hi-x)-lo;
00190         }
00191         else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
00192             t = huge+x; /* return x with inexact flags when x!=0 */
00193             return x - (t-(huge+x));
00194         }
00195         else k = 0;
00196 
00197     /* x is now in primary range */
00198         hfx = 0.5*x;
00199         hxs = x*hfx;
00200         r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
00201         t  = 3.0-r1*hfx;
00202         e  = hxs*((r1-t)/(6.0 - x*t));
00203         if(k==0) return x - (x*e-hxs);          /* c is 0 */
00204         else {
00205             e  = (x*(e-c)-c);
00206             e -= hxs;
00207             if(k== -1) return 0.5*(x-e)-0.5;
00208             if(k==1)  {
00209                 if(x < -0.25) return -2.0*(e-(x+0.5));
00210                 else          return  one+2.0*(x-e);
00211             }
00212             if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
00213                 uint32_t high;
00214                 y = one-(e-x);
00215                 GET_HIGH_WORD(high,y);
00216                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00217                 return y-one;
00218             }
00219             t = one;
00220             if(k<20) {
00221                 uint32_t high;
00222                 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
00223                 y = t-(e-x);
00224                 GET_HIGH_WORD(high,y);
00225                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00226            } else {
00227                 uint32_t high;
00228                 SET_HIGH_WORD(t,((0x3ff-k)<<20));       /* 2^-k */
00229                 y = x-(e+t);
00230                 y += one;
00231                 GET_HIGH_WORD(high,y);
00232                 SET_HIGH_WORD(y,high+(k<<20));  /* add k to y's exponent */
00233             }
00234         }
00235         return y;
00236 }
00237 
00238 #endif