POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* s_erff.c -- float version of s_erf.c. 00018 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 00019 */ 00020 00021 /* 00022 * ==================================================== 00023 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00024 * 00025 * Developed at SunPro, a Sun Microsystems, Inc. business. 00026 * Permission to use, copy, modify, and distribute this 00027 * software is freely granted, provided that this notice 00028 * is preserved. 00029 * ==================================================== 00030 */ 00031 00032 #ifdef POK_NEEDS_LIBMATH 00033 00034 #include <libm.h> 00035 #include "math_private.h" 00036 00037 static const float 00038 tiny = 1e-30, 00039 half= 5.0000000000e-01, /* 0x3F000000 */ 00040 one = 1.0000000000e+00, /* 0x3F800000 */ 00041 two = 2.0000000000e+00, /* 0x40000000 */ 00042 /* c = (subfloat)0.84506291151 */ 00043 erx = 8.4506291151e-01, /* 0x3f58560b */ 00044 /* 00045 * Coefficients for approximation to erf on [0,0.84375] 00046 */ 00047 efx = 1.2837916613e-01, /* 0x3e0375d4 */ 00048 efx8= 1.0270333290e+00, /* 0x3f8375d4 */ 00049 pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ 00050 pp1 = -3.2504209876e-01, /* 0xbea66beb */ 00051 pp2 = -2.8481749818e-02, /* 0xbce9528f */ 00052 pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ 00053 pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ 00054 qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ 00055 qq2 = 6.5022252500e-02, /* 0x3d852a63 */ 00056 qq3 = 5.0813062117e-03, /* 0x3ba68116 */ 00057 qq4 = 1.3249473704e-04, /* 0x390aee49 */ 00058 qq5 = -3.9602282413e-06, /* 0xb684e21a */ 00059 /* 00060 * Coefficients for approximation to erf in [0.84375,1.25] 00061 */ 00062 pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ 00063 pa1 = 4.1485610604e-01, /* 0x3ed46805 */ 00064 pa2 = -3.7220788002e-01, /* 0xbebe9208 */ 00065 pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ 00066 pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ 00067 pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ 00068 pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ 00069 qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ 00070 qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ 00071 qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ 00072 qa4 = 1.2617121637e-01, /* 0x3e013307 */ 00073 qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ 00074 qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ 00075 /* 00076 * Coefficients for approximation to erfc in [1.25,1/0.35] 00077 */ 00078 ra0 = -9.8649440333e-03, /* 0xbc21a093 */ 00079 ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ 00080 ra2 = -1.0558626175e+01, /* 0xc128f022 */ 00081 ra3 = -6.2375331879e+01, /* 0xc2798057 */ 00082 ra4 = -1.6239666748e+02, /* 0xc322658c */ 00083 ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ 00084 ra6 = -8.1287437439e+01, /* 0xc2a2932b */ 00085 ra7 = -9.8143291473e+00, /* 0xc11d077e */ 00086 sa1 = 1.9651271820e+01, /* 0x419d35ce */ 00087 sa2 = 1.3765776062e+02, /* 0x4309a863 */ 00088 sa3 = 4.3456588745e+02, /* 0x43d9486f */ 00089 sa4 = 6.4538726807e+02, /* 0x442158c9 */ 00090 sa5 = 4.2900814819e+02, /* 0x43d6810b */ 00091 sa6 = 1.0863500214e+02, /* 0x42d9451f */ 00092 sa7 = 6.5702495575e+00, /* 0x40d23f7c */ 00093 sa8 = -6.0424413532e-02, /* 0xbd777f97 */ 00094 /* 00095 * Coefficients for approximation to erfc in [1/.35,28] 00096 */ 00097 rb0 = -9.8649431020e-03, /* 0xbc21a092 */ 00098 rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ 00099 rb2 = -1.7757955551e+01, /* 0xc18e104b */ 00100 rb3 = -1.6063638306e+02, /* 0xc320a2ea */ 00101 rb4 = -6.3756646729e+02, /* 0xc41f6441 */ 00102 rb5 = -1.0250950928e+03, /* 0xc480230b */ 00103 rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ 00104 sb1 = 3.0338060379e+01, /* 0x41f2b459 */ 00105 sb2 = 3.2579251099e+02, /* 0x43a2e571 */ 00106 sb3 = 1.5367296143e+03, /* 0x44c01759 */ 00107 sb4 = 3.1998581543e+03, /* 0x4547fdbb */ 00108 sb5 = 2.5530502930e+03, /* 0x451f90ce */ 00109 sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ 00110 sb7 = -2.2440952301e+01; /* 0xc1b38712 */ 00111 00112 float 00113 erff(float x) 00114 { 00115 int32_t hx,ix,i; 00116 float R,S,P,Q,s,y,z,r; 00117 GET_FLOAT_WORD(hx,x); 00118 ix = hx&0x7fffffff; 00119 if(ix>=0x7f800000) { /* erf(nan)=nan */ 00120 i = ((uint32_t)hx>>31)<<1; 00121 return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ 00122 } 00123 00124 if(ix < 0x3f580000) { /* |x|<0.84375 */ 00125 if(ix < 0x31800000) { /* |x|<2**-28 */ 00126 if (ix < 0x04000000) 00127 /*avoid underflow */ 00128 return (float)0.125*((float)8.0*x+efx8*x); 00129 return x + efx*x; 00130 } 00131 z = x*x; 00132 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 00133 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 00134 y = r/s; 00135 return x + x*y; 00136 } 00137 if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ 00138 s = fabsf(x)-one; 00139 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 00140 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 00141 if(hx>=0) return erx + P/Q; else return -erx - P/Q; 00142 } 00143 if (ix >= 0x40c00000) { /* inf>|x|>=6 */ 00144 if(hx>=0) return one-tiny; else return tiny-one; 00145 } 00146 x = fabsf(x); 00147 s = one/(x*x); 00148 if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ 00149 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 00150 ra5+s*(ra6+s*ra7)))))); 00151 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 00152 sa5+s*(sa6+s*(sa7+s*sa8))))))); 00153 } else { /* |x| >= 1/0.35 */ 00154 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 00155 rb5+s*rb6))))); 00156 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 00157 sb5+s*(sb6+s*sb7)))))); 00158 } 00159 GET_FLOAT_WORD(ix,x); 00160 SET_FLOAT_WORD(z,ix&0xfffff000); 00161 r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); 00162 if(hx>=0) return one-r/x; else return r/x-one; 00163 } 00164 00165 float 00166 erfcf(float x) 00167 { 00168 int32_t hx,ix; 00169 float R,S,P,Q,s,y,z,r; 00170 GET_FLOAT_WORD(hx,x); 00171 ix = hx&0x7fffffff; 00172 if(ix>=0x7f800000) { /* erfc(nan)=nan */ 00173 /* erfc(+-inf)=0,2 */ 00174 return (float)(((uint32_t)hx>>31)<<1)+one/x; 00175 } 00176 00177 if(ix < 0x3f580000) { /* |x|<0.84375 */ 00178 if(ix < 0x23800000) /* |x|<2**-56 */ 00179 return one-x; 00180 z = x*x; 00181 r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); 00182 s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); 00183 y = r/s; 00184 if(hx < 0x3e800000) { /* x<1/4 */ 00185 return one-(x+x*y); 00186 } else { 00187 r = x*y; 00188 r += (x-half); 00189 return half - r ; 00190 } 00191 } 00192 if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ 00193 s = fabsf(x)-one; 00194 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); 00195 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); 00196 if(hx>=0) { 00197 z = one-erx; return z - P/Q; 00198 } else { 00199 z = erx+P/Q; return one+z; 00200 } 00201 } 00202 if (ix < 0x41e00000) { /* |x|<28 */ 00203 x = fabsf(x); 00204 s = one/(x*x); 00205 if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ 00206 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( 00207 ra5+s*(ra6+s*ra7)))))); 00208 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( 00209 sa5+s*(sa6+s*(sa7+s*sa8))))))); 00210 } else { /* |x| >= 1/.35 ~ 2.857143 */ 00211 if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ 00212 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( 00213 rb5+s*rb6))))); 00214 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( 00215 sb5+s*(sb6+s*sb7)))))); 00216 } 00217 GET_FLOAT_WORD(ix,x); 00218 SET_FLOAT_WORD(z,ix&0xfffff000); 00219 r = __ieee754_expf(-z*z-(float)0.5625)* 00220 __ieee754_expf((z-x)*(z+x)+R/S); 00221 if(hx>0) return r/x; else return two-r/x; 00222 } else { 00223 if(hx>0) return tiny*tiny; else return two-tiny; 00224 } 00225 } 00226 00227 #endif