POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/erf.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_erf.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* double erf(double x)
00030  * double erfc(double x)
00031  *                           x
00032  *                    2      |\
00033  *     erf(x)  =  ---------  | exp(-t*t)dt
00034  *                 sqrt(pi) \|
00035  *                           0
00036  *
00037  *     erfc(x) =  1-erf(x)
00038  *  Note that
00039  *              erf(-x) = -erf(x)
00040  *              erfc(-x) = 2 - erfc(x)
00041  *
00042  * Method:
00043  *      1. For |x| in [0, 0.84375]
00044  *          erf(x)  = x + x*R(x^2)
00045  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
00046  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
00047  *         where R = P/Q where P is an odd poly of degree 8 and
00048  *         Q is an odd poly of degree 10.
00049  *                                               -57.90
00050  *                      | R - (erf(x)-x)/x | <= 2
00051  *
00052  *
00053  *         Remark. The formula is derived by noting
00054  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
00055  *         and that
00056  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
00057  *         is close to one. The interval is chosen because the fix
00058  *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
00059  *         near 0.6174), and by some experiment, 0.84375 is chosen to
00060  *         guarantee the error is less than one ulp for erf.
00061  *
00062  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
00063  *         c = 0.84506291151 rounded to single (24 bits)
00064  *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
00065  *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
00066  *                        1+(c+P1(s)/Q1(s))    if x < 0
00067  *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
00068  *         Remark: here we use the taylor series expansion at x=1.
00069  *              erf(1+s) = erf(1) + s*Poly(s)
00070  *                       = 0.845.. + P1(s)/Q1(s)
00071  *         That is, we use rational approximation to approximate
00072  *                      erf(1+s) - (c = (single)0.84506291151)
00073  *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
00074  *         where
00075  *              P1(s) = degree 6 poly in s
00076  *              Q1(s) = degree 6 poly in s
00077  *
00078  *      3. For x in [1.25,1/0.35(~2.857143)],
00079  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
00080  *              erf(x)  = 1 - erfc(x)
00081  *         where
00082  *              R1(z) = degree 7 poly in z, (z=1/x^2)
00083  *              S1(z) = degree 8 poly in z
00084  *
00085  *      4. For x in [1/0.35,28]
00086  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
00087  *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
00088  *                      = 2.0 - tiny            (if x <= -6)
00089  *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
00090  *              erf(x)  = sign(x)*(1.0 - tiny)
00091  *         where
00092  *              R2(z) = degree 6 poly in z, (z=1/x^2)
00093  *              S2(z) = degree 7 poly in z
00094  *
00095  *      Note1:
00096  *         To compute exp(-x*x-0.5625+R/S), let s be a single
00097  *         precision number and s := x; then
00098  *              -x*x = -s*s + (s-x)*(s+x)
00099  *              exp(-x*x-0.5626+R/S) =
00100  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
00101  *      Note2:
00102  *         Here 4 and 5 make use of the asymptotic series
00103  *                        exp(-x*x)
00104  *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
00105  *                        x*sqrt(pi)
00106  *         We use rational approximation to approximate
00107  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
00108  *         Here is the error bound for R1/S1 and R2/S2
00109  *              |R1/S1 - f(x)|  < 2**(-62.57)
00110  *              |R2/S2 - f(x)|  < 2**(-61.52)
00111  *
00112  *      5. For inf > x >= 28
00113  *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
00114  *              erfc(x) = tiny*tiny (raise underflow) if x > 0
00115  *                      = 2 - tiny if x<0
00116  *
00117  *      7. Special case:
00118  *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
00119  *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
00120  *              erfc/erf(NaN) is NaN
00121  */
00122 
00123 #ifdef POK_NEEDS_LIBMATH
00124 #include <libm.h>
00125 #include "math_private.h"
00126 
00127 static const double
00128 tiny        = 1e-300,
00129 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
00130 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
00131 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
00132         /* c = (float)0.84506291151 */
00133 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
00134 /*
00135  * Coefficients for approximation to  erf on [0,0.84375]
00136  */
00137 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
00138 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
00139 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
00140 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
00141 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
00142 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
00143 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
00144 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
00145 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
00146 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
00147 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
00148 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
00149 /*
00150  * Coefficients for approximation to  erf  in [0.84375,1.25]
00151  */
00152 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
00153 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
00154 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
00155 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
00156 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
00157 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
00158 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
00159 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
00160 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
00161 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
00162 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
00163 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
00164 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
00165 /*
00166  * Coefficients for approximation to  erfc in [1.25,1/0.35]
00167  */
00168 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
00169 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
00170 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
00171 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
00172 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
00173 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
00174 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
00175 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
00176 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
00177 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
00178 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
00179 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
00180 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
00181 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
00182 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
00183 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
00184 /*
00185  * Coefficients for approximation to  erfc in [1/.35,28]
00186  */
00187 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
00188 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
00189 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
00190 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
00191 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
00192 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
00193 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
00194 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
00195 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
00196 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
00197 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
00198 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
00199 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
00200 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
00201 
00202 double
00203 erf(double x)
00204 {
00205         int32_t hx,ix,i;
00206         double R,S,P,Q,s,y,z,r;
00207         GET_HIGH_WORD(hx,x);
00208         ix = hx&0x7fffffff;
00209         if(ix>=0x7ff00000) {            /* erf(nan)=nan */
00210             i = ((uint32_t)hx>>31)<<1;
00211             return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
00212         }
00213 
00214         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
00215             if(ix < 0x3e300000) {       /* |x|<2**-28 */
00216                 if (ix < 0x00800000)
00217                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
00218                 return x + efx*x;
00219             }
00220             z = x*x;
00221             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
00222             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
00223             y = r/s;
00224             return x + x*y;
00225         }
00226         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
00227             s = fabs(x)-one;
00228             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
00229             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
00230             if(hx>=0) return erx + P/Q; else return -erx - P/Q;
00231         }
00232         if (ix >= 0x40180000) {         /* inf>|x|>=6 */
00233             if(hx>=0) return one-tiny; else return tiny-one;
00234         }
00235         x = fabs(x);
00236         s = one/(x*x);
00237         if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
00238             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
00239                                 ra5+s*(ra6+s*ra7))))));
00240             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
00241                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
00242         } else {        /* |x| >= 1/0.35 */
00243             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
00244                                 rb5+s*rb6)))));
00245             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
00246                                 sb5+s*(sb6+s*sb7))))));
00247         }
00248         z  = x;
00249         SET_LOW_WORD(z,0);
00250         r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
00251         if(hx>=0) return one-r/x; else return  r/x-one;
00252 }
00253 
00254 double
00255 erfc(double x)
00256 {
00257         int32_t hx,ix;
00258         double R,S,P,Q,s,y,z,r;
00259         GET_HIGH_WORD(hx,x);
00260         ix = hx&0x7fffffff;
00261         if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
00262                                                 /* erfc(+-inf)=0,2 */
00263             return (double)(((uint32_t)hx>>31)<<1)+one/x;
00264         }
00265 
00266         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
00267             if(ix < 0x3c700000)         /* |x|<2**-56 */
00268                 return one-x;
00269             z = x*x;
00270             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
00271             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
00272             y = r/s;
00273             if(hx < 0x3fd00000) {       /* x<1/4 */
00274                 return one-(x+x*y);
00275             } else {
00276                 r = x*y;
00277                 r += (x-half);
00278                 return half - r ;
00279             }
00280         }
00281         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
00282             s = fabs(x)-one;
00283             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
00284             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
00285             if(hx>=0) {
00286                 z  = one-erx; return z - P/Q;
00287             } else {
00288                 z = erx+P/Q; return one+z;
00289             }
00290         }
00291         if (ix < 0x403c0000) {          /* |x|<28 */
00292             x = fabs(x);
00293             s = one/(x*x);
00294             if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
00295                 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
00296                                 ra5+s*(ra6+s*ra7))))));
00297                 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
00298                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
00299             } else {                    /* |x| >= 1/.35 ~ 2.857143 */
00300                 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
00301                 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
00302                                 rb5+s*rb6)))));
00303                 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
00304                                 sb5+s*(sb6+s*sb7))))));
00305             }
00306             z  = x;
00307             SET_LOW_WORD(z,0);
00308             r  =  __ieee754_exp(-z*z-0.5625)*
00309                         __ieee754_exp((z-x)*(z+x)+R/S);
00310             if(hx>0) return r/x; else return two-r/x;
00311         } else {
00312             if(hx>0) return tiny*tiny; else return two-tiny;
00313         }
00314 }
00315 #endif