POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_pow.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_pow.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_pow(x,y) return x**y
00030  *
00031  *                    n
00032  * Method:  Let x =  2   * (1+f)
00033  *      1. Compute and return log2(x) in two pieces:
00034  *              log2(x) = w1 + w2,
00035  *         where w1 has 53-24 = 29 bit trailing zeros.
00036  *      2. Perform y*log2(x) = n+y' by simulating multi-precision
00037  *         arithmetic, where |y'|<=0.5.
00038  *      3. Return x**y = 2**n*exp(y'*log2)
00039  *
00040  * Special cases:
00041  *      1.  (anything) ** 0  is 1
00042  *      2.  (anything) ** 1  is itself
00043  *      3.  (anything) ** NAN is NAN
00044  *      4.  NAN ** (anything except 0) is NAN
00045  *      5.  +-(|x| > 1) **  +INF is +INF
00046  *      6.  +-(|x| > 1) **  -INF is +0
00047  *      7.  +-(|x| < 1) **  +INF is +0
00048  *      8.  +-(|x| < 1) **  -INF is +INF
00049  *      9.  +-1         ** +-INF is NAN
00050  *      10. +0 ** (+anything except 0, NAN)               is +0
00051  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
00052  *      12. +0 ** (-anything except 0, NAN)               is +INF
00053  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
00054  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
00055  *      15. +INF ** (+anything except 0,NAN) is +INF
00056  *      16. +INF ** (-anything except 0,NAN) is +0
00057  *      17. -INF ** (anything)  = -0 ** (-anything)
00058  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
00059  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
00060  *
00061  * Accuracy:
00062  *      pow(x,y) returns x**y nearly rounded. In particular
00063  *                      pow(integer,integer)
00064  *      always returns the correct integer provided it is
00065  *      representable.
00066  *
00067  * Constants :
00068  * The hexadecimal values are the intended ones for the following
00069  * constants. The decimal values may be used, provided that the
00070  * compiler will convert from decimal to binary accurately enough
00071  * to produce the hexadecimal values shown.
00072  */
00073 
00074 #ifdef POK_NEEDS_LIBMATH
00075 
00076 #include <libm.h>
00077 #include "math_private.h"
00078 
00079 static const double
00080 bp[] = {1.0, 1.5,},
00081 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
00082 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
00083 zero    =  0.0,
00084 one     =  1.0,
00085 two     =  2.0,
00086 two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
00087 huge    =  1.0e300,
00088 tiny    =  1.0e-300,
00089         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
00090 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
00091 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
00092 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
00093 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
00094 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
00095 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
00096 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
00097 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
00098 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
00099 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
00100 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
00101 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
00102 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
00103 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
00104 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
00105 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
00106 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
00107 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
00108 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
00109 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
00110 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
00111 
00112 double
00113 __ieee754_pow(double x, double y)
00114 {
00115         double z,ax,z_h,z_l,p_h,p_l;
00116         double yy1,t1,t2,r,s,t,u,v,w;
00117         int32_t i,j,k,yisint,n;
00118         int32_t hx,hy,ix,iy;
00119         uint32_t lx,ly;
00120 
00121         EXTRACT_WORDS(hx,lx,x);
00122         EXTRACT_WORDS(hy,ly,y);
00123         ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
00124 
00125     /* y==zero: x**0 = 1 */
00126         if((iy|ly)==0) return one;
00127 
00128     /* +-NaN return x+y */
00129         if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
00130            iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
00131                 return x+y;
00132 
00133     /* determine if y is an odd int when x < 0
00134      * yisint = 0       ... y is not an integer
00135      * yisint = 1       ... y is an odd int
00136      * yisint = 2       ... y is an even int
00137      */
00138         yisint  = 0;
00139         if(hx<0) {
00140             if(iy>=0x43400000) yisint = 2; /* even integer y */
00141             else if(iy>=0x3ff00000) {
00142                 k = (iy>>20)-0x3ff;        /* exponent */
00143                 if(k>20) {
00144                     j = ly>>(52-k);
00145                     if((uint32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
00146                 } else if(ly==0) {
00147                     j = iy>>(20-k);
00148                     if((j<<(20-k))==iy) yisint = 2-(j&1);
00149                 }
00150             }
00151         }
00152 
00153     /* special value of y */
00154         if(ly==0) {
00155             if (iy==0x7ff00000) {       /* y is +-inf */
00156                 if(((ix-0x3ff00000)|lx)==0)
00157                     return  y - y;      /* inf**+-1 is NaN */
00158                 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
00159                     return (hy>=0)? y: zero;
00160                 else                    /* (|x|<1)**-,+inf = inf,0 */
00161                     return (hy<0)?-y: zero;
00162             }
00163             if(iy==0x3ff00000) {        /* y is  +-1 */
00164                 if(hy<0) return one/x; else return x;
00165             }
00166             if(hy==0x40000000) return x*x; /* y is  2 */
00167             if(hy==0x3fe00000) {        /* y is  0.5 */
00168                 if(hx>=0)       /* x >= +0 */
00169                 return __ieee754_sqrt(x);
00170             }
00171         }
00172 
00173         ax   = fabs(x);
00174     /* special value of x */
00175         if(lx==0) {
00176             if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
00177                 z = ax;                 /*x is +-0,+-inf,+-1*/
00178                 if(hy<0) z = one/z;     /* z = (1/|x|) */
00179                 if(hx<0) {
00180                     if(((ix-0x3ff00000)|yisint)==0) {
00181                         z = (z-z)/(z-z); /* (-1)**non-int is NaN */
00182                     } else if(yisint==1)
00183                         z = -z;         /* (x<0)**odd = -(|x|**odd) */
00184                 }
00185                 return z;
00186             }
00187         }
00188 
00189         n = (hx>>31)+1;
00190 
00191     /* (x<0)**(non-int) is NaN */
00192         if((n|yisint)==0) return (x-x)/(x-x);
00193 
00194         s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
00195         if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
00196 
00197     /* |y| is huge */
00198         if(iy>0x41e00000) { /* if |y| > 2**31 */
00199             if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
00200                 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
00201                 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
00202             }
00203         /* over/underflow if x is not close to one */
00204             if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
00205             if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
00206         /* now |1-x| is tiny <= 2**-20, suffice to compute
00207            log(x) by x-x^2/2+x^3/3-x^4/4 */
00208             t = ax-one;         /* t has 20 trailing zeros */
00209             w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
00210             u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
00211             v = t*ivln2_l-w*ivln2;
00212             t1 = u+v;
00213             SET_LOW_WORD(t1,0);
00214             t2 = v-(t1-u);
00215         } else {
00216             double ss,s2,s_h,s_l,t_h,t_l;
00217             n = 0;
00218         /* take care subnormal number */
00219             if(ix<0x00100000)
00220                 {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
00221             n  += ((ix)>>20)-0x3ff;
00222             j  = ix&0x000fffff;
00223         /* determine interval */
00224             ix = j|0x3ff00000;          /* normalize ix */
00225             if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
00226             else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
00227             else {k=0;n+=1;ix -= 0x00100000;}
00228             SET_HIGH_WORD(ax,ix);
00229 
00230         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
00231             u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
00232             v = one/(ax+bp[k]);
00233             ss = u*v;
00234             s_h = ss;
00235             SET_LOW_WORD(s_h,0);
00236         /* t_h=ax+bp[k] High */
00237             t_h = zero;
00238             SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
00239             t_l = ax - (t_h-bp[k]);
00240             s_l = v*((u-s_h*t_h)-s_h*t_l);
00241         /* compute log(ax) */
00242             s2 = ss*ss;
00243             r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
00244             r += s_l*(s_h+ss);
00245             s2  = s_h*s_h;
00246             t_h = 3.0+s2+r;
00247             SET_LOW_WORD(t_h,0);
00248             t_l = r-((t_h-3.0)-s2);
00249         /* u+v = ss*(1+...) */
00250             u = s_h*t_h;
00251             v = s_l*t_h+t_l*ss;
00252         /* 2/(3log2)*(ss+...) */
00253             p_h = u+v;
00254             SET_LOW_WORD(p_h,0);
00255             p_l = v-(p_h-u);
00256             z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
00257             z_l = cp_l*p_h+p_l*cp+dp_l[k];
00258         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
00259             t = (double)n;
00260             t1 = (((z_h+z_l)+dp_h[k])+t);
00261             SET_LOW_WORD(t1,0);
00262             t2 = z_l-(((t1-t)-dp_h[k])-z_h);
00263         }
00264 
00265     /* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
00266         yy1  = y;
00267         SET_LOW_WORD(yy1,0);
00268         p_l = (y-yy1)*t1+y*t2;
00269         p_h = yy1*t1;
00270         z = p_l+p_h;
00271         EXTRACT_WORDS(j,i,z);
00272         if (j>=0x40900000) {                            /* z >= 1024 */
00273             if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
00274                 return s*huge*huge;                     /* overflow */
00275             else {
00276                 if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
00277             }
00278         } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
00279             if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
00280                 return s*tiny*tiny;             /* underflow */
00281             else {
00282                 if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
00283             }
00284         }
00285     /*
00286      * compute 2**(p_h+p_l)
00287      */
00288         i = j&0x7fffffff;
00289         k = (i>>20)-0x3ff;
00290         n = 0;
00291         if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
00292             n = j+(0x00100000>>(k+1));
00293             k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
00294             t = zero;
00295             SET_HIGH_WORD(t,n&~(0x000fffff>>k));
00296             n = ((n&0x000fffff)|0x00100000)>>(20-k);
00297             if(j<0) n = -n;
00298             p_h -= t;
00299         }
00300         t = p_l+p_h;
00301         SET_LOW_WORD(t,0);
00302         u = t*lg2_h;
00303         v = (p_l-(t-p_h))*lg2+t*lg2_l;
00304         z = u+v;
00305         w = v-(z-u);
00306         t  = z*z;
00307         t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
00308         r  = (z*t1)/(t1-two)-(w+z*w);
00309         z  = one-(r-z);
00310         GET_HIGH_WORD(j,z);
00311         j += (n<<20);
00312         if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
00313         else SET_HIGH_WORD(z,j);
00314         return s*z;
00315 }
00316 
00317 #endif
00318