POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_log.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_log(x) 00030 * Return the logrithm of x 00031 * 00032 * Method : 00033 * 1. Argument Reduction: find k and f such that 00034 * x = 2^k * (1+f), 00035 * where sqrt(2)/2 < 1+f < sqrt(2) . 00036 * 00037 * 2. Approximation of log(1+f). 00038 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 00039 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 00040 * = 2s + s*R 00041 * We use a special Reme algorithm on [0,0.1716] to generate 00042 * a polynomial of degree 14 to approximate R The maximum error 00043 * of this polynomial approximation is bounded by 2**-58.45. In 00044 * other words, 00045 * 2 4 6 8 10 12 14 00046 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 00047 * (the values of Lg1 to Lg7 are listed in the program) 00048 * and 00049 * | 2 14 | -58.45 00050 * | Lg1*s +...+Lg7*s - R(z) | <= 2 00051 * | | 00052 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 00053 * In order to guarantee error in log below 1ulp, we compute log 00054 * by 00055 * log(1+f) = f - s*(f - R) (if f is not too large) 00056 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 00057 * 00058 * 3. Finally, log(x) = k*ln2 + log(1+f). 00059 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 00060 * Here ln2 is split into two floating point number: 00061 * ln2_hi + ln2_lo, 00062 * where n*ln2_hi is always exact for |n| < 2000. 00063 * 00064 * Special cases: 00065 * log(x) is NaN with signal if x < 0 (including -INF) ; 00066 * log(+INF) is +INF; log(0) is -INF with signal; 00067 * log(NaN) is that NaN with no signal. 00068 * 00069 * Accuracy: 00070 * according to an error analysis, the error is always less than 00071 * 1 ulp (unit in the last place). 00072 * 00073 * Constants: 00074 * The hexadecimal values are the intended ones for the following 00075 * constants. The decimal values may be used, provided that the 00076 * compiler will convert from decimal to binary accurately enough 00077 * to produce the hexadecimal values shown. 00078 */ 00079 00080 #ifdef POK_NEEDS_LIBMATH 00081 00082 #include "math_private.h" 00083 00084 static const double 00085 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 00086 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 00087 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 00088 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 00089 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 00090 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 00091 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 00092 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 00093 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 00094 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 00095 00096 static const double zero = 0.0; 00097 00098 double 00099 __ieee754_log(double x) 00100 { 00101 double hfsq,f,s,z,R,w,t1,t2,dk; 00102 int32_t k,hx,i,j; 00103 uint32_t lx; 00104 00105 EXTRACT_WORDS(hx,lx,x); 00106 00107 k=0; 00108 if (hx < 0x00100000) { /* x < 2**-1022 */ 00109 if (((hx&0x7fffffff)|lx)==0) 00110 return -two54/zero; /* log(+-0)=-inf */ 00111 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ 00112 k -= 54; x *= two54; /* subnormal number, scale up x */ 00113 GET_HIGH_WORD(hx,x); 00114 } 00115 if (hx >= 0x7ff00000) return x+x; 00116 k += (hx>>20)-1023; 00117 hx &= 0x000fffff; 00118 i = (hx+0x95f64)&0x100000; 00119 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ 00120 k += (i>>20); 00121 f = x-1.0; 00122 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ 00123 if(f==zero) { if(k==0) return zero; else {dk=(double)k; 00124 return dk*ln2_hi+dk*ln2_lo;} 00125 } 00126 R = f*f*(0.5-0.33333333333333333*f); 00127 if(k==0) return f-R; else {dk=(double)k; 00128 return dk*ln2_hi-((R-dk*ln2_lo)-f);} 00129 } 00130 s = f/(2.0+f); 00131 dk = (double)k; 00132 z = s*s; 00133 i = hx-0x6147a; 00134 w = z*z; 00135 j = 0x6b851-hx; 00136 t1= w*(Lg2+w*(Lg4+w*Lg6)); 00137 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 00138 i |= j; 00139 R = t2+t1; 00140 if(i>0) { 00141 hfsq=0.5*f*f; 00142 if(k==0) return f-(hfsq-s*(hfsq+R)); else 00143 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 00144 } else { 00145 if(k==0) return f-s*(f-R); else 00146 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 00147 } 00148 } 00149 #endif 00150