POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_log.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_log.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* __ieee754_log(x)
00030  * Return the logrithm of x
00031  *
00032  * Method :
00033  *   1. Argument Reduction: find k and f such that
00034  *                      x = 2^k * (1+f),
00035  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
00036  *
00037  *   2. Approximation of log(1+f).
00038  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
00039  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
00040  *               = 2s + s*R
00041  *      We use a special Reme algorithm on [0,0.1716] to generate
00042  *      a polynomial of degree 14 to approximate R The maximum error
00043  *      of this polynomial approximation is bounded by 2**-58.45. In
00044  *      other words,
00045  *                      2      4      6      8      10      12      14
00046  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
00047  *      (the values of Lg1 to Lg7 are listed in the program)
00048  *      and
00049  *          |      2          14          |     -58.45
00050  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
00051  *          |                             |
00052  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
00053  *      In order to guarantee error in log below 1ulp, we compute log
00054  *      by
00055  *              log(1+f) = f - s*(f - R)        (if f is not too large)
00056  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
00057  *
00058  *      3. Finally,  log(x) = k*ln2 + log(1+f).
00059  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
00060  *         Here ln2 is split into two floating point number:
00061  *                      ln2_hi + ln2_lo,
00062  *         where n*ln2_hi is always exact for |n| < 2000.
00063  *
00064  * Special cases:
00065  *      log(x) is NaN with signal if x < 0 (including -INF) ;
00066  *      log(+INF) is +INF; log(0) is -INF with signal;
00067  *      log(NaN) is that NaN with no signal.
00068  *
00069  * Accuracy:
00070  *      according to an error analysis, the error is always less than
00071  *      1 ulp (unit in the last place).
00072  *
00073  * Constants:
00074  * The hexadecimal values are the intended ones for the following
00075  * constants. The decimal values may be used, provided that the
00076  * compiler will convert from decimal to binary accurately enough
00077  * to produce the hexadecimal values shown.
00078  */
00079 
00080 #ifdef POK_NEEDS_LIBMATH
00081 
00082 #include "math_private.h"
00083 
00084 static const double
00085 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
00086 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
00087 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
00088 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
00089 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
00090 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
00091 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
00092 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
00093 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
00094 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
00095 
00096 static const double zero   =  0.0;
00097 
00098 double
00099 __ieee754_log(double x)
00100 {
00101         double hfsq,f,s,z,R,w,t1,t2,dk;
00102         int32_t k,hx,i,j;
00103         uint32_t lx;
00104 
00105         EXTRACT_WORDS(hx,lx,x);
00106 
00107         k=0;
00108         if (hx < 0x00100000) {                  /* x < 2**-1022  */
00109             if (((hx&0x7fffffff)|lx)==0)
00110                 return -two54/zero;             /* log(+-0)=-inf */
00111             if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
00112             k -= 54; x *= two54; /* subnormal number, scale up x */
00113             GET_HIGH_WORD(hx,x);
00114         }
00115         if (hx >= 0x7ff00000) return x+x;
00116         k += (hx>>20)-1023;
00117         hx &= 0x000fffff;
00118         i = (hx+0x95f64)&0x100000;
00119         SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
00120         k += (i>>20);
00121         f = x-1.0;
00122         if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
00123             if(f==zero) { if(k==0) return zero;  else {dk=(double)k;
00124                                    return dk*ln2_hi+dk*ln2_lo;}
00125             }
00126             R = f*f*(0.5-0.33333333333333333*f);
00127             if(k==0) return f-R; else {dk=(double)k;
00128                      return dk*ln2_hi-((R-dk*ln2_lo)-f);}
00129         }
00130         s = f/(2.0+f);
00131         dk = (double)k;
00132         z = s*s;
00133         i = hx-0x6147a;
00134         w = z*z;
00135         j = 0x6b851-hx;
00136         t1= w*(Lg2+w*(Lg4+w*Lg6));
00137         t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
00138         i |= j;
00139         R = t2+t1;
00140         if(i>0) {
00141             hfsq=0.5*f*f;
00142             if(k==0) return f-(hfsq-s*(hfsq+R)); else
00143                      return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
00144         } else {
00145             if(k==0) return f-s*(f-R); else
00146                      return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
00147         }
00148 }
00149 #endif
00150