POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* e_j1f.c -- float version of e_j1.c. 00018 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 00019 */ 00020 00021 /* 00022 * ==================================================== 00023 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00024 * 00025 * Developed at SunPro, a Sun Microsystems, Inc. business. 00026 * Permission to use, copy, modify, and distribute this 00027 * software is freely granted, provided that this notice 00028 * is preserved. 00029 * ==================================================== 00030 */ 00031 00032 #ifdef POK_NEEDS_LIBMATH 00033 00034 #include <libm.h> 00035 #include "namespace.h" 00036 #include "math_private.h" 00037 00038 static float ponef(float), qonef(float); 00039 00040 static const float 00041 huge = 1e30, 00042 one = 1.0, 00043 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ 00044 tpi = 6.3661974669e-01, /* 0x3f22f983 */ 00045 /* R0/S0 on [0,2] */ 00046 r00 = -6.2500000000e-02, /* 0xbd800000 */ 00047 r01 = 1.4070566976e-03, /* 0x3ab86cfd */ 00048 r02 = -1.5995563444e-05, /* 0xb7862e36 */ 00049 r03 = 4.9672799207e-08, /* 0x335557d2 */ 00050 s01 = 1.9153760746e-02, /* 0x3c9ce859 */ 00051 s02 = 1.8594678841e-04, /* 0x3942fab6 */ 00052 s03 = 1.1771846857e-06, /* 0x359dffc2 */ 00053 s04 = 5.0463624390e-09, /* 0x31ad6446 */ 00054 s05 = 1.2354227016e-11; /* 0x2d59567e */ 00055 00056 static const float zero = 0.0; 00057 00058 float 00059 __ieee754_j1f(float x) 00060 { 00061 float z, s,c,ss,cc,r,u,v,y; 00062 int32_t hx,ix; 00063 00064 GET_FLOAT_WORD(hx,x); 00065 ix = hx&0x7fffffff; 00066 if(ix>=0x7f800000) return one/x; 00067 y = fabsf(x); 00068 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00069 s = sinf(y); 00070 c = cosf(y); 00071 ss = -s-c; 00072 cc = s-c; 00073 if(ix<0x7f000000) { /* make sure y+y not overflow */ 00074 z = cosf(y+y); 00075 if ((s*c)>zero) cc = z/ss; 00076 else ss = z/cc; 00077 } 00078 /* 00079 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) 00080 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) 00081 */ 00082 #ifdef DEAD_CODE 00083 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y); 00084 else 00085 #endif 00086 { 00087 u = ponef(y); v = qonef(y); 00088 z = invsqrtpi*(u*cc-v*ss)/sqrtf(y); 00089 } 00090 if(hx<0) return -z; 00091 else return z; 00092 } 00093 if(ix<0x32000000) { /* |x|<2**-27 */ 00094 if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ 00095 } 00096 z = x*x; 00097 r = z*(r00+z*(r01+z*(r02+z*r03))); 00098 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); 00099 r *= x; 00100 return(x*(float)0.5+r/s); 00101 } 00102 00103 static const float U0[5] = { 00104 -1.9605709612e-01, /* 0xbe48c331 */ 00105 5.0443872809e-02, /* 0x3d4e9e3c */ 00106 -1.9125689287e-03, /* 0xbafaaf2a */ 00107 2.3525259166e-05, /* 0x37c5581c */ 00108 -9.1909917899e-08, /* 0xb3c56003 */ 00109 }; 00110 static const float V0[5] = { 00111 1.9916731864e-02, /* 0x3ca3286a */ 00112 2.0255257550e-04, /* 0x3954644b */ 00113 1.3560879779e-06, /* 0x35b602d4 */ 00114 6.2274145840e-09, /* 0x31d5f8eb */ 00115 1.6655924903e-11, /* 0x2d9281cf */ 00116 }; 00117 00118 float 00119 __ieee754_y1f(float x) 00120 { 00121 float z, s,c,ss,cc,u,v; 00122 int32_t hx,ix; 00123 00124 GET_FLOAT_WORD(hx,x); 00125 ix = 0x7fffffff&hx; 00126 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ 00127 if(ix>=0x7f800000) return one/(x+x*x); 00128 if(ix==0) return -one/zero; 00129 if(hx<0) return zero/zero; 00130 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00131 s = sinf(x); 00132 c = cosf(x); 00133 ss = -s-c; 00134 cc = s-c; 00135 if(ix<0x7f000000) { /* make sure x+x not overflow */ 00136 z = cosf(x+x); 00137 if ((s*c)>zero) cc = z/ss; 00138 else ss = z/cc; 00139 } 00140 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) 00141 * where x0 = x-3pi/4 00142 * Better formula: 00143 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) 00144 * = 1/sqrt(2) * (sin(x) - cos(x)) 00145 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 00146 * = -1/sqrt(2) * (cos(x) + sin(x)) 00147 * To avoid cancellation, use 00148 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 00149 * to compute the worse one. 00150 */ 00151 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x); 00152 else { 00153 u = ponef(x); v = qonef(x); 00154 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); 00155 } 00156 return z; 00157 } 00158 if(ix<=0x24800000) { /* x < 2**-54 */ 00159 return(-tpi/x); 00160 } 00161 z = x*x; 00162 u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); 00163 v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); 00164 return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); 00165 } 00166 00167 /* For x >= 8, the asymptotic expansions of pone is 00168 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. 00169 * We approximate pone by 00170 * pone(x) = 1 + (R/S) 00171 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 00172 * S = 1 + ps0*s^2 + ... + ps4*s^10 00173 * and 00174 * | pone(x)-1-R/S | <= 2 ** ( -60.06) 00175 */ 00176 00177 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00178 0.0000000000e+00, /* 0x00000000 */ 00179 1.1718750000e-01, /* 0x3df00000 */ 00180 1.3239480972e+01, /* 0x4153d4ea */ 00181 4.1205184937e+02, /* 0x43ce06a3 */ 00182 3.8747453613e+03, /* 0x45722bed */ 00183 7.9144794922e+03, /* 0x45f753d6 */ 00184 }; 00185 static const float ps8[5] = { 00186 1.1420736694e+02, /* 0x42e46a2c */ 00187 3.6509309082e+03, /* 0x45642ee5 */ 00188 3.6956207031e+04, /* 0x47105c35 */ 00189 9.7602796875e+04, /* 0x47bea166 */ 00190 3.0804271484e+04, /* 0x46f0a88b */ 00191 }; 00192 00193 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00194 1.3199052094e-11, /* 0x2d68333f */ 00195 1.1718749255e-01, /* 0x3defffff */ 00196 6.8027510643e+00, /* 0x40d9b023 */ 00197 1.0830818176e+02, /* 0x42d89dca */ 00198 5.1763616943e+02, /* 0x440168b7 */ 00199 5.2871520996e+02, /* 0x44042dc6 */ 00200 }; 00201 static const float ps5[5] = { 00202 5.9280597687e+01, /* 0x426d1f55 */ 00203 9.9140142822e+02, /* 0x4477d9b1 */ 00204 5.3532670898e+03, /* 0x45a74a23 */ 00205 7.8446904297e+03, /* 0x45f52586 */ 00206 1.5040468750e+03, /* 0x44bc0180 */ 00207 }; 00208 00209 static const float pr3[6] = { 00210 3.0250391081e-09, /* 0x314fe10d */ 00211 1.1718686670e-01, /* 0x3defffab */ 00212 3.9329774380e+00, /* 0x407bb5e7 */ 00213 3.5119403839e+01, /* 0x420c7a45 */ 00214 9.1055007935e+01, /* 0x42b61c2a */ 00215 4.8559066772e+01, /* 0x42423c7c */ 00216 }; 00217 static const float ps3[5] = { 00218 3.4791309357e+01, /* 0x420b2a4d */ 00219 3.3676245117e+02, /* 0x43a86198 */ 00220 1.0468714600e+03, /* 0x4482dbe3 */ 00221 8.9081134033e+02, /* 0x445eb3ed */ 00222 1.0378793335e+02, /* 0x42cf936c */ 00223 }; 00224 00225 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00226 1.0771083225e-07, /* 0x33e74ea8 */ 00227 1.1717621982e-01, /* 0x3deffa16 */ 00228 2.3685150146e+00, /* 0x401795c0 */ 00229 1.2242610931e+01, /* 0x4143e1bc */ 00230 1.7693971634e+01, /* 0x418d8d41 */ 00231 5.0735230446e+00, /* 0x40a25a4d */ 00232 }; 00233 static const float ps2[5] = { 00234 2.1436485291e+01, /* 0x41ab7dec */ 00235 1.2529022980e+02, /* 0x42fa9499 */ 00236 2.3227647400e+02, /* 0x436846c7 */ 00237 1.1767937469e+02, /* 0x42eb5bd7 */ 00238 8.3646392822e+00, /* 0x4105d590 */ 00239 }; 00240 00241 static float 00242 ponef(float x) 00243 { 00244 const float *p,*q; 00245 float z,r,s; 00246 int32_t ix; 00247 00248 p = q = 0; 00249 GET_FLOAT_WORD(ix,x); 00250 ix &= 0x7fffffff; 00251 if(ix>=0x41000000) {p = pr8; q= ps8;} 00252 else if(ix>=0x40f71c58){p = pr5; q= ps5;} 00253 else if(ix>=0x4036db68){p = pr3; q= ps3;} 00254 else if(ix>=0x40000000){p = pr2; q= ps2;} 00255 z = one/(x*x); 00256 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00257 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 00258 return one+ r/s; 00259 } 00260 00261 00262 /* For x >= 8, the asymptotic expansions of qone is 00263 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. 00264 * We approximate pone by 00265 * qone(x) = s*(0.375 + (R/S)) 00266 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 00267 * S = 1 + qs1*s^2 + ... + qs6*s^12 00268 * and 00269 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) 00270 */ 00271 00272 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00273 0.0000000000e+00, /* 0x00000000 */ 00274 -1.0253906250e-01, /* 0xbdd20000 */ 00275 -1.6271753311e+01, /* 0xc1822c8d */ 00276 -7.5960174561e+02, /* 0xc43de683 */ 00277 -1.1849806641e+04, /* 0xc639273a */ 00278 -4.8438511719e+04, /* 0xc73d3683 */ 00279 }; 00280 static const float qs8[6] = { 00281 1.6139537048e+02, /* 0x43216537 */ 00282 7.8253862305e+03, /* 0x45f48b17 */ 00283 1.3387534375e+05, /* 0x4802bcd6 */ 00284 7.1965775000e+05, /* 0x492fb29c */ 00285 6.6660125000e+05, /* 0x4922be94 */ 00286 -2.9449025000e+05, /* 0xc88fcb48 */ 00287 }; 00288 00289 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00290 -2.0897993405e-11, /* 0xadb7d219 */ 00291 -1.0253904760e-01, /* 0xbdd1fffe */ 00292 -8.0564479828e+00, /* 0xc100e736 */ 00293 -1.8366960144e+02, /* 0xc337ab6b */ 00294 -1.3731937256e+03, /* 0xc4aba633 */ 00295 -2.6124443359e+03, /* 0xc523471c */ 00296 }; 00297 static const float qs5[6] = { 00298 8.1276550293e+01, /* 0x42a28d98 */ 00299 1.9917987061e+03, /* 0x44f8f98f */ 00300 1.7468484375e+04, /* 0x468878f8 */ 00301 4.9851425781e+04, /* 0x4742bb6d */ 00302 2.7948074219e+04, /* 0x46da5826 */ 00303 -4.7191835938e+03, /* 0xc5937978 */ 00304 }; 00305 00306 static const float qr3[6] = { /* for x in [4.5454,2.8570]=1/[0.22001,0.3499] */ 00307 -5.0783124372e-09, /* 0xb1ae7d4f */ 00308 -1.0253783315e-01, /* 0xbdd1ff5b */ 00309 -4.6101160049e+00, /* 0xc0938612 */ 00310 -5.7847221375e+01, /* 0xc267638e */ 00311 -2.2824453735e+02, /* 0xc3643e9a */ 00312 -2.1921012878e+02, /* 0xc35b35cb */ 00313 }; 00314 static const float qs3[6] = { 00315 4.7665153503e+01, /* 0x423ea91e */ 00316 6.7386511230e+02, /* 0x4428775e */ 00317 3.3801528320e+03, /* 0x45534272 */ 00318 5.5477290039e+03, /* 0x45ad5dd5 */ 00319 1.9031191406e+03, /* 0x44ede3d0 */ 00320 -1.3520118713e+02, /* 0xc3073381 */ 00321 }; 00322 00323 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00324 -1.7838172539e-07, /* 0xb43f8932 */ 00325 -1.0251704603e-01, /* 0xbdd1f475 */ 00326 -2.7522056103e+00, /* 0xc0302423 */ 00327 -1.9663616180e+01, /* 0xc19d4f16 */ 00328 -4.2325313568e+01, /* 0xc2294d1f */ 00329 -2.1371921539e+01, /* 0xc1aaf9b2 */ 00330 }; 00331 static const float qs2[6] = { 00332 2.9533363342e+01, /* 0x41ec4454 */ 00333 2.5298155212e+02, /* 0x437cfb47 */ 00334 7.5750280762e+02, /* 0x443d602e */ 00335 7.3939318848e+02, /* 0x4438d92a */ 00336 1.5594900513e+02, /* 0x431bf2f2 */ 00337 -4.9594988823e+00, /* 0xc09eb437 */ 00338 }; 00339 00340 static float 00341 qonef(float x) 00342 { 00343 const float *p,*q; 00344 float s,r,z; 00345 int32_t ix; 00346 00347 p = q = 0; 00348 GET_FLOAT_WORD(ix,x); 00349 ix &= 0x7fffffff; 00350 /* [inf, 8] (8 41000000) */ 00351 if(ix>=0x41000000) {p = qr8; q= qs8;} 00352 /* [8, 4.5454] (4.5454 409173eb) */ 00353 else if(ix>=0x409173eb){p = qr5; q= qs5;} 00354 /* [4.5454, 2.8570] (2.8570 4036d917) */ 00355 else if(ix>=0x4036d917){p = qr3; q= qs3;} 00356 /* [2.8570, 2] (2 40000000) */ 00357 else if(ix>=0x40000000){p = qr2; q= qs2;} 00358 z = one/(x*x); 00359 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00360 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 00361 return ((float).375 + r/s)/x; 00362 } 00363 #endif 00364