POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_j1f.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* e_j1f.c -- float version of e_j1.c.
00018  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
00019  */
00020 
00021 /*
00022  * ====================================================
00023  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00024  *
00025  * Developed at SunPro, a Sun Microsystems, Inc. business.
00026  * Permission to use, copy, modify, and distribute this
00027  * software is freely granted, provided that this notice
00028  * is preserved.
00029  * ====================================================
00030  */
00031 
00032 #ifdef POK_NEEDS_LIBMATH
00033 
00034 #include <libm.h>
00035 #include "namespace.h"
00036 #include "math_private.h"
00037 
00038 static float ponef(float), qonef(float);
00039 
00040 static const float
00041 huge    = 1e30,
00042 one     = 1.0,
00043 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
00044 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
00045         /* R0/S0 on [0,2] */
00046 r00  = -6.2500000000e-02, /* 0xbd800000 */
00047 r01  =  1.4070566976e-03, /* 0x3ab86cfd */
00048 r02  = -1.5995563444e-05, /* 0xb7862e36 */
00049 r03  =  4.9672799207e-08, /* 0x335557d2 */
00050 s01  =  1.9153760746e-02, /* 0x3c9ce859 */
00051 s02  =  1.8594678841e-04, /* 0x3942fab6 */
00052 s03  =  1.1771846857e-06, /* 0x359dffc2 */
00053 s04  =  5.0463624390e-09, /* 0x31ad6446 */
00054 s05  =  1.2354227016e-11; /* 0x2d59567e */
00055 
00056 static const float zero    = 0.0;
00057 
00058 float
00059 __ieee754_j1f(float x)
00060 {
00061         float z, s,c,ss,cc,r,u,v,y;
00062         int32_t hx,ix;
00063 
00064         GET_FLOAT_WORD(hx,x);
00065         ix = hx&0x7fffffff;
00066         if(ix>=0x7f800000) return one/x;
00067         y = fabsf(x);
00068         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00069                 s = sinf(y);
00070                 c = cosf(y);
00071                 ss = -s-c;
00072                 cc = s-c;
00073                 if(ix<0x7f000000) {  /* make sure y+y not overflow */
00074                     z = cosf(y+y);
00075                     if ((s*c)>zero) cc = z/ss;
00076                     else            ss = z/cc;
00077                 }
00078         /*
00079          * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
00080          * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
00081          */
00082 #ifdef DEAD_CODE
00083                 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y);
00084                 else
00085 #endif
00086                 {
00087                     u = ponef(y); v = qonef(y);
00088                     z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
00089                 }
00090                 if(hx<0) return -z;
00091                 else     return  z;
00092         }
00093         if(ix<0x32000000) {     /* |x|<2**-27 */
00094             if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
00095         }
00096         z = x*x;
00097         r =  z*(r00+z*(r01+z*(r02+z*r03)));
00098         s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
00099         r *= x;
00100         return(x*(float)0.5+r/s);
00101 }
00102 
00103 static const float U0[5] = {
00104  -1.9605709612e-01, /* 0xbe48c331 */
00105   5.0443872809e-02, /* 0x3d4e9e3c */
00106  -1.9125689287e-03, /* 0xbafaaf2a */
00107   2.3525259166e-05, /* 0x37c5581c */
00108  -9.1909917899e-08, /* 0xb3c56003 */
00109 };
00110 static const float V0[5] = {
00111   1.9916731864e-02, /* 0x3ca3286a */
00112   2.0255257550e-04, /* 0x3954644b */
00113   1.3560879779e-06, /* 0x35b602d4 */
00114   6.2274145840e-09, /* 0x31d5f8eb */
00115   1.6655924903e-11, /* 0x2d9281cf */
00116 };
00117 
00118 float
00119 __ieee754_y1f(float x)
00120 {
00121         float z, s,c,ss,cc,u,v;
00122         int32_t hx,ix;
00123 
00124         GET_FLOAT_WORD(hx,x);
00125         ix = 0x7fffffff&hx;
00126     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
00127         if(ix>=0x7f800000) return  one/(x+x*x);
00128         if(ix==0) return -one/zero;
00129         if(hx<0) return zero/zero;
00130         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00131                 s = sinf(x);
00132                 c = cosf(x);
00133                 ss = -s-c;
00134                 cc = s-c;
00135                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
00136                     z = cosf(x+x);
00137                     if ((s*c)>zero) cc = z/ss;
00138                     else            ss = z/cc;
00139                 }
00140         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
00141          * where x0 = x-3pi/4
00142          *      Better formula:
00143          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
00144          *                      =  1/sqrt(2) * (sin(x) - cos(x))
00145          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
00146          *                      = -1/sqrt(2) * (cos(x) + sin(x))
00147          * To avoid cancellation, use
00148          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
00149          * to compute the worse one.
00150          */
00151                 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x);
00152                 else {
00153                     u = ponef(x); v = qonef(x);
00154                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
00155                 }
00156                 return z;
00157         }
00158         if(ix<=0x24800000) {    /* x < 2**-54 */
00159             return(-tpi/x);
00160         }
00161         z = x*x;
00162         u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
00163         v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
00164         return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
00165 }
00166 
00167 /* For x >= 8, the asymptotic expansions of pone is
00168  *      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
00169  * We approximate pone by
00170  *      pone(x) = 1 + (R/S)
00171  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
00172  *        S = 1 + ps0*s^2 + ... + ps4*s^10
00173  * and
00174  *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
00175  */
00176 
00177 static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00178   0.0000000000e+00, /* 0x00000000 */
00179   1.1718750000e-01, /* 0x3df00000 */
00180   1.3239480972e+01, /* 0x4153d4ea */
00181   4.1205184937e+02, /* 0x43ce06a3 */
00182   3.8747453613e+03, /* 0x45722bed */
00183   7.9144794922e+03, /* 0x45f753d6 */
00184 };
00185 static const float ps8[5] = {
00186   1.1420736694e+02, /* 0x42e46a2c */
00187   3.6509309082e+03, /* 0x45642ee5 */
00188   3.6956207031e+04, /* 0x47105c35 */
00189   9.7602796875e+04, /* 0x47bea166 */
00190   3.0804271484e+04, /* 0x46f0a88b */
00191 };
00192 
00193 static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00194   1.3199052094e-11, /* 0x2d68333f */
00195   1.1718749255e-01, /* 0x3defffff */
00196   6.8027510643e+00, /* 0x40d9b023 */
00197   1.0830818176e+02, /* 0x42d89dca */
00198   5.1763616943e+02, /* 0x440168b7 */
00199   5.2871520996e+02, /* 0x44042dc6 */
00200 };
00201 static const float ps5[5] = {
00202   5.9280597687e+01, /* 0x426d1f55 */
00203   9.9140142822e+02, /* 0x4477d9b1 */
00204   5.3532670898e+03, /* 0x45a74a23 */
00205   7.8446904297e+03, /* 0x45f52586 */
00206   1.5040468750e+03, /* 0x44bc0180 */
00207 };
00208 
00209 static const float pr3[6] = {
00210   3.0250391081e-09, /* 0x314fe10d */
00211   1.1718686670e-01, /* 0x3defffab */
00212   3.9329774380e+00, /* 0x407bb5e7 */
00213   3.5119403839e+01, /* 0x420c7a45 */
00214   9.1055007935e+01, /* 0x42b61c2a */
00215   4.8559066772e+01, /* 0x42423c7c */
00216 };
00217 static const float ps3[5] = {
00218   3.4791309357e+01, /* 0x420b2a4d */
00219   3.3676245117e+02, /* 0x43a86198 */
00220   1.0468714600e+03, /* 0x4482dbe3 */
00221   8.9081134033e+02, /* 0x445eb3ed */
00222   1.0378793335e+02, /* 0x42cf936c */
00223 };
00224 
00225 static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00226   1.0771083225e-07, /* 0x33e74ea8 */
00227   1.1717621982e-01, /* 0x3deffa16 */
00228   2.3685150146e+00, /* 0x401795c0 */
00229   1.2242610931e+01, /* 0x4143e1bc */
00230   1.7693971634e+01, /* 0x418d8d41 */
00231   5.0735230446e+00, /* 0x40a25a4d */
00232 };
00233 static const float ps2[5] = {
00234   2.1436485291e+01, /* 0x41ab7dec */
00235   1.2529022980e+02, /* 0x42fa9499 */
00236   2.3227647400e+02, /* 0x436846c7 */
00237   1.1767937469e+02, /* 0x42eb5bd7 */
00238   8.3646392822e+00, /* 0x4105d590 */
00239 };
00240 
00241 static float
00242 ponef(float x)
00243 {
00244         const float *p,*q;
00245         float z,r,s;
00246         int32_t ix;
00247 
00248         p = q = 0;
00249         GET_FLOAT_WORD(ix,x);
00250         ix &= 0x7fffffff;
00251         if(ix>=0x41000000)     {p = pr8; q= ps8;}
00252         else if(ix>=0x40f71c58){p = pr5; q= ps5;}
00253         else if(ix>=0x4036db68){p = pr3; q= ps3;}
00254         else if(ix>=0x40000000){p = pr2; q= ps2;}
00255         z = one/(x*x);
00256         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00257         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
00258         return one+ r/s;
00259 }
00260 
00261 
00262 /* For x >= 8, the asymptotic expansions of qone is
00263  *      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
00264  * We approximate pone by
00265  *      qone(x) = s*(0.375 + (R/S))
00266  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
00267  *        S = 1 + qs1*s^2 + ... + qs6*s^12
00268  * and
00269  *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
00270  */
00271 
00272 static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00273   0.0000000000e+00, /* 0x00000000 */
00274  -1.0253906250e-01, /* 0xbdd20000 */
00275  -1.6271753311e+01, /* 0xc1822c8d */
00276  -7.5960174561e+02, /* 0xc43de683 */
00277  -1.1849806641e+04, /* 0xc639273a */
00278  -4.8438511719e+04, /* 0xc73d3683 */
00279 };
00280 static const float qs8[6] = {
00281   1.6139537048e+02, /* 0x43216537 */
00282   7.8253862305e+03, /* 0x45f48b17 */
00283   1.3387534375e+05, /* 0x4802bcd6 */
00284   7.1965775000e+05, /* 0x492fb29c */
00285   6.6660125000e+05, /* 0x4922be94 */
00286  -2.9449025000e+05, /* 0xc88fcb48 */
00287 };
00288 
00289 static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00290  -2.0897993405e-11, /* 0xadb7d219 */
00291  -1.0253904760e-01, /* 0xbdd1fffe */
00292  -8.0564479828e+00, /* 0xc100e736 */
00293  -1.8366960144e+02, /* 0xc337ab6b */
00294  -1.3731937256e+03, /* 0xc4aba633 */
00295  -2.6124443359e+03, /* 0xc523471c */
00296 };
00297 static const float qs5[6] = {
00298   8.1276550293e+01, /* 0x42a28d98 */
00299   1.9917987061e+03, /* 0x44f8f98f */
00300   1.7468484375e+04, /* 0x468878f8 */
00301   4.9851425781e+04, /* 0x4742bb6d */
00302   2.7948074219e+04, /* 0x46da5826 */
00303  -4.7191835938e+03, /* 0xc5937978 */
00304 };
00305 
00306 static const float qr3[6] = { /* for x in [4.5454,2.8570]=1/[0.22001,0.3499] */
00307  -5.0783124372e-09, /* 0xb1ae7d4f */
00308  -1.0253783315e-01, /* 0xbdd1ff5b */
00309  -4.6101160049e+00, /* 0xc0938612 */
00310  -5.7847221375e+01, /* 0xc267638e */
00311  -2.2824453735e+02, /* 0xc3643e9a */
00312  -2.1921012878e+02, /* 0xc35b35cb */
00313 };
00314 static const float qs3[6] = {
00315   4.7665153503e+01, /* 0x423ea91e */
00316   6.7386511230e+02, /* 0x4428775e */
00317   3.3801528320e+03, /* 0x45534272 */
00318   5.5477290039e+03, /* 0x45ad5dd5 */
00319   1.9031191406e+03, /* 0x44ede3d0 */
00320  -1.3520118713e+02, /* 0xc3073381 */
00321 };
00322 
00323 static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00324  -1.7838172539e-07, /* 0xb43f8932 */
00325  -1.0251704603e-01, /* 0xbdd1f475 */
00326  -2.7522056103e+00, /* 0xc0302423 */
00327  -1.9663616180e+01, /* 0xc19d4f16 */
00328  -4.2325313568e+01, /* 0xc2294d1f */
00329  -2.1371921539e+01, /* 0xc1aaf9b2 */
00330 };
00331 static const float qs2[6] = {
00332   2.9533363342e+01, /* 0x41ec4454 */
00333   2.5298155212e+02, /* 0x437cfb47 */
00334   7.5750280762e+02, /* 0x443d602e */
00335   7.3939318848e+02, /* 0x4438d92a */
00336   1.5594900513e+02, /* 0x431bf2f2 */
00337  -4.9594988823e+00, /* 0xc09eb437 */
00338 };
00339 
00340 static float
00341 qonef(float x)
00342 {
00343         const float *p,*q;
00344         float  s,r,z;
00345         int32_t ix;
00346 
00347         p = q = 0;
00348         GET_FLOAT_WORD(ix,x);
00349         ix &= 0x7fffffff;
00350         /* [inf, 8]             (8      41000000) */
00351         if(ix>=0x41000000)     {p = qr8; q= qs8;}
00352         /* [8, 4.5454]          (4.5454 409173eb) */
00353         else if(ix>=0x409173eb){p = qr5; q= qs5;}
00354         /* [4.5454, 2.8570]     (2.8570 4036d917) */
00355         else if(ix>=0x4036d917){p = qr3; q= qs3;}
00356         /* [2.8570, 2]          (2      40000000) */
00357         else if(ix>=0x40000000){p = qr2; q= qs2;}
00358         z = one/(x*x);
00359         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00360         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
00361         return ((float).375 + r/s)/x;
00362 }
00363 #endif
00364