POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* e_j0f.c -- float version of e_j0.c. 00018 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 00019 */ 00020 00021 /* 00022 * ==================================================== 00023 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00024 * 00025 * Developed at SunPro, a Sun Microsystems, Inc. business. 00026 * Permission to use, copy, modify, and distribute this 00027 * software is freely granted, provided that this notice 00028 * is preserved. 00029 * ==================================================== 00030 */ 00031 00032 #ifdef POK_NEEDS_LIBMATH 00033 00034 #include <libm.h> 00035 #include "math_private.h" 00036 00037 static float pzerof(float), qzerof(float); 00038 00039 static const float 00040 huge = 1e30, 00041 one = 1.0, 00042 invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ 00043 tpi = 6.3661974669e-01, /* 0x3f22f983 */ 00044 /* R0/S0 on [0, 2.00] */ 00045 R02 = 1.5625000000e-02, /* 0x3c800000 */ 00046 R03 = -1.8997929874e-04, /* 0xb947352e */ 00047 R04 = 1.8295404516e-06, /* 0x35f58e88 */ 00048 R05 = -4.6183270541e-09, /* 0xb19eaf3c */ 00049 S01 = 1.5619102865e-02, /* 0x3c7fe744 */ 00050 S02 = 1.1692678527e-04, /* 0x38f53697 */ 00051 S03 = 5.1354652442e-07, /* 0x3509daa6 */ 00052 S04 = 1.1661400734e-09; /* 0x30a045e8 */ 00053 00054 static const float zero = 0.0; 00055 00056 float 00057 __ieee754_j0f(float x) 00058 { 00059 float z, s,c,ss,cc,r,u,v; 00060 int32_t hx,ix; 00061 00062 GET_FLOAT_WORD(hx,x); 00063 ix = hx&0x7fffffff; 00064 if(ix>=0x7f800000) return one/(x*x); 00065 x = fabsf(x); 00066 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00067 s = sinf(x); 00068 c = cosf(x); 00069 ss = s-c; 00070 cc = s+c; 00071 if(ix<0x7f000000) { /* make sure x+x not overflow */ 00072 z = -cosf(x+x); 00073 if ((s*c)<zero) cc = z/ss; 00074 else ss = z/cc; 00075 } 00076 /* 00077 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 00078 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 00079 */ 00080 #ifdef DEAD_CODE 00081 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x); 00082 else 00083 #endif 00084 { 00085 u = pzerof(x); v = qzerof(x); 00086 z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); 00087 } 00088 return z; 00089 } 00090 if(ix<0x39000000) { /* |x| < 2**-13 */ 00091 if(huge+x>one) { /* raise inexact if x != 0 */ 00092 if(ix<0x32000000) return one; /* |x|<2**-27 */ 00093 else return one - (float)0.25*x*x; 00094 } 00095 } 00096 z = x*x; 00097 r = z*(R02+z*(R03+z*(R04+z*R05))); 00098 s = one+z*(S01+z*(S02+z*(S03+z*S04))); 00099 if(ix < 0x3F800000) { /* |x| < 1.00 */ 00100 return one + z*((float)-0.25+(r/s)); 00101 } else { 00102 u = (float)0.5*x; 00103 return((one+u)*(one-u)+z*(r/s)); 00104 } 00105 } 00106 00107 static const float 00108 u00 = -7.3804296553e-02, /* 0xbd9726b5 */ 00109 u01 = 1.7666645348e-01, /* 0x3e34e80d */ 00110 u02 = -1.3818567619e-02, /* 0xbc626746 */ 00111 u03 = 3.4745343146e-04, /* 0x39b62a69 */ 00112 u04 = -3.8140706238e-06, /* 0xb67ff53c */ 00113 u05 = 1.9559013964e-08, /* 0x32a802ba */ 00114 u06 = -3.9820518410e-11, /* 0xae2f21eb */ 00115 v01 = 1.2730483897e-02, /* 0x3c509385 */ 00116 v02 = 7.6006865129e-05, /* 0x389f65e0 */ 00117 v03 = 2.5915085189e-07, /* 0x348b216c */ 00118 v04 = 4.4111031494e-10; /* 0x2ff280c2 */ 00119 00120 float 00121 __ieee754_y0f(float x) 00122 { 00123 float z, s,c,ss,cc,u,v; 00124 int32_t hx,ix; 00125 00126 GET_FLOAT_WORD(hx,x); 00127 ix = 0x7fffffff&hx; 00128 /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ 00129 if(ix>=0x7f800000) return one/(x+x*x); 00130 if(ix==0) return -one/zero; 00131 if(hx<0) return zero/zero; 00132 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00133 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) 00134 * where x0 = x-pi/4 00135 * Better formula: 00136 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 00137 * = 1/sqrt(2) * (sin(x) + cos(x)) 00138 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 00139 * = 1/sqrt(2) * (sin(x) - cos(x)) 00140 * To avoid cancellation, use 00141 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 00142 * to compute the worse one. 00143 */ 00144 s = sinf(x); 00145 c = cosf(x); 00146 ss = s-c; 00147 cc = s+c; 00148 /* 00149 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 00150 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 00151 */ 00152 if(ix<0x7f000000) { /* make sure x+x not overflow */ 00153 z = -cosf(x+x); 00154 if ((s*c)<zero) cc = z/ss; 00155 else ss = z/cc; 00156 } 00157 #ifdef DEAD_CODE 00158 if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x); 00159 else 00160 #endif 00161 { 00162 u = pzerof(x); v = qzerof(x); 00163 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); 00164 } 00165 return z; 00166 } 00167 if(ix<=0x32000000) { /* x < 2**-27 */ 00168 return(u00 + tpi*__ieee754_logf(x)); 00169 } 00170 z = x*x; 00171 u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 00172 v = one+z*(v01+z*(v02+z*(v03+z*v04))); 00173 return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x))); 00174 } 00175 00176 /* The asymptotic expansions of pzero is 00177 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 00178 * For x >= 2, We approximate pzero by 00179 * pzero(x) = 1 + (R/S) 00180 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 00181 * S = 1 + pS0*s^2 + ... + pS4*s^10 00182 * and 00183 * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 00184 */ 00185 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00186 0.0000000000e+00, /* 0x00000000 */ 00187 -7.0312500000e-02, /* 0xbd900000 */ 00188 -8.0816707611e+00, /* 0xc1014e86 */ 00189 -2.5706311035e+02, /* 0xc3808814 */ 00190 -2.4852163086e+03, /* 0xc51b5376 */ 00191 -5.2530439453e+03, /* 0xc5a4285a */ 00192 }; 00193 static const float pS8[5] = { 00194 1.1653436279e+02, /* 0x42e91198 */ 00195 3.8337448730e+03, /* 0x456f9beb */ 00196 4.0597855469e+04, /* 0x471e95db */ 00197 1.1675296875e+05, /* 0x47e4087c */ 00198 4.7627726562e+04, /* 0x473a0bba */ 00199 }; 00200 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00201 -1.1412546255e-11, /* 0xad48c58a */ 00202 -7.0312492549e-02, /* 0xbd8fffff */ 00203 -4.1596107483e+00, /* 0xc0851b88 */ 00204 -6.7674766541e+01, /* 0xc287597b */ 00205 -3.3123129272e+02, /* 0xc3a59d9b */ 00206 -3.4643338013e+02, /* 0xc3ad3779 */ 00207 }; 00208 static const float pS5[5] = { 00209 6.0753936768e+01, /* 0x42730408 */ 00210 1.0512523193e+03, /* 0x44836813 */ 00211 5.9789707031e+03, /* 0x45bad7c4 */ 00212 9.6254453125e+03, /* 0x461665c8 */ 00213 2.4060581055e+03, /* 0x451660ee */ 00214 }; 00215 00216 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 00217 -2.5470459075e-09, /* 0xb12f081b */ 00218 -7.0311963558e-02, /* 0xbd8fffb8 */ 00219 -2.4090321064e+00, /* 0xc01a2d95 */ 00220 -2.1965976715e+01, /* 0xc1afba52 */ 00221 -5.8079170227e+01, /* 0xc2685112 */ 00222 -3.1447946548e+01, /* 0xc1fb9565 */ 00223 }; 00224 static const float pS3[5] = { 00225 3.5856033325e+01, /* 0x420f6c94 */ 00226 3.6151397705e+02, /* 0x43b4c1ca */ 00227 1.1936077881e+03, /* 0x44953373 */ 00228 1.1279968262e+03, /* 0x448cffe6 */ 00229 1.7358093262e+02, /* 0x432d94b8 */ 00230 }; 00231 00232 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00233 -8.8753431271e-08, /* 0xb3be98b7 */ 00234 -7.0303097367e-02, /* 0xbd8ffb12 */ 00235 -1.4507384300e+00, /* 0xbfb9b1cc */ 00236 -7.6356959343e+00, /* 0xc0f4579f */ 00237 -1.1193166733e+01, /* 0xc1331736 */ 00238 -3.2336456776e+00, /* 0xc04ef40d */ 00239 }; 00240 static const float pS2[5] = { 00241 2.2220300674e+01, /* 0x41b1c32d */ 00242 1.3620678711e+02, /* 0x430834f0 */ 00243 2.7047027588e+02, /* 0x43873c32 */ 00244 1.5387539673e+02, /* 0x4319e01a */ 00245 1.4657617569e+01, /* 0x416a859a */ 00246 }; 00247 00248 static float 00249 pzerof(float x) 00250 { 00251 const float *p,*q; 00252 float z,r,s; 00253 int32_t ix; 00254 00255 p = q = 0; 00256 GET_FLOAT_WORD(ix,x); 00257 ix &= 0x7fffffff; 00258 if(ix>=0x41000000) {p = pR8; q= pS8;} 00259 else if(ix>=0x40f71c58){p = pR5; q= pS5;} 00260 else if(ix>=0x4036db68){p = pR3; q= pS3;} 00261 else if(ix>=0x40000000){p = pR2; q= pS2;} 00262 z = one/(x*x); 00263 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00264 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 00265 return one+ r/s; 00266 } 00267 00268 00269 /* For x >= 8, the asymptotic expansions of qzero is 00270 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 00271 * We approximate pzero by 00272 * qzero(x) = s*(-1.25 + (R/S)) 00273 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 00274 * S = 1 + qS0*s^2 + ... + qS5*s^12 00275 * and 00276 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 00277 */ 00278 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00279 0.0000000000e+00, /* 0x00000000 */ 00280 7.3242187500e-02, /* 0x3d960000 */ 00281 1.1768206596e+01, /* 0x413c4a93 */ 00282 5.5767340088e+02, /* 0x440b6b19 */ 00283 8.8591972656e+03, /* 0x460a6cca */ 00284 3.7014625000e+04, /* 0x471096a0 */ 00285 }; 00286 static const float qS8[6] = { 00287 1.6377603149e+02, /* 0x4323c6aa */ 00288 8.0983447266e+03, /* 0x45fd12c2 */ 00289 1.4253829688e+05, /* 0x480b3293 */ 00290 8.0330925000e+05, /* 0x49441ed4 */ 00291 8.4050156250e+05, /* 0x494d3359 */ 00292 -3.4389928125e+05, /* 0xc8a7eb69 */ 00293 }; 00294 00295 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00296 1.8408595828e-11, /* 0x2da1ec79 */ 00297 7.3242180049e-02, /* 0x3d95ffff */ 00298 5.8356351852e+00, /* 0x40babd86 */ 00299 1.3511157227e+02, /* 0x43071c90 */ 00300 1.0272437744e+03, /* 0x448067cd */ 00301 1.9899779053e+03, /* 0x44f8bf4b */ 00302 }; 00303 static const float qS5[6] = { 00304 8.2776611328e+01, /* 0x42a58da0 */ 00305 2.0778142090e+03, /* 0x4501dd07 */ 00306 1.8847289062e+04, /* 0x46933e94 */ 00307 5.6751113281e+04, /* 0x475daf1d */ 00308 3.5976753906e+04, /* 0x470c88c1 */ 00309 -5.3543427734e+03, /* 0xc5a752be */ 00310 }; 00311 00312 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 00313 4.3774099900e-09, /* 0x3196681b */ 00314 7.3241114616e-02, /* 0x3d95ff70 */ 00315 3.3442313671e+00, /* 0x405607e3 */ 00316 4.2621845245e+01, /* 0x422a7cc5 */ 00317 1.7080809021e+02, /* 0x432acedf */ 00318 1.6673394775e+02, /* 0x4326bbe4 */ 00319 }; 00320 static const float qS3[6] = { 00321 4.8758872986e+01, /* 0x42430916 */ 00322 7.0968920898e+02, /* 0x44316c1c */ 00323 3.7041481934e+03, /* 0x4567825f */ 00324 6.4604252930e+03, /* 0x45c9e367 */ 00325 2.5163337402e+03, /* 0x451d4557 */ 00326 -1.4924745178e+02, /* 0xc3153f59 */ 00327 }; 00328 00329 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00330 1.5044444979e-07, /* 0x342189db */ 00331 7.3223426938e-02, /* 0x3d95f62a */ 00332 1.9981917143e+00, /* 0x3fffc4bf */ 00333 1.4495602608e+01, /* 0x4167edfd */ 00334 3.1666231155e+01, /* 0x41fd5471 */ 00335 1.6252708435e+01, /* 0x4182058c */ 00336 }; 00337 static const float qS2[6] = { 00338 3.0365585327e+01, /* 0x41f2ecb8 */ 00339 2.6934811401e+02, /* 0x4386ac8f */ 00340 8.4478375244e+02, /* 0x44533229 */ 00341 8.8293585205e+02, /* 0x445cbbe5 */ 00342 2.1266638184e+02, /* 0x4354aa98 */ 00343 -5.3109550476e+00, /* 0xc0a9f358 */ 00344 }; 00345 00346 static float 00347 qzerof(float x) 00348 { 00349 const float *p,*q; 00350 float s,r,z; 00351 int32_t ix; 00352 00353 p = q = 0; 00354 GET_FLOAT_WORD(ix,x); 00355 ix &= 0x7fffffff; 00356 if(ix>=0x41000000) {p = qR8; q= qS8;} 00357 else if(ix>=0x40f71c58){p = qR5; q= qS5;} 00358 else if(ix>=0x4036db68){p = qR3; q= qS3;} 00359 else if(ix>=0x40000000){p = qR2; q= qS2;} 00360 z = one/(x*x); 00361 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00362 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 00363 return (-(float).125 + r/s)/x; 00364 } 00365 #endif 00366