POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_j0f.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* e_j0f.c -- float version of e_j0.c.
00018  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
00019  */
00020 
00021 /*
00022  * ====================================================
00023  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00024  *
00025  * Developed at SunPro, a Sun Microsystems, Inc. business.
00026  * Permission to use, copy, modify, and distribute this
00027  * software is freely granted, provided that this notice
00028  * is preserved.
00029  * ====================================================
00030  */
00031 
00032 #ifdef POK_NEEDS_LIBMATH
00033 
00034 #include <libm.h>
00035 #include "math_private.h"
00036 
00037 static float pzerof(float), qzerof(float);
00038 
00039 static const float
00040 huge    = 1e30,
00041 one     = 1.0,
00042 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
00043 tpi      =  6.3661974669e-01, /* 0x3f22f983 */
00044                 /* R0/S0 on [0, 2.00] */
00045 R02  =  1.5625000000e-02, /* 0x3c800000 */
00046 R03  = -1.8997929874e-04, /* 0xb947352e */
00047 R04  =  1.8295404516e-06, /* 0x35f58e88 */
00048 R05  = -4.6183270541e-09, /* 0xb19eaf3c */
00049 S01  =  1.5619102865e-02, /* 0x3c7fe744 */
00050 S02  =  1.1692678527e-04, /* 0x38f53697 */
00051 S03  =  5.1354652442e-07, /* 0x3509daa6 */
00052 S04  =  1.1661400734e-09; /* 0x30a045e8 */
00053 
00054 static const float zero = 0.0;
00055 
00056 float
00057 __ieee754_j0f(float x)
00058 {
00059         float z, s,c,ss,cc,r,u,v;
00060         int32_t hx,ix;
00061 
00062         GET_FLOAT_WORD(hx,x);
00063         ix = hx&0x7fffffff;
00064         if(ix>=0x7f800000) return one/(x*x);
00065         x = fabsf(x);
00066         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00067                 s = sinf(x);
00068                 c = cosf(x);
00069                 ss = s-c;
00070                 cc = s+c;
00071                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
00072                     z = -cosf(x+x);
00073                     if ((s*c)<zero) cc = z/ss;
00074                     else            ss = z/cc;
00075                 }
00076         /*
00077          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
00078          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
00079          */
00080 #ifdef DEAD_CODE
00081                 if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x);
00082                 else
00083 #endif
00084                 {
00085                     u = pzerof(x); v = qzerof(x);
00086                     z = invsqrtpi*(u*cc-v*ss)/sqrtf(x);
00087                 }
00088                 return z;
00089         }
00090         if(ix<0x39000000) {     /* |x| < 2**-13 */
00091             if(huge+x>one) {    /* raise inexact if x != 0 */
00092                 if(ix<0x32000000) return one;   /* |x|<2**-27 */
00093                 else          return one - (float)0.25*x*x;
00094             }
00095         }
00096         z = x*x;
00097         r =  z*(R02+z*(R03+z*(R04+z*R05)));
00098         s =  one+z*(S01+z*(S02+z*(S03+z*S04)));
00099         if(ix < 0x3F800000) {   /* |x| < 1.00 */
00100             return one + z*((float)-0.25+(r/s));
00101         } else {
00102             u = (float)0.5*x;
00103             return((one+u)*(one-u)+z*(r/s));
00104         }
00105 }
00106 
00107 static const float
00108 u00  = -7.3804296553e-02, /* 0xbd9726b5 */
00109 u01  =  1.7666645348e-01, /* 0x3e34e80d */
00110 u02  = -1.3818567619e-02, /* 0xbc626746 */
00111 u03  =  3.4745343146e-04, /* 0x39b62a69 */
00112 u04  = -3.8140706238e-06, /* 0xb67ff53c */
00113 u05  =  1.9559013964e-08, /* 0x32a802ba */
00114 u06  = -3.9820518410e-11, /* 0xae2f21eb */
00115 v01  =  1.2730483897e-02, /* 0x3c509385 */
00116 v02  =  7.6006865129e-05, /* 0x389f65e0 */
00117 v03  =  2.5915085189e-07, /* 0x348b216c */
00118 v04  =  4.4111031494e-10; /* 0x2ff280c2 */
00119 
00120 float
00121 __ieee754_y0f(float x)
00122 {
00123         float z, s,c,ss,cc,u,v;
00124         int32_t hx,ix;
00125 
00126         GET_FLOAT_WORD(hx,x);
00127         ix = 0x7fffffff&hx;
00128     /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0  */
00129         if(ix>=0x7f800000) return  one/(x+x*x);
00130         if(ix==0) return -one/zero;
00131         if(hx<0) return zero/zero;
00132         if(ix >= 0x40000000) {  /* |x| >= 2.0 */
00133         /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
00134          * where x0 = x-pi/4
00135          *      Better formula:
00136          *              cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
00137          *                      =  1/sqrt(2) * (sin(x) + cos(x))
00138          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
00139          *                      =  1/sqrt(2) * (sin(x) - cos(x))
00140          * To avoid cancellation, use
00141          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
00142          * to compute the worse one.
00143          */
00144                 s = sinf(x);
00145                 c = cosf(x);
00146                 ss = s-c;
00147                 cc = s+c;
00148         /*
00149          * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
00150          * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
00151          */
00152                 if(ix<0x7f000000) {  /* make sure x+x not overflow */
00153                     z = -cosf(x+x);
00154                     if ((s*c)<zero) cc = z/ss;
00155                     else            ss = z/cc;
00156                 }
00157 #ifdef DEAD_CODE
00158                 if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x);
00159                 else
00160 #endif
00161                 {
00162                     u = pzerof(x); v = qzerof(x);
00163                     z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
00164                 }
00165                 return z;
00166         }
00167         if(ix<=0x32000000) {    /* x < 2**-27 */
00168             return(u00 + tpi*__ieee754_logf(x));
00169         }
00170         z = x*x;
00171         u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
00172         v = one+z*(v01+z*(v02+z*(v03+z*v04)));
00173         return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
00174 }
00175 
00176 /* The asymptotic expansions of pzero is
00177  *      1 - 9/128 s^2 + 11025/98304 s^4 - ...,  where s = 1/x.
00178  * For x >= 2, We approximate pzero by
00179  *      pzero(x) = 1 + (R/S)
00180  * where  R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
00181  *        S = 1 + pS0*s^2 + ... + pS4*s^10
00182  * and
00183  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
00184  */
00185 static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00186   0.0000000000e+00, /* 0x00000000 */
00187  -7.0312500000e-02, /* 0xbd900000 */
00188  -8.0816707611e+00, /* 0xc1014e86 */
00189  -2.5706311035e+02, /* 0xc3808814 */
00190  -2.4852163086e+03, /* 0xc51b5376 */
00191  -5.2530439453e+03, /* 0xc5a4285a */
00192 };
00193 static const float pS8[5] = {
00194   1.1653436279e+02, /* 0x42e91198 */
00195   3.8337448730e+03, /* 0x456f9beb */
00196   4.0597855469e+04, /* 0x471e95db */
00197   1.1675296875e+05, /* 0x47e4087c */
00198   4.7627726562e+04, /* 0x473a0bba */
00199 };
00200 static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00201  -1.1412546255e-11, /* 0xad48c58a */
00202  -7.0312492549e-02, /* 0xbd8fffff */
00203  -4.1596107483e+00, /* 0xc0851b88 */
00204  -6.7674766541e+01, /* 0xc287597b */
00205  -3.3123129272e+02, /* 0xc3a59d9b */
00206  -3.4643338013e+02, /* 0xc3ad3779 */
00207 };
00208 static const float pS5[5] = {
00209   6.0753936768e+01, /* 0x42730408 */
00210   1.0512523193e+03, /* 0x44836813 */
00211   5.9789707031e+03, /* 0x45bad7c4 */
00212   9.6254453125e+03, /* 0x461665c8 */
00213   2.4060581055e+03, /* 0x451660ee */
00214 };
00215 
00216 static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
00217  -2.5470459075e-09, /* 0xb12f081b */
00218  -7.0311963558e-02, /* 0xbd8fffb8 */
00219  -2.4090321064e+00, /* 0xc01a2d95 */
00220  -2.1965976715e+01, /* 0xc1afba52 */
00221  -5.8079170227e+01, /* 0xc2685112 */
00222  -3.1447946548e+01, /* 0xc1fb9565 */
00223 };
00224 static const float pS3[5] = {
00225   3.5856033325e+01, /* 0x420f6c94 */
00226   3.6151397705e+02, /* 0x43b4c1ca */
00227   1.1936077881e+03, /* 0x44953373 */
00228   1.1279968262e+03, /* 0x448cffe6 */
00229   1.7358093262e+02, /* 0x432d94b8 */
00230 };
00231 
00232 static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00233  -8.8753431271e-08, /* 0xb3be98b7 */
00234  -7.0303097367e-02, /* 0xbd8ffb12 */
00235  -1.4507384300e+00, /* 0xbfb9b1cc */
00236  -7.6356959343e+00, /* 0xc0f4579f */
00237  -1.1193166733e+01, /* 0xc1331736 */
00238  -3.2336456776e+00, /* 0xc04ef40d */
00239 };
00240 static const float pS2[5] = {
00241   2.2220300674e+01, /* 0x41b1c32d */
00242   1.3620678711e+02, /* 0x430834f0 */
00243   2.7047027588e+02, /* 0x43873c32 */
00244   1.5387539673e+02, /* 0x4319e01a */
00245   1.4657617569e+01, /* 0x416a859a */
00246 };
00247 
00248 static float
00249 pzerof(float x)
00250 {
00251         const float *p,*q;
00252         float z,r,s;
00253         int32_t ix;
00254 
00255         p = q = 0;
00256         GET_FLOAT_WORD(ix,x);
00257         ix &= 0x7fffffff;
00258         if(ix>=0x41000000)     {p = pR8; q= pS8;}
00259         else if(ix>=0x40f71c58){p = pR5; q= pS5;}
00260         else if(ix>=0x4036db68){p = pR3; q= pS3;}
00261         else if(ix>=0x40000000){p = pR2; q= pS2;}
00262         z = one/(x*x);
00263         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00264         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
00265         return one+ r/s;
00266 }
00267 
00268 
00269 /* For x >= 8, the asymptotic expansions of qzero is
00270  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
00271  * We approximate pzero by
00272  *      qzero(x) = s*(-1.25 + (R/S))
00273  * where  R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
00274  *        S = 1 + qS0*s^2 + ... + qS5*s^12
00275  * and
00276  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
00277  */
00278 static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
00279   0.0000000000e+00, /* 0x00000000 */
00280   7.3242187500e-02, /* 0x3d960000 */
00281   1.1768206596e+01, /* 0x413c4a93 */
00282   5.5767340088e+02, /* 0x440b6b19 */
00283   8.8591972656e+03, /* 0x460a6cca */
00284   3.7014625000e+04, /* 0x471096a0 */
00285 };
00286 static const float qS8[6] = {
00287   1.6377603149e+02, /* 0x4323c6aa */
00288   8.0983447266e+03, /* 0x45fd12c2 */
00289   1.4253829688e+05, /* 0x480b3293 */
00290   8.0330925000e+05, /* 0x49441ed4 */
00291   8.4050156250e+05, /* 0x494d3359 */
00292  -3.4389928125e+05, /* 0xc8a7eb69 */
00293 };
00294 
00295 static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
00296   1.8408595828e-11, /* 0x2da1ec79 */
00297   7.3242180049e-02, /* 0x3d95ffff */
00298   5.8356351852e+00, /* 0x40babd86 */
00299   1.3511157227e+02, /* 0x43071c90 */
00300   1.0272437744e+03, /* 0x448067cd */
00301   1.9899779053e+03, /* 0x44f8bf4b */
00302 };
00303 static const float qS5[6] = {
00304   8.2776611328e+01, /* 0x42a58da0 */
00305   2.0778142090e+03, /* 0x4501dd07 */
00306   1.8847289062e+04, /* 0x46933e94 */
00307   5.6751113281e+04, /* 0x475daf1d */
00308   3.5976753906e+04, /* 0x470c88c1 */
00309  -5.3543427734e+03, /* 0xc5a752be */
00310 };
00311 
00312 static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
00313   4.3774099900e-09, /* 0x3196681b */
00314   7.3241114616e-02, /* 0x3d95ff70 */
00315   3.3442313671e+00, /* 0x405607e3 */
00316   4.2621845245e+01, /* 0x422a7cc5 */
00317   1.7080809021e+02, /* 0x432acedf */
00318   1.6673394775e+02, /* 0x4326bbe4 */
00319 };
00320 static const float qS3[6] = {
00321   4.8758872986e+01, /* 0x42430916 */
00322   7.0968920898e+02, /* 0x44316c1c */
00323   3.7041481934e+03, /* 0x4567825f */
00324   6.4604252930e+03, /* 0x45c9e367 */
00325   2.5163337402e+03, /* 0x451d4557 */
00326  -1.4924745178e+02, /* 0xc3153f59 */
00327 };
00328 
00329 static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
00330   1.5044444979e-07, /* 0x342189db */
00331   7.3223426938e-02, /* 0x3d95f62a */
00332   1.9981917143e+00, /* 0x3fffc4bf */
00333   1.4495602608e+01, /* 0x4167edfd */
00334   3.1666231155e+01, /* 0x41fd5471 */
00335   1.6252708435e+01, /* 0x4182058c */
00336 };
00337 static const float qS2[6] = {
00338   3.0365585327e+01, /* 0x41f2ecb8 */
00339   2.6934811401e+02, /* 0x4386ac8f */
00340   8.4478375244e+02, /* 0x44533229 */
00341   8.8293585205e+02, /* 0x445cbbe5 */
00342   2.1266638184e+02, /* 0x4354aa98 */
00343  -5.3109550476e+00, /* 0xc0a9f358 */
00344 };
00345 
00346 static float
00347 qzerof(float x)
00348 {
00349         const float *p,*q;
00350         float s,r,z;
00351         int32_t ix;
00352 
00353         p = q = 0;
00354         GET_FLOAT_WORD(ix,x);
00355         ix &= 0x7fffffff;
00356         if(ix>=0x41000000)     {p = qR8; q= qS8;}
00357         else if(ix>=0x40f71c58){p = qR5; q= qS5;}
00358         else if(ix>=0x4036db68){p = qR3; q= qS3;}
00359         else if(ix>=0x40000000){p = qR2; q= qS2;}
00360         z = one/(x*x);
00361         r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
00362         s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
00363         return (-(float).125 + r/s)/x;
00364 }
00365 #endif
00366