POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_j0.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_j0(x), __ieee754_y0(x) 00030 * Bessel function of the first and second kinds of order zero. 00031 * Method -- j0(x): 00032 * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... 00033 * 2. Reduce x to |x| since j0(x)=j0(-x), and 00034 * for x in (0,2) 00035 * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; 00036 * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) 00037 * for x in (2,inf) 00038 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) 00039 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 00040 * as follow: 00041 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 00042 * = 1/sqrt(2) * (cos(x) + sin(x)) 00043 * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) 00044 * = 1/sqrt(2) * (sin(x) - cos(x)) 00045 * (To avoid cancellation, use 00046 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 00047 * to compute the worse one.) 00048 * 00049 * 3 Special cases 00050 * j0(nan)= nan 00051 * j0(0) = 1 00052 * j0(inf) = 0 00053 * 00054 * Method -- y0(x): 00055 * 1. For x<2. 00056 * Since 00057 * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) 00058 * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. 00059 * We use the following function to approximate y0, 00060 * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 00061 * where 00062 * U(z) = u00 + u01*z + ... + u06*z^6 00063 * V(z) = 1 + v01*z + ... + v04*z^4 00064 * with absolute approximation error bounded by 2**-72. 00065 * Note: For tiny x, U/V = u0 and j0(x)~1, hence 00066 * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) 00067 * 2. For x>=2. 00068 * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) 00069 * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) 00070 * by the method mentioned above. 00071 * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. 00072 */ 00073 00074 #ifdef POK_NEEDS_LIBMATH 00075 00076 #include <libm.h> 00077 #include "math_private.h" 00078 00079 static double pzero(double), qzero(double); 00080 00081 static const double 00082 huge = 1e300, 00083 one = 1.0, 00084 invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ 00085 tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ 00086 /* R0/S0 on [0, 2.00] */ 00087 R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ 00088 R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ 00089 R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ 00090 R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ 00091 S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ 00092 S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ 00093 S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ 00094 S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ 00095 00096 static const double zero = 0.0; 00097 00098 double 00099 __ieee754_j0(double x) 00100 { 00101 double z, s,c,ss,cc,r,u,v; 00102 int32_t hx,ix; 00103 00104 GET_HIGH_WORD(hx,x); 00105 ix = hx&0x7fffffff; 00106 if(ix>=0x7ff00000) return one/(x*x); 00107 x = fabs(x); 00108 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00109 s = sin(x); 00110 c = cos(x); 00111 ss = s-c; 00112 cc = s+c; 00113 if(ix<0x7fe00000) { /* make sure x+x not overflow */ 00114 z = -cos(x+x); 00115 if ((s*c)<zero) cc = z/ss; 00116 else ss = z/cc; 00117 } 00118 /* 00119 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 00120 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 00121 */ 00122 if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); 00123 else { 00124 u = pzero(x); v = qzero(x); 00125 z = invsqrtpi*(u*cc-v*ss)/sqrt(x); 00126 } 00127 return z; 00128 } 00129 if(ix<0x3f200000) { /* |x| < 2**-13 */ 00130 if(huge+x>one) { /* raise inexact if x != 0 */ 00131 if(ix<0x3e400000) return one; /* |x|<2**-27 */ 00132 else return one - 0.25*x*x; 00133 } 00134 } 00135 z = x*x; 00136 r = z*(R02+z*(R03+z*(R04+z*R05))); 00137 s = one+z*(S01+z*(S02+z*(S03+z*S04))); 00138 if(ix < 0x3FF00000) { /* |x| < 1.00 */ 00139 return one + z*(-0.25+(r/s)); 00140 } else { 00141 u = 0.5*x; 00142 return((one+u)*(one-u)+z*(r/s)); 00143 } 00144 } 00145 00146 static const double 00147 u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ 00148 u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ 00149 u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ 00150 u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ 00151 u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ 00152 u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ 00153 u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ 00154 v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ 00155 v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ 00156 v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ 00157 v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ 00158 00159 double 00160 __ieee754_y0(double x) 00161 { 00162 double z, s,c,ss,cc,u,v; 00163 int32_t hx,ix,lx; 00164 00165 EXTRACT_WORDS(hx,lx,x); 00166 ix = 0x7fffffff&hx; 00167 /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ 00168 if(ix>=0x7ff00000) return one/(x+x*x); 00169 if((ix|lx)==0) return -one/zero; 00170 if(hx<0) return zero/zero; 00171 if(ix >= 0x40000000) { /* |x| >= 2.0 */ 00172 /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) 00173 * where x0 = x-pi/4 00174 * Better formula: 00175 * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) 00176 * = 1/sqrt(2) * (sin(x) + cos(x)) 00177 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 00178 * = 1/sqrt(2) * (sin(x) - cos(x)) 00179 * To avoid cancellation, use 00180 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 00181 * to compute the worse one. 00182 */ 00183 s = sin(x); 00184 c = cos(x); 00185 ss = s-c; 00186 cc = s+c; 00187 /* 00188 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) 00189 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) 00190 */ 00191 if(ix<0x7fe00000) { /* make sure x+x not overflow */ 00192 z = -cos(x+x); 00193 if ((s*c)<zero) cc = z/ss; 00194 else ss = z/cc; 00195 } 00196 if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); 00197 else { 00198 u = pzero(x); v = qzero(x); 00199 z = invsqrtpi*(u*ss+v*cc)/sqrt(x); 00200 } 00201 return z; 00202 } 00203 if(ix<=0x3e400000) { /* x < 2**-27 */ 00204 return(u00 + tpi*__ieee754_log(x)); 00205 } 00206 z = x*x; 00207 u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); 00208 v = one+z*(v01+z*(v02+z*(v03+z*v04))); 00209 return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); 00210 } 00211 00212 /* The asymptotic expansions of pzero is 00213 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. 00214 * For x >= 2, We approximate pzero by 00215 * pzero(x) = 1 + (R/S) 00216 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 00217 * S = 1 + pS0*s^2 + ... + pS4*s^10 00218 * and 00219 * | pzero(x)-1-R/S | <= 2 ** ( -60.26) 00220 */ 00221 static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00222 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 00223 -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ 00224 -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ 00225 -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ 00226 -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ 00227 -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ 00228 }; 00229 static const double pS8[5] = { 00230 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ 00231 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ 00232 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ 00233 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ 00234 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ 00235 }; 00236 00237 static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00238 -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ 00239 -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ 00240 -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ 00241 -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ 00242 -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ 00243 -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ 00244 }; 00245 static const double pS5[5] = { 00246 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ 00247 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ 00248 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ 00249 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ 00250 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ 00251 }; 00252 00253 static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 00254 -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ 00255 -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ 00256 -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ 00257 -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ 00258 -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ 00259 -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ 00260 }; 00261 static const double pS3[5] = { 00262 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ 00263 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ 00264 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ 00265 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ 00266 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ 00267 }; 00268 00269 static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00270 -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ 00271 -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ 00272 -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ 00273 -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ 00274 -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ 00275 -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ 00276 }; 00277 static const double pS2[5] = { 00278 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ 00279 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ 00280 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ 00281 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ 00282 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ 00283 }; 00284 00285 static double 00286 pzero(double x) 00287 { 00288 const double *p,*q; 00289 double z,r,s; 00290 int32_t ix; 00291 00292 p = q = 0; 00293 GET_HIGH_WORD(ix,x); 00294 ix &= 0x7fffffff; 00295 if(ix>=0x40200000) {p = pR8; q= pS8;} 00296 else if(ix>=0x40122E8B){p = pR5; q= pS5;} 00297 else if(ix>=0x4006DB6D){p = pR3; q= pS3;} 00298 else if(ix>=0x40000000){p = pR2; q= pS2;} 00299 z = one/(x*x); 00300 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00301 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); 00302 return one+ r/s; 00303 } 00304 00305 00306 /* For x >= 8, the asymptotic expansions of qzero is 00307 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. 00308 * We approximate pzero by 00309 * qzero(x) = s*(-1.25 + (R/S)) 00310 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 00311 * S = 1 + qS0*s^2 + ... + qS5*s^12 00312 * and 00313 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) 00314 */ 00315 static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ 00316 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ 00317 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ 00318 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ 00319 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ 00320 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ 00321 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ 00322 }; 00323 static const double qS8[6] = { 00324 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ 00325 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ 00326 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ 00327 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ 00328 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ 00329 -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ 00330 }; 00331 00332 static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ 00333 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ 00334 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ 00335 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ 00336 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ 00337 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ 00338 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ 00339 }; 00340 static const double qS5[6] = { 00341 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ 00342 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ 00343 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ 00344 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ 00345 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ 00346 -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ 00347 }; 00348 00349 static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ 00350 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ 00351 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ 00352 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ 00353 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ 00354 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ 00355 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ 00356 }; 00357 static const double qS3[6] = { 00358 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ 00359 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ 00360 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ 00361 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ 00362 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ 00363 -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ 00364 }; 00365 00366 static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ 00367 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ 00368 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ 00369 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ 00370 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ 00371 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ 00372 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ 00373 }; 00374 static const double qS2[6] = { 00375 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ 00376 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ 00377 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ 00378 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ 00379 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ 00380 -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ 00381 }; 00382 00383 static double 00384 qzero(double x) 00385 { 00386 const double *p,*q; 00387 double s,r,z; 00388 int32_t ix; 00389 00390 p = q = 0; 00391 GET_HIGH_WORD(ix,x); 00392 ix &= 0x7fffffff; 00393 if(ix>=0x40200000) {p = qR8; q= qS8;} 00394 else if(ix>=0x40122E8B){p = qR5; q= qS5;} 00395 else if(ix>=0x4006DB6D){p = qR3; q= qS3;} 00396 else if(ix>=0x40000000){p = qR2; q= qS2;} 00397 z = one/(x*x); 00398 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); 00399 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); 00400 return (-.125 + r/s)/x; 00401 } 00402 #endif