POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_atanh.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* __ieee754_atanh(x) 00030 * Method : 00031 * 1.Reduced x to positive by atanh(-x) = -atanh(x) 00032 * 2.For x>=0.5 00033 * 1 2x x 00034 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) 00035 * 2 1 - x 1 - x 00036 * 00037 * For x<0.5 00038 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) 00039 * 00040 * Special cases: 00041 * atanh(x) is NaN if |x| > 1 with signal; 00042 * atanh(NaN) is that NaN with no signal; 00043 * atanh(+-1) is +-INF with signal. 00044 * 00045 */ 00046 #ifdef POK_NEEDS_LIBMATH 00047 00048 #include <libm.h> 00049 #include "math_private.h" 00050 00051 static const double one = 1.0, huge = 1e300; 00052 00053 static const double zero = 0.0; 00054 00055 double 00056 __ieee754_atanh(double x) 00057 { 00058 double t; 00059 int32_t hx,ix; 00060 uint32_t lx; 00061 EXTRACT_WORDS(hx,lx,x); 00062 ix = hx&0x7fffffff; 00063 if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ 00064 return (x-x)/(x-x); 00065 if(ix==0x3ff00000) 00066 return x/zero; 00067 if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */ 00068 SET_HIGH_WORD(x,ix); 00069 if(ix<0x3fe00000) { /* x < 0.5 */ 00070 t = x+x; 00071 t = 0.5*log1p(t+t*x/(one-x)); 00072 } else 00073 t = 0.5*log1p((x+x)/(one-x)); 00074 if(hx>=0) return t; else return -t; 00075 } 00076 #endif