POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/e_acos.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)e_acos.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 
00030 /* __ieee754_acos(x)
00031  * Method :
00032  *      acos(x)  = pi/2 - asin(x)
00033  *      acos(-x) = pi/2 + asin(x)
00034  * For |x|<=0.5
00035  *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c)
00036  * For x>0.5
00037  *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
00038  *              = 2asin(sqrt((1-x)/2))
00039  *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z)
00040  *              = 2f + (2c + 2s*z*R(z))
00041  *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
00042  *     for f so that f+c ~ sqrt(z).
00043  * For x<-0.5
00044  *      acos(x) = pi - 2asin(sqrt((1-|x|)/2))
00045  *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
00046  *
00047  * Special cases:
00048  *      if x is NaN, return x itself;
00049  *      if |x|>1, return NaN with invalid signal.
00050  *
00051  * Function needed: __ieee754_sqrt
00052  */
00053 
00054 #ifdef POK_NEEDS_LIBMATH
00055 
00056 #include "math_private.h"
00057 
00058 static const double
00059 one=  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
00060 pi =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
00061 pio2_hi =  1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
00062 pio2_lo =  6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
00063 pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
00064 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
00065 pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
00066 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
00067 pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
00068 pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
00069 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
00070 qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
00071 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
00072 qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
00073 
00074 double
00075 __ieee754_acos(double x)
00076 {
00077         double z,p,q,r,w,s,c,df;
00078         int32_t hx,ix;
00079         GET_HIGH_WORD(hx,x);
00080         ix = hx&0x7fffffff;
00081         if(ix>=0x3ff00000) {    /* |x| >= 1 */
00082             uint32_t lx;
00083             GET_LOW_WORD(lx,x);
00084             if(((ix-0x3ff00000)|lx)==0) {       /* |x|==1 */
00085                 if(hx>0) return 0.0;            /* acos(1) = 0  */
00086                 else return pi+2.0*pio2_lo;     /* acos(-1)= pi */
00087             }
00088             return (x-x)/(x-x);         /* acos(|x|>1) is NaN */
00089         }
00090         if(ix<0x3fe00000) {     /* |x| < 0.5 */
00091             if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
00092             z = x*x;
00093             p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
00094             q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
00095             r = p/q;
00096             return pio2_hi - (x - (pio2_lo-x*r));
00097         } else  if (hx<0) {             /* x < -0.5 */
00098             z = (one+x)*0.5;
00099             p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
00100             q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
00101             s = __ieee754_sqrt(z);
00102             r = p/q;
00103             w = r*s-pio2_lo;
00104             return pi - 2.0*(s+w);
00105         } else {                        /* x > 0.5 */
00106             z = (one-x)*0.5;
00107             s = __ieee754_sqrt(z);
00108             df = s;
00109             SET_LOW_WORD(df,0);
00110             c  = (z-df*df)/(s+df);
00111             p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
00112             q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
00113             r = p/q;
00114             w = r*s+c;
00115             return 2.0*(df+w);
00116         }
00117 }
00118 #endif
00119