POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)e_acos.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 00030 /* __ieee754_acos(x) 00031 * Method : 00032 * acos(x) = pi/2 - asin(x) 00033 * acos(-x) = pi/2 + asin(x) 00034 * For |x|<=0.5 00035 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) 00036 * For x>0.5 00037 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) 00038 * = 2asin(sqrt((1-x)/2)) 00039 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) 00040 * = 2f + (2c + 2s*z*R(z)) 00041 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term 00042 * for f so that f+c ~ sqrt(z). 00043 * For x<-0.5 00044 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) 00045 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) 00046 * 00047 * Special cases: 00048 * if x is NaN, return x itself; 00049 * if |x|>1, return NaN with invalid signal. 00050 * 00051 * Function needed: __ieee754_sqrt 00052 */ 00053 00054 #ifdef POK_NEEDS_LIBMATH 00055 00056 #include "math_private.h" 00057 00058 static const double 00059 one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 00060 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ 00061 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ 00062 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ 00063 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ 00064 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ 00065 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ 00066 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ 00067 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ 00068 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ 00069 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ 00070 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ 00071 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ 00072 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ 00073 00074 double 00075 __ieee754_acos(double x) 00076 { 00077 double z,p,q,r,w,s,c,df; 00078 int32_t hx,ix; 00079 GET_HIGH_WORD(hx,x); 00080 ix = hx&0x7fffffff; 00081 if(ix>=0x3ff00000) { /* |x| >= 1 */ 00082 uint32_t lx; 00083 GET_LOW_WORD(lx,x); 00084 if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ 00085 if(hx>0) return 0.0; /* acos(1) = 0 */ 00086 else return pi+2.0*pio2_lo; /* acos(-1)= pi */ 00087 } 00088 return (x-x)/(x-x); /* acos(|x|>1) is NaN */ 00089 } 00090 if(ix<0x3fe00000) { /* |x| < 0.5 */ 00091 if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ 00092 z = x*x; 00093 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 00094 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 00095 r = p/q; 00096 return pio2_hi - (x - (pio2_lo-x*r)); 00097 } else if (hx<0) { /* x < -0.5 */ 00098 z = (one+x)*0.5; 00099 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 00100 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 00101 s = __ieee754_sqrt(z); 00102 r = p/q; 00103 w = r*s-pio2_lo; 00104 return pi - 2.0*(s+w); 00105 } else { /* x > 0.5 */ 00106 z = (one-x)*0.5; 00107 s = __ieee754_sqrt(z); 00108 df = s; 00109 SET_LOW_WORD(df,0); 00110 c = (z-df*df)/(s+df); 00111 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 00112 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 00113 r = p/q; 00114 w = r*s+c; 00115 return 2.0*(df+w); 00116 } 00117 } 00118 #endif 00119