POK
|
00001 /* 00002 * POK header 00003 * 00004 * The following file is a part of the POK project. Any modification should 00005 * made according to the POK licence. You CANNOT use this file or a part of 00006 * this file is this part of a file for your own project 00007 * 00008 * For more information on the POK licence, please see our LICENCE FILE 00009 * 00010 * Please follow the coding guidelines described in doc/CODING_GUIDELINES 00011 * 00012 * Copyright (c) 2007-2009 POK team 00013 * 00014 * Created by julien on Fri Jan 30 14:41:34 2009 00015 */ 00016 00017 /* @(#)s_atan.c 5.1 93/09/24 */ 00018 /* 00019 * ==================================================== 00020 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00021 * 00022 * Developed at SunPro, a Sun Microsystems, Inc. business. 00023 * Permission to use, copy, modify, and distribute this 00024 * software is freely granted, provided that this notice 00025 * is preserved. 00026 * ==================================================== 00027 */ 00028 00029 /* atan(x) 00030 * Method 00031 * 1. Reduce x to positive by atan(x) = -atan(-x). 00032 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument 00033 * is further reduced to one of the following intervals and the 00034 * arctangent of t is evaluated by the corresponding formula: 00035 * 00036 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 00037 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) 00038 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) 00039 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) 00040 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) 00041 * 00042 * Constants: 00043 * The hexadecimal values are the intended ones for the following 00044 * constants. The decimal values may be used, provided that the 00045 * compiler will convert from decimal to binary accurately enough 00046 * to produce the hexadecimal values shown. 00047 */ 00048 00049 #ifdef POK_NEEDS_LIBMATH 00050 00051 #include <types.h> 00052 #include <libm.h> 00053 #include "math_private.h" 00054 00055 static const double atanhi[] = { 00056 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 00057 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 00058 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 00059 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ 00060 }; 00061 00062 static const double atanlo[] = { 00063 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 00064 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 00065 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 00066 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ 00067 }; 00068 00069 static const double aT[] = { 00070 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ 00071 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 00072 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ 00073 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 00074 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ 00075 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 00076 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ 00077 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 00078 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ 00079 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 00080 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ 00081 }; 00082 00083 static const double 00084 one = 1.0, 00085 huge = 1.0e300; 00086 00087 double 00088 atan(double x) 00089 { 00090 double w,s1,s2,z; 00091 int32_t ix,hx,id; 00092 00093 GET_HIGH_WORD(hx,x); 00094 ix = hx&0x7fffffff; 00095 if(ix>=0x44100000) { /* if |x| >= 2^66 */ 00096 uint32_t low; 00097 GET_LOW_WORD(low,x); 00098 if(ix>0x7ff00000|| 00099 (ix==0x7ff00000&&(low!=0))) 00100 return x+x; /* NaN */ 00101 if(hx>0) return atanhi[3]+atanlo[3]; 00102 else return -atanhi[3]-atanlo[3]; 00103 } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ 00104 if (ix < 0x3e200000) { /* |x| < 2^-29 */ 00105 if(huge+x>one) return x; /* raise inexact */ 00106 } 00107 id = -1; 00108 } else { 00109 x = fabs(x); 00110 if (ix < 0x3ff30000) { /* |x| < 1.1875 */ 00111 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ 00112 id = 0; x = (2.0*x-one)/(2.0+x); 00113 } else { /* 11/16<=|x|< 19/16 */ 00114 id = 1; x = (x-one)/(x+one); 00115 } 00116 } else { 00117 if (ix < 0x40038000) { /* |x| < 2.4375 */ 00118 id = 2; x = (x-1.5)/(one+1.5*x); 00119 } else { /* 2.4375 <= |x| < 2^66 */ 00120 id = 3; x = -1.0/x; 00121 } 00122 }} 00123 /* end of argument reduction */ 00124 z = x*x; 00125 w = z*z; 00126 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ 00127 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); 00128 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); 00129 if (id<0) return x - x*(s1+s2); 00130 else { 00131 z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); 00132 return (hx<0)? -z:z; 00133 } 00134 } 00135 #endif 00136