POK
/home/jaouen/pok_official/pok/trunk/libpok/libm/atan.c
00001 /*
00002  *                               POK header
00003  * 
00004  * The following file is a part of the POK project. Any modification should
00005  * made according to the POK licence. You CANNOT use this file or a part of
00006  * this file is this part of a file for your own project
00007  *
00008  * For more information on the POK licence, please see our LICENCE FILE
00009  *
00010  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
00011  *
00012  *                                      Copyright (c) 2007-2009 POK team 
00013  *
00014  * Created by julien on Fri Jan 30 14:41:34 2009 
00015  */
00016 
00017 /* @(#)s_atan.c 5.1 93/09/24 */
00018 /*
00019  * ====================================================
00020  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00021  *
00022  * Developed at SunPro, a Sun Microsystems, Inc. business.
00023  * Permission to use, copy, modify, and distribute this
00024  * software is freely granted, provided that this notice
00025  * is preserved.
00026  * ====================================================
00027  */
00028 
00029 /* atan(x)
00030  * Method
00031  *   1. Reduce x to positive by atan(x) = -atan(-x).
00032  *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
00033  *      is further reduced to one of the following intervals and the
00034  *      arctangent of t is evaluated by the corresponding formula:
00035  *
00036  *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
00037  *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
00038  *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
00039  *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
00040  *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
00041  *
00042  * Constants:
00043  * The hexadecimal values are the intended ones for the following
00044  * constants. The decimal values may be used, provided that the
00045  * compiler will convert from decimal to binary accurately enough
00046  * to produce the hexadecimal values shown.
00047  */
00048 
00049 #ifdef POK_NEEDS_LIBMATH
00050 
00051 #include <types.h>
00052 #include <libm.h>
00053 #include "math_private.h"
00054 
00055 static const double atanhi[] = {
00056   4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
00057   7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
00058   9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
00059   1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
00060 };
00061 
00062 static const double atanlo[] = {
00063   2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
00064   3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
00065   1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
00066   6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
00067 };
00068 
00069 static const double aT[] = {
00070   3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
00071  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
00072   1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
00073  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
00074   9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
00075  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
00076   6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
00077  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
00078   4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
00079  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
00080   1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
00081 };
00082 
00083         static const double
00084 one   = 1.0,
00085 huge   = 1.0e300;
00086 
00087 double
00088 atan(double x)
00089 {
00090         double w,s1,s2,z;
00091         int32_t ix,hx,id;
00092 
00093         GET_HIGH_WORD(hx,x);
00094         ix = hx&0x7fffffff;
00095         if(ix>=0x44100000) {    /* if |x| >= 2^66 */
00096             uint32_t low;
00097             GET_LOW_WORD(low,x);
00098             if(ix>0x7ff00000||
00099                 (ix==0x7ff00000&&(low!=0)))
00100                 return x+x;             /* NaN */
00101             if(hx>0) return  atanhi[3]+atanlo[3];
00102             else     return -atanhi[3]-atanlo[3];
00103         } if (ix < 0x3fdc0000) {        /* |x| < 0.4375 */
00104             if (ix < 0x3e200000) {      /* |x| < 2^-29 */
00105                 if(huge+x>one) return x;        /* raise inexact */
00106             }
00107             id = -1;
00108         } else {
00109         x = fabs(x);
00110         if (ix < 0x3ff30000) {          /* |x| < 1.1875 */
00111             if (ix < 0x3fe60000) {      /* 7/16 <=|x|<11/16 */
00112                 id = 0; x = (2.0*x-one)/(2.0+x);
00113             } else {                    /* 11/16<=|x|< 19/16 */
00114                 id = 1; x  = (x-one)/(x+one);
00115             }
00116         } else {
00117             if (ix < 0x40038000) {      /* |x| < 2.4375 */
00118                 id = 2; x  = (x-1.5)/(one+1.5*x);
00119             } else {                    /* 2.4375 <= |x| < 2^66 */
00120                 id = 3; x  = -1.0/x;
00121             }
00122         }}
00123     /* end of argument reduction */
00124         z = x*x;
00125         w = z*z;
00126     /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
00127         s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
00128         s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
00129         if (id<0) return x - x*(s1+s2);
00130         else {
00131             z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
00132             return (hx<0)? -z:z;
00133         }
00134 }
00135 #endif
00136