POK
e_lgammaf_r.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* e_lgammaf_r.c -- float version of e_lgamma_r.c.
18  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
19  */
20 
21 /*
22  * ====================================================
23  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
24  *
25  * Developed at SunPro, a Sun Microsystems, Inc. business.
26  * Permission to use, copy, modify, and distribute this
27  * software is freely granted, provided that this notice
28  * is preserved.
29  * ====================================================
30  */
31 
32 #ifdef POK_NEEDS_LIBMATH
33 
34 #include <libm.h>
35 #include "math_private.h"
36 
37 static const float
38 two23= 8.3886080000e+06, /* 0x4b000000 */
39 half= 5.0000000000e-01, /* 0x3f000000 */
40 one = 1.0000000000e+00, /* 0x3f800000 */
41 pi = 3.1415927410e+00, /* 0x40490fdb */
42 a0 = 7.7215664089e-02, /* 0x3d9e233f */
43 a1 = 3.2246702909e-01, /* 0x3ea51a66 */
44 a2 = 6.7352302372e-02, /* 0x3d89f001 */
45 a3 = 2.0580807701e-02, /* 0x3ca89915 */
46 a4 = 7.3855509982e-03, /* 0x3bf2027e */
47 a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
48 a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
49 a7 = 5.1006977446e-04, /* 0x3a05b634 */
50 a8 = 2.2086278477e-04, /* 0x39679767 */
51 a9 = 1.0801156895e-04, /* 0x38e28445 */
52 a10 = 2.5214456400e-05, /* 0x37d383a2 */
53 a11 = 4.4864096708e-05, /* 0x383c2c75 */
54 tc = 1.4616321325e+00, /* 0x3fbb16c3 */
55 tf = -1.2148628384e-01, /* 0xbdf8cdcd */
56 /* tt = -(tail of tf) */
57 tt = 6.6971006518e-09, /* 0x31e61c52 */
58 t0 = 4.8383611441e-01, /* 0x3ef7b95e */
59 t1 = -1.4758771658e-01, /* 0xbe17213c */
60 t2 = 6.4624942839e-02, /* 0x3d845a15 */
61 t3 = -3.2788541168e-02, /* 0xbd064d47 */
62 t4 = 1.7970675603e-02, /* 0x3c93373d */
63 t5 = -1.0314224288e-02, /* 0xbc28fcfe */
64 t6 = 6.1005386524e-03, /* 0x3bc7e707 */
65 t7 = -3.6845202558e-03, /* 0xbb7177fe */
66 t8 = 2.2596477065e-03, /* 0x3b141699 */
67 t9 = -1.4034647029e-03, /* 0xbab7f476 */
68 t10 = 8.8108185446e-04, /* 0x3a66f867 */
69 t11 = -5.3859531181e-04, /* 0xba0d3085 */
70 t12 = 3.1563205994e-04, /* 0x39a57b6b */
71 t13 = -3.1275415677e-04, /* 0xb9a3f927 */
72 t14 = 3.3552918467e-04, /* 0x39afe9f7 */
73 u0 = -7.7215664089e-02, /* 0xbd9e233f */
74 u1 = 6.3282704353e-01, /* 0x3f2200f4 */
75 u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
76 u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
77 u4 = 2.2896373272e-01, /* 0x3e6a7578 */
78 u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
79 v1 = 2.4559779167e+00, /* 0x401d2ebe */
80 v2 = 2.1284897327e+00, /* 0x4008392d */
81 v3 = 7.6928514242e-01, /* 0x3f44efdf */
82 v4 = 1.0422264785e-01, /* 0x3dd572af */
83 v5 = 3.2170924824e-03, /* 0x3b52d5db */
84 s0 = -7.7215664089e-02, /* 0xbd9e233f */
85 s1 = 2.1498242021e-01, /* 0x3e5c245a */
86 s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
87 s3 = 1.4635047317e-01, /* 0x3e15dce6 */
88 s4 = 2.6642270386e-02, /* 0x3cda40e4 */
89 s5 = 1.8402845599e-03, /* 0x3af135b4 */
90 s6 = 3.1947532989e-05, /* 0x3805ff67 */
91 r1 = 1.3920053244e+00, /* 0x3fb22d3b */
92 r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
93 r3 = 1.7193385959e-01, /* 0x3e300f6e */
94 r4 = 1.8645919859e-02, /* 0x3c98bf54 */
95 r5 = 7.7794247773e-04, /* 0x3a4beed6 */
96 r6 = 7.3266842264e-06, /* 0x36f5d7bd */
97 w0 = 4.1893854737e-01, /* 0x3ed67f1d */
98 w1 = 8.3333335817e-02, /* 0x3daaaaab */
99 w2 = -2.7777778450e-03, /* 0xbb360b61 */
100 w3 = 7.9365057172e-04, /* 0x3a500cfd */
101 w4 = -5.9518753551e-04, /* 0xba1c065c */
102 w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
103 w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
104 
105 static const float zero= 0.0000000000e+00;
106 
107 static float
108 sin_pif(float x)
109 {
110  float y,z;
111  int n,ix;
112 
113  GET_FLOAT_WORD(ix,x);
114  ix &= 0x7fffffff;
115 
116  if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
117  y = -x; /* x is assume negative */
118 
119  /*
120  * argument reduction, make sure inexact flag not raised if input
121  * is an integer
122  */
123  z = floorf(y);
124  if(z!=y) { /* inexact anyway */
125  y *= (float)0.5;
126  y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
127  n = (int) (y*(float)4.0);
128  } else {
129  if(ix>=0x4b800000) {
130  y = zero; n = 0; /* y must be even */
131  } else {
132  if(ix<0x4b000000) z = y+two23; /* exact */
133  GET_FLOAT_WORD(n,z);
134  n &= 1;
135  y = n;
136  n<<= 2;
137  }
138  }
139  switch (n) {
140  case 0: y = __kernel_sinf(pi*y,zero,0); break;
141  case 1:
142  case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
143  case 3:
144  case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
145  case 5:
146  case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
147  default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
148  }
149  return -y;
150 }
151 
152 
153 float
154 __ieee754_lgammaf_r(float x, int *signgamp)
155 {
156  float t,y,z,nadj,p,p1,p2,p3,q,r,w;
157  int i,hx,ix;
158 
159  nadj = 0;
160  GET_FLOAT_WORD(hx,x);
161 
162  /* purge off +-inf, NaN, +-0, and negative arguments */
163  *signgamp = 1;
164  ix = hx&0x7fffffff;
165  if(ix>=0x7f800000) return x*x;
166  if(ix==0) return one/zero;
167  if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
168  if(hx<0) {
169  *signgamp = -1;
170  return -__ieee754_logf(-x);
171  } else return -__ieee754_logf(x);
172  }
173  if(hx<0) {
174  if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
175  return one/zero;
176  t = sin_pif(x);
177  if(t==zero) return one/zero; /* -integer */
178  nadj = __ieee754_logf(pi/fabsf(t*x));
179  if(t<zero) *signgamp = -1;
180  x = -x;
181  }
182 
183  /* purge off 1 and 2 */
184  if (ix==0x3f800000||ix==0x40000000) r = 0;
185  /* for x < 2.0 */
186  else if(ix<0x40000000) {
187  if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
188  r = -__ieee754_logf(x);
189  if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
190  else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
191  else {y = x; i=2;}
192  } else {
193  r = zero;
194  if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
195  else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
196  else {y=x-one;i=2;}
197  }
198  switch(i) {
199  case 0:
200  z = y*y;
201  p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
202  p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
203  p = y*p1+p2;
204  r += (p-(float)0.5*y); break;
205  case 1:
206  z = y*y;
207  w = z*y;
208  p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
209  p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
210  p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
211  p = z*p1-(tt-w*(p2+y*p3));
212  r += (tf + p); break;
213  case 2:
214  p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
215  p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
216  r += (-(float)0.5*y + p1/p2);
217  }
218  }
219  else if(ix<0x41000000) { /* x < 8.0 */
220  i = (int)x;
221  t = zero;
222  y = x-(float)i;
223  p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
224  q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
225  r = half*y+p/q;
226  z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
227  switch(i) {
228  case 7: z *= (y+(float)6.0); /* FALLTHRU */
229  case 6: z *= (y+(float)5.0); /* FALLTHRU */
230  case 5: z *= (y+(float)4.0); /* FALLTHRU */
231  case 4: z *= (y+(float)3.0); /* FALLTHRU */
232  case 3: z *= (y+(float)2.0); /* FALLTHRU */
233  r += __ieee754_logf(z); break;
234  }
235  /* 8.0 <= x < 2**58 */
236  } else if (ix < 0x5c800000) {
237  t = __ieee754_logf(x);
238  z = one/x;
239  y = z*z;
240  w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
241  r = (x-half)*(t-one)+w;
242  } else
243  /* 2**58 <= x <= inf */
244  r = x*(__ieee754_logf(x)-one);
245  if(hx<0) r = nadj - r;
246  return r;
247 }
248 
249 #endif
250