POK
e_asin.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* @(#)e_asin.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 /* __ieee754_asin(x)
30  * Method :
31  * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
32  * we approximate asin(x) on [0,0.5] by
33  * asin(x) = x + x*x^2*R(x^2)
34  * where
35  * R(x^2) is a rational approximation of (asin(x)-x)/x^3
36  * and its remez error is bounded by
37  * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
38  *
39  * For x in [0.5,1]
40  * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
41  * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
42  * then for x>0.98
43  * asin(x) = pi/2 - 2*(s+s*z*R(z))
44  * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
45  * For x<=0.98, let pio4_hi = pio2_hi/2, then
46  * f = hi part of s;
47  * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
48  * and
49  * asin(x) = pi/2 - 2*(s+s*z*R(z))
50  * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
51  * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
52  *
53  * Special cases:
54  * if x is NaN, return x itself;
55  * if |x|>1, return NaN with invalid signal.
56  *
57  */
58 
59 #ifdef POK_NEEDS_LIBMATH
60 
61 
62 #include <libm.h>
63 #include "math_private.h"
64 
65 static const double
66 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
67 huge = 1.000e+300,
68 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
69 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
70 pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
71  /* coefficient for R(x^2) */
72 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
73 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
74 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
75 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
76 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
77 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
78 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
79 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
80 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
81 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
82 
83 double
84 __ieee754_asin(double x)
85 {
86  double t,w,p,q,c,r,s;
87  int32_t hx,ix;
88 
89  t = 0;
90  GET_HIGH_WORD(hx,x);
91  ix = hx&0x7fffffff;
92  if(ix>= 0x3ff00000) { /* |x|>= 1 */
93  uint32_t lx;
94  GET_LOW_WORD(lx,x);
95  if(((ix-0x3ff00000)|lx)==0)
96  /* asin(1)=+-pi/2 with inexact */
97  return x*pio2_hi+x*pio2_lo;
98  return (x-x)/(x-x); /* asin(|x|>1) is NaN */
99  } else if (ix<0x3fe00000) { /* |x|<0.5 */
100  if(ix<0x3e400000) { /* if |x| < 2**-27 */
101  if(huge+x>one) return x;/* return x with inexact if x!=0*/
102  } else
103  t = x*x;
104  p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
105  q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
106  w = p/q;
107  return x+x*w;
108  }
109  /* 1> |x|>= 0.5 */
110  w = one-fabs(x);
111  t = w*0.5;
112  p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
113  q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
114  s = __ieee754_sqrt(t);
115  if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
116  w = p/q;
117  t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
118  } else {
119  w = s;
120  SET_LOW_WORD(w,0);
121  c = (t-w*w)/(s+w);
122  r = p/q;
123  p = 2.0*s*r-(pio2_lo-2.0*c);
124  q = pio4_hi-2.0*w;
125  t = pio4_hi-(p-q);
126  }
127  if(hx>0) return t; else return -t;
128 }
129 
130 #endif
131