POK
e_acos.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* @(#)e_acos.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 
30 /* __ieee754_acos(x)
31  * Method :
32  * acos(x) = pi/2 - asin(x)
33  * acos(-x) = pi/2 + asin(x)
34  * For |x|<=0.5
35  * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
36  * For x>0.5
37  * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
38  * = 2asin(sqrt((1-x)/2))
39  * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
40  * = 2f + (2c + 2s*z*R(z))
41  * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
42  * for f so that f+c ~ sqrt(z).
43  * For x<-0.5
44  * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
45  * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
46  *
47  * Special cases:
48  * if x is NaN, return x itself;
49  * if |x|>1, return NaN with invalid signal.
50  *
51  * Function needed: __ieee754_sqrt
52  */
53 
54 #ifdef POK_NEEDS_LIBMATH
55 
56 #include "math_private.h"
57 
58 static const double
59 one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
60 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
61 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
62 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
63 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
64 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
65 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
66 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
67 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
68 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
69 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
70 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
71 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
72 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
73 
74 double
75 __ieee754_acos(double x)
76 {
77  double z,p,q,r,w,s,c,df;
78  int32_t hx,ix;
79  GET_HIGH_WORD(hx,x);
80  ix = hx&0x7fffffff;
81  if(ix>=0x3ff00000) { /* |x| >= 1 */
82  uint32_t lx;
83  GET_LOW_WORD(lx,x);
84  if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
85  if(hx>0) return 0.0; /* acos(1) = 0 */
86  else return pi+2.0*pio2_lo; /* acos(-1)= pi */
87  }
88  return (x-x)/(x-x); /* acos(|x|>1) is NaN */
89  }
90  if(ix<0x3fe00000) { /* |x| < 0.5 */
91  if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
92  z = x*x;
93  p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
94  q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
95  r = p/q;
96  return pio2_hi - (x - (pio2_lo-x*r));
97  } else if (hx<0) { /* x < -0.5 */
98  z = (one+x)*0.5;
99  p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
100  q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
101  s = __ieee754_sqrt(z);
102  r = p/q;
103  w = r*s-pio2_lo;
104  return pi - 2.0*(s+w);
105  } else { /* x > 0.5 */
106  z = (one-x)*0.5;
107  s = __ieee754_sqrt(z);
108  df = s;
109  SET_LOW_WORD(df,0);
110  c = (z-df*df)/(s+df);
111  p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
112  q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
113  r = p/q;
114  w = r*s+c;
115  return 2.0*(df+w);
116  }
117 }
118 #endif
119