POK
atan.c
1 /*
2  * POK header
3  *
4  * The following file is a part of the POK project. Any modification should
5  * made according to the POK licence. You CANNOT use this file or a part of
6  * this file is this part of a file for your own project
7  *
8  * For more information on the POK licence, please see our LICENCE FILE
9  *
10  * Please follow the coding guidelines described in doc/CODING_GUIDELINES
11  *
12  * Copyright (c) 2007-2009 POK team
13  *
14  * Created by julien on Fri Jan 30 14:41:34 2009
15  */
16 
17 /* @(#)s_atan.c 5.1 93/09/24 */
18 /*
19  * ====================================================
20  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
21  *
22  * Developed at SunPro, a Sun Microsystems, Inc. business.
23  * Permission to use, copy, modify, and distribute this
24  * software is freely granted, provided that this notice
25  * is preserved.
26  * ====================================================
27  */
28 
29 /* atan(x)
30  * Method
31  * 1. Reduce x to positive by atan(x) = -atan(-x).
32  * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
33  * is further reduced to one of the following intervals and the
34  * arctangent of t is evaluated by the corresponding formula:
35  *
36  * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
37  * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
38  * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
39  * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
40  * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
41  *
42  * Constants:
43  * The hexadecimal values are the intended ones for the following
44  * constants. The decimal values may be used, provided that the
45  * compiler will convert from decimal to binary accurately enough
46  * to produce the hexadecimal values shown.
47  */
48 
49 #ifdef POK_NEEDS_LIBMATH
50 
51 #include <types.h>
52 #include <libm.h>
53 #include "math_private.h"
54 
55 static const double atanhi[] = {
56  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
57  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
58  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
59  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
60 };
61 
62 static const double atanlo[] = {
63  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
64  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
65  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
66  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
67 };
68 
69 static const double aT[] = {
70  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
71  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
72  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
73  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
74  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
75  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
76  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
77  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
78  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
79  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
80  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
81 };
82 
83  static const double
84 one = 1.0,
85 huge = 1.0e300;
86 
87 double
88 atan(double x)
89 {
90  double w,s1,s2,z;
91  int32_t ix,hx,id;
92 
93  GET_HIGH_WORD(hx,x);
94  ix = hx&0x7fffffff;
95  if(ix>=0x44100000) { /* if |x| >= 2^66 */
96  uint32_t low;
97  GET_LOW_WORD(low,x);
98  if(ix>0x7ff00000||
99  (ix==0x7ff00000&&(low!=0)))
100  return x+x; /* NaN */
101  if(hx>0) return atanhi[3]+atanlo[3];
102  else return -atanhi[3]-atanlo[3];
103  } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
104  if (ix < 0x3e200000) { /* |x| < 2^-29 */
105  if(huge+x>one) return x; /* raise inexact */
106  }
107  id = -1;
108  } else {
109  x = fabs(x);
110  if (ix < 0x3ff30000) { /* |x| < 1.1875 */
111  if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
112  id = 0; x = (2.0*x-one)/(2.0+x);
113  } else { /* 11/16<=|x|< 19/16 */
114  id = 1; x = (x-one)/(x+one);
115  }
116  } else {
117  if (ix < 0x40038000) { /* |x| < 2.4375 */
118  id = 2; x = (x-1.5)/(one+1.5*x);
119  } else { /* 2.4375 <= |x| < 2^66 */
120  id = 3; x = -1.0/x;
121  }
122  }}
123  /* end of argument reduction */
124  z = x*x;
125  w = z*z;
126  /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
127  s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
128  s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
129  if (id<0) return x - x*(s1+s2);
130  else {
131  z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
132  return (hx<0)? -z:z;
133  }
134 }
135 #endif
136