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PROBLEMS | ALGEBRA

1. Arithmetic and Geometric Progressions

Preliminaries

Let a,, d and S, be, respectively, the nth term, the common
difference and the sum of the first n terms of an arithmetic pro-
gression. Then

a,=a,+d(n—1) (N
and
Sn _ (a, +2an)"= [201+d;’1'—1)] n . (2)

If u, ¢ and S, are the ath term, the common ratio and the
sum of the first n terms of a geometric progression, then

Uy =u,q""? (3)
and
_Upg—uy _ 4y (g"—1)
Sn— q_ll— lq__l . (4)

Finally, if § is the sum of an infinite geometric series with
g < 1then

. u
S————l__‘q. 5)
1. Prove that if positive numbers a, b and ¢ form an arithmetic
progression then the numbers
1 1 |
VitVe' Ve+tVa' VetV

also form an arithmetic progression.

2. Positive numbers a,, a,, ..., a, form an arithmetic progres-
sion. Prove that
| | I n—1
= =+ == =+...+ = = = = .
Val + Vaz Vaz'f‘ }/(13 l/-an—l + Van Va1+ Varx
3. Prove that if numbers a,, a,, ..., a, are different from zero

and form an arithmetic progression then

;+;+—‘*+---+ L _n—|

410, Qa3 agay Qp-18;  @a;
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4. Prove that any sequence of numbers a,, a,, ..., @, satisfying
the condition
1 1 ~ n—1

+ooF

a3a, azas agly an - lan a,ap

for every n >3 is an arithmetic progression.

5. Prove that for every arithmeti¢ progression a,, a,, a,, ...,
a, we have the equalities

a,—2a,+a;=0,
—3&2—}—3613—614 291 »
a,—4a, +6a,—4a,+a;,=0;
and, generally,
a.l_Crllaz +C121.a3— et (_l)”—l C?luvl-_an"i_ (_l)" Czan-i-l =0

(where n > 2).
Hint. Here and in the problem below it is advisable to apply
the identity C%=C%_, + C%i=1 which can be readily verified.

6. Given an arithmetic progression a,, ..., @,, dy+1 - - - Prove that
the equalities

—Clai+ ...+ (—1) Clahy =0
hold for n > 3. '
7. Prove that if the numbers log;x, log,x and log,x(x=1)
form an arithmetic progression then
n? == (kn)iog.m,

8. Find an arithmetic progression if it is khown that the ratio
of the sum of the first n terms to the sum of the An subsequent
terms is independent of n.

9. The numbers x,, x,, ..., x, form an arithmetic progression.
Find this progression if ,
n+x+... +x,=a X344 =0
Hint. Here and in the problem below use the equality

124204 3, = 30E DD,

© 10. The number sequence 1, 4, 10, 19, ... satisfies the condition
that the differences of two subsequent terms form an arithmetic
progression. Find the nth term and the sum of the first n terms
of this sequence. : : :
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11. Consider the table

.........

Prove that the sum of the terms in each row is equal to the
square of an odd number.

12. Given the terms a,.,,=A and a,_,=B of a geometric
progfession a,, a,, a,, ..., find a, and a, (A50). :

13. Let S, be the sum of the first n terms of a geometric pro-
gression (S,=0, ¢==0). Prove that

- ‘ Sn _ S2n—sn

S?n—sn——ssn"szn )

14. Knowing the sum S, of the first n terms of a geometric
progression and . the-sum S, of the reciprocals of these terms find
the product Il, of the first n terms of the progression.

15. Find the sum
14+ 2x+ 32 4x2 4 ... +(n 1) X"
16. Find the sum
, A1+ 10D L ]
if the last summand is an n-digit number.
17. Find the sum
' nx—+(n—1)x*4 ... +2x" "1 4 15"
18. Find the sum

1 3 5 - 2n—1
gtetwt .t
19. Prove that the numbers 49, 4489, 444889, ... obtained by

inserting 48 into the middle of the preceding number are squares
of integers.

20. Construct av geometric progression
1, q, ¢, ..., ¢, ...

with | ¢| < | whose every term differs from the sum of all subsequent
terms by a given constant factor 4. For what values of £ is the
problem solvable?
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21. An infinite number sequence x,, %, X5 ...y Xpo ... (X, 5%0)
satisfies the condition

(g + . )R X)) =
= (X Xy + XaXg+ oo Xy Xn)?

for any n>3. Prove that the numbers x,, x,, ..., X, ... form an
infinite geometric progression.
Hint. Use the method of complete induction.

22. Given an arithmetic progression with general term a, and
a geomefric progression with general term b,. Prove that a, <0,
for n>2 if a,=b,, a,=0b, a,7a, and a, >0 for all natural
numbers #.

23. Prove that if the terms of a geometric progression a,
a,, ..., @, ... and of an arithmetic progression b,, b,, ..., b,, ...
satisfy the inequalities

4 >0, 2>0, b—b>0

then there exists a number o such that the difference log, a,—b,
is independent of n.

2. Algebraic Equations and Systems of Equations

Preliminaries

In the problems below the original systems of equations should
be simplified and reduced to equivalent systems whose all solu-
tions either are known or can readily be found. In some cases
it is necessary to introduce redundant equations which are a priori
satisfied by the solutions of the original systems but may have,
in the general case, some extraneous solutions. Then the values
of the unknowns thus obtained must be tested by substituting
them into the original systems.

In some problems one should use Vieta’s theorem for the equation
of the third degree

X+ px+qx+r=0. (n

The theorem establishes the following relations between the coef-
ficients p, ¢ and r of the equation and its roots x,, x, and x;:

Xt Xyt Xg=—Py  XyXgFXpky + XaXy =G,  XXgXg=—1. (2)

Formulas (2) are derived by equating the coefficients in the
equal powers of x on both sides of the identity x® + px® 4-gx +r =
= (x—x,) (x—%;) (x—xg).
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24. Find all real solutions of the system of equations
L+y=1, |
XY+ 2t +y*=2.
25. Solve the system of equations
Cxy+yt=4,\
x+xy+y=2.|
26. Find the real solutions of the system of equations
x*+ y®=5a3, l
Ry+xyt=a® |
provided a is real and different from zero.

27. Solve the system of equations
28 I
y x '
Ll
28. Solve the system of equations
x4 xtyt +yt =91,
E—xy+yr=T. }
29. Solve the system of equations
B—y=19(x—yp), |
Oy =7(x+y). |
30. Find all real solutions of the system of equations
2(x +y) = 5xy, }
8 (x* 4-y®) =65.
81. Find the real solutions of the system of equations
(£ +9) (—y) =9, |
(x—y) (2 +47)=5. |
32. Find all real solutions of the system of equations

x+y=1,

Xyt =7. }
38. Solve the system of equations

x+y=1, 1

»4yp=31 |
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34. Find the real solutions of the system of équ'atio'ns
x‘+y‘—x2y2: 13,
x2—y? L 2xy=1, }
satisfying the condition xy>0.
- 35. Solve the system of "equations
x4+ D@+ 1) =10,
o (x+y) ry—1)=3. }
Hint. Put xy=v and x+y=u.
36. Solve the system of equations
() =6,
(x2—y?) —i{: l.
37. Solve the system of equations
X2+ y* =axy,
x4+ y‘v‘——- bx?yf. }
38. Solve the equation o
— 2 _ 2
(S5 + (53) (342 5o
by factorizing its left member. ’ ' '
39. Solve the equation
24 8oi0(5-2).

40. Solve the slystem of equations

x+y , xy _ RS
Xy +x—{—y._a+a"

=t ++-
41. Find all the solutions of the equation
(x*—4.5)* + (x—5.5)* = 1.
42. Solve the system of equations
|x—1]+]y—5]=1, }
y=>5+[x—~1]*

* The absolute value of a number x (denoted as [x|) is the non-negative
number determined by the conditions

%] { —x for x < 0,
X|l=
x for x=0.

SO DU
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43. For what real x and y does the equality

: 55+ 8y + 8xy 4 2y—2x+2=0
hold?

44. Find all real values of x and y satisfying the equation
x*+4xcos(xy)+4=0.
45. Find the real solutions of the system

r+y+z=2 |
2xy—22=4. |
46. For what value-of a does the system
x4yt =2,
X+yt+z=a }

possess a single real solution? Find this: solution.
47. Prove that for every (complex, in the general case) solu-
tion of the system ' ‘
ﬂ+w+W+i=m

4yt Xy

" = b?
the sum x® 4 y® is real for any real a and b, a==0.
48. Solve the system of equations
ax+by+cz=a+b+c, )
bx+cy+az=a-+b+ec, }
cx+ay+bz=a+b+c,

on condition that a, & and ¢ are real and a—}—b—{—c:,éo
49, Solve the system of equatlons

xt+ay+z=a, }
X+y+az=a’.

50. What relationship must connect the numbers a,, a,, a, for
the system

x+(l4a)yt+z=1,
x+y+(l+a3)z=l

to be solvable and have a unique solution?

(I+a)x+y+z=1, }
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51. Solve the system of equations
ax+by+ce4dt =p,
—bx +ay+dz—ct =gq,
—cx—dy+az -+ bt =r,
—dx +cy—bz+4at =s,
where the coefficients a, b, ¢ and d satisfy the condition
a4t d 540, '
52. Solve the system of equations
4+2%+3%+4n+.“+na=av]
AXy A Xy + 2254+ 3% .. (n—1) x, =a,. |
(n—Dx,+nx, +%,4+2%,+ ... +(n—2)x,=a,. i
)

......................

2%, 4 3xg +4x, + 5%+ ...+ 1x, =a,.
53. Prove that if
xl—}—xz—l—x3=0. ]
X+ x5+ x,=0, .

Xo9 + X190 + %, =0,

Xio T ¥4 %, =0, J
then

Xy Xy= ... =Xgpg= X190 =0.
54, Solve the system of equations
X d-xy L xz—x=2,
Y4xy+yz—y=4, }
224 xz2+yz—z2=06,
55. Solve the system of equations

x+y—z=7,
x4 yp—22=37,
Bry—22=1.
56. Solve the system of equations
2 _g
xty 7
wwz _ 6
y+z_ 5’ [
xyz __ 3
z+x 2° J
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57. Solve the system of equations

w-rrr4w=2,
V4w t+u=2,
w4 ut+ov=2.

58. Solve the system of equations

x?txz 422 =4,
Yiyz+z2=1.
59. Find the solutions of the system of equations

ﬂ+w+w:h}

XoXg. .. Xp |

X =dn
X1Xg...X
.._xz_".—_:az'
X3 X x,,_l__
|
if the numbers «,, ..., @, and x,, ..., x, are positive.

60. Solve the system of equations

(x+y+2)(x+ay42)=12,
(x+y+2) (x+y+az) =m?,
where a, k, | and m are positive numbers and k% (2 +.m? > 0.
61. Find the real solutions of the system of equations

u+y+auw+y+ﬂ=m.]

X4y 422 =14,

x+4y+2z=6,
H+W=W%Hﬁ}

62. Solve the system of equations

Y +xy+xz+yz=>0,

X4 xy+xz24yz =a,
zz+xy+xz+yz=c, }

assuming that abc == 0.
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63. Solve the system of equations

x(y+2)=a,
y(+x) =0, }
z(x+y)=c,

where abc 0. _ )
64. Find the real solution of the system of equations

. Y +2°=2a(yz+2x+ xy),
28+ x° =20 (yz + 2x + xy), }

§ x4y =2 (yz +2x + xy).
65. Solve the system of equations
y+2»+z-au+yM2+xL}

z2+2y+x=b(y+2)(x+y),
X+22+y=c(z+x)(y+2).
66. Solve the system of equations
X+y+z=9,
RS U
¥ty tz=1
' Xy -+ xz-+yz=27.
67. Solve the system of equations
x+y+z=a,
Xy +yz +xz=a’,
_ xyz =as.
68. Show that the system of equations
2x+y+2=0, }

yz+zx +xy—y* =0,
xy+22=0
has only the trivial solution x =y=2=:0,
69. Solve the system of equations
x+ytz=n,
x2+y2+zz=a2‘ }
¥yttt =ad
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70, Let:(x, y, 2) be a solution of the system of equations
Xty+tz=a, -
x2+y2+z2:b2,
1 1 1 1
Tty tz=<7
Find the sum

¥4yt 422
71. Solve the system of equations

x+ytz=2,
PG+ +@+atE+0+ @0 x4+ =1, }

BY+2)+y (24 %) + 2 (x +y) =—b.
72. Solve the system of equations

X +(y—2)=a,
¥+ (—2r=b, }
Z+(x—yP=c

73. Solve the system of equations

x2_]_y2 :22!
e—DE—y=2.

xy+yz -+ z2x =47, }
74. Find all real solutions of the system of equations

V=T I(
2y?
e )

75. Find the real solutions of the system of equations

2
2x2:xl+x_l ’
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76. Show that if a, b, ¢ and d are pairwise unequal real num
bers and x, y, z is a solution of the system of equations

l4+x+y+2=0, }

a-+t+bxtcy+dz=0,
a® + b*x 4y +d?z =0,

then the product xyz is positive.

In the equations below, if the index of a radical is even, con-
sider only the values of the unknowns for which the radicand is
non-negative and take only the non-negative value of the root.
When the index is odd the radicand can be any real number (in
this case the sign of the root coincides with the sign of the ra-

dicand).
77. Solve the equation
Via+xr4+4y/ @a—xF=5y —x*
78. Solve the equation
V=Y (T—xp=9T—x.

79. Solve the equation

V=24V =54V y+2+3V —5=1/%.
80. Solve the equation
l/x-l—l/}-—l/x—-l/} - ]/
81. Solve the equation
Y ¥ 8 -|-8x 7
Vx+ 2z
82. Find all real roots of the equation
Vx—T+ x5 1=x}/2.
83. Solve the equation
Vi—4a+16=2Vx—2a+4—Vx.

For what real values of a is the equation solvable?
84. Solve the system of equations

VTI—To—V T—T6x =2 (x+ ). }

+Vx

+Vx+T=

x2+y*—i-4xy=%
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85. Solve the system of equations
s—y=5(/ Pg— Y 55), }
Vx—Vy=3.
86. Solve the system of equations
X 3
]/ X _?7 }
X+yx4y=9.
87. Solve the system of equations

y-H x—y
Vil 2y g, }
x+xy+y=T.
88. Find all real solutions of the system

4 S Xty 12

x—y
xy=15.

| 89. Solve the system of equations

2sz—12 F1_ x2417

X _ X ]_i
sti=Vats—%

90. Solve the system of equations

s+ ViE—g  x—VE—p 17 }

—Ve—p 3+ VE—g P
X(x-+9)+V ¥+ xy+4 =52

91. Solve the system of equations

vV 3 2x T 3= 5 x+5, }

3x—2y=>5.
92, Find the real solutions of the system of equations
4 v L BT
g+ VE—ty+1="A—,
x2y—5 2

® g @#T9
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93. Solve the system of equations

(x— y)Vy—Q }
x+y)Vx=3Vy.

94 Solve the system of equations
Vity—Vi—g=a,
Vet +Vel—y=a

95. Solve the system of equations

xVx—yVy = a(Vf~V7)} .
x“’—i—xy-}—yz—bz (a?O, b>0).

2 } (a>0).

3. Algebraic Inequalities -

Preliminaries

Here are some mequalltles which are used for solving the prob-
lems below.
For any real a and & we have

@00 >2|ab]. W
Inequality (1) is a consequence of the obvious inequality (a 4 6)2>0.
Relation (1) turns into an equality only if |a|=]b].
If ab > 0, then dividing both sides of inequality (1) by ab we
obtain

b
F+ize e
If u>=0 and v>0, then, putting u=a* and v=0% in (1) we

obtain
u+v >V . 3)

In inequalities (2) and (3) the sign of equality appears only for
a=b and (u=v).
In addition, let us indicate some properties of the quadratic

trinomial
y=ax*+bx+c . “4)

which are used in some problems below,
The representation of trinomial (4) in the form

yma(rs )t o
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implies that if the discriminant of the trinomial satisfies thc
condition
D=b—4ac <0

(in this case the roots of the trinomial are nonreal), then, for
all x, ths trinomial takes on values of the same sign which
_, coincides with the sign of the coeificient a in the second power of X.

If D=0 the trinomial vanishes only for x=——'§%v'a'n‘d retains

its sign for all the other values of x.
Finally, if D> 0 (in this case the trinomial has real distinct
roots x, and x,), it follows from the factorization

G,
y=a—x) (r—x,),
that the trinomial attains the values whose sign is opp051te to
that of a only for x satisfying the condition
X, < x < X,

For all the other values of x different from x, and x, the trino-
mial has the same sign as a.

Thus, a trinomial always retains the sign of the coefficient in x*
except for the case when its roots x, and x, are real and

X XX,
96. Find all real values of r for which the polynomial
(rF—Nx*+2(r—1x+1

is positive for all real x.
97. Prove-that the expression

(345)-0(544) 0

is non-negative for any real x and y different from zero. .
98. For what values of a is the system of inequalities

x+ax 2

'—3< —x+1

<2

fulfilled for all x?

99. Prove that for any real numbers a, b, ¢ and d the ine-
quality
a' 4 b* +¢* + d* > 4abed

is valid.
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100. Find all the values of a for which the system
x4y 4201,
x—y+a=0 }
has a unique solution. Find the corresponding solutions.

101. Find the pairs of integers x and y satisfying the system
of inequalities

y—|—2x |45 >0, ]
y+|x—1]<2.

102. Prove that the inequality

1 1 Lo
iritiget ot 27

holds for every integer n > 1.
103. Prove that the inequality

1 1 1
m+l+m+2+ ° '+m+(2m+1) >1

is valid for every positive inleger m.
104. Show that for any natural n we have

1 1 1
sttt T <
105. Prove that

n—1

(nh2>n"
for n> 2.

106. Prove that, given three line segments of length a> 0,
b>0 and ¢ >0, a triangle with these segments as sides can be
constructed if and only if pa®-+ gb®* > pgc* for any numbers p
and ¢ satisfying the condition p+4+g=1.

107. Prove that for any real x, y and z we have the inequality
dx(x+y)(x+2)(x+y+2)+ 22 =0.
108. Prove that the inequality
x24-2xy 432+ 2x+6y+4>1

holds for any real x and y.

109. Prove that if 2x+4y=1, the inequality

ﬁ+w>%

is fulfilled.

-
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110. What conditions must be imposed on the number d > 0
for the inequality
. d24- R2—r3
0< —'—2*dR—'—< 1
to be valid for R>=r > 0?

111. Prove the inequality

9
at+b+c’

1,1, 1
Tt T2
where a, b and ¢ are positive.

112. Prove that if a, b and ¢ are numbers of the same sign
and a < b<c, then

ad (bz_cz) + b3 (Cz___a2) +cs (az_bz) < 0.

113. Prove that if a;, a,, a,, ..., a, are positive numbers and
a,a,a, ... a,=1, then

M+4+a)(I4a,)(1+4+a,) ... (14a,)=2"
114, Prove that if a4b=1 then

a‘+b4>%.
115. Prove that the polynomial
—xttxt—x 41

is positive for all real x.
116. Prove that if [x] <1 the inequality

(I—=x)"+(+x) <2
is fulfilled for any integer n>2.
117. Prove that
| X8 + X0+ oo X0, | << %(xH—xg—l— e x4+
+@tat ... +a),

where x;, X,, ..., X, and a,, a,, ..., a, and ¢ are arbitrary real
numbers and e > 0.

118. For what real values of x is the inequality
1—Vi— 42 -3
fulfilled?
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119 Prove that for all positive x and y and positive 1ntegers
m and n (n>=m) we have the inequality _

VsV Ly
120. Prove the inequality

l/a.}.]/a-L AVa <« T I+ Vaatl 4‘1 a>0.
121. Prove the inequality

2— l/2+1/2-|-V2+...+V2_,
¥ ViV

provided the numerator of the left member of the inequality
contains n radical signs and the denominator contains n—1 radi-

cal signs: .
122, Prove that for any real numbers a,, a,, ..., a, and-
b,, by, ..., b, satisfying the relations
ai+a3+...+az=1,
bi+bi+ ... +bi=1,
the inequality |a,b, +ab,+ ... +a,b,|< 1 is valid.
123, Prove that if the numbers x,, x,, ..., x, are positive and
satisfy the relation '

>

XXy oo Xp=1,
then
X4 X+ +x, =0

4. Logarithmic and Exponential Equations,
Identities and Inequalities

Preliminaries

The definition of the logarithm of a number N to a base a

states that
alvde N =N, (N

Here N is any positive number, a is an arbitrary. base and
a>0, as* 1.

The solution of some. problems below .is based on fhe following
formula for converting from logarlthms to a base a to the loga-
rithms to a base b:

logp N~
= Togpa * @)

log, N
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The formula is proved by taking the logarithms to the ‘base b
of the both sides of identity (1). In particular, for N =b formu-
la (1) impHes- v
1
loga b= m . - ‘ (3)
124. Selve. the equation

logex 2log, x _
Togta Tog , a logi/a_x log, x.
b
125. Solve the equation
log,2log 5 2 =log , 2.

18 84

126. Solve the equation
log, (971 +7) =2+ log, (37 + 1),
127. Solve the equation
log,, (-%) +logik =1.
128. Prove that the equation’
log,, (%> log2x + l-og;x: 1 o
has only one root satisfying the imequality x > 1. Find this root.

129. Solve the equation
log

at Vx

T——{—log“alog_}Qx-;O.u L

130. What conditions must be imposed on the numbers a and
b for the equation

1+ log, (2loga—x)log, b

- 'logb;
to have at least dne solution? Find all the solutions of this
equation

. Solve the equation *

1/1°ga Vax+ log, i/ ax+]/loga +1ogx1/ Z_a.

132. Solve the equation

IOg(Vm‘f“ l)_3
log?/x-a—lio HRe

* Here and henceforward the roots are understood as mentioned on page 18.
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133. Solve the equation

| 4 loga(p—2) _ 2—10Bp-q*
logg (x+¢q)  logp—g (x+q)

134. Solve the equation
logy+ x 1/ log, 5V'5 +logy=5V5 =— V6.
135. Solve the equation
(0.4)]og’ x+1 _ (6'25)2-10gx‘.

136. Solve the equation

(p>4q>0).

1+logx4l%x=(log logn—1) log, 10.
How many roots has the equation for a given value of n?
137. Solve the equation
logsin x2-10gsinxa+1=0.
138. Solve the system of equations
m&u+w—M&u—w=L}

Xy — 9.
139. Solve the system of equations '
X% — yb’
log _x_=log—cx} (@as=b, ab#0).
‘y log. y

140. Solve the system of equations
log, x - 3loes v =7,
¥ =51
141, Solve the system of equations
5
yxlogyx:xT’ }
log, ylog, (y—3x)=1.
142. Solve the system of equations
a*ty = ab,
2log, x=log 1 ylog, ;. J
b

143. Solve the system of equations
3 (2 logynx—logLy) =10, ]
X

xy=81.
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144. Solve the system of equations
l
log,, x (l—cEx_?+ log, y) = log, x,
log, x log, (x+ y) = 3 log, x.
145. Solve the system of equations
xlog,ylogy 2=y} y(1—log, 2),
lOgy: 2 logy-—2 x=1.
146. Solve the system of equations
log, x4 log, y+log,z=2,
log, y -+ log, 24 log, x =2, }
log, z + logygx + log;s y=2.
147. Solve the system of equations
1
log,.; (y—x)+ log, - =—2, |
x4yt =25, J
148. Solve the equation
1
4x__3x"—:12' — 3X+T_22x—1-
149. Find the positive roots of the system of equations
xx+)’ :yx‘}'7
xty=1. }
150. Solve the system of equations
¥ - a¥ = 2b,
a*+y =¢ } (@>0).
Under what conditions on b and ¢ is the system solvable?
151. Find the positive solutions of the system of equations
X =y,
yx+y =x2nyn,
where n > 0.
1562. Solve the system of equations

(Bx+y)*r=9,
*~1/ 324 = 18x* 4 12xy + 2. }
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153. Find the positive roots of the system of equations

X =y*,
xP =y, }
where pg > 0. :
154, Solve the system of equations
¥ =y,
pr=q, }

assuming that x>0, y >0, p>0 and ¢ > 0.
155. Prove that

log,,,a+log._,a=2log,,,alog._,a,
if a24+b2=c? and a> 6, 6>0, ¢>0.

156. Simplify the expression
(log, a—log, b)*+ (log 1a—loga b)"’ R (log v a—log . o )
b2 J

b 2"

log log a
157. Simpilify the expression a '°¢¢ where all the ]ogarithms
are taken to the same base b
158, Let log,6=A and log,b=B. Compute logcb where ¢ is
the product of n terms of a- geometrlc progression with common
ratio ¢ and the first term a.

159. Provethat if the relation :
loge V' logg N— logb N
log, N~ logy N—log, N

is fulfilled for a given positive N =+ 1 and three positive numbers
a, b and c, then b is the mean proportional between @ and ¢, and
the relation is fulfilled for any positive N1,

160. Prove the identity v
log, N log, N - log, N log, N +log. N log,
161: -Prove: the identity

logax _ ¢ | .
m—l—}‘logab.

162. Solve the inequality
log x+log,x > 1.
5

N — logg N log, NV l°gc
Cl0gap N

" a

163. Solve the inequality
xlogextl > a%  (a > 1),
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164. Solve the inequality

- log, x4 log, (x+1) < log, (2x+6) (a>1).
. 165. Solve the inequality FRET.

’ log, (x*—5x+46) <0

166. Solve the inequality

1
fog, x ™ log;
167. Solve the inequality

x—l<l

h ’k2—log§x—log, x'_% < 0.

168. For what real x and a is the inequality
S log';x—l—logx2+2005a<0
valid? . , : .
169. Solve the ineguality

log% [log, (x*—5)] > 0.

5. Combinatorial Anﬁlysis and Newton's Binomial Theorem

Preliminaries

The humber of permutations of n things taken m at a time is
given by the formula

P(n, my=n(n—1)...(n—m-+1). S (1y

* The number of permutations of n things taken all at a tlme is
equal to factorial n: :
nl=1.2.3. (2)

The number of combinations of n elements, m at a time, is de-
fined by the formula

Cln, m)= n(n—-l)(r];;-.%)..‘...r(:—rn-}-l) ___P(;{!m). (3)
: There is a relation of the form
C(n, m)=:C(n, n—m).
dﬂi@p positive integers n and any x and- a ‘we have binomial for ‘
ula
i x+ay=x"+C(n, Nax"*+C(n, 2a*x""24 ...+
+Cn, n—2)a"?x*+C(n, n--1)a" "t x+4a”, 4
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whose general term is equal to
C(n, k)akx"-*, (5)

Formula (4) implies the equalities

1+C(n, )+C(n, 2)+...+C(n, n—2)+C(n, n—1)+1=2"
and

1—C(n, 1)+C(n, 29—C(n, 3)+...+(—1)*=0.
170. Find m and n knowing that
Cin+1, m+1):Cn+1, m:C(n+1, m—1)=5:5:3.
171. Find the coefficient in x® in the binomial expansion of
(1 4+ x2—x?)°,

172, Find the coefficient in x™ in the expansion of the expres-

sion
(12 (L 28+ (L 2)

in powers of x. Consider the cases m < k& and m > k.

173. In the expansion, by the binomial formula, of the expres-
sion xV}—I—% " the binomial coefficient in the third term is by
44 larger than that in the second term. Find the term not con-
taining x. ,

174. In the expansion of the expression

(1 1x +%>lo .
find the term not containing x.

175. Find out for what value of & the (&4 1)th term of the
expansion, by the binomial formula, of the expression

(1+V 3
is simultaneously greater than the preceding and the subsequent
terms of the expansion?

176. Find the condition under which the expansion of (14 a)?
in powers ot a (where n is an integer and a=40) contains two
equal consecutive terms. Can this expansion contain three equal
consecutive terms?

177. Find the total number of dissimilar terms obtained after
the expression
N+Hx,+x+...+x,
has been cubed.
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178. Let py, p,, . . ., p, be different prime numbers and g=p,p,. . . pn. -
Determine the number of the divisors (including 1 and g) of g.

179. Prove that if each coefficient in the expansion of the exp-
ression x (14 x)" in powers of x is divided by the exponent
of the corresponding power, then the sum of the quotients thus

obtained is equal to
on+1 |

n4+1 °
180. Prove that

C(n, Dx(1—x)""142C(n, 2)x*(1—x)""2+... +
4-kC (n, k) x¥(1—x)""*+ ... +nC(n, n)x" =nx,

where n > 0 is an arbifrary integer.

181. In how many ways can a pack of 36 cards be split in two
so that each portion contains two aces?

182. How many five-digit telephone numbets with pairwise dis-
tinct digits can be composed?

183. Given a set of 2n elements. Consider all the possible par-
titions of the set into the pairs of elements on condition that the
partitions solely differing in the order of elements within the
pairs and in the order of the pairs are regarded as coincident.
What is the total number of these partitions?

184. Determine the number of permutations of n elements taken
all at a time in which two given elements a and b are not adja-
cent.

185. Eight prizes are distributed by a lottery. The first parti-
cipant takes 5 tickets from the urn containing 50 tickets. In how
many ways can he extract them so that (1) exactly two tickets
are winning, (2) at least two tickets are winning.

186. m points are taken on one of two given parallel lines and
n points on the other. Join with line segments each of the m
points on ‘the former line to each of the n points on the latter.
What is the number of points of intersection of the segments if
it is known that there are no points in which three or more seg-
ments intersect.

187. n parallel lines in a plane are intersecied by a family of
m parallel lines. How many parallelograms are formed in the net-
work thus formed?"

188. An alphabet consists of six letters which are coded in
Morse code as

e . . . .
' vy y s
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A ‘word: was -transmitted without spaces between the letters so
“tHat the resultant continuous line of dots and dashes contairned
12 characters. In how many ways can that word be read?

6. Problems ini Forming Equations

189. In multiplying two numbers one of which exceeds the
other by 10 the pupil reduced, by mistake, the tens digit in the
product by 4. When checking the answer by dividing the product
thus obtained by the smaller of the factors he obtained the quo-
tient 39 and the remainder 22. Determine the factors.

190. Two cyclists simultaneously start out from a point A and
proceed with different but constant speeds to a point B and
then return without stopping. One of them overtakes the other
and meets him on the way back at a point a kilometres from B.
Having reached A he starts for B and again meets the second

cyclist after covering -,l;»th the distance between A and B. Find
the distance from A to B.

'191. Two cars simultaneously start out from a point and pro-
ceed in the same direction, one of them going at a speed of
50 km/hr and the other at 40 km/hr. In half an hour a third car
starts out from the same point and overtakes the first car 1.5
hours after catching up with the second car. Determine the speed
of the third car.

192. A pedestrian and a cyclist start out from pomts A and B
towards one another. After they meet the pedestrian continues to
.go. in the direction from A to B while the cyclist turns and
also goes towards B. The pedestrian reaches B ¢ hours. later than
the cyclist. Find the time period between the start and meeting
if the speed of the cyclist is # times that of the pedestrian.

193. Walking without stopping a postman went from a point A4
through a point B to a point C. The distance from A to B was
covered with a speed of 3.5 km/hr and from B {o C .of 4 km/hr.
‘To get back .from C to A in the same time following the:sdme
route with a constant speed he was to walk 3.75 km per hour.
However, after walking at that speed and reaching B he stopped
Jor 14 minutes and then, in order to reach A at the appointed
time he had to move from B to A walking 4 km per hour. Find
the distances between A and B and between B and C.

~ 194. The distance from a point A to a point B is 11.5 km.
The road between A and B first goes uphill, then horlzontally
and then downhill. A pedestrian went from A to B in 2 hours
and 54 minutes but it took him 3 hours and 6 minutes to get
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back from B to A. His speeds were 3 km/hr uphill, 4 km/hr on
the horizontal part of the road and 5 km/hr downhill. Determine
the length of the horizontal part.

195. In a motorcycle test two motorcyclists simultaneously
start out from A to B and from B to A, each driving at a con-
stant speed. After arriving at their terminal points they turn back
without stopping. They meet at a distance of p km from B and
then, in ¢ hours, at ¢ km from A. Find the distance between
A and B and the speeds of the motorcyclists.

196. An airplane was in flight from A to B in a straight line.
Due to a head wind, after a certain time, it reduced its speed to
v km/hr and therefore was ¢, minutes late. During a second flight
from A to B the airplane for the same reason reduced its speed
to the same level but this time d km farther from A than in the
first flight and was ¢, minutes late. Find the original speed of
the airplane.

197. There are two pieces of an alloy weighing m kg and
- n kg with different percentages of copper. A piece of the same
weight is cut from either alloy. Each of the cut-off pieces is alloyed
with the rest of the other piece which results into two new
alloys with the same percentage of copper. Find the weights of
the cut-off pieces.

198. Given two pieces of alloys of silver and copper. One of
them contains p% of copper and the other contains ¢% of cop-
per. In what ratio are the weights of portions of the alloys if the
new alloy made up of these portions contains r% of copper? For
what relationships between p, ¢ and r is the problem solvable?
What is the greatest weight of the new alloy that can be obtai-
ned if the first piece weighs P grams and the second Q grams?

199. Workers A and B have been working the same number of
days. If A worked one day less and B 7 days less then A would
earn 72 roubles and B 64 roubles 80 kopecks. If, conversely,
A worked 7 days less and B one day less B would earn 32 roub-
les and 40 kopecks more than A. How much did in fact either
worker earn?

200. Two bodies move in a circle in opposite directions, one of
them being in a uniform motion with linear speed v and the
other in a uniformly accelerated motion with linear accelera-
tion a. At the initial moment of time the bodies are at the same
point A, and the velocity of the second one is equal to zero. In
what time does their first meeting take place if the second meet-
ing occurs at the point A?

2323
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201. A tank was being filled with water from two taps. One of
the taps was first open during one third of the time required for
filling the tank by the other tap alone. Then, conversely, the
second tap was kept open for one third of the time required to
fill the tank by using the first tap alone, after which the tank was

i—z full. Compute the time needed to fill the tank by each tap se-

parately if both taps, when open together, fill the tank in 3 hours
and 36 minutes.

202. A cylindrical pipe with a piston is placed vertically into
a tank of water so that there is a column of air & metres high
between the piston and the water (at the atmospheric pressure).
The piston is then elevated b metres above the water level in the
tank. Compute the height of the column of water in the pipe if
it is known that the column of liquid in a water barometer is ¢
metres high at the atmospheric pressure.

203. A cylindrical pipe with a moving piston is placed verti-
cally into a cup of mercury. The mercury level in the pipe is
12 ¢cm above that in the cup, and the column of air in the pipe

between the mercury and the piston is 29% cm high. The piston

is then moved 6 cm downward. What is the resultant height of
the column of mercury if the external air pressure is 760 mm Hg?

204. At a certain moment a watch shows a 2-minutes lag although
it is fast. If it showed a 3-minutes lag at that moment but gained
half a minute more a day than it does it would show true time
one day sooner than it actually does. How many minutes a day
does the watch gain?

205. Two persons deposited equal sums of money in a savings
bank. One of them withdrew his money after m months and received
p roubles, and the other withdrew the money after n months and re-
ceived ¢ roubles. How much money did either person deposit and
what interest does the savings bank pay?

206. In a circle of radius R two points uniformly move in the
same direction. One of them describes one circuit ¢ seconds faster
than the other. The time period between two consecutive meetings
of the points is equal to T. Determine the speeds of the points.

207. A flask contains a solution of sodium chloride. 7lz—th part

of the solution is poured into a fest tube and evaporated until
the percentage of sodium chloride in the test tube is doubled.
The evaporated solution is then poured back into the flask. This
increases the percentage of sodium chloride in the flask by p%.
Determine the original percentage of sodium chloride.
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208, Two identical vessels, each of 30 litres, contain a total of
only 30 litres of alcohol. Water is added to the top of one ves-
sel, the resulting mixture is added to the top of the other vessel
and then 12 litres of the new mixture are poured from the second
vessel into the first. How much alcohol did each vessel contain
originally if after the above procedure the second vessel contains
2 litres of alcohol less than the first?

209. Three travellers A, B and C are crossing a water obstacle
s km wide. A is swimming at a speed of v km/hr, and B and C
are in a motor boat going at v, km/hr. Some time after the start
C decides to swim the rest of the distance, his speed being equal
to that of A. At this moment B decides to pick up A and turns
back. A then takes the motor boat and continues his way with
B. All the three travellers simultaneously arrive at the opposite
bank. How long did the crossing take?

210. A train left a station A for B at 13:00. At 19:00 the
train was brought to a halt by a smow drift. Two hours later the
railway line was cleared and to make up for the lost time the
train proceeded at a speed exceeding the original speed by 20%
and arrived at B only one hour later. The next day a train
going from A to B according to the same timetable was stopped
by a snow drift 150 km farther from A than the former train.
Likewise, after a two-hour halt it went with a 20% increase of
speed but failed to make up for the lost time and arrived at B
1 hour 30 minutes late. Find the distance between A and B.

211. A landing stage B is a kilometres up the river from A.
A motor boat makes trips going from A to B and returning to 4
without stopping in T hours. Find the speed of the boat in still
water and the speed of the current if it is known that once, when
returning from B to A, the motor boat had an accident at a dis-
tance of b km from A which delayed it for T, hours and reduced
its speed twice so that it went from B to A during the same
time as from A to B.

212. A tank of a volume of 425 m® was filled with water from
two taps. One of the taps was open 5 hours longer than the
other. If the first tap had been kept open as long as the second
and the second tap as long as the first, then the first tap would
have released one half the amount of water flowed out from the
second. If both taps had been opened simultaneously the tank
would have been filled in 17 hours.

Taking into account all these conditions determine how long the
second tap was open.

213. According to the timetable, atrain is to cover the distan-
ce of 20 km between A and B at a constant speed. The train

2*
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covered half the distance at that speed and then stopped for
three minutes; in order to arrive at B on schedule it had to
increase the speed by 10 kmy/hr on the remaining half of the trip.
Another time the train was delayed for 5 minutes after passing
half the way. At what speed must the train go after the stop in
order to arrive at B on schedule?

214. Two airplanes simultaneously take off from A and B.
Flying towards each other, they meet at a distance of a kilo-
metres from the midpoint of AB. If the first airplane took off &
hours later than the second, they would meet after passing half
the distance from A to B. If, conversely, the second airplane took
off b hours after the first, they would meet at a point lying at
the quarter of that distance from B. Find the distance between 4
and B and the speeds of the airplanes.

215. A motor boat and a raft simultaneously start out downstream
from A. The motor boat covers 96 km, turns back and arrives at
A in 14 hours. Find the speed of the motor boat in still water
and the speed of the current if it .is known that the two craft met
at a distance of 24 km from A when the motor boat was returning.

216. Two bodies simultaneously start out in the same direction
from two points 20 metres apart. The one behind is in uniformly
accelerated motion and covers 25 metres during the first second

and % of a metre more in the next second. The other body isin

uniformly decelerated motion and passes 30 metres in the first
second and half a metre less in the next second, How many se-
conds will it take the first body to catch up with the second?

217. A boat moves 10 km downstream and then 6 km upstream.
The river current is 1 km/hr. Within what limits must the rela-
tive speed of the boat lie for the entire trip to take from 3 to
4 hours?

218, The volumes of three cubic vessels A, B and C are in the
ratio 1:8:27 while the amounts of water in them are in the ratio
1:2:3. After water has been poured from A into B and from B

into C, the water level in the vessels is the same. 128-,;‘— litres

of water are then poured out from C into B aiter which a cer-
tain amount is poured from B into A so that the depth of water
in A becomes twice that in B. This results in the amount of wa-
ter in A being by 100 litres less than the original amount. How
much water did each vessel contain originally?

219. Find a four-digit number using the following conditions:
the sum of the squares of the extreme digits equals 13; the sum
of the squares of the middle digits is 85; if 1089 is subtracted
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from the desired number, the result is a number expressed by the
same digits as the sought-for number but written in reverse order.

220. Two points move in a circle whose circumference is / metres
at the speeds v and w < wv. At what moments of time reckoned
from the start of the first point will successive meetings of the
points occur if they move in the same direction, and the first
point starts f seconds before the second and is a metres behind
the second point at the initial moment (e < [)?

221. A piece of an alloy of two metals weighs P kg and loses
A kg in weight when immersed in water. A portion of P kg of
one of the metals loses B kg in water and a portion of the same
weight of the other metal loses C kg. Find the weights of the
components of the alloy and test the solvability of the problem
depending on the magnitudes of the quantities P, A, B and C.

222. Log rafts floated downstream from a point 4 to the mouth
of a river where they were picked up by a towboat and towed

across a lake to a point B 17§ days after the departure from A.

How long did it take the towboat to bring the log rafts to B across
the lake if it is known that, alone, the towboat goes from A to
B in 61 hours and from B to A in 79 hours and that in towing
the relative speed of the towboat is reduced twice?

223. The current of a river between A and B is negligibly small
but between B and C it is rather strong. A boat goes downstream
from A to C in 6 hours and upstream from C to A in 7 hours.
If between A and B the current were the same as between B and C
the whole distance from A to C would be covered in 5.5 hours.
How long would it take to go upstream from C to A in the
latter case?.

224. A vessel contains a p% solution-of an acid. a-litres of the
solution are then poured out and the same quantity of a 9% solu-
tion of the acid is added (¢ < p). After mixing this operation is
repeated £—1 times which results in-a r% solution. Fmd the
volume of the vessel.

225. A roubles -are invested in a savings bank which pays an
interest of p%. At the end of every year the depositor takes out
B roubles. In how many years will the rest be three times the
original sum? Under what conditions is the problem solvable?

226. A forestry has a p% annual growth rate of wood. Every
winter an amount x of wood is obtained. What must x be so that
in n years the amount of wood in the forestry becomes ¢ times
the original amount a?



38 PROBLEMS IN ELEMENTARY MATHEMATICS

227. One of n identical cylindrical vessels is full of alcohol and
the others are half-full with a mixture of water and alcohol, the

concentration of alcohol in each vessel being %th that in the pre-

ceding one. Then the second vessel is filled to the top from the
first one after which the third is filled from the second and so on
to the last vessel. Find the resultant concentration of alcohol in
the last vessel.

228. Consider a quotient of two integers in which the divisor
is less by unity than the square of the dividend. If 2 is added
to the dividend and to the divisor the value of the quotient will

exceed %— but if 3 is subtracted from the numerator and deno-

minator, the quotient will remain positive but less than 11_0' Find
the quotient.

7. Miscellaneous Problems

Algebraic Transformations
229. Compute the sum

1 1 1
AT D T DeTy T T et et s

230. Simplify the expression
(x+a)(x2+a?) ... ("' 4a®7Y).
231. Simplify the expression
(—ax+a®) (xt—ax?+ad) ... (¥ —a®" %7 4a?").

232, Given two sequences of numbers

Ay Qgy ovey Oy,
by, by, ..., by,

prove that

ab, +ab,+ ... +ab,=(a,—a,) S, +(@,—a;)) S, + ...
e (@—a) Se - aS,,
where S,=b,+b,+ ...+ by.
233. Show that the equality
a4 b*4-c*=bc+ac+ab,

where a, b and ¢ are real numbers, implies a=b=c.
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234. Prove that if a®-4 6%+ ¢® =3abc then either
@+ P+ct=bc+catab or at+-b-+c=0.
235. Show that if
a+a+ ... +ay=rp,
bBi+bi+ ... +oi=¢",
ab,+ab,+ ... +ab,=pg
and pg 0, then a,=Ab,, a,=Ab,, ..., a,=Ab, where A=2 . (Al
the quantities are supposed to be real.) !

236. It is known that the number sequence a,, a,, a,, ... satisfies,
for any n, the relation

an"‘l—_Qan—l’_an—l: l'
Express a, in terms of gy, a, and n.

237. The sequence of numbers a,, a,, a;, ..., a,, ... satisfies
for n > 2 the relation

a, =~ (a + |3) an—l—_aﬁan—zr

where o and P(ax==fp) are given numbers. Express a, in terms
of a, B, @, and a,.

BEZOUT'S THEOREM. PROPERTIES OF ROOTS
OF POLYNOMIALS

238. The roots x, and x, of the equation x2—3ax -+ a®= 0 satisfy
the condition x?+ x%=1.75. Determine a.

239. Given the equation x? 4 px 4 ¢=0, form a quadratic equation
whose roots are

y=x34+x; and y,=x}4 x5
240. Let x, and x, be the roots of the equation
ax?*4bx+c=0 (ac=s<0).
Without solving the equation express the quantities

D) o+ and  2) x4+
X3 Xg
in terms of the coefficients a, b and c.

241. What conditions must be imposed on the real coefficients
a,, b, a,, b,, a, and b, for the expression

(@, + 0,7 + (2, + b,%)* + (a5 + byx)®

to be the square of a polynomial of the first degree in x with
real coefficients?
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242. Prove that the roots of the quadratic equation x* 4 px+g=0
with real coefficients are negative or have a negative real part
if and only if p >0 and ¢ > 0.

243, Prove that if both roots of the equation
xEA-px4-g=0
are positive, then the roots of the equation ¢y*-(p—2rq)y +
r+<15pr=0 are positive for all r>0. Is this assertion true for
244, Find all real values of p for which the roots of the equation
(p—3) x*—2px+6p=0
are real and positive,

245, For any positive A all the roots of the equation
at+bx+c+a=0
are real and positive. Prove that in this case @ =0 (the coefficients
a, b and ¢ are real).

246, Prove that both roots of the equation x*4-x+ 1 =0 satisfy
the equation

X3 x37+L L x3P+2 — (),
where m, n and p are arbitrary integers,
247, The system of equations
Cale gt rty—h=0, }
X—y+Ar=0
has real solutions for any A. Prove that a=0,

248. Prove that for any real values of a, p and ¢ the equation

1 i 1
D

x—p ' x—q a?

has real roots.
249, Prove that the quadratic equation
a2t (P+-a?—c) x4+ 02=0
cannot have real roots if a4-b>c¢ and |a—b| <ec.
250. It is known that x;, x, and x, are the roots of the equation
X —2x24+x+1=0.

. Form. a new . algebraic equation whose roots are the numbers
Y= XpXgy Yy =X3Xy, Y3= X1Xs- -
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251. It is known that x,, x, and x, are the roots of the equation
x%—x2—1=0.
Form a new equation whose roots are the numbers
Yio=Xo+ %3 Yo=Xg+ X1 Yy =X+ %,
252. Express the constant term ¢ of the cubic equation
x34ax®*+bx+c=0
in terms of the coefficients a and b, knowing that the roots of the
equations form an arithmetic progression.
253. Let it be known that all roots of an equation
X3+ pxtdgx +r=0 V

are positive. What additional condition must be imposed on its
coefficients p, ¢ and r so that the line segments of lengths equal
to the-raots are the sides of a triangle?

Hint. Consider the expression

(x, + xz—'xa) (%5 + 23— %) (x5 + X, —%).
254. The equations
' X4 pix-Fg,=0
and -
x+ PuX 4Gy = 0
(p, 5= Py ¢ q,) have a common root. Find this root and also the
other roots of both equations.
255. Find all the values of A for which two equations
A —x—(+1)=0
and
A —x— (A1) =0
have a common root. Determine this root.
256. All the roots of the polynomial
. Px)=x"+px+gq
with real coeificients P and q (g 0) are real. Prove that p < 0.
257. Prove that the equation
X4ax*—b=0
where a and b (b>>0) are real has one and only one positive root.
258. Find all the real values of a and & for which the equations
x3t+axt4+18=0
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and
x¥+bx412=0
have two common roots and determine these roots,
259. Prove that

YV 20+ 14V2 + Y/ 201412 —4.

260. Let a, 6 and ¢ be pairwise different numbers,
Prove that the expression

a*(c—b)+b*(a—c)+c* (b—a)

is not equal to zero.

261. Factorize the expression
(x4 y+2 —r—ys— 2.

262. Prove that if three real numbers a, b and c¢ satisfy the

relationship |
1,1, 1
CRN i =

then two of them are necessarily equal in their absolute values
and have opposite signs.

263. Find out for what complex values of p and ¢ the binomial
x*—1 is divisible by the quadratic trinomial x* px--q.

264. For what values of a and n is the polynomial x" —ax"-! +
+ax—1 divisible by (x—1)??

265. The division of the polynomial p(x) by x—a gives the
remainder A, the division by x—b gives the remainder B and the
division by x—c gives the remainder C. Find the remainder poly-
nomial obtained by dividing p(x) by (x—a)(x—b)(x—c) on con-
dition that the numbers a, b and ¢ are pairwise difterent.

MATHEMATICAL INDUCTION

The following problems are solved by the method of complete
mathematical induction. To prove that an assertion is true for
every natural n it is sufficient to prove that (a) this assertion is
true for n=1 and (b) if this assertion is true for a natural number
n then it is also true for n-1.

266. Prove that

43464104, 8ln nth)_s(ilets
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267. Prove that
_n(a+1)(2n4-1)
124224-324... +n2——6—————.

268. Prove that

1 1 1 _ n(n+3)
oxa Toxaxa Tt nntD(n+r2)  d(r+hH(n+2"

269. Prove De Moivre’s formula
(cos @ + i sin @)* =cos ng + i sin ney.

270. Prove that for any positive integer n the quantity a,,=a—"}-;?b'i
where a=l+12/5 and b:l—";5 is a positive integer.
271. Prove that if real numbers a,, a,, ..., @, ... satisfy the

condition — 1 < ¢, <0, i=1, 2, ..., then for any n we have the
inequality
(1+a)(l4+a)...1+a)=14a,+a,+...Fa,.

272. The generalized nth power of an arbitrary number a (de-
noted by (a),) is defined for non-negative integers n as follows: if
n=0 then (a),=1 and if n >0 then (@), =a(a—1)...(a—n—+1).
Prove that for the generalized power of a sum of two numbers we
have the formula

(@+b), =C5(a)e (b),+ Ci (@) (B)y_y+ - . +Ch(a), (0)o
which generalizes Newton’s binomial theorem to this case.

THE GREATEST AND LEAST VALUES

To find the least value of a quadratic trinomial

y=ax*+bx-+c (1)
for a> 0 it is represented in the form
b\2 b®—dac
y=a (x—l—%) —— (2)

The first summand on the right-hand side being non-negative for
any x and the second summand being independent of x, the tri-
nomial attains its least value when the first summand vanishes.
Thus, the least value of the trinomial is

b2 —4dac

Yo=——"- (3
It is assumed for

X=Xg=— 5. (4)
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A similar technique yields the greatest value of a trinomial
y=ax*+bx+c for a <O0.

273. Two rectilinear railway lines AA" and BB’ are mutually
perpendicular and intersect at a point C, the distances AC and
BC being equal to a and b. Two trains whose speeds are, respec-
tively, v, and v, start simultaneously from the points A and B
toward C. In what time after the departure will the distance bet-
ween the trains be the least? Find this least distance.

274. Two stations A and B are on a rectilinear highway passing
from west to east, B lying 9 km to the east of A. A car starts
from A and moves uniformly eastwards at a speed of 40 km/hr.
A motorcycle simultaneously starts from B in the same direction
and moves with a constant acceleration of 32 km/hr?* Determine
the greatest distance between the car and motorcycle during the
first two hours of motion.

Hint. 1t is advisable to plot the graph of the distance between
the car and motorcycle against the time of motion.

275. Find the greatest value of the expression
logi x + 1210g§x10g2§-
when x varies between 1 and 64.
276. Find the greatest value of the function
y=azsz (@>0, b>0).

277. Find the least value of the expression

1+ x2
l4+x

for x>=0.
278. Find the least value of the function
9 () =[x—a|+|x—b|+|x—c|+|x—d],

where a < b <c¢ <d are fixed real numbers and x takes arbitrary
real values.
Hint. Mark a, b, ¢, and d on a number scale.

COMPLEX NUMBERS
279. Find all the values of 2z satisfying the equality
24|z|=0 '

where |z| denotes the modulus of the complex number z.
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280. Find the complex number z satisfying the equalities

2—12 ___5_ z—4
z—8 —8

1:1.

81. Compute the product

[ () [+ T+ () D+ ()7

'282. Among the complex numbers z satisfying the condition,
|z—25i|<C 15,
find the number having the least argument. Make a drawing.

283. Find the condition for a complex number a- bi to be rep-
resentable in the form

I—ix

a-+bi= [Tix’

where x is a real number?

284. Find the greatest value of the moduli of complex numbers
2 satisfying the equation

-

285. Through a point A n rays are drawn which form the angles
2% with each other. From a point B lying on one of the rays at

a distance d from A a perpendicular is drawn to the next ray.
Then from the foot of this perpendicular a new perpendicular is
drawn to the neighbouring ray and so on, unlimitedly. Determine
the length L of the broken line thus obtained which sweeps out
an infinity of circuits round the point A. Also investigate the
variation of L as the number n is increased and, in particular, the
case when n approaches infinity.

286. A six-digit number begins with 1. If this digit is carried
from the extreme left decimal place to the extreme right without
changing the order of the other digits the new number thus obtained
is three times the original number. Find the original number.

287. Prove that if a natural number p=abc where a, b and ¢
are the decimal digits is divisible by 37 then the numbers g = bca
and r =cab are also divisible by 37.

288. Prove that the sum of the cubes of three successive integers
is divisible by 9.

289. Prove that the sum
S,=n*+3n2+5n+3
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is divisible by 3 for any positive integer n.

290. 120 identical balls are tightly stacked in the form of a
regular triangular pyramid. How many balls lie at the base of the
pyramid?

291. k smaller boxes are put in a box. Then in each of the
smaller boxes either & still smaller boxes are put or no boxes and
so on, Determine the number of empty boxes if it is known that
there are m filled boxes,



GEOMETRY
A. PLANE GEOMETRY

Preliminaries

Here are some basic relations between the elements of a triangle
with sides a, b and ¢ and the respective opposite angles A, B and C.

1. Law of sines:
a b c

A= B —smC = 2R

where R is the radius of the circumscribed circle.
2. Law of cosines:

at=b2-+¢t—2bccos A.

For computing the area S of a triangle use the following for-

mulas:
1

S=—2—aha,

where a is a side of the triangle and 4, is the altitude drawn to
this side;
S=Vp(p—a)(p—0b)(p—c) (Heron’s formula)

a+t+b+c
2 :

where p=
S=%ab sinC;

S=rp,

where r is the radius of the inscribed circle.

1. Computation Problems

292. In a triangle ABC the angle A is twice as large as the
angle B. Given the sides b and ¢, find a.

293. The legs of a right triangle are equal to 6 and c. Find the
length of the bisector of the right angle.

294. Given two sides @ and b of a triangle, find its third side
if it is known that the medians drawn to the given sides intersect
at a right angle. What are the conditions for the triangle to exist?
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295. The vertex angle of a triangle with lateral sides of lengths
a and b (a < b) is trisected. by siraight lines whose segments inside
the triangle form the ratio m:n(m <n). Find the lengths of the
segments.

296. Intersect a given triangle ABC by a straight line DE pa-
rallel to BC so that the area of the triangle BDE is of a given
magnitude k2. What relationship between %% and the area of the
triangle ABC guarantees the solvability of the problem and how
many solutions has the problem? '

- 297. Through a point lying inside a triangle three straight lines
parallel to its sides are drawn. The lines divide the triangle inta
six parfs three of which are triangles with areas S,, S, and S,,
respectively. Find the area of the given triangle.

298. Given the sides b and ¢ of a triangle. Find the third side
x knowing that it is equal to the altitude drawn to it. Under
what condition connecting & and ¢ does the triangle exist?

299. In a triangle ABC the altitudes AA,, BB, and CC, are
drawn, and the points A,, B, and C, are joined. Determine the
ratio of the area of the triangle A,B,C, to that of the triangle
ABC if the angles of the triangle ABC are given.

300. In a triangle ABC through the point of intersection of the
bisectors of the angles B and C a straight line parallel to BC is
drawn. This line intersects the sides AB and AC at points M and N
respectively. Find the relationship between the line segments MN,
BM and CN.

Consider the following cases:

(1) both bisectors divide interior angles of the triangle;

(2) both bisectors divide exterior angles of the triangle;

(3) one of the bisectors cuts an interjor angle and the other cuts
an exterior angle.

When do the points M and N coincide?

301. Inside an equilateral triangle ABC an arbitrary point P
is taken from which the perpendiculars PD, PE and PF are dropped
onto BC, CA and AB respectively. Compute

PD+ PE+ PF
BD+CEF AF "

302. Find the ratio of the area of a triangle ABC to the area
of a triangle whose sides are equal to the medians of the triangle
ABC.

303. In a triangle with sides @, b and ¢ a semicircle is inscribed
whose diameter lies on the side ¢. Find the radius of the semi-
circle,
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304. Determine the acute angles of a right triangle knowing that
‘the ratio of the radius of the circumsecribed circle to the radius
of the inscribed cirele is 5:2.

305. About a given rectangle circumscribe a new one with given
area m?. For what m is the problem solvable?

306. On the side AB of the rectangle ABCD find a point E from
which the sides AD and DC are seen at equal angles. What rela-
tionship between the sides guarantees the solvability of the problem?

307. Find the area of an isosceles trapzzoid with altitude A if
its nonparallel sides are seen from the centre of the circumscribed
circle at angles o.

308. Given the upper and lower bases a and b of a trapezoid.
Find the length of the line segment joining the midpoints of the
diagonals of the trapezoid.

309. Each vertex of a parallelogram is connected with the mid-
points of two opposite sides by straight [ines. What portion of the
area of the parallelogram is the area of the figure “bounded by
these lines? '

310. P, Q, R and S are respectively the midpoints of the sides
AB, BC, CD, and DA of a parallelogram ABCD. Find the area
of the figure bounded by the straight lines AQ, BR, CS and DP
knowing that the area of the parallelogram is equal to a®.

311. Given the chords of twa arcs of a circle of radius R, find
the chord of an arc equal to the sum of these arcs or to their
difference.

312. The distance between the centres of two intersecting circles
of radii R and r is equal to d. Find the area of their common
portion.

313. Three circles of radii r, r, and R are pairwise externally
tangent. Find the length of the chord cut off by the third eircle
from the internal common tangent of the first two circles.

314. Two circles of radii R and r (R > r) are iniernally tangent.
Find the radius of the third circle tangent to the two given circles
and to their common diameter.

315, Three equal circles are externally tangent to a circle of
radius r and pairwise tangent to one another. Find the areas of
the three curvilinear triangles formed hy these circles.

316. On a line segment of length 2a+42& and on its parts of
lengths 2a and 26 as diameters semicircles lying on one side of
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the line segment are constructed. Find the radius of the circle
tangent to the three semicircles.

317. Given two parallel straight lines and a point A between
them. Find the sides of a right triangle with vertex of the right
angle at the point A and vertices of the acufe angles on the given
parallel lines if it is known that the area of the triangle is of a
given magnitude &2.

318. n equal circles are inscribed in a regular n-gon with side
a so that each circle is tangent to two adjacent sides of the polygon
and to two other circles. Find the area of the star-shaped figure
formed in the centre of the polygon.

319. Through a point C of an arc AB of a circle two arbitrary
straight lines are drawn which intersect the chord AB at points
D and E and the circle at points F and G. What position does
the point C occupy on the arc AB if it is possible to circumscribe
a circle about the quadrilateral DEGF?

320. Circles are inscribed in an acute angle so that every two
neighbouring circles are tangent. Show that the radii of the circles
form a geometric progression. Find the relationship between the
common ratio of the progression and the magnitude of the acute
angle.

321. A light source is located at a point A of a plane P.
A hemispherical mirror of unit radius is placed above the plane
so that its reflecting inner side faces the plane and its axis of
symmetry passes through the point A4 and is perpendicular to the
plane P. Knowing that the least angle between the rays reflected
by the mirror and the plane P is equal to 15° determine the
distance from the mirror to the plane and the radius of the illu-
minated circle of the plane P.

322. The centres of four circles of radius r are at the vertices
of a square with side a. Find the area S of the common part of
all circles contained inside the square.

323. A trapezoid is divided into four triangles by its diagonals.
Find the area of the trapezoid if the areas of the triangles adjacent
to the bases of the trapezoid are equal to S, and S,.

324. Express the diagonals of an inscribed quadrilateral of a
circle in terms of its sides. Based on this result, deduce the Ptolemy
theorem which states that the product of the diagonals of a
quadrilateral inscribed in a circle is equal to the sum of the
products of the two pairs of opposite sides.
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2. Construction Problems

325. Given two circles of different radii with no points in common
and a point A on one of them. Draw a third circle tangent to the
two given circles and passing through the point A. Consider various
possible cases of location of the point A on the circle.

326. Given a circle and a straight line with point A on it.
Construct a new circle tangent to the given line and circle and
passing through the point A. Consider in detail how many so-
lutions the problem has in various particular cases.

327. Given a straight line and a circle with point 4 on it.
Construct a new circle tangent to the given line and circle and
passing through the point A. Consider in detail how many solu-
tions the problem has in various particular cases.

328. Construct a right triangle, given the hypotenuse ¢ and the
altitude h drawn to it. Determine the lengths of the legs of the
triangle and find the relationship between A and ¢ for which the
problem is solvable,

329. Given the lengths of the sides AB, BC, CD and DA of a
plane quadrilateral. Construct this quadrilateral if it is known
that the diagonal AC bisects the angle A.

330. Reconstruct the triangle from the points at which the extended

bisector, median and altitude drawn from a common vertex intersect
the circumscribed circle.

331. Draw three pairwise tangent circles with centres at the
vertices of a given triangle. Consider the cases when the circles
are externally and internally tangent.

332. Inscribe a triangle ABC in a given circle if the positions
of the vertex A and of the point of intersection of the altitude Ag
with the circle and the direction of the altitude A, are known.

333. Intersect a trapezoid by a straight line parallel to its base
so that the segment of this line inside the trapezoid is trisected
by the diagonals.

334. Construct a square, given a vertex and two points lying
on two sides not passing through this vertex or on their extensions.

335. Through a point M lying on the side AC of a triangle ABC
draw a straight line MN cutting from the triangle a part whose

area is —115- that of the whole triangle. How many solutions has the
problem?

336. Make a ruler and compass construction of a rectangle with
given diagonal inscribed in a given triangle.
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337. About a given circle circumscribe a triangle with given
angle and given side opposite this angle. Find the solvability
condition for the problem.

338. Given a straight line CD and two points A and B not
lying on it. Find a point M on the line such that

/ AMC=2 / BMD.

3. Proof Problems

339. Prove that a median of a triangle is less than half-sum of
the sides it lies between and greater than the difference of this
hali-sum and half the third side.

340. Prove that in any triangle ABC the distance from the centre
of the circumscribed circle to the side BC is half the distance
between the point of intersection of the altitudes and the vertex A.

341. Prove that the sum of the distances from any point lying

inside an equilateral triangle to the sides of the triangle is a con- -

stant independent of the position of the point.

342, Prove that in any triangle a shorter bisector of an interior
angle corresponds to a longer side.

343. Prove that if P, Q and R are respectively the points of
intersection of the sides BC, CA and AB (or their extensions) of
a triangle ABC and a straight line then

PB QCRA _
PCQARB ™
344, In a right triangle ABC the length of the leg AC is three

times that of the leg AB. The leg AC is trisected by points K
and F. Prove that

L AKB+ L AFB+ / ACB=1 .

345. Let a, b, ¢ and A be respectively the two legs of a right
triangle, the hypotenuse and the altitude drawn from the vertex
of the right angle to the hypotenuse. Prove that a triangle with
sides 4, ¢+ h and a-+ b is right.

346. In an isosceles triangle with base a and congruent side b
the vertex angle is equal to 20°. Prove that a® -4 b® = 3ab®.

347. Prove that an angle of a triangle is acute, right or obtuse
depending on whether the side opposite this angle is less than,
equal to, or greater than the doubled length of the corresponding
median.

1.
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348. In an isosceles triangle ABC the vertex angle B is equal
to 20° and points Q and P are taken respectively on the sides
AB and BC so that / ACQ =60° and / CAP=>50°. Prove that
L APQ =80

349. Prove that if the sides a, b and ¢ of a triangle are connected
by the relation @?=0b2+ bc then the angles A and B subtended by
the sides a and b satisfy the equality S/ A=2 /B.

350. A triangle AOB is turned in its plane about the vertex O
by 90° the new positions of the vertices A and B being, respec-
tively, A, and B,. Prove that in the triangle OAB, the median of
the side AB, is an altitude of the triangle OA,B (analogously, the
median of the side A,B in the triangle OA,B is an altitude of
the triangle OAB,).

351. Prove that the sum of the products of the altitudes of an
acute triangle by their segments from the orthocentre to the cor-
responding vertices equals half-sum of the squares of the sides.
Generalize this assertion to the case of an obtuse triangle.

352. Let the lengths a, b and ¢ of the sides of a triangle satisfy
the condition a < b <c¢ and form an arithmetic progression. Prove
that ac=6Rr where R is the radius of the circumscribed circle of
the triangle and r is the radius of the inscribed circle.

353. Prove that the square of the bisector of an angle in a
triangle is equal to the difference of the product of the sides includ-
ing this angle and the product of the segments of the base. What
is the meaning of this equality for the case of an isosceles triangle?

354. In a triangle ABC two equal line segments BD =CE are
set off in opposite directions on the sides AB and AC. Prove that
the ratio in which the segment DE is divided by the side BC is
the reciprocal of the ratio of the side AB to the side AC.

355. From a vertex of a triangle the median, the bisector of
the interior angle and the altitude are drawn. Prove that the
bisector lies between the median and the altitude.

356. Prove that the straight line which is the reflection of a
median through the concurrent bisector of an interior angle of a
triangle divides the opposite side into parts proportional to the
squares of the adjacent sides.

357. On the sides of a triangle ABC points P, Q and R are
taken so that the three straight lines AP, BQ and CR are con-
current. Prove that

AR-BP.CQ=RB.PC-QA.
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358. Prove that the radius R of the circumscribed circle of a
triangle and the radius r of the inscribed circle satisfy the relation

I*=R*—2Rr
where [ is the distance between the centres of these circles.

359. Prove that in any triangle the ratio of the radius of the
inscribed circle to the radius of the circumscribed circle does not

|
exceed 5 -

360. Prove that for any right triangle we have the inequality
0.4<% < 0.5 where r is the radius of the inscribed circle and 4
is the altitude drawn to the hypotenuse.

361. Prove that for any acute triangle we have the relation
k,+k,+k.=r+R where k,, k, and k, are the perpendiculars
drawn from the centre of the circumscribed circle to the corres-
ponding sides and r (R) is the radius of the inscribed (circum-
scribed) circle.

Hint. Express the left-hand and right-hand sides of the required
equality in terms of the sides and the angles of the triangle.

362. The vertices A, B and C of a triangle are connected by
straight lines with points A,, B, and C, arbitrarily placed on the
opposite sides (but not at the vertices). Prove that the midpoints
of the segments AA;, BB, and CC, do not lie in a common straight
line.

363. Straight lines DE, FK and MN parallel to the sides AB,

AC and BC of a triangle ABC are drawn through an arbitrary
point O lying inside the triangle so that the points F and M are

on AB, the points E and K are on BC and the points N and D

on AC. Prove that

AF A BE | CN
aEtectea—!

364. A square is inscribed in a triangle so that one of its sides
lies on the longest side of the triangle. Derive the inequality
V' 2r < x < 2r where x is the length of the side of the square and
r is the radius of the inscribed circle of the triangle.

365. Prove that the midpoints of the sides of a triangle, the
feet of the altitudes and the midpoints of the segments of the
altitudes from the vertices to the orthocentre are nine points of
a circle. Show that the centre of this circle lies at the midpoint
of the line segment joining the orthocentre of the triangle with
the centre of the circumscribed circle and its radius equals half
the radius of the circumscribed circle.
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366. From the foot of each altitude of a triangle perpendiculars
are dropped on the other two sides. Prove the following asser-
tions: (1) the feet of these perpendiculars are the vertices of a
hexagon whose three sides are parallel to the sides of the triangle;
(2) it is possible to circumscribe a circle about this hexagon.

367. Prove that in a right triangle the sum of the legs is equal
to the sum of the diameters of the inscribed and circumscribed
circles.

368. Prove that in a right triangle the bisector of the right
angle is simultaneously the bisector of the angle between the median
and altitude drawn to the hypotenuse.

369. Two triangles ABC and A,B,C, are symmetric about the
centre of their common inscribed circle of radius r. Prove that the
product of the areas of the triangles ABC, A,B,C, and of the six
other triangles formed by the intersecting sides of the triangles
ABC and A,B,C, is equal to r.

370. Prove that the difference of the sum of the squares of the
distances from an arbitrary point M of a plane to two opposite
vertices of a parallelogram ABCD in the plane and the sum of
the squares of the distances from the same point to the other two
vertices is a constant quantity.

371. On the sides of a triangle ABC equilateral triangles ABC,,
BCA, and CAB, are constructed which do not overlap the triangle
ABC. Prove that the straight lines AA,, BB,, and CC, are con-
current.

372. On the sides AB, AC and BC of a triangle ABC as bases
three similar isosceles trlangles ABP, ACQ and BCR are construc-
ted, the first two triangles lying outside the given triangle and
the third being on the same side of BC as the triangle ABC. Prove
that either the figure APRQ is a parallelogram or the points A,
P, R, Q are in a straight line.

373. A point O of a plane is connected by straight lines with
the vertices of a parallelogram ABCD lying in the plane. Prove
that the area of the triangle AOC is equal to the sum or diffe-
rence of the areas of two adjacent triangles each of which is for-
med by two of the straight lines OA, OB, OC and OD and the
corresponding side of the parallelogram. Consider the cases when
the point O is inside and outside the parallelogram.

374. In a trapezoid ABCD the sum of the base angles A and D
is equal to % Prove that the line segment connecting the
midpoints of the bases equals half the difference of the bases.
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375. Prove that the sum of the squares of the diagonals of a
trapezoid is equal to the sum of the squares of its sides plus twice
the product of the bases.

376. Prove that the straight line joining the midpoints of the
bases of a trapezoid passes through the point of intersection of
the diagonals.

377. Prove that if the line segment connecting the midpoints
of opposite sides of a quadrilateral equals half-sum of the other
two sides, then the quadrilateral is a trapezoid.

378. Prove that if the diagonals of two quadrilaterals are res-
pectively equal and intersect at equal angles, then these quadri-
laterals have the same area.

379. Prove that at least one of the feet of the perpendiculars
drawn from an arbitrary interior point of a convex polygon to
its sides lies on the side itself but not on its extension.

380. Prove that the bisectors of the interior angles of a paral-
lelogram form a rectangle whose diagonals are equal to the diffe-
rence of two adjacent sides of the parallelogram.

381. Given a parallelogram, prove that the straight lines con-
secutively joining the centres of the squares constructed outside
the parallelogram on its sides also form a square.

382. Prove that if in an arbitrary quadrilateral ABCD the bi-
sectors of the interior angles are drawn, then the four points at
which the bisectors of the angles A and C intersect the bisectors
of the angles B and D lie on a circle.

383. Twa tangent lines are drawn to a circle. Prove that the
length of the perpendicular drawn from an arbitrary point of the
circle to the chord joining the points of tangency is the mean
proportional between the lengths of the perpendiculars drawn from
the same point to the tangent lines.

384. Prove that the feet of the perpendiculars dropped from an
arbitrary point of a circle onto the sides of the inscribed triangle
lie in a straight line.

385. Three equal circles intersect in a point. The other point
of intersection of every two of the circles and the centre of the
third circle lie on a straight line. Prove that the three straight
lines thus specified are concurrent.

386. Two circles are internally tangent at a point A, the seg-
ment AB being the diameter of the larger circle. The chord BK
of the larger circle is tangent to the smaller circle at a point C.
Prove that AC is the bisector of the angle A of the triangle ABK.
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387. A circle of radius r is inscribed in a sector of a circle of
radius R. The length of the chord of the sector is equal to 2a.
Prove that

111
TR

388. Two tangent ljnes are drawn to a circle. They intersect a
straight line passing through the centre of the circle at points A
and B and form equal angles with it. Prove that the product of
the line segments AC and BD which are cut off from the given
(fixed) tangent lines by any (moving) tangent line is a constant
quantity.

389. Prove that the sum of the squares of the lengths of two
chords of a circle intersecting at a right angle is greater than the
square of the diameter of the circle and the sum of the squares
of the four line segments into which the chords are divided by
the point of intersection is equal to the square of the diameter.

390. Prove that if a chord of a circle is trisected and the end-
points of the chord and the points of division are joined with the
centre of the circle, then the corresponding central angle is divi-
ded into three parts one of which is greater than the other two.

391. Prove that if two intersecting chords are drawn from the
endpoints of a diameter of a circle, then the sum of the products
of each chord by its segment from the endpoint of the diameter
to the point of intersection is a constant quantity.

392. From each of two points of a straight line two tangent
lines are drawn to a circle. Circles of equal radii are inscribed in
the angles thus formed with the vertices at these points. Prove
that the centre line of the circles is parallel to the given line.

393. The diameter of a semicircle is divided into two arbitrary
parts, and on each part as diameter a semicircle lying inside the
given semicircle is constructed. Prove that the area contained be-
tween the three semicircular arcs is equal to the area of a circle
whose diameter is equal to the length of the perpendicular erected
to the diameter of the original semicircle at the point of division.

394. Prove that if two points lie outside a circle and the straight
line passing through them does not intersect the circle, then the
distance between these two points is greater than the difference
between the lengths of the tangent lines drawn from the given
points to the circle and less than their sum. Show that either the
former or the latter inequality is violated if the straight line in-
tersects the circle.

395. Through the midpoint C of an arbitraty chord AB of a
circle two chords KL and MAN are drawn, the points K and M
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lying on one side of AB. Prove that QC=CP where Q is the
point of intersection of AB and KN and P is the point of inter-
section of AB and ML.

396. A circle is arbitrarily divided into four parts, and the
midpoints of the arcs thus obtained are connected by line segments.
Show that two of these segments are mutually perpendicular.

397. Prove that for any closed plane polygonal line without
seli-intersection there exists a circle whose radius is % the peri-

meter of the polygonal line such that none of the points of the
polygonal line lies outside this circle.

398. Can a triangle be equilateral if the distances from its ver-
tices to two given mutually perpendicular straight lines are exp-
ressed by integers?

399. On one side of a straight line at its points 4 and B two
perpendiculars AA,=a and BB,=b are erected. Prove that for
constant a and b the distance from the point of intersection of
the straight lines AB, and A,B to the straight line AB is also
constant irrespective of the position of the points 4 and B.

400. A circle is inscribed in a right angle with point A as ver-
tex, B and C being the points of tangency. Prove that if a tan-
gent line intersecting the sides AB and AC at points M and N
is drawn to this circle, then the sum of the lengths of the seg-

ments MB and NC is greater than %(AB—}—AC) and less than
5 (AB+ AC).

401. Prove that if a circle of radius equal to the altitude of an
isosceles triangle rolls upon the base of the triangle, then the length
of the arc cut off from the circle by the congruent sides of the
triangle remains constant. Is this assertion true for a scalene tri-
angle?

402, Prove that the ratio of the diagonals of an inscribed qua-
drilateral of a circle is equal to the ratio of the sums of the pro-
ducts of the sides passing through the endpoints of the diagonals.

403. Prove that the sum of the squares of the distances from a
point on a circle to the vertices of an equilateral inscribed triangle
is a constant independent of the position of the point on the
circle.

404. Prove that if a circle is internally tangent to three sides
of a quadrilateral and intersects the fourth side, then the sum of
the latter and the side opposite to it is greater than the sum of
the other two sides of the quadrilateral.
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405. Prove that if a circle is internally tangent to three sides
of a quadrilateral whose fourth side does not intersect the circle,
then the sum of the fourth side and the side opposite it is less
than the sum of the other two sides of the quadrilateral.

406. Two equal semicircles whose diameters lie in a common
straight line are tangent to each other. Draw a tangent line to
them and inscribe a circle tangent to this line and to the two
semicircles. Then inscribe another circle tangent to the first one
and to the semicircles after which inscribe one more circle tangent
to the second one and to the semicircles and so on, unlimitedly.
Using this construction prove that the sum of the fractions

1 1 1 1 1
etnetaatoe T taesn

tends to unity for n— oo, that is
1 1 1
m—l—m—l—... +n——(n+l)+"':l'

407. An elastic ball of negligible dimensions rests at a point A
at a distance a from the centre of circular billiards of radius R.
To what point B of the cushion must the ball be directed so that
it returns to the point A after being reflected twice from the cu-
shion?

408. A ray of light is issued from a point A lying inside an
angle with reflecting sides. Prove that the number of reflection of
the ray from the sides is always finite. Determine this number if
the angle is equal to a and the initial ray is directed at an angle B
to one of the sides. Under what conditions does the reflected ray
again pass through the point A?

4. Loci of Points

409. Two fixed points A and B and a moving point M are taken
on a circle. On the extension of the line segment AM a segment
MN =MB is laid off outside the circle. Find the locus of points V.

410. Given two parallel straight lines and a point O between
them. Through this point an arbitrary secant is drawn which in-
tersects the parallel lines at points A and A’. Find the locus of
the endpoints of the perpendicular of length OA erected to the
secant at the point A’.

411. Find the locus of points for which the sum of their dis-
tances from two given straight lines m and [ is equal to the length a
of a given line segment. Consider the cases of intersecting and
parallel lines.
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‘412. Find the locus of points for which the difference of their
distances from two given straight lines m and ! is equal to a line
segment of given length. Consider the cases of parallel and inter-
secting lines.

413. Two line segments AB and CD are taken in the plane.
Find the locus of points M for which the sum of the areas of the
triangles AMB and CMD is equal to a constant a2

414. Given a circle K and its chord AB. Consider all the in-
scribed triangles of the circle with given chord as base. Find the
locus of orthocentres of these triangles.

415. Inside a given circle a point A not coincident with the
centre is fixed. An arbitrary chord passing through. the point A4 is
taken, and through its endpoints two tangent lines to the circle
intersecting at a point M are drawn. Find the locus of points M.

416. Prove that the locus of points M, for which the ratio of
their distances from two given points A and B equals

p
77 h

is a circle with centre on the straight line AB.
Express the diameter of this circle in terms of the length a of
the line segment AB. Also consider the case

L.
q

417. Given a line segment AB and a point C on it. Each pair
of equal circles one of which passes through the points 4 and C
and the other through the points C and B has, besides C, another
common point D. Find the locus of points D.

418. A polygon is deformed in such a way that its sides remain
respectively parallel to given directions whereas all its vertices
but one slide along given straight lines. Find the locus of posi-
tions of that vertex.

419. Given a circle K of radius r and its chord AB whose
length is 2e. Let CD be a moving chord of this circle with length 2b.
Find the locus of points of intersection of the straight lines
AC and BD.

420. Through a point P lying in a given circle and a point Q
belonging to a given straight line an arbitrary circle is drawn
whose second point of intersection with the given circle is R and
the point of intersection with the given straight line is S. Prove
that all the straight lines RS thus specified have a common point
lying on the given circle,
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5. The Greatest and Least Values

421, Given two parallel straight lines and a point A4 between
them at distances @ and & from the lines. The point A is the
vertex of the right angles of the right triangles whose other two
vertices lie on either parallel line. Which of the triangles has the
least area? -

422. Given a right triangle with acute angle a. Find the ratio
of the radii of the circumscribed and inscribed circles and deter-
mine the value of o for which this ratio attains its minimum.

423. A right triangle with legs @, and b, is cut off from a qu-
adrilateral with sides ¢ and 6. How must the quadrjlateral of ma-
ximum area with sides parallel to those of the initial quadrilateral
be cut off from the remaining part of the quadrilateral?

424. Two points A and B are taken on a side of an acute
angle. Find a point C on the other side of the angle such that
the angle ACB attains its maximum value. Make a ruler and com-
pass construction of the point C.

426. On a given straight line [ find a point for which the diffe-
renice of its distances from two given points A and B lying on
one side of the straight line attains its minimum value, and also
a point such that this difference attains the maximum value.

426. Through a point A inside an angle a straight line is drawn
which cuts off from the angle a triangle with the least area. Prove
that the segment of this line between the sides of the angle is
bisected at the point A.

427, Prove that among all triangles with common vertex angle
@ and given sum a+b of the lengths of the sides including this
angle the isosceles triangle has the least base.

428. Among all triangles with equal bases and the same vertex
angle find the triangle having the greatest perimeter.

429. In a triangle ABC an arbitrary point D is taken on the
base BC or on its exfension, and circles are circumscribed about
the triangles ACD and BCD. Prove that the ratio of the radii
of these circles is a constant quantity. Find the position of the
point D for which these radli attain their least values.

430. Cut off two equal circles having the greatest radius from
a given triangle. -
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B. SOLID GEOMETRY

Preliminaries

Here is a number of formulas to be used for computing volumes
and surface areas of polyhedrons and solids of revolution, the
notation being as follows: V, volume; S,,;, lateral surface area;
S, area of base; H, altitude.

Pyramid: V=%.

Frustum of a pyramid:

V=%(SI+S2+Vm. where S, and S, are the areas of the
upper and lower bases.

Right circular cone: V= , where R is the radius of the

base; S,,;=mnR!, where [ is the slant height.
Right circular cylinder: V=nR*H, where R is the radius of the
base; S,;4=2nRH.

Frustum of a cone: Vz% (R} + R:+R,R,), where R, and R,
are the radii of the bases; S,;;=n (R, + R,)!, where [ is the slant
height.

Sphere: VzénRs; S=4nR? where R is the radius of the
sphere.

\ . 2nR%h . .

Spherical sector: V=—3—, where R is the radius of the sphere
and h is the altitude of the zone forming the base of the sector.

Spherical segment: V=%nh2(3R——h); S;.t=2nRh, where R is
the radius of the sphere and h is the altitude of the segment.

nR2H

1. Computation Problems

431. The volume of a regular triangular prism is equal to V
and the angle between the diagonals of two faces drawn from one
vertex is equal to a. Find the side of the base of the prism.

432. From the vertex S of a regular quadrangular pyramid the
perpendicular SB is dropped on the base. From the midpoint O
of the line segment SB the perpendicular OM of length & is drawn
to a lateral edge and the perpendicular OK of length 6 is dropped
on a lateral face. Compute the volume of the pyramid.

433. Find the lateral area of a regular n-gonal pyramid of
volume V if the radius of the inscribed circle of its base is equal
to the radius of the circumscribed circle of the parallel section
drawn at a distance 4 from the base.
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434, A regular pentagonal pyramid SABCDE is intersected by
the plane passing through the vertices A and C of the base and
the midpoints of the lateral edges DS and ES. Find the area of
the section if the length of the side of the base is equal to ¢ and
the length of the lateral edge is equal to b.

435. A regular triangular pyramid is cut by the plane passing
through a vertex of the base and the midpoints of two lateral
edges. Find the ratio of the lateral area of the pyramid to the
area of the base if it is known that the cutting plane is perpen-
dicular to the lateral face opposite that vertex.

436. A pyramid of total surface area S is cut off from a regular
quadrangular prism by a plane passing through a diagonal of the
lower base and a vertex of the upper base. Find the total surface
area of the prism if the vertex angle of the triangle in the section
is equal to a.

437. Compute the volume of a regular triangular pyramid kno-
wing that the face angle at the vertex is equal to a and the ra-
dius of the circumscribed circle of the lateral face is equal to r.

438. A regular quadrangular pyramid with side of its base equal
to a is cut by a plane bisecting ils dihedral angle at the base
which is equal to 2a. Find the area of the section.

439. Above the plane ceiling of a hall having the form of a
square with side a a roof is made which is constructed in the
following way: each pair of adjacent vertices of the square forming
the ceiling is joined by straight lines with the midpoint of the
opposite side and on each of the four triangles thus obtained
a pyramid is constructed whose vertex is projected into the mid-
point of the corresponding side of the square. The elevated parts
of the faces of the four pyramids form the roof. Find the volume
of the garret (i.e. the space between the ceiling and the roof)
if the altitude of each pyramid is equal to k.

440. Find the dihedral angle formed by two lateral faces of
a regular triangular pyramid if the dihedral angle formed by its
lateral face and base is equal to «a.

441. In a regular triangular pyramid SABC the face angle at
the vertex is equal to & and the shortest distance between a lateral
edge and the opposite side of the base is equal to d. Find the
volume of the pyramid.

442, The base of a pyramid is an isosceles trapezoid in which
the lengths of the bases are equal to a and & (a > &) and the angle
between the diagonals subtended by its lateral side is equal to ¢.
Find the volume of the pyramid if its altitude dropped from the
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vertex passes through the point of intersection of the diagenals
of the base and the ratio of the dihedral angles whose edges are
the parallel sides of the base is 2:1.

443. An angle BAC of 60° is taken in a plane P. The distances
from a point S to the vertex A, the side AB and the side AC are
erspectively 25 c¢cm, 7 cm and 20 cm. Find the distance between
the point S and the plane P.

444. A regular hexagonal pyramid with face angle at the vertex
equal to a is intersected by a plane passing at an angle B to the
base through its longest diagonal. Find the ratio of the area of
the plane section to the area of the base.

445. All the three face angles of a trihedral angle are acute
and one of them is equal to a. The dihedral angles whose edges
are the sides of this face angle are equal to p and y respectively.
Find the other two face angles.

446. Compute the volume of a regular pyramid of altitude A
knowing that its base is a polygon for which the sum of the inte-
rior angles is equal to nn and the ratio of the lateral area of the
pyramid to the area of the base is equal to 4.

447. Consider a cube with edge a. Through the endpoints of
each triple of concurrent edges a plane is drawn. Find the volume
of the solid bounded by these planes.

448. A regular hexahedral pyramid is intersected by a plane
parallel to its lateral face and passing through the centre of the
base. Find the ratio of the area of the plane section to the area
of the lateral face.

449. Through each edge of a tetrahedron a plane parallel to the
opposite edge is drawn. Find the ratio of the volume of the pa-
rallelepiped thus formed to the volume of the tetrahedron.

450. On the lateral faces of a regular quadrangular pyramid
as bases regular fetrahedrons are constructed. Find the distance
between the exterior vertices of two adjacent tetrahedrons if the
side of the base of the pyramid is equal to a.

451, Through a point on a diagonal of a cube with edge a
a plane is drawn perpendicularly to this diagonal.

(1) What polygon is obtained in the section of the faces of the
cube by the plane?

(2) Find the lengths of the sides of this polygon depending
on the distance x from the centre of symmetry O of the cube to
the cutting plane.

452. Consider the projection of a cube with edge a onto a plane
perpendicular to a diagonal of the cube. What is the ratio of the
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area of this projection to the area of the section of the cube by
the plane passing through the midpoint of the diagonal perpendi-
‘cularly to it?

453. Given a regular quadrangular pyramid with altitude A4 and
side of the base a. Through a side of the base of the pyramid and
the midpoint of a lateral edge not intersecting this side the plane
section is drawn. Determine the distance from the vertex of the
pyramid to the cutting plane.

454. Given a regular tetrahedron SABC with edge a. Through
the vertices of the base ABC of the tetrahedron three planes are
drawn each of which passes through the midpoints of two lateral
edges. Find the volume of the portion of the tetrahedron lying
above the three cutting planes.

455, A rhombus with diagonals AC=a and BD =5 is the base
of a pyramid SABCD. The lateral edge SA of length g is perpen-
dicular to the base. Through the point A and the midpoint K of
the edge SC a plane parallel to the diagonal BD of the base is
drawn. Determine the area of the plane section thus obtained.

456. In a regular quadrangular prism two parallel plane sections
are drawn. One of them passes through the midpoints of two adja-
cent sides of the base and the midpoint of the axis of the prism
and the other divides the axis in the ratio 1:3. Knowing that the
area of the former section is S, find the area of the latter.

457. A triangular pyramid is cut by a plane into two poly-
hedrons. Find the ratio of volumes of these polyhedrons if it is
known that the cutting plane divides three concurrent lateral ed-
ges of the pyramid so that the ratios of the segments of these edges
adjacent to the common vertex to the remaining parts of the edges
are 1:2, 1:2 and 2:1.

458. Find the volume of a triangular pyramid if the areas of
its faces are S,, S;, S, and S,, and the dihedral angles adjacent
to the face with area S, are equal.

459. In a cube with edge a through the midpoints of two pa-
rallel edges not lying in one face a straight line is drawn, and
the cube is turned about it by 90°. Determine the volume of the
common portion of the initial and turned cubes.

460. Through the vertex of a cone a plane is drawn at an
angle o to the base of the cone. This plane intersects the base
along the chord AB of length a subtending an arc of the base of
the cone with central angle B. Find the volume of the cone.

461. A cone and a cylinder have a common base, and the vertex
of the cone is in the centre of the other base of the cylinder.

3-—-323
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Find the angle between the axis of the cone and its element if
the ratio of the total surface area of the cylinder to the total
surface area of the cone is 7:4.

462. A cylinder is inscribed in a cone, the altitude of the
cylinder being equal to the radius of the base of the cone. Find
the angle between the axis of the cone and its element if the ratio
of the total surface area of the cylinder to the area of the base
of the cone is 3:2.

463. In a cone with slant height / and element inclined to the
base at an angle @ a regular n-gonal prism whose all edges are
congruent is inscribed. Find the total surface area of the prism.

464. The four sides of an isosceles trapezoid are tangent to
a cylinder whose axis is perpendicular to the bases of the trape-
zoid. Find the angle between the plane of the trapezoid and the
axis of the cylinder if the lengths of the bases of the trapezoid
are respectively equal to a and b and the altitude of the trape-
zoid is equal to A.

465. A sphere is inscribed in a right prism whose base is a
right triangle. In this triangle a perpendicular of length A drop-
ped from the vertex of the right angle on the hypotenuse forms
an angle o with a leg of the triangle. Find the volume of the
prism. :

466. In a regular n-gonal pyramid with side of the base a and
lateral edge b a sphere is inscribed. Find its radius.

467. A sphere is inscribed in a regular ftriangular pyramid.
Determine the angle between its lateral edge and the base if the
ratio of the volume of the pyramid to the volume of the sphere
. 27 V3
is equal to =——.

468. About a sphere of radius r a regular n-gonal pyramid
with dihedral angle at the base o is circumscribed. Find the ratio
of the volume of the sphere to that of the pyramid.

469. Find the ratio of the volume of a regular n-gonal pyramid
to the volume of its inscribed sphere, knowing that the circums-
cribed circles of the base and lateral faces of the pyramid are of
the same radius.

470. Find the altitude of a regular quadrangular pyramid if it
is known that the volume of its circumscribed sphere is equal
to V and the perpendicular drawn from the centre of the sphere
to its lateral face forms with the altitude of the pyramid an
angle o,
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471. A sphere of radius R is inscribed in a pyramid whose
- base is a rhombus with acute angle «. The lateral faces of the
pyramid are inclined to the plane of the base at an angle .
Find the volume of the pyramid.

472. The congruent bases of two regular n-gonal pyramids
are made coincident. Find the radius of the inscribed sphere of
the polyhedron thus obtained if the sides of the bases of the py-
ramids are equal to a and their altitudes are equal to A and H
respectively.

473. The congruent bases of two regular n-gonal pyramids are
made coincident, the altitudes of the pyramids being different.
Determine these altitudes if the radius of the circumscribed sphere
of the polyhedron thus formed is equal to R and the sides of the
bases of the pyramids are equal to a. What is the relationship
between the values of a and R for which the problem is solvable?

474. An inscribed sphere of a regular n-gonal prism touches
all the faces of the prism. Another sphere is circumscribed about
the prism. Find the ratio of the volume of the latter to that of
the former.

475. A regular tetrahedron is inscribed in a sphere, and another
sphere is inscribed in the tetrahedron. Find the ratio of the sur-
face areas of the spheres.

476. A sphere is inscribed in a regular tetrahedron, and another
regular tetrahedron is inscribed in the sphere. Find the ratio of
the volumes of the tetrahedrons.

477. Given two concentric spheres of radii r and R (R > r).
What relationship connects R and r if it is possible to construct
a regular tetrahedron inside the larger sphere so that the three
vertices of its base lie on the larger sphere and the three lateral
faces are tangent to the smaller sphere?

478. A plane dividing a cube into two parts passes through
two opposite vertices of the cube and the midpoints of the six
edges not containing these vertices. Into each part of the cube
a sphere is placed so that it is tangent to three faces of the cube
and the cutting plane. Find the ratios of the volume of the cube
to the volumes of the spheres.

479, From a point on a sphere of radius R three equal chords
are drawn at an angle a to one another. Find the length of these
chords.

480. In a triangular pyramid SABC the edges SA, SC and SB
are pairwise perpendicular, AB=BC=a and BS==b. Find the
radius of the inscribed sphere of the pyramid.

3*
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481. Find the dihedral angle ¢ formed by the base of a regular
quadrangular pyramid and its lateral face if the radius of the
circumscribed sphere of the pyramid is three times that of the
inscribed sphere.

482. In a sphere of radius R aregular tetrahedron is inscribed,
and all its faces are extended to intersect the sphere. The lines
of intersection of the faces of the tetrahedron with the sphere
cut off from its surface four spherical triangles and several spherical
lunes. Compute the areas of these spherical parts.

483. A sphere is inscribed in a cone. The ratio of the surface
area of the sphere to the area of the base of the cone is 4:3.
Find the vertex angle of the axial section of the cone.

484. A hemisphere is inscribed in a cone so that its great circle
lies in the base of the cone. Determine the vertex angle of the
axial section of the cone if the ratio of the total surface area of
the cone to the surface area of the hemisphere is 18:5.

485. In a sphere of radius R a cone is inscribed whose lateral
area is & times the area of its base. Find the volume of the cone.

486. The ratio of the altitude of a cone to the radius of its
circumscribed sphere is equal to ¢. Find the ratio of the volumes
of these solids. For what ¢ is the problem solvable?

487. Find the ratio of the volume of a sphere to that of a right
cone circumscribed about the sphere if the total surface of the
cone is n times the surface area of the sphere.

488. Determine the radii of the bases of a frustum of a cone
circumscribed about a sphere of radius R knowing that the ratio
of the total surface area of the frustum to the surface area of the
sphere is equal to m.

489. A sphere of radius r is inscribed in a cone. Find the volume
of the cone knowing that the distance from the vertex of the cone
to the tangent plane to the sphere which is perpendicular to an
element of the cone is equal to d.

490. A sphere of radius R is inscribed in a cone with vertex
angle of its axial section equal to a. Find the volume of the part
of the cone above the sphere.

491. Determine the radii of two intersecting spheres forming
biconvex lense with thickness 2a, total surface area S and dia-
meter 2R.

492. A sphere is inscribed in a cone, the ratio of their volumes
being equal to 4. Find the ratio of the volumes of the spherical
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segments cut off from the sphere by the plane passing through
the line of tangency of the sphere and cone.

493. In a sphere S of radius R eight equal spheres of smaller
radius are inscribed so that each of them is tangent to two adja-
cent spheres and all the eight spheres touch the given sphere S
along its great circle. Then in the space between the spheres a
sphere S, is placed which touches all the spheres of smaller radius
and the sphere S. Find the radius p of the sphere S,.

494. In a sphere S of radius R eight equal spheres are inscribed
each of which is tangent to three adjacent spheres and the given
one. Find the radius of the inscribed spheres if their centres are
at the vertices of a cube.

495. In a sphere two equal cones with coinciding axes are in-
scribed whose vertices are at the opposite endpoints of a diameter
of the sphere. Find the ratio of the volume of the common por-
tion of the cones to that of the sphere knowing that the ratio of
the altitude h of each cone to the radius R of the sphere is equal
to k.

496. The areas of two parallel plane sections of a sphere drawn
on one side of its centre are equal to S, and S,, and the distance
between them is d. Find the area of the section parallel to the
two given sections and equidistant from them.

497. Three equal spheres of radius R tangent to one another
lie on a plane P. A right circular cone with its base in P is
externally tangent to the spheres. Find the radius of the base
of the cone if its altitude is equal to ¢R.

498. Given four equal spheres of radius R each of which
is tangent to the other three. A fifth sphere is externally tangent
to each given sphere, and one more sphere is internally tangent
to them. Find the ratio of the volume Vg of the sixth sphere to
the volume V, of the fifth.

499. Three equal pairwise tangent spheres of radius R lie on
a plane. A fourth sphere is tangent to the plane and to each
given sphere. Find the radius of the fourth sphere.

500. Four equal spheres of radius R lie on a plane. Three of
them are pairwise tangent, and the fourth sphere touches two of
these three. Two equal tangent spheres of smaller radius are placed
above these spheres so that each of them touches three larger
spheres. Find the ratio of the radius of a larger sphere to that
at a smaller.
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2. Proof Problems

501. Given a frustum of a cone with lateral area equal to the
area of a circle whose radius is equal to the slant height of the
frustum. Prove that it is possible to inscribe a sphere in the
frustum.

502. Given a frustum of a cone whose altitude is the mean
proportional between the diameters of the bases. Prove that it is
possible to inscribe a sphere in the given frustum.

503. Prove that the straight lines joining three vertices of a
regular tetrahedron to the midpoint of the altitude dropped from
the fourth vertex are pairwise perpendicular.

504. Let R be the radius of the circumscribed sphere of a re-
gular quadrangular pyramid, and r be the radius of the inscribed
sphere. Prove that

RevarL

Hint. Express § in terms of tan % where a is the dihedral

angle between the base of the pyramid and its lateral face.

505. From a point O in the base ABC of a triangular pyramid
SABC are drawn the straight lines OA’, OB’ and OC’ respectively
parallel to the edges SA, SB and SC which intersect the faces
SBC, SCA and SAB at points A’, B’ and C’. Prove that

04' , OB’ , 0C’
sxtsgTse=t

506. Consider two triangles ABC and A,B,C, with pairwise
nonparallel sides lying in intersecting planes. The straight lines
joining the corresponding vertices of the triangles intersect in one
point O. Prove that the extensions of the corresponding sides of
the triangles are pairwise concurrent and the points of intersection
lie in a straight line.

507. Show that the line segments joining the vertices of a trian-
gular pyramid to the centroids of the opposite faces meet in one
point and are divided by this point in the ratio 1:3.

508, Show that the area of any triangular section of an arbit-
rary triangular pyramid does not exceed the area of at least one
of its faces.

509. One of two triangular pyramids with common base is inside
the other. Prove that the sum of the face angles at the vertex of
the interior pyramid is greater than that of the exterior one.
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510. Four spheres with non-coplanar centres are pairwise tangent
to one another. For every two spheres a common tangent plane
is drawn perpendicularly to their centre line. Prove that the six
planes thus constructed have a common point.

511. Prove that ii the sums of the lengths of any pair of op-
posite edges of a triangular pyramid are equal, then the vertices
of the pyramid are the centres of four pairwise tangent spheres.

512. What condition on the radii of three pairwise tangent
spheres guarantees the existence of a common tangent plane to
the spheres?

513. Prove that if a point moves inside the base of a regular
pyramid in its plane, then the sum of the distances from this
point to the lateral faces remains constant.

514. Prove that two planes drawn through the endpoints of two
triples of edges of a parallelepiped meeting in the endpoints of
a diagonal of the parallelepiped trisect this diagonal.

515. Show that if a plane drawn through the endpoints of three
edges of a parallelepiped meeting in one vertex cuts off aregular
tetrahedron from the parallelepiped, then the latter can be inter-
sected by a plane so that the section is a regular hexagon.

516. Prove that every plane passing through the midpoints of
two opposite edges of a tetrahedron divides this tetrahedron into
two parts of equal volumes.

517. Prove that if all dihedral angles of a triangular pyramid
are equal, all the edges of the pyramid are also equal.

518. The endpoints of two line segments AB and CD lying in
two parallel planes are the vertices of a triangular pyramid.
Prove that the volume of the pyramid does not change when the
segments are translated in these planes.

519. Prove that a straight line intersecting the two faces of a
dihedral angle forms equal angles with them if and only if the
points of intersection are equidistant from the edge.

520. Consider two line segments AB and CD not lying in one
plane. Let MN be the line segment joining their midpoints. Prove
that

AD+-BC

7 > MN

where AD, BC and MN designate the lengths of the corresponding
segiments.

521. Prove that every face angle of an arbitrary tetrahedral
angle is less than the sum of the other three face angles.
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522. Prove that any convex tetrahedral angle can be intersected
by a plane so that the section is a parallelogram.

523. Prove that if the faces of a triangular pyramid are of the
same area, they are congruent.

3. Loci of Points

524. Find the locus of projections of a point in space on pla-
nes passing through another fixed point.

525. Find the locus of centres of the sections of a sphere by
the planes passing through a given straight line !. Consider the
cases when the line and the sphere intersect, are tangent or have
no points in common.

526. Find the locus of centres of the sections of a sphere by
the planes passing through a given point C. Consider the cases
when the point is outside the sphere, on its surface or inside it.

527. Find the locus of points from which it is possible to draw
three tangent lines to a given sphere of radius R which are the
edges of a trihedral angle with three right face angles.

528. Find the locus of feet of the perpendiculars dropped from
a given point in space on the straight lines lying in a given plane
and intersecting in one point.

529. Given a plane P and two points A and B not lying in it.
Consider all the possible spheres tangent to the plane P and pas-
sing through A and B. Find the locus of points of tangency.

530. A trihedral angle is intersected by a plane, a triangle ABC
being the section. Find the locus of the centroids of triangles ABC

on condition that
(a) vertices A and B are fixed;
{(b) vertex A is fixed.

4. The Greatest and Least Values

531. A cube is intersected by a plane passing through its dia-
gonal. How must this plane be drawn to obtain the section of the
least area?

532. A triangular pyramid is intersected by the planes parallel
to two nonintersecting edges. Find the section having the greatest
area, ’



TRIGONOMETRY

Preliminaries

Here are some formulas to be used in the suggested problems.

1. Addition and subtraction formulas:
sin (x +y) = sin x cos y 4-cos x sin g,
sin (x —y) = sin x cos y —cos x sin y,
€os (x4 y) =cosxcosy—sinxsiny,
€08 (X— y) = ¢c0s x cos y + sin x sin y.
2. Double-angle and triple-angle formulas:
sin2x =2sinxcos x,
€0s 2x = cos? x—sin? x,
sin 3x =3sinx—4 sin®x,
c0s3x =4 cos®x—3cosx.

3. Sum and difference of trigonometric functions:

+y —Y.
2
: 'Hl —Y
sinx 2 )
cos x4 cosy=2co +y 2y,
coOSx—cosy=2 sm—ﬂsm 2
4. Product formulas:
sinxsiny:l[cos(x— y—cos (x -+ y)],

COS X COS Y = [cos (x—y)+cos (x+y)],

sin xcosy:§ [sin (x —y) +sin (x4 y)],

- l—cos 2x
sin x="——'§"—-,
c082x=1+C052x.

2

(1)
&)
(3)
(4)

®)
(6)
(7)
®)
(9)
(10)
(11)
(12)

(13)

(14)

(15)

(16)
(17)
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. . . X
5. Expressing sinx, cosx and tanx in terms of tan =:

2
2tanL;-
sinx=—2_, (18)
I 4tan2 —
2
1 —tan? —';—
oS ¥ = —— =, (19) -
l+tan’ T
2tan %
tanx = . (20)
1—tan? -
2
6. Inverse trigonometric functions.
(a) Principal values of inverse trigonometric functions:
y=arcsinx, if x=siny and —%<y<7, (21)
y=arccosx if x=cosy and O0<<y<m, (22)

y=arctanx if x=tany and ——525<y<-’21, ((23)
y=arccotx if x=coty and O0<y<m. (24)

(b) Multiple-valued functions:
Arcsinx=(—1)"arcsinx+ann, n=0, £1, 2, ..., (25)

Arc cos x = J=arc cos x - 2an, (26)
Arctan x=arctanx + nn, 2n
Arc cot x=arc cot x + nn. (28)

Formulas (25) to (28) determine the general expressions for the
angles corresponding to given values of trigonometric functions.

1. Transforming Expressions Containing
Trigonometric Functions

533. Prove the identity

. 3 .
sin® x 4+ cos® x =1 ——4—51r122x.

534. Prove the identity

cos? ot 4 ¢0s? (a + B) — 2 cos & cos B cos (o + B) =sin? .
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535. Prove that
tan x +tan 2x —tan 3x = —tan x tan 2x tan 3x

for all permissible values of «x.
536. Prove that the equality

tan 3x =tanx tan <%——x) tan(% + x)

for all permissible values of x.
537. Prove the identity
sina +sin P+ siny—sin(a 4 p -+ y) =

A @B BV vt
=4sin 5 Sin == sin-—5—.
538. Prove that

B Y

sina+sin[‘3+sinv——:4cos—;cos 5 €0S =

if
at+pt+y=m.
539. For oo +p--y=mn prove the identity
sin 2ne - sin 2nP + sin 2ny = (—1)"* ' 4 sin no sin nf sin ny
where n is an integer.
540. Prove that if cos{a+p)=0 then
sin(a 4-2B) = sina.
541, Prove that if 3sinf =sin(2e 4 p) then
tan (a4 p) =2tana
for all permissible values of o and .
542, Prove that if sina=A4sin(a--p) then

sinp

tan (“+ﬁ):cosﬁ~A

for all permissible values of & and .
543. Prove that if the angles a and B satisfy the relation

sinﬁ n
sin(2a+p)  m (Im]>[n]),
then
|y tanB

tana 1—tana-tanf
mt+n m--n :

75
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544, Prove that if cosx-cosy-cosz=£0, the formula

cos (¢ +y+2) =
= cosxcosycosz(l —tanxtany—tanytan z—tanztanx)

holds true.
545. Prove that if «, B, y are the angles of a triangle then

tan%—tan—ﬁ——{-tan%tan—_%’-—,}-tan%tan%—:1.

546. Let x—}—y+z=%k. For what integral £ is the sum
tanytanz+tanztanx4-tanxtany
independent of x, y and 2?

547. Find the algebraic relation between the angles a, p and y if
tano +tan p+tany=tanca tanp tany.

548. Rewrite as a product the expression
cot? 2x—tan? 2x—8 cos 4x cot 4x.

549. Transform into a product the expression
sin?a - sin? B + sin®y -+ 2 cosa cos f cos y— 2,
550. Compute

1 . o
m——2 sin70
without using tables.
551. Prove that
0s T —cos 2oL
CSg—COS 5 =7

552, Prove that
2n 4n 6n 1
€08 ==+ C0S — + €08 — = — 5.
553. Compute
T ia 3T . cog T
sin4 16—}-sm G + sin 6 -+ sin G
without using tables.

554. Prove that
tan 20°tan 40°tan 80° =} 3.
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2. Trigonometric Equations and Systems of Equations

A. TRIGONOMETRIC EQUATIONS

555.

556.

557.

558.

559.

560.

561.

562.

563.

564.

565.

566.

567.

Solve the equation
. . 1
sin® x cos x—sin x cos® x == e

Solve the equation

1—tan
1+tanx

Solve the equation
1 4 sinx 4 cos x -+ sin 2x 4 cos 2x =0,

=1 +sin 2x.

Solve the equation
1 + sinx 4 cos 3x = cos x - sin 2x 4 cos 2x.

Solve the equation
(sin 2x +V/ 3 cos 2x)2—5 = cos (%—2x) .
Solve the equation
2sin 17x+ 1/ 3 cos 5x + sin 5x = 0.
Solve the equation
sin?x (tanx+ 1) = 3 sin x (cos x—sin x) + 3.
Solve the equation

sin®x4cos®x =1 ——-—;— sin 2x.

Solve the equation

| 1 1 1 1 1
sin?x cos?x tan?x cot?x sec®x cscix

—3.

Solve the equation

int X X 5
sin 3—{—cos 3=7"

Solve the equation
% (sin® x 4- cos? x) = sin® x cos® x + sin x cos x.
Solve the equation
(1 4+ k) cosx cos (2x—a) = (1 4k cos 2x) cos (x—a).

Solve the equation
sinax sin bx = sincx sindx,
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where a, b, ¢ and d are consecutive positive terms of an arithme-
tic progression.

568, Solve the equation
2+cosx=2tan§ .

569, Solve the equation
cotx—2sin2x=1.
570, Find tanx from the equation
2 cosx cos (B — x) = cos f.
571. Find cosg if
sino + sin (@ —a) + sin (2¢ + a) =sin (¢ 4 o) + sin (2p—a)

and the angle ¢ is in the third quadrant.

572, Find cotx from the equation

cos? (& -+ x) - cos? (a—x) =a,

where 0 < a < 2. For what a is the problem solvable?

573. Find tan% if sina—]—cosa:KQ—?— and the angle o lies
between 0° and 45°,
574. Solve the equation
sin2x— 12 (sinx—cosx)+ 12=0.

575, Solve the equation

9 X
sec '2—
14+2cscx=— 5.
576, Solve the equation
_14sinx
cot?x =TT cosx*

577. Solve the equation
2 tan 3x—3 tan 2x = tan? 2x tan 3x.

578. Solve the equation
2 cot 2x— 3 cot 3x =tan 2x.

579. Solve the equation
6 tan x 4+ 5 cot 3x = tan 2x.

580. Solve the equation
1 1

insx— S ————
Sl X —C0S* x COSK T

.
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581. Solve the equation
tan (x——) tan x tan (x—l—-}) = _ﬂszx__.
tan = —cot =
2 2
582, For what a is the equation
sin? x—sinxcosx—2cos? x==q
solvable? Find the solutions.
583. Determine all the values of a for which the equation
sintx—2cos?’x+a*=0
is solvable. Find the solutions.
584. Solve the equation

COS T = cosQn cos4n cosSn coslﬁ %:%

31
585. Solve.the equation
cos 7x—sin5x=)/3 (cos 5x—sin 7x).
586. Solve the equation
2 —(7 +sin2x) sin®* x + (7 4 sin 2x) sin* x == 0.
587. Find sinx and cosx if
acosx-+bsinx=c.

What condition connecting a, b and ¢ guarantees the solvability
of the problem?

588. Solve the equation

asinx+b acosx+b (az#sz)

bcosx-+a  bsinx-+a

589. Solve the equation
32 cos® x—cos bx == 1.

590. Solve the equation

8sin*x+3cos2x-4-2cosdx 1 =0,
591. Solve the equation

€0s 3x cos® x -+ sin 3x sin® x = 0.
592. Solve the equation
17

in® 088 X = —
sin®x+cos® x=z5.
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593. Solve the equation
sin® x 4-cost® x = %% cost 2x.
594, Solve the equation
sin® x +sin® 2x -+ sin® 3x = (sin x + sin 2x 4 sin 3x)3.
595. Solve the equation
sin® x4+cos* x =1,
where n is a positive integer.

596. Solve the equation

sin (%fl'%f) =2 sin ('?—g—%) .
597. Solve the equation
(cos 4x—cos 2x)* =sin 3x 4+ 5.
598. Solve the equation
(sinx+cosx) V2 = tan x + cot x.
599. Prove that the equation
(sinx +)/3 cos x) sin4x =2
has no solutions.

600. Determine the range of the values of the parameter A for
which the equation

secx-+cscx=A

possesses a root x satisfying the inequality 0 <x<g-.

B. SYSTEMS OF EQUATIONS
601. Find all solutions of the sysfem of equations
sin(x+y) =0, }
sin (x—y) =0,
satisfying the conditions 0<Cx < and 0Ty < m.
602. Solve the system of equations
sinx=cscx -+ siny, l
cosx =sec x+cos y. |
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603. Solve the system of equations
sin® x=% sin y, }
s 1
cos® X =5 cos y.

604. Solve the system of equations
tanx-4tany=1, l
€OS XCOS yy = L

Vz')

605. Solve the system of equations

sin x sin y=4—l—_,}

tanxtany=%.

606. Solve the system of equations
x+y=q, }
COS X COS Y =a.
For what a is the system solvable?
607. Find all the values of a for which the system of equations
sinxcos2y=a®+1,
cosxsin2y=a }
is solvable and solve the system.
608. Solve the system of equations
cos (x —2y) =acos®y,
sin (x —2y) =acos® y. }
For what values of a is the system solvable?
609. Find cos (x+y) if x and y satisfy the system of equations
’ sinx+siny =a,
cosx+cosy=>b }
and a®+ 6*=40.
610. For what values of o is the system
XI—y=a,
2 (cos 2x +4-cos 2y) = 1 4-4 cos? (x —y) }
solvable? Find the solutions.
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611. Find all the solutions of the system
8cosxcosycos(x—y)+ 1 =0, }

X4y=a.
For what « do the solutions exist?
612. Solve the system of equations

tanx-{—ta%=2 sin (_y—l—%) , }
1

tany-l—tény=2 sin (x—%) .

613. Eliminate x and y from the system of equations
asinx4bcos’x=1, _
acosty+bsinty=1, }

atanx=btany,

under the assumption that the system is solvable and a==b.
614, Express cose and sinf in terms of A and B if

sine=Asinf, tana=Btanp.
615. Solve the system of equations
tanx =tan®y,
sinx:cos2y.}
616, Solve the system of equations
sinx -+ siny =sin (x—]-y),}
lx[+]y|=1.
617. Solve the system of equations
sin (y—3x) =2 sind x,
cos {y — 3x) =2 cos® x. }

618. What conditions must be satisfied by the numbers a, b
and ¢ for the system of equations

sinx+siny =2a,
COS X + COS §f == 2b, }
tanxtany=c
to have at least one solution?

3. Inverse Trigonometric Functions

619. Compute arc cos [sin (———?—)J
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620. Compute arc sin (cos%sn) .

621. Prove that

| 1
arc tan—é——}-arc tan%—karc tan =+ arc tan g =

ENE

622. Derive the formula

JT

arc sin x - arc cos r=.

623. Show that for « <3—l2 the equation
(arc sin x)® + (arc cos x)? = an®
has no roots.
624. Prove that

arcsin )/ 1— x? if o<l
n—arcsin)/ T—x% il —1<<x<<O.

625. Prove the formulas

arccos x = {

arcsin(—x)= —arcsinx and arccos(—x)=m—arccosx.

626, Prove that if——g——ﬂk 2hn < x << g— -+ 2&n then
arc sin (sin x) = x —2km.
627. Prove that if 0 <x <1 and

| 4+-x Lol —x?
a=2arctan—, [’»Marcsml_i_x2

then a +p=m.

628. Find the relationship between
arc sincosarcsinx and arc cos sin arc cos x,

4. Trigonometric Inequalities
629. Solve the inequality sinx > cos®x.

630. For what x is the inequality

4sin?x4+3tanx—2sec2x >0
fulfilled?

631. Solve the inequality sinxsin2x < sin3xsin4x
0<x<5%.

83

if
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632. Solve the inequality
sin’.\:—l
4

— 0
V'3 —(sin x+ cos x) >

633. Find all positive values of x not exceeding 2n for which
the inequality

cosx—sinx—cos2x >0
is satisfied.

634. Solve the inequality tan-%

tan x—2

> tanx 42 °
635. Solve the inequality

cos® x cos 3x —sin® x sin 3x > %
636. For 0 < g <% prove the inequality
cot % > 1 +cot g.

637. Prove that the tnequality
(1 —tan®x) (1 —3tan®x) (1 4 tan 2x tan 3x) > 0

hold for all the values of x entering into the domain of defini-
tion of the left-hand side.

638. Prove that the inequality
(cot2x—1)(3cot?x—1)(cot 3xtan 2x —1) < —1

is valid for all the values of x belonging to the domain of defi-
nition of the left-hand side.

639. Putting tan6=ntang¢ (n > 0) prove that
tan® (9—g) <L,
640. Prove the inequality

smx—l+ 2—sinx
sin x—2 2/3 sinx’

For what values of x does it turn into an equality?
641. Prove that if 0<cp<1‘2-, the inequality

cossin @ > sincos @
is fulfilled.

642. By the method of complete induction, prove that
tannoa >ntano
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: i3 2 sitive integer greater than unity and o is an angle
rac. i 0. the inequality 0<a<ﬁ.
643, Let 0 <o, <, < ... <oc,,<%. Prove that

sina;4-...+sina,
COS &4y~ ... €08 &y

tana,; < < tana,,.

644. Prove that if A, B and C are the angles of a triangle

then
. A . B C 1
s 351“ 7811’1 —2-<'§'.

645. Prove that if 0 < x < % then

cos x
sin2 x (cos x—sin x)

> 8.

5. Miscellaneous Problems

646. Compute sin (2 arc tan %—arc tan 1—52) .

647. Prove that if tana:% and sinﬁ=—ll:0 where the angles

o and B are in the first quadrant then a4 2B =45°,

648. Prove that the expression

_ sinx+4tanx
T cosxf-cotx

assumes positive values for all permissible values of x.

649. Prove that the equality sinea sin2asin3a=%— does not
hold for all the values of a.

650. Express sinbx in terms of sinx. With the aid of the for-
mula thus obtained compute sin36° without using tables.

651. Find the greatest and the least values of the function
¢ (x) = sin® x 4 cos? x.
652. Find the greatest and the least values of the function
y=2sin?x+4cos®x+ 6sinxcoswx.
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653. Find out for what integral values of n the number 3n is
a period * of the function

.5
COS nx sin w X.

654. Prove that if the sum
a, cos (o, + x) +-a, cos (a, -+ x) + . .. +a, cos (&, + x)

vanishes for x=0 and x =x,s=kn where k is an integer, then it
is identically equal to zero for all x.

655. Prove that the function cos}/ x is nonperiodic (i.e. there is
no constant number T 540 such that cos}/ x - T =cos} x for all x).

656. Prove the formula

. .onx . (n+1)x
S11 —— Sin

. . . 2 2
sinx4-sin2x4 ... +sinax= .

sin a
2

Hint. Use De Moivre’s formula
(cos x i sinx)” =cosnx 4 isinnx.
657. Compute the sum

C0S T L£0S n €0Ss ald
7 ] 7

3ttt
Hint. Apply De Moivre’s formula.
658, Consider the function
f(x)=Acosx+ Bsinx,
where A and B are constants.
Prove that if a function f(x) vanishes for two values x, and x,

such that
X, — X, 5=k,

where k& an integer, then f(x) is identically equal to zero.
* A function f (x) is said to be periodic if there exists a number T % 0 such

that the identity f (x4 T)==f(x) is fulfilled for all the permissible values of x.
The number T is then called a period of the function.



SOLUTIONS | ALGEBRA
AND ANSWERS

1. Arithmetic and Geometric Progressions
1. By the hypothesis, we have
b—a=c—b=d and c—a=2d.

Denote
1

1
A= —— —
VetrVa VotVe
__ 1 _ 1
atVo VetV
Let us show that A,=A4,. If d=0 then a=b=c and A,:=A4,=0. Therefore
we suppose that d # 0. Rationalizing the denominators we obtain

A= ?;VE_*_ VZ—dV?:2VTz—;§c_—VTz

and

%

and

A Yb=—Va_Vei—Va_2Vi-Vc-Vau
2 d 2d 2d

Thus, A;=A, which completes the proof.

2. If the common difference d of the given progression is equal to zero the
validity of the formula is obvious. Therefore we suppose that d # 0.

Denote the left-hand side member of the desired equality by S. Rationalizing
the denominators we get

s Va—Va VaVa, V-V,
Ay—ay az3—4a, Ap—0ap—
Since, by the hypothesis, @,—a, =a3—a,=...=a,—a,-,; =d we obviously
obtain
=t

Now we can write
a,—a, _ (n—1)d __ n—l
Va+Va)d dVa+Va) Va+Va,

which is what we set out to prove.

S=

3. By the hypothesis we have

QG— o =a3—ay=,.. =0a,—0a,_,=d.
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If d=0 then the desired equality is obvious. Assuming that d # 0 we can write ‘

R ST 1

?‘:‘Z a8y ' agay ' N apoa,
1 1 1 1 1\1 1 1 1
=(aa)rt(a—=)at(a—a)at+

1 1 1 1 1\ 1
+ ( Ap—y - ) d +( Ay an) da-

which is what we set t{ﬂ to prove.

4. At n=3 we have —l—+ ! =L. Whence, L——l-z 11
@a, a4y 443 Q4 Qe a3 - a30,
and consequently az—a,=a,—a,. Therefore it is sufficient to show that

Ay g1 =0y =1 —Apwy

for any n>4. Let us write down, in succession, the equality given in the for-
mulation of the problem for the cases n—2, n—1 and n:

1 1 1 n—3
I = , 1
a,Q, +a2a3 + +a,,_3 Qp—g Qi Q- ()
1 1 1 n—2
—_— —_— cee - 5 2
0, +‘12‘13 + +an~2an-l 4 =y @
1 1 1 n—1
== . 3
410y Q903 B an-1@y  Q1a, @

Subtracting termwise equality (2) from (3) and (1) from (2) we get
1 1

=(n_2) An-1—Gn

Gp-19p @4, Gy -18y,
and
I _ 1 —(n-—9)tr=2" %1
Ap-oln—-1  &85-2 0 —10, -2

Reducing the fractions to a common denominator and cancelling we find
a—a, -y =(n—2)(a;-y—ag),
@ —pey =(1—2) (@y—g—ay ;).
Hence, a,-,—a,=a,-,—a,-,; which is the required result.

5. We shall use the method of induction. Note that the equality holds for
n=2 since a,—a; =az—a, and, consequently, a; —2a,-}-a3=0. Suppose that
the desired formula is valid for a certain n or, in other words, for any arithme-
tic progressien Xy, X, ..., X4+, the equality

% —Crxy+Caxy + ...+ (—1)"=1Cr x4 (—1)" Chxsy =0 )]
holds. Now passing to n-f-1 we use the identity
Ch=Ch_y+ChL
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which results in
4y —Chi18y+Crsyas+ ... +(—1)" Creran 41+
+ (=12 Citian o= (6 — Chay+ ... +(—1)" Chay 1] —
—[a—Chag+ ...+ (=1)r=1 Ch a4y +(—1)" Chay 4] -

By the hypothesis, both expressions in square brackets are equal to zero
because they are of form (1). Therefore, the desired formula is valid for n+1
as well. Thus, the assertion is proved.

6. We carry out the proof by induction. For n=3 it readily follows that
ai—3 (a,+d)*+3 (a4 2d)* — (a, + 3d)* =0.
Suppose we have already established that for a certain n and any arithmetic
progression x;, Xp, ..., X¥p+3 the identity
A—Chxzt ...+ (—=D"Chxps =0
holds. Then passing to n+41 as in the preceding problem we obtain
0} — Cha103+ Craras+ ... +(—1)"Crsr apag +
+(=1)p+1Chitlahse = [el— Chad+ ... +-(—=1)rChaf] —
—[ad—Chai+ ... +(—1)"Clatsa] =0,
and thus the required formula has been proved.
It should be noted that for an arithmetic progressien a;, ay, ..., 8,, @y4,
the more general formula
af— Claf+ Ciaf— .. . (—1)-1C2 a4 (—1)nClak, =0
holds where 2=1 is an integer.

7. By the well-known property of the terms of an arithmetic progression we
have

2 log, x=1log, x4 logg x.
Whence we obtain (see (3), page 25)
2 1 1
log, m  logyn ' log,k

and, consequently,
__logym | logym
2= logy n + log, &

Using formula (2) given on page 24 we deduce
2=log, m- logg m.
Let us rewrite this equality as
log,, n? = log, m-log, (n'°8:™),
Now, raising we obtain n?=mn!%8k™ or
n? = (kn)'°8k™
which is what we set out to prave.

8. Let
a1+42+--'+a7; =c (”

Gpi1taniet .ot Oninn
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Denote the common diflerence of the progression by d. We are only interested
in the case d # 0 since for d=0 all terms of the progression are equal and the
equality (1) is automatically fulfilled. Using the formula for the sum of terms
of an arithmetic progression we get from (1) the equality

k

5 la+a+d(n— D)= (a4 nd+ay+(n-Fkn—1) d] c

from which, after cancelling —’21- and rearranging the terms, we find

(2a, —2a,kc—d + cdk)+ n (d— cdk® —2¢dk) = 0.
Since this equality holds for any n# we conclude that
20y —2a,kc—d - cdk=0
and
d—cdk?—2cdk=0.
Cancelling out d # 0 in the second equality we obtain
1
c._k—-—(k+ %) (2)
The first equalitiy can be represented in the form
(2a;—d) (1 —ck)=0.
By virtue of (2), the second factor is different from zero and hence d =2a,.
Thus, if d # 0 equality (1) can be valid for all n only in the case of the

progression
a, 3a, 5a, ... (a#0). 3)

Now it is easy to verify directly that progression (3) in fact satisfies the
condition of the problem. Thus, the sought-for progression is given by (3).
9. Let d be the common difference of the progression. We have
BR=x+m+dP+ .. (=D dR =i+ 2nd 1424 ..+ (r— 1]+
+d2[12+22+...+(n—1)2]=nx%+n(n—1)xld+’i’%@””—'” @
and, besides

nn—1)

) d.

a=nx,+

Eliminating x, from these equations, after some simple transformations we
obtain

L=l ., a
) d —I5 =b o
Hence, |
\ TO e 2
_ 12 (nb®>—a?)
d—i] n?(n2—1) °

%, is then defined in either case by the formula

:—l—[a—n(—g——_ﬁd] .

n

Thus, there are two progressions satisfying the conditions of the problem for
nt—a? £ 0
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10. Let the sequence ay, @y, ..., a, possess the property that
ay—a; =d, ag—ay,=2d, ..., ay—a, =(n—Nd,
Adding together the equalities we find that
n(n—-l)
n=ay+d —5—— —5

Using this formula we get
1 2.3 —1
Sp=a,+a+...+a,=an+ ['—2“ "‘g“" +(ﬂ )n}

In Problem 266 it is proved that

1.2, 2.3 —1 —1
2% I_“_l_(n2)n n(6 )

Consequently,
Sy=an+ 2 g,
For the problem in question we have d=3, ¢;=1. Therefore,
an=l+-32—n(n——1) and S,,:%n(n‘uri).

11. The nth row contains the numbers n, n41, ..., 3n—3, 3n—2 (the
total of 2n—1 numbers). The sum of these numbers is equal to

(n+3n—2)(2n—1)
2

=(2n—1)2.

12. Let g be the common ratio of the progression. Then

am+”____alqm+n—l ZA'
Qpp=agm=""1=B.

A n LA
Whence ¢2# == and, hence, ¢= +-+ Now we have
B B

2n 'AT n -
p=0p-nq" =B ( -I/-‘E‘) = VAB:
_m 2a-m m
an=am+nq"”‘=4(%) 2"=A 2n B2n.
13. We have
Sa=a;+ag+ ...+ a1,
Son—Sp =g+ a,g" ... Fa g -1=¢nS,
and, furthermore,
Son—Sen=agt+argitH it L g =S,
It follows that
1 S Su—S,
7" S2n—Sn Ssn—Sun
which is what we set out o prove.
14, We have

n(n-1) ( _I_)
H,,:al‘alql-..nalq"‘l:a'{q P = a1q2 .



92 PROBLEMS IN ELEMENTARY MATHEMATICS

Noting that
gn—1
q9—1

= 1 1 1 1<Tl;>”_l 1 gn—1
S":E+_+"'+alq"'1=_ T

a9 1 LI =‘11‘7"—1 g—1

Sp=ay+ a9+ ...-+ag"-1=a

and

we conclude that

and thus we obtain

S \=
I, = .—n 2.
’ <sn )
15. Denote the sought-for sum by S,. Multiplying each item of this sum by
x and subtracting the resulting quantity from S, we obtain

Sy—xSp=14x+4x24 ... fxn—(nt1)xn+L,

Applying the formula for the sum of a geometric progression to the one ente-
ring into the right-hand side for x # 1 we find

]__xn+l

(l—x) Sn= 1—

—(n4-1) xn+1,
Hence,
—l_xn-)-l (n_l_l)xﬂ-i-l

Sn= T—x2 ~ I—x (e # 1.

For x=1 we thus obtain

s,=thEtD),

16. Let us denote the desired sum by S,. Transforming the terms of the
sum by using the formula for the sum of téerms of a geometric progression we .
can write

102—1
14+10=——,
3
t4104100= =L,
10n—1
14104100+ ... 1071 = .
, 10—1 . L .
Since we have 1=9— the addition of the right-hand sides of the latter

equalities yields

1__
s,,=%(10+102+...+ lO"——n)z—;— (1—0-"%—'9—:;) .
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17. By adding together the elements of the columns we can represent the
required sum in the form

(x+x2+ x84 .. fxn=24xn-14 xn) |

R B E T
R L

+ (+ 22+
+x.

Now summing the terms in the brackets we find that for x = 1 the sought-for
sum is equal to

xn—| x"‘ xn—=2_ x—1_
xx_l—)-x = —]—\' + +x +x — =
. " % x"—l_ _ Xt (xn—1) nx

For x=1 this sum is equal to n(n2—+l) as the sum of terms of an arithmetic
progression.

18. Let S, denote the required sum. Then
3,5 7 2n—1 2,3
25,1+ Stgt gt g =1+ (g )+ (33 +

2n— -

+<23+23)+ +<2n i+ St 1)=l-}- — 5,2t
F)

whence
2n+3
Sp=3— T
19. The general form of these numbers is
n —l n rz
——
44...4 88 89=4. ll 1 107 4-8. ll ~l—1.

n

o —
The number 11...1 can be written in the form of the sum of the terms of a
geometric progression with the common ratio 10:

n

—— 101—1
1 T=14104 1024 .. 4 107 =1= —p—.

Thus we have

4 8 44 I (2107 41)\2
-g-(mn-_x)10n+§(10n—1)+1w?10n+-9-10n+3_(_3__> .
20. By the hypothesis, we have |g| < I and, consequently,

1
qn=k(qn+l+qn+2+"')z:kq"-ul—q' )
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Hence, | —g==kqg and thus, if the problem has a solution, we have
|
I=rF1 (2)

It is, however, easily seen that if, conversely, equality (2) implies that [¢| < 1,
then the equality (2) implies equality (1), and the corresponding progression
satisfies the condition of the problem. Thus, the problem is solvable for any &

satisfying the inequality lk—jr—l-l < 1. The latter holds for £ > 0 and £ < —2.
21. The proof is carried out by complete induction. Let us first consider a
sequence of three terms x,, x,, x3. Opening brackets in the formula

(¥ + x3) (4 + £5) = (xug x5,
we find that
b4 xF xE—2x,x8x, =0,

whence (x3—x;x;)?=0, and, consequently, x;x,=x3. If x; # 0 this implies that
the numbers x;, x,, x3 form a geometric progression. Now assume that the sug-
gested assertion is proved for a sequence consisting of 2(2=3) terms

X1y Xgy ouvy Xpe ‘ 1)
Let ¢ be the common ratio of the progression. Consider a sequence of k-1
terms
X1y Xoy veey Xpy Xpyo (2)
Let us write down the corresponding condition
(4t Fxka bR (3 aS . xd ahe) =
= XXy FXeXs+ o b X1 Xp T+ XeXp 1)t (3)

and put, for brevity, x4 x2+...xk_y=a? Note that a # 0 since x, # 0.
By the induction hypothesis we have

Xo=qxy; Xg=(qXg; ...} Xp=(qXp_q. "4
Therefore equality (3) can be rewritten as
(a2~ xE) (92024 x4 1) = (902 + Hpp 1),
Opening the brackets and grouping the terms we see that
(Xxg—xg +1)?a®=0.

Since a# 0, then alongside with (4) we get xpy,=gqxz. Hence, the sequence
Xy, Xgy «.., Xg, Xg4y is a geometric progression with the same common ratio

Xs
=%
It follows that a sequence composed of first n terms of the given sequence

is a geometric progression for any natural n. Therefore, the given infinite sequ-
ence is also a geometric progression which is what we set out to prove.

22, Let a;=0b;=a. Then, by virtue of the condition a,=b,, we have
atd=ag, (1)

where d and ¢ are the common difference and ratio of the corresponding prog-

ressions. Note that the condition a, > 0 for all n implies that the difference d

must be non-negative. Since, in addition, @, # a, we conclude that d > 0.
Therefore, formula (I) implies

d
g=1+=>1
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Now we have to prove that
a+(n—1)d < ag"-? 2
for n > 2. Since, by equality (1), d=a(g—1), relation (2) is equivalent to the
inequality
a(n—1)(g—1) < a(gn-t—1).
Dividing both sides by the positive quantity a (¢—1) we obtain
n—1l<l4g+...4+gr~2
Since ¢ > 1, this inequality holds true. The problem has thus been solved.
23. By the hypothesis, we have
a >0, g—”=q >0 and by—b,=d >0,
1

where ¢ is the common ratio of the geometric progression and d the difference
of the arithmetic prc:fression. Taking advantage of the fact that a,=a,q7-!
and b, =b,-+(n—1)d we obtain

log, a;—bp, =(n—1) (log, ¢ —d)+ log, a, —b,.

For the difference on the left-hand side to be independent of n it is necessary
and sufficient that log, g—d=0. Solving this equation we find
1

a=q a, (13
Consequently, the number @ exists and is defined dy formula (1).

2. Algebraic Equations and Systems of Equations

24. Rewrite the system in the form
(x+y) FP—xy+y?)=1, } (M
y(x+y)P=2, 2)

and divide -the first equation by the second. Discarding the denominator and
then collecting similar terms we obtain

y?—3xy+ 2x2=0. (3)

Solving quadratic equation (3) in y we get the two roots y=-x and y=2x and
thus obtain two new equations. Solving then each of these equations simulta-
neously with equation (2) we find real solutions of the corresponding systems.
There are only two solutions:

a=x Y1, u=syd

1 24—
xﬂ_—:?a 3, y2=—3—§‘/3.

Each of these pairs of numbers satisfies the original system as well. This
can be verified either by the direct substitution or by analyzing the method by
which the solutions were found.

25, Let us fransform the equations of the system to the form
(xty)—xry=4, }
(x+y) +xy=2.

and

Whence we obtain
(x+9)2+ (x+y) =6
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and, hence, either x4+y=2 or x4+ y=—3. Combining either of the latter equa-
tions with the second equation of the original system we arrive at the follow-
ing two systems of equations:

r4+y=2, x+y=-—3,
xy:O,}(I) xy=5. }(2)
System (1) has two solutions

31=2, y;=0
and

X,=0, y,=2.
System (2) also has two solutions

3 V11 3 L YIT
e Rt TPEE ST
and
3 VT 3, yil
M=—g =iy, y4:“?+‘K:z_‘

It is obvious that each solution of the original system belongs to the set of
solutions of the above system. A simple argument shows that the converse is
also true. By the way, it is still easier to verify it by a direct substitution.
Thus, the problem has four solutions.

26. Transform the equations of the system to the form
(x4 o) [(x+y)>—3xy] = 5a3, }
xy (x+y)=a’,

and then put x+y=u and xy=v. Substituting xy(x+y)=0a3 into the first
equation we find u3=8a3. Since we are only interested in real solutions, we
have u=2a. From the second equation we now find

ad 1

[

2

Thus, we have arrived at the following system of equations in x and y:

a?,

x+y=2a, xy:—;—az.

Solving this system we get

Xy =

N T B 25 2 3
These numbers also satisfy the original system and consequently the latter
has two real solutions.
27. Reducing the equations to a common denominator we then transform the
system to the form
(x+9) [(x+y)>—3xy] = 12xy, }
3(x+y)=xy.
Putting x4-y=u, xy=v and substituting xy=v=3 (x4 y)=3u into the first
equation we see that

a2+;/_2' ylz_aQ—;/'z

and

u (u®—9u) =36, (1)
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Note that u # 0 (if otherwise, the second equation would imply xy=0
which contradicts the original equation). Therefore, it follows from equation
. (1) that either u=12 or u=—

In the first case (u=12) we get the system

x+y=12,
xy =36,
whence x=y=56.

In the second case (u=—3) we have

S xty=-3, }
xy=-—9.
This system has two solutions

3 = 3 -
x=7(:]: V5—1), !/27(:{: V5—1).
The three solutions thus found satisfy the original system as well. Thus, the
system has three solutions.
28. Squaring the second equation and subtracting it from the first equation

we obtain
xy (£ + y2—xy)=21. 1)

Whence, by virtue of the second equation of the system, we derive xy=3. .
Substituting into the second equation of the system, we arrive at the
biquadratic equation

x4 —10x24-9=0.
1t follows that x; =3, x,=—3, x3=1, x,=—1 and therefore the corresponding
values of y are y; =1, yp=—1, yg=3, y,=—3. A direct verification shows

that all the four pairs of numbers are solutions of the original system. Conse-
quently, the system has four solutions:

n=3, n=1 xp=—3, yy=—1;
xg=1, y3=3; Xo=—1, ya=-—3.
29, Transform the system to the form
(x—y) P+ g2+ xy—19)=0, }
(*+y) P+ g —xy—T7)=0,
The original system is thus reduced to the following four systems of equa-

tions:
x—y=0, x—y=0,
Y } (1) L, } @
x+y =0, x4 yt—xy —7=0,
x2+y2+xy—19=9,} 3) x2+y2+xy—19=0.} 4
x—y=0, | 2 yt—xy—T7=0 )

“The first system has a single solution x=0, y=0. The second one has two
solutions x=4 ¥V 7, y=-4 ¥V 7. The third system also has two solutions

x=+ V19, y="7F V19 Now taking the fourth system we note that the addi-
tion and subtraction of both equations leads to the equivalent system

xy==6
X yr—13, }
This system has four solutions:
x=42, y=+£3 and x=43, y=+2.

4-323
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Thus, the system under consideration has nine solutions:
0.0, (V7, VD, (—V7, —=¥VD (VB, —yV19), (—VT, Vi,
(2» 3)v (_2» _3)- (3» 2): (—3- ——2).
380. Transforming the system to the form
2(x+y)=>5zxy, }
8 (x+y) [(x+y)*—3xy] =65,

substituting x+y found from the first equation into the second one and put-
ting xy =v we get

2508 — 1202 — 13 =0.
This equation is obviously satisfied by v=1. Dividing the left-hand side by
v—1 we arrive at the equation

2502 + 13v+- 13 =0.

The latter equation has no real roots. Thus, there is only one possibility: v=1.
Substituting this value into the first equation we obtain the system

xy=1, ]
+y=5 |

Hence, x, =2, y,=%— and x2=%_ Yy =2.

Both pairs of numbers also satisfy the original equation. Thus, the system
has two and only two real solutions.

31. Adding together the equations and then subtracting the second equation
from the first one we get the equivalent system

(x—y) (42 4 5) =T, }
(x—y) xy=2.
Representing the first equation in the form
(x—yP+3xy (x—y)=T,
we see that, by virtue of the second equation, (x—y)®=1.

Since we are only interested in real solutions we have x—y=1. Taking this
into account we easily deduce xy=2.

Solving then the system
xy=2,
x—y=lI, }
we find its two solutions
x3=2, y=1 xg=—I1, Yp=-—2.

It can be readily verified that both pairs of numbers satisfy the original
system. Thus, the system has two real solutions.
32. Transforming the second equation to the form

(2P — 222 =T
and putting x2+4y2=u, xy=v we rewrite this equation as
W —22=7.

Squaring tﬁe first equation of the system we get another relationship between
u and v

)

u+42v=1.




SOLUTIONS AND ANSWERS. ALGEBRA 39

Eliminating u from the last fwo equations we obtain

©?—2—3=0, b
whence
(’,:3, 1.’2=—l.
Then the corresponding values of u are
uy=-—5 and u,=3.

Since u=x2+y* and we are only interested in real solutions of the original
equation, the first pair of the values of « and v should be discarded. The second
pair leads to the system

x4yt =3, }

xy=—1.

This system has four real solutions
(1+V3 1—}f3> (1—4/"5 1+V‘5>
2 2 ! 2 ’ 2 !

(—H—V‘s —1-—1/3) (—1—1/3 —|+V3)‘
2 ! 2 ’ 2 ’ 2
It is easy, however, to vetily that the original system is satisfied omly by

the first two of them. Thus, tgl_‘.e problem has two real solutions.

33. Raising the first equation to the fifth power and subtracting the second
equation from the result we get, after some simplifications, the equation

xy (63 + )+ 22242 4 6 =0. (1)

From the first equation after it has been cubed it follows that x34y3=1-—3xy
which makes it possible to transform equation (1) to the form

x2y?—xy—6=0.
Solving the latter equation we obtain
(xg) =3, (xg)y=—2.
Combining these relations with x+y=1 we find the four pairs of numbers

@, -1y (=1, 2) (H_[;/_ﬁ. 1—[21/1—]) and <___l'"i2‘/-ﬁ
l_+i1/'ﬁ)[

2

It can be easily checked that they all satisfy the original system of equations.
34. Transform the equations of the given system to the form

(2 —y?)?+x2y2 =13,
x2—y?42xy=1. }
Substituting x2—y? found from the second equation into the first one we get
5 (xy)? —4xy—12=0.
It follows that

(x9)1=2, (xg)o=— -g— . ')

Since we are only interested in the solutions for which xy=0, there is only
one possibility, namely 0
xy=2,

4*
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Substituting y expressed from the latter relation into the second equation we
get

x4+ 3x2—4=0.
Among all the roots of this equation there are only two real roots x; =1 and
%, =—1. By virtue of (2), the corresponding values of y are y, =2 and yq=—2.

Both pairs of the numbers (x, y) satisfy the original system as well. Thus, the
problem has two solutions

=1, y=2 and x,=—1  y=—2.

35. Opening the brackets in the equations of the system and putting x +y=u,

xy=uv we rewrite the system in the form
w402 —20=9,
uv—u=3. }

)

If now both sides of the second equation are multiplied by 2 and then the cor-
responding sides of the first equation are added to and subtracted from the
obtained result, then system (1) is replaced by the equivalent system

(u+v)2—2 (u+v)=15,
(u—v)2+2(u—v)=3. }
From the first equation of systern (2) we find
(u+v) =5 (ud0v)y=-=3.
From the second équation we get
@w—t)y=—3 (u—v)p=1.

Thus, the determinatioft of all solutions of system (2) is reduced to solving the
following four systéms:

&)

utuv=>5, u-+v=>5,

3) 4
u—v=—3,} @ u—v=1, } @
utuv=—3, u-tuv=—3,

i oo ot ! ©)
u—yv=—3, u—uv=1.
The solutions of systems (3), (4), (6) and (6) are, respectively,
uy=1, v, =4
Uy =3, vy =2;
Uus=—3, v3=0;
and : !
u4=——], U;i=—’2.

To find all the solutions of the original systern we now have to solve the fol-
lowing four systems of two equations which only differ in their right-hand sides:

x+y=1, x+y=3,
xy =4, } @ Xy =2, } ®)
x+y=—3,} 9) x+y=—1, } (10)
xy=0, xy=—2. . :

Solving these equations we find all the solutions of the original system. We
obviously obtain eight solutions:

L VB L V) (L VT L V)
‘(‘2‘+‘—2' 7—‘“7)' (7*“’2“"' 7o)
(2’ 1)' (1' 2)! (—31 0)’ . (Or _3)1 (11 _2)1 (—2, ]).

g

T
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36. Note first that according to the meaning of the probleth we have x =0
and y # 0. Multiplying the left-hand and right-hand sides of the equations we

obtain
xi—yt =6, (1)
Multiplying either equations by xy and adding them together we obtain
X —yt - 2322 =Txy. (2)

By (1) and (2), we now can write .
2% —T7xy+6=0,
whence

=2 = @)

Thus, every solution of the original system satisfies equation (1) and one of
the equations (3). We can therefore combine each of the equations (3) with
equation (1) and solve the corresponding systems. But this leads to an eguation
of eighth degree and complicates the solution of the problem. Therefore we
shall apply another technique. Note that if either equation of the original
system is again multiplied by xy and then the second equation is subtracted
from the first one this results in the equation

x4 y* =5y, (4)
which is also satisfied by every solution of the original system.

Let us consider the two possibilities:

(1) Let
xy=2 5y

in accordance with (3). Then, by (4), we have x*}-y*=10. Combining this
equation with (1) and solving the resulting system we find

x1=38,

X = V8—: Xp=— 14/8—, Xg=i il/gy Xy=—1 41/8—

By virtue of (5), the corresponding values of y are

h=r==V2% ==V w=—iV2 u=iVE
V'8

(2) In the second case we have

and, hence,

3
xy=-5. (6)
Equation (4) then results in the relation x4+y4=}—g. Combining it with (1)

we obtain x‘:%z. It follows that

x_i/2j x——ﬂ-ﬁ Xp=1i 7 = VL
5= 1 [ e 7= i xs—-—lVT
and the corresponding values of y are

8 /3 8,73 . 3 L4 /3
Ys = l/T' Ye=— V T Yr=—1 7z Ys=1 I/T

Thus, every solution of the original system belongs to the set of the eight pairs
of numbers thus found. It is, however, readily seen that all the eight pairs of
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numbers satisfy the original system. Consequently, all the solutions of the system
have been found.

37. Let us rewrite the second equation in the form
(x2+y2)2_2x2y2:bx2y2'
Substituting the expression x2-y?=axy found from the first equation we obtain
(a2 —2—0b) x2y2=0.

There are two possible cases here:

(1) a2—2—b # 0. It is easily seen that in this case the system has only one
solution x=0, y=0. )

(2) a2—2—b6=0. If this condition is satisfied, the second equation is obtai-
ned by squaring both sides of the first equation. Therefore, if any x and y form

a pair of numbers satisfying the first equation, the same pair satisfies the second
equation as well. Consequently, the system has an infinitude of solutions.

38, Let us transform the left-hand side to the form

)c_-]—__z_z(x+a_£x—a>+x—a (x—a b x+ta -0
xFb\x+b6 bx—b) " x—b xtfr—zx—-}—b)—'

Noting that the expressions in the brackets differ by the factor— < we obtain {

(’_‘j‘_"_ix_—_i’) (ﬂ__b_x_*_a)_o ’
x+b bx—b/\x+b ax—b)
For a # b the latter equality implies
(x*—(a+-b) x—ab] [x*+(a+b) x—ab] =0,
and thus we find the four roots of the original equation:

MCEES ACE T
27 92 ’

—(a+0b) + V(@fbP+dab
2

X3,4=
If a=0b the equation is satisfied by any x.
39. Putting %—%:t we transform the equation to the form
32 —10t4-8=0.

=2 and t2=-§-.

Whence we obtain

Solving then the two quadratic equations for x we find the four roots of the
original equation:

xn=3+V72I, x2=3—“V§L x3=6, x=—2.
40. Let us put

x+y_ X—y__
7 =u and 7 =v. (1)

Then the equations of the system can be written as

| |
u-L.-..::a —
"u +a !

1 1
U+?=b+—b—.
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Solving either equation we find

Uy =a, u2=% (2
and

n=b, v=q. 3)

Now we have to solve the four systems of form (l) whose right-hand sides con-
tain all the possible combinations of the values of u and v determined by for-
mulas (2) and (3). Write system (1) in the form

1
AR

11 )
———=u. :
Yy X

This yields

11

ER A

11 )
—;—7(11-}—0).

It follows from .formula (5) that for system (4), and, hence, for the original
system to be solvable, the numbers a and b must satisfy, besides ab # 0, some
additional conditions implied by the form of the equations of the original system.

Let

, lal#]b]. (6)
Then, substituting the values u=a, v=>5b and then uz%, v:-}?— into the
right-hand sides of formulas (5) we find two solutions, namely

_ 2 2 and __ 2ab __ 2ab
ST N Tan WS =Ty
Furthermore, let
jab| # 1. N

Then substituting the values u=a, v=% and then u=‘11—, v=binto the right-
hand sides of formulas (5) we find two more solutions:

% _» . 2 %
d—1’ PT&ri T T w

Thus, if both conditions (6) and (7) are fulfilled the system has four solutions;
if one of the conditions is violated then the system has only two solutions and,
finally, if both condifions are violated (which may happen only in the case
la]=|b|=1) then the system has no solutions at all.

41. As is easily seen, the numbers
' x;=45 and x,=5.5
satisfy the equation. Therefore, the polynomial (x —4.5)% 4 (x—5.5)"—1 is divi-
sible by the product (x—4.5) (x—5.5). To perform the division and reduce the

problem to a quadratic equation it is convenient to represent the above poly-
nomial in the form

Xg—

[(x—4.5)t— 1]+ (x—5.5)°.
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Factoring the expression in the square brackets by the formula
at—l=(a—1)(@+1) @+ 1)a{a—1) (&* - a2{-a--1),
we come to the equation
(x—5.5) {(x—4.5)34 (x— 4.5)2 4 (x—4.5) 4+ 1 } + (x—5.5)* =0.
Now taking the common factor outside tlie brackets we obtain
(x—5.5) {(x—4. 5)3+(x——4 524 (x—4.5)+ 1+ [(x—4.5)— 13} =
=(x—5.5) (x—4.5) {2 (x—4.5)2—2 (x—4.5) - 4} =0.
Hence, we have

x=D5.5, X,=4.5, x34=

42. From the second equation of the system we conclude that y—5=]x—1]=0,
and, consequently, y=25. Therefore the first equation can be rewritten in the
form

y—b=I1—[x—1].

Adding this equation to the second one we get

2(y—9 =1,
Whence we find y———u.
From the second equation we now obtain |x—1 |=—,21?—. and, hence, ¥— 1= 4 -é—
Therefore x1=-é- and x2=%. The system thus has two solutions

X = =1 and x, -2 =
1— 9 Y1 == 9 - 9 y2'*"§""
43. Grouping the terms we reduce the left-hand side to the form
@c+y— 1P+ (x4 2+ 12 =0.

2x+y—1=0, x42y-41=0,
whence it follows that

Thus we obtain

x=1, y=—1.

Let us demonstrate another method of solution. Arranging the summands in
the left-hand side in the ascending powers of x we get the following quadratic
equation in x:

Ba2 - (8y—2) x+ (By?+ 2y +2) =0. (1)
For real-values of y this equation has real roots if and only if its discriminant
is non-negative, i. e.
(8y —2)2—4.5 (542 42y +2) =0. @
Removing the brackets we trapsform this inequality to the form
—36 (y+ 12 =0.

The latter is fulfilled only for y=—1, and then equation (I) implies that x=1.
44. We transform the equation to the form

[x+2 cos (xy)]*+ 4 [1 — cos? (xy)] =0.
Both summands being non-negative, we have
x+42eos (xy) =0, cos? (xy)=1,
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It follows that cos (xy)=4-1. In the case of the plus sign we have the system
cos (xy) =1, x-+42cos (xy)=0.

Whence we find x=—2 and y=*kn where 2=0, £1, +2, ... .
In the case of the minus sign we have

cos (xy)=—1, x+2cos(xy)=0.

" This implies x=2 and y=—’2‘—»(2m+1) where m=0, 41, 42, ... . Thus, the
equation has two infinite sequences of different real solutions, the value of x in
either sequence beirg tHe sarne,
45, Eliminating z from the system we obtain
2y —(2—x—y)?=4

or
x3—dxf-4-4-y2—4y4-4=0,

(x—2)2+ (y—2)2=0.

For real numbers x and y the latter equality holds only for x=2 and y=2.
From the first equation of the system we find z=-2. The system thus has

only one real solution:
x=2, y=2, z=-—2.

46. First method. Note that from the given x and y the value of z is uni-
quely determined by the first equation in the form

z2=x24y2, 1)
Substituting this value of z into the second equation we get
Rt yity=a.
The latter equation is equivalent to the equation

MR UNYOIS RN 2
+5 ) +(vF7) =atsg @
If now a—]—% < 0, then equation (2) has no real solutions because real x and y

result in a non-negative number on the left-hand side. But if a-}—% > 0, equa-

tion (2) and, consequently, the whole system, has obviously more than one
solution.

Consequently, a unique real solution exists orly if a—}—-—é»:(). In this case

equation (2) takes the form

(+3) (4

. 1
and has the only real solution X=—7, y:—%. Finding then z from equa-
tion (1) we conclude that the given system has a unique real solution only for
a:—-é—, namely:

1,1
y=—7 7%

o —
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Second method. 1t is easily seen that if the given system has a solution
X=X, Y=Yyo» 2=2¢, then it also has another solution x=y,, y=x, z=2,.
Therefore, for the solution to be unique it is necessary that x=y. Under this
condition the system takes the form

22=2,
2x+z=a. }
Eliminating z we obtain the quadratic equation for x:
2x24-2x—a=0.

For this equation also to have a unique real root it is necessary and suf-
ficient that the discriminant of the equation be equal to zero:

D=22—4x2(—a)=4 (1 +2a)=0.

Hence a= ——;-. and the corresponding value of x is equal to—-%-. Thus, we
arrive at the former result.

47. Let x,, yo be a solution of the system. By virtue of the first equation
we have

1
((3+y0) —a]2=xdys +——~+2, M
Xo4o
and, according to the second equation,

1
(x5 4+ yo)2 =xdys +

2+ b2, 2
x§y3+ + 2

Removing the square brackets on the left-hand side of equality (1) and sub-
tracting equality (2) from it we get

—2a (x3+8) + a2 =—b.

Hence, we obtain o2
Bt yt="— ;;b ,
Since @ and b are real, the assertion has been proved.
48. It is readily seen that the system always has the solution
x=1, y=1, z=I. (1
It is also obvious that in the case
a=b=c (2

all the three equations take the form x+y-+42-=3, and the system has an infi-
nitude of solutions.

Let us show that if condition (2) is not fulfilled, i.e. if among a, b, ¢ there
are unequal numbers, then solution (I) is unique.

First adding together all the three equations of the given system we obtain

(a+b+c)(x+y-+2) =3 (a+b+0).
Cancelling out a-+b6-fc we recieve
x+y+z=3. 3)

Whence, we find z=3—x—y. Substituting this expression into the first two
equations of the system we obtain

(@—c)x+(b—c) y=a-+b—2c, } *
(b—a)x+ (c—a) y=—2a-+b+c.
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Multiplying the first of these equations by c—a, the second by ¢—b& and adding
them together we get

[—(@—c)*+(b—a) (c—b)] x=(a+b—2) (c—a) + (c—b) (—2a+ b +c). (5

Equation (5) being satisfied by x=1, the coeifficient in x must identically coin-
cide with the right-hand side of the equation for all a, 6 and ¢. Opening the
brackets in both expressions we see that they actually coincide and are equal:

—%[2a2—4ac+2c2——2bc+2b2+2ac——2ab]= — ; [(@—c)2 4 (b—c)*+ (a — b)%].

Thus, if there are unequal numbers among a, b and ¢, the equation (5) is satis-
fied only by x=1. From equations (4) it then readily follows that y=1, and
from relation (3) we see that z=1. Thus, if the condition

(@—2+(b—c)2 +(a—b) # 0,
holds, the system has the unique solution
=1, y=1, z=1.
49. Adding together all the equations we get

(@+2) (x+y+2)=1+a+tab (1)
If a #—2, we have
x+y+2=1+aa—+taz-

Combining this equation with each equation of the original system and solving
the systems thus obtained we find, for a # I, the values

_ e @t 1P
=Tare Y=ax2' T af2-
For a=—2 the system is inconsistent because equality (1) is not fulfilled for

any x, y and 2. For a=1 the system is indefinite and any three numbers satis-
fying the condition x4 y-+z=1 form its solution.

50. It is easily seen that if among the numbers a;, a,, ag two numbers are
equal to zero, the system has an infinite number of solutions. Indeed, let, for
instance, a,=0 and a,=0. Putting then x==0 and choosing y and z so that
the equation y-f-z=1 is satisfied we thus satisfy all the three equations of the
system.

Therefore, when establishing the condition for uniqueness we may suppose
that at least two numbers are different from zero. Let, for example,

a, #0 and az #0. (1)

Subtracting the first equation from the second and the second equation from
the third one we find a,x==a,y =azz. It follows, by virtue of (1), that

o, . _

y_% X, 2= % X. (2)

Substituting these expressions into the first equation we get
r(1rat D) =1 )
a; " ag

This equation is solvable only if the expression in the brackets is different

from zero.
Taking into account (1) we arrive at the condition

D=a,a,+a,a3+ a1a3+ aya,a3 # 0. 4)
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If this condition is fulfilled, we find from (3) and (2) the values

Q,a. a, Q. aa
st gt et ®
These three numbers yield a solution of the system, and this solution is unique
according to the method by which it is obtained.

Thus, (4) is a necessary condition for the system to be solvable and have
a unique solution. .

It can be readily veryfied that if we assumed another pair of numbers qa,
ag, or a;, a, to be different from zero, an analogous argument would again lead
us to condition (4) and to the same solution (5). Furthermore, since from con-
dition (4) it follows that gt least one of the three pairs of the numbers is non-
zero, the above condition is not only necessary but also sufficient.

51. Let us multiply the equations by a, —b, —c and —d, respectively, and
then add them together. We get (a®--6%24-c*+d?) x==ap—bg—cr—ds which
implies

_.ap—bg—cr—ds
M RN Ea o
Analogously, we find

__bptag—dr+tcs z__cp-{—dq—l—ar~l7s_
Y= reyard’ Tty ora’

t_dp——cq—}-br-}-as

RN
52. Adding together all equations of the system we find
2 v ta,
Xy b Ea e Ey— ("1+n"(2ntl)+“). 1)

Let us denote the right-hand side of this equation by A. Now subtracting the
second equation from the first one we get

(%3 + X2+ .. Fxp) —nx =a;—a,.
By virtue of (1), we can write
A—(@—ay)

P —
1 n

Generally, xp(l<<k<Cn—1) is obtained by subtracting the (¢4 1) th equation
from the kth equation. Similarly, we obtain
A—(ap—ag+,)

Xp =
& n

Finally, subtracting the first equation from the last one we get
A—(a,—a
x,= (‘;n 1) .

The values thus found can be expressed by the general formula

xi:i:@"%‘.ﬂ 1<i<n), ©
where a,+y is understood as being equal to a@,. The direct substitution shows
that the set of numbers (2) in fact satisfies all the equations of the system.
Thus, the given system has a unique solution.
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53. Adding up all the equalities and dividing the result by 3 we obtain

itxy x5+ .. x00=0 (h
" The leit-hand side of the new equality contains a hundred of summands, and
it can be represented in the form

(%) + Xo +Xg) + (x4 + x5+ %) + - -« - (Xy7 + X¥o5 -+ ¥o9) - X100 =0.
But each of the sums in the brackets is equal to zero by virtue of the original
equalities. Therefore, x,0o=0. Similarly, transposing x,9, to the first place and
representing equality (1) in the form

(X100 + X1+ %5) F-(x3+ %5+ %5) + ... + (¥og + Xo7 | Xog) + Xg9 =0

we find that xgy=0. Transferring thea x4y to the first plac and regrouping the
summands in triads we conclude that x,3=0 and so on. Thus,

xl-—xz— e ——xloa—o,
which is what we set out to prove.
54. Adding together the equalities we get

(xt+y+2P—(x+y+2)—12=0. )
Putting x4+ y+2z=1¢ we find from equation (1) that S
t,=—3, i,=4. (2)

Substituting the sum y+z=f¢—x iato the first equation of the original
system we get

24x(f—x)—x=2,
whence we obtain

x=il (3)

Analogously, substituting x-4-z=f—y into the second equatlon and x+y~
= {—z into the third equation we receive
4 .
y=7—7 )

and
6

t—1°

Substituting the two values of ¢ [see (2)] into formulas (3). (4) and (5) we find
the two solutions of the original system:

1 3Y. (2 4
(-5 --3) (349)

55. We rewrite the system in the form

(5)

2=

x+y=T7+z,
X 4y? =37 22, } ()
Btypr=1425

Squaring the first equation and eliminating x*-+4*> by means of the second
equation we find
(T+2)2=37+22 4 2xy,
which implies
xy=6-+47z
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Further, we obtain
(7+2P=x34- 3+ 3xy (x4 9,
that is
B+yP3=(7+2P3—3(6+72)(7+2)=23—182}-217. 2)

Comparing (2) with the last equation of system (1) we find that z=12. But
then we have
x-+y=19,
xy=90.
Solving this system of two equations we receive
5=9, y=10, 2,=12, and x,=10, y,=9, 2,=12.

It is readily verified by substitution that these two sets of numbers satisfy
the original system as well. Thus, the original system has two solutions.
56. Dividing the first equation by the second one and by the third we obtain

y+ez 5 ztx 4
x+y 3’ x4y 3
Multiplying both equations by x4y we find
5x-|—2y——32:0,}
x-+4y—32=0.
These equations imply that y=2x and 2=23x. Substituting the latter expressions
into the first equation of the original system we see that x2=1. Finally, we get

xlil, y1=2, ;=3 and x,=—1, y,=—2, z,=-3.

The direct verification shows that both solutions satisfy the original system as well.

57. Noting that the difference of every two equations of the system can be
factorized, we form the differences between the first and second equations and
between the first and third ones. Combining gg\e two equations thus obtained
with the third equation of the original system wé arrive at the following system;

(u—w) (u+w—1)=0, ‘
(v—w) (0 +w—1)=0, (1)

wit-ultu=2.

It is obvious that any solution of the original system satisfies system (I).
Since, conversely, all equations of the original system can be obtained by
addition and su{traction of the equations of system (1), any solution of system
(1) is a solution of the original system, and, hence, these two systems are equivalent.

System (1) can be decomposed into the following four systems:

u—w=0, } u—w=0, |
v—w=0, (2) vtw—1=0, (3)
wtutuv=2, w2+u2+u:2,J
ut+w—1=0, utw—1=0,
v—w=0, ¢ (4) v+w—1=0, (5)
wtudfv=2, w4 utfu=2,

It apparently follows that all the solutions of the above four systems and
only they are the solutions of the original system. Each of the four systems is
readily reduced to a quadratic equation and has two solutions. Below, omitting
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the calculations, we give the corresponding solutions («, v, w). The solutions

of system (2):
<—1+V17 —14+VT17 —1+Vﬁ)
4 ’ 4 ’ »

4

(—1—4Vﬁ , —1—V17 —1—4Vﬁ)_

4 !

The solutions of system (3):
. 1 3 1
(1. 0. ”r (—7: 3‘, “‘5‘).
The solutions of system (4):
© 1, 1); (
The solutions of system (5):
1 1 3
(1,'1, 0)7 (—7v —-2-; ?).
Thus the original system has the total of eight solutions.

58. Subtracting the first equation from the second we get 22— y%+4-x (z—y)=3
whence we find (z—y) (x+y+2)=3. Subtracting the second equation from the
third we similarly find

* T TR

ro| w
|
—_
|
I_.

~—

(y—x)(x+y+2)=3.
From the two latter equations it follows that
2—y=y—x. (1)
Now we rewrite the original system in the form
(x—y)2=1—3xy,
(x—2)2=4—3x2,
(y—2)*=7—3yz.

N @

From (1) we conclude that the right-hand sides of the first and third equations
of system (2) are equal, i.e. 1 —3xy=7—3yz, whence it follows that

2
—_— = 3
2—x=o 3)

According to (1) we have
2+x=2y, ()

and therefore, solving (3) and (4) as simultaneous equations we find
1 1
x=y——, z=y+—.
= vt

Substituting the expression of x thus obtained into the first equation of the ori-
ginal system we obtain

3yt —4y*+1=0,
which implies

1
= 1, == —.
2=+ Y34 V- 3
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As a result, we finnd the following four sets of numbers:
11 2)! (0) _11 ’—2);
( 2 1 &N,
Vs’ v3’ VT)'
(_ 2 1 4 )
V3 Vs Vs/)

The corresponding verification shows. that they all satisfy the original system.
59. Multiplying the left-hand and right-hand sides of the equations we get
(X1%g. .. X,)" "% =a;a,...a,,

whence
XXy, . )/ala2 ()
Let us rewrite the kth equation of the system in the form
apxh=X1Xg. . - Xp.
It follows, by virtue of (1), that

xkzl/__“;L--”n (k=1,2, ..., ny.
E (3

The substitution into the original system indicates that this set of numbers sa-
tisfies it. Thus, the problem has a unique solution.

60. First note that for a=1 the system takes the form

(x+y+zP=4k,
(xX+y+2P=0,

(X+y+2Pp=m?
The latter system is solvable only if the additional condition
k2=[2:m2 (])

holds. In this case we obviously obtain an infinite number of solutions. In what
follows we may thus suppose that -

a#l. ()
Adding together all equatlons of the system and putting, for brevity,
xfyt-2=t

we get
2 (a4 2)=k2+ 12+ m2.

By the hypothesis, the right-hand side is positive and therefore for a==-—2 the
system has no solutions at all. For

a#—=2 (3)

Rt + 12+ m?
t=x l/- at+2 )

we find
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Now, transforming the equations of the system to the form
24t (a—1)x=Fk2,
ft(a—1)y="12, i
124¢f(a—1)z=m?,

and solving them we determine, according to (4), two sets of values of x and y:
]/ a+2 K (at+1)—2—m?
*== BHr4m (a+2)(a—1)
1 .’/_le(a—}-l)—lfc“—-mz
v= FEEtm (@2 (a—1)
_— ]/ a+2  mila+1)—R2—I
= BIE¥m: ~ (a+2)(a—1)
Finally, we check by substitution that both triplets of numbers satisfy the ori-

ginal system. Thus, in the general case when a # 1 and a # —2 the system has
two different solutions.

. Squaring the first equation and subtracting the second equation from the
resulting relation we find

xy+yz+4ax=11. (1)
The third equation then implies that

(xy)? 4 3xy— 10=:0.
Solving this equation we get

(xh =2, (xy)=—5. (2)
Now there can be two possibilities here:
(1) Let
xy=2 (3)

Eliminating x+y from the first and third equations of the original system we
arrive at the following equation in 2:

22 —6249=0.

Hence, 2110 =3.
The first equation of the original system then gives

x—|—y=3.
Combining this equation with equation (3) and solving them we get
D=1, yV=g
=2 yP=1

(2) Now, in conformity with (2), we suppose that

£y =—b. (4)
From the first and third equations we then obtain
—6z416=0.

This equation has no real roots and, consequently, we may not consider the
case (4).
Thus, the set of possible solutions (x, y, 2) corsists of

(1,2 3) and (2 1, 3)
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Substituting these values into the original system we check that both triplets
satisfy it. Thus, all real solutions of the system have been found.

62, One can easily note that the left-hand sides of the equations can be facto-
rized which brings the system to the form

(x+y) (x+2)=a, 1
(x+y)(y+2)=b, n
x+2) (y+2)=c. f
Let us put, for brevity,
xty=u, x+z=v, yt+z=u.
Then we can write

uv=aqa,
uw==, (2)
w=c. %
Multiplying all the equations we find , L
(uvw)? =abe, R
whence
urw=-V abc . 3

Now all the solutions of system (2) are found without difficulty. First taking
the plus sign in formula (3) and then the minus sign we conclude that system (2)
has two solutions, namely
V abe o V abc e V abe

c 1= b 1= a

(4)

1

and
— be — YV ake — V ab
uzz#—! Uz:_«.—-}g_—, 2=—l§__i_ (5)

Now we have only to solve the two systems of equations obtained after the va-
lues (4) and (5) have been substituted into the right-hand sides of the equations

xty=u, 1
x+z=uv, (6)
y+z=w.

Adding together equations (6) we get x+y+z=—u—+02i . Whence, by vir-

tue of (6), it readily follows that
_utuv—w _u—vtw
X= 3 ) y= 2 »
Thus, the original system has only two solutions which are determined by for-
mulas (7) after the values (4) and (5) have been substituted into them.
63. Adding together all the equations we find

az—}—b;-f—c’. 1

—u+tv+4w
) . )

2=

Xy+xz4yz=

e
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By virtue of the equations of the system we now easily obtain

_atbr—c?
XY= ————=0
2 p2 2
=Ll g )
‘. _a2+b2+c2 . I
yr=——"gt—=y. )

For brevity we have denoted the obtained fractions by &, B and y. It should
also be noted that if the original system is solvable, all the three numbers
a, B and y are different from zero. Indeed, let, for instance, @=0. Then
By=xyz2=0. Adding the first equation of system (2) to the second and third

ones wg get
a2 == ﬂ, b2 == ‘Y

which implies @262=0 and thus, according to the conditions of the problem,
we arrive at a contradiction. Hence, afy # 0. System (2) therefore coincides
with system (2) of the preceding problem. Consequently, it has two solutions

aXi VL VIR
and
_ —Voaby _—Vapy _—Vapy
xz**_v——‘» 2_—5——' 12——a—- (4)

It can be readily verified that the same two sets of numbers satisfy the origi-
nal system as well. Thus, all the solutions of the system are given by formu-
las (3) and (4).

64. Let us put

Xy +xz-+yz=13. H
Then the system is written in the form
y3 423 =2at3, 1
284 x8 =263, 2)
X343 =213, f
Adding together all equations of this system we find that
B P+B=(atb+o) . 3)

Subtracting in succession the equations of system (2) from the latter equation
we obtain

B=0b+c—a)?, P=(C+a—bt3, 2B=(a+b—0c)!3
whence we find
x:‘?/'b—l-c———a-t, y-——f/m-t, z:,:’/mk_b:t. (4)
Substituting these expressions into equation (1) we conclude that either {;=0 or
ty=3}/ bFc—a)(cFa—b) 4}/ BFc—a) (@ Fb—0) +
+y/eFa—b)(a+b—0).

Substituting these values of ¢ into formulas (4) we find two solutions of the
original systemn.
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65. Put .
x+y=u x+z=v, y+z=w0.

Then the system is rewritten in the form

u+v =auv,
u—+w=buw, (03}
v+ w=cuw.
Obviously, system (1) has the following solution:
u=0, v=0, w=0. - . (2

Note furthermore, that if «=0 then the first equation (1) implies v==0 and
the thnrg equation implies w=0. Therefore we shall only limit ourselves to the
cases when

uvw # 0.
From system (1) we find L
- ta=e
TR
= )

This system has the same form as system (6) in Problem 62. Applying the
same’ method we obtain

l__ a+b—c

w2

1  a—b+c

R @
I —a+b+c

w 2 ’

Hence, system (1) can have a solution other than solution (2) only if the addi-
tional condition

at+b—c=a#0, a—btc=p#0, } @)
—a+b+ec=vy#0
holds. If condition (4) is fulfilled, we obtain from formulas (3) the expressions
2 2 2
=—, =75, W= ——, 5
u=— v B 7 )
To complete the solution we have to solve the following two systems:
2
*ty=—-
x+y=0, 2
x+2z=0, (6) x+z=T, @)
z2=0, 2
o v

System (7) appears only if condition (4) is fulfilled. Either system has exactly
qne solution. Namely, the solution of system (6) is . _

x=0, y=0, z=0,
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and system (7) has the solution
1 1 1 1 1 1
X=— —_——, = ——— —_—
o« B ¥ Y= T8 + ¥ ®)
1 1 1
2= =t f—.
o T T ¥

o

Thus, the original system has only a zero solution x=y=2=0, and if the
additional condition (4) is fulfilled, there appears one more solution determined
by formulas (8) and (4).

66. The form of the second equation of the system indicates that x # 0,
y#0 and z # 0. Reducing the fractions on the left-hand side of the second
equation to a common denominator we get, by virue of the third equation, the

relation
xyz =27. (h

Multiplying then the third equation by z and taking into account (I), we

can write

274 (x+y) 22 =27z.
Substituting the expression x-+y=9—z found from the first equation of the
system into the latter equation we obtain
. 23—922 427227 =0,
ie. (z—3)®*=0. Therefore z=3. Substituting this value both in the first equa-
tion and in (1) we find that x=3 and y=3. This result is, by the way,
quite obvious since all the unknowns are involved symmetrically into the equa-
tions of the system. Thus, if the system is solvable, the only solution is the
triplet of numbers x=3, y=3, z=3. The direct substitution into the original
system confirms that this set of numbers is in fact a solution. Thus, the system
is solvable and has the unique solution

x=3, y=3, z=3.

67. Substituting the quantity x4y found from the first equation into the
second one we get
xy+2(@—z)=a?

Expressing xy from this equation and substituting it into the third equation
we obtain
B—a’+a?2—a?=0.
The left-hand side of the latter equation is readily factorized:
(z—a) (z—al) (z+ai)=0.
It follows that
7y=4a, 2z,=ai, 23=-—ai.
Substituting z=a into the first and second equations we arrive at the system
x+y=0, xy=a?
whose solution is x=+-ia, y= F ia. It is readily verified that both triplets
of numbers (x, y, z) of the form
(ia, —ia, a) and (—ia, ia, a)
satisfy the original system. Analogously, we find two more pairs of solutions
corresponding to the values z, and z;:
(a, —ia, ia), (—ia, a, ia) and (ia, a, —ia), (a, ia, —ia).
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Thus, the system is satisfied by the above six solutions, and there are no
other solutions.

This result can be achieved in a shorter way if we use a relationship between
the system under consideration and the roots of the cubic equation ‘

3 —at*+a*t—ad=0. (1)
Namely, according to Vieta’s formulas [see (2), page 10] the three roots
t,=a, ty=la, Ilz3=—ia

of equation (1) (taken in any order) form a solution of the system in question.
Thus, we have already obtained six (i.e. 3!) solutions. Let us show that the
system has no other solutions. Indeed, let (x,, y,, 2,) be a solution of the
system. Consider the cubic equation

(—=x)(—up)(t—2)=0 (2)

whose roots are the numbers x;, y; and z,. Removing the brackels in equa-
tion (2) and using the equalities

Htyt+a=a
XY+ e+ X2 =a?,
Xy 2y =ad,

we reveal that equations (2) and (1) coincide. Consequently, x,, ¥, and 2, are
the ryots of equation (1) which is what we set out to prove. The same argu-
ment can be used in solving the preceding problem.

68. Substituting x found from the first equation into the second one we get

342+ 22=0. (1)
By virtue of the third equation, it follows that
3y? —xy=0. (2)

Therefore, we have either y=0 or x=3y.
In the case y=0 we see that according to (1) we have z=0. By virtue of
the first equation of the given system we also conclude that x=0.

In the case y=—2z we substitute x expressed by the equality x=3y into
the second equation of the system and thus obtain
2y% 4 4yz=:0. - (3)

If now y=0, we arrive at the former case, and if y=— 22z, then condition (1)
implies that z=0, and, consequently, y=0 and x=0. The assertion has thus
been proved.

69. From the identity

(x+y+2P =24y 42242 (xy +xz +y2), (1
by virtue of the first and second equations of the system, we get
xy 4 xz+4yz=0. 2)

Now let us consider the identity obtained by cubing the trinomial x4 y--2:
(¥ +y +2)8 =x3-- y3 + 2% + 3x2y 4 3x22 4 3wy ? + 6xyz 4 3x2* - 3y>z + 3yz*. 3)
Its right-hand side can be represented in the form

A3+ g3+ 28 4-3x (xy +x2+ y2) 4 3y (xy + yz +x2)+ 322 (x+ ).
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Consequently, identity (3), by virtue of the equations of the system and equa-
lity (2), implies that
: 322 (x+ ) =0. @)
There can be the following two cases here:

(1) If 2=0, then, according to (2), we have xy=0. Taking into account the
first equation of the system, we get the two sets of values

n=a, y=0 2=0 ()
and
X,=0, fgo=a, 2z,=0. (6)

It can be easily seen that formulas (5) and (6) determine two solutions of the

original system.

(2) If x+4y==0, then from the condition (2) we again get xy==0, and, hence,
=0 and y=0. From the first equation of the system it then foliows that
z=a, and we thus arrive at another solution of the original system:

x3=0, y3=0, zz=a. )
Thus, if a # 0 the system has three different solutions, and if a=0 it possesses
only a zero solution.
70. Let us consider the identity
(x4 y+2P =34 y® + 28+ 352y - 3x%2 - Buy? - 6xyz - 322 +-3y%2 - 3yz2. (1)
Transform its right-hand member as follows:
x84 y®+ 28 4-3x (xy + x2 -+ y2) +-3y (xy + x2 + y2) 32 (xy + x2 + y2) —3xyz.
It follows that identity (1) can be rewritten as
x4y +2P =534y + 2843 (x 4y +2) (xy +x2 4 y2) —3xy2. (2)

From relation (2) it is seen that for determining the sum x34-y34 23 it js

sufficient to express xy-+xz-4yz and xyz from the original system.
Squaring the first equation and subtracting the second one from the result

we get :
xy+xz+yz=7(a2—b2). (3)

Let us rewrite the third equation in the form
xyz=c(xy +xz+y2). (4)
Now taking into consideration (3) and (4) we finally find from (2) the expression

x3+y3+z3:a"—-—g— a(a*— b?)-}—%c(a?-—b‘z) :a3—|—% (a2 —b) (c —a).

71, Removing the brackets we rewrite the second equation in the form
X2+ y?+ 2%} 3xy + 3xz - 3yz == 1,
which implies
(x+y+e)y-xy+xz2+yz=1.
Now using the first equation of the system we derive
xy+xz+yz=—3. )
The third equation of the system can be represented in the form

X (xy~+-x2)+y (yz+xy)+2 (x2+yz)=—6
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and therefore, taking into account (1), we obtain
x(3+y2)+y B+x2)+2 (34 xy) =6,

Xty+2+txyz=2,

which implies

i.e.
xyz=0.
We thus arrive at the following system:
x+y+z=2,
xy+xz4 yz=—3, @
xyz=0.
From the last equation of this system it follows that at least one of the
unknowns is equal to zero. Let x=0, tHen
y+2=2, yz=-3,

whence either y=3, z=—1 or y=—I1, z=3. The cases y=0 and z==0 are
treated dnalogously. Thus, we get the following six solutions (x, y, 2) of
system (2):

0 3 —1» (1,0, 3; (0, —1, 3);

@, —1,0; (3,0, —1) (=1, 3, 0).
It is readily checked that all these solutions satisfy the eriginal system as well.,
Thus, the problem has six solutions.

72. Removing the brackets in all the equations we note that if the third
equation is subtracted from the sum of the first two, then the following equation
is obtained:

(x—y+2)*P=a—b+tc. (0
Similarly, we deduce

(x+y—2f=atb—c @
and

(y+z—x2=b+c—a. )

It can be easily shown that, conversely, the original system is a consequence
of the system of equations (1), (2) and (3). Indeed, adding, for example,
equations (2) and (3), we obtain the second equation of the original system and
so on. Thus, the original system is equivalent to that obtained. Therefore, it is
sufficient to find all solutions of the system of equations (1), (2) and (3).

Let us put, for brevity,

Vbtc—a=a,, Va—btc=b, Vatb—c=c.

Then the system of equations (1), (2), (3) is equivalent to the following eight
linear systems

x—y+z=-b,
x+y—z=dc, 4
—x+y+z=+aq.

Taking the plus sign on the right-hand sides of all equations we easily find
the following unique solution of the corresponding system:

_ bt _aita _bh+tag
FET T Y= BT
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Considering all the possible combinations of signs of the right-hand members,
we find another seven solutions:

(_bl+cl 4+a _bl+al) . (bl_cl 4H—0 b1+a1) .

2 7 2 2 ’ 2 2 2
by +Ci —0 +¢; by—a\ | —b—aq a—¢ —b+a).
2 7 g 2 )’ 2 ' 2 2 !
—bi+a —ato —bh—a). by—e ~—a3—0 b —ay.
2 ’ 2 ’ 2 ’ 2 7 2 ’ 2 i
—bl'_cl —0)—C —bl—al
2 ! 2 ! 2 '

The eight solutions thus found obviously represent all the possible solutions of
the system.

73. Rewrite the third equation of the system in the form
22t ay—z(xty)=2. )

Substituiing 2? found from the second equation and z(x-y) expressed from the
first one into (1) we get )

R4y Hay—A4T4+xy=2, or (x-+y)2=49.

Whence we derive

xty=+T7. @

Multiplying both sides of the first equation by 2 and adding the second equation
to it we obtain

(t+y)2+22 (x+4) =94+ 22, @

* There are two possible cases here:

(1) If in formula (2) the plus sign is chosen, then substituting x+y expres-
sed from the equation x+4-y=7 into (3) we get 22—1424-45=0. Denoting the
roots of the latter equation by 2z and 23 we find 2" =9 and 2¥ =5. For
z=9 it follows from equation (I) that xy=—16. Combining this equation with
x+y=7 and solving them we find

LTt | A8E] w_T7—Y113
V=T s T

and
@ T—V113 @ T+ V113
A==, o=

Finally, if z=35, then from (1) we determine xy=12. Solving the system

xy=12, }
x+y=T,
(1)

we obtain x§"=4, y§’=3 and 5" =3, y’=4.
(2) In the case x4-y=—7 we similarly obtain the equation 22 1424 45=0.
Its roots are 2¥ =—9 and 2§’ =—5. Solving then in succession the two systems

of equations of form
xy=—16, }

x+y=—T. ®
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and

xy=12,

5
x'+y=—77 } ( )

we find from system (4) the roots

@_—T7—VI8 o —74+VT1I3
Xy =——2—, Y1 =.—2_—_

and

x(z)_—7+ Vii5 @_—7—V 113
P =y Y =

and from system (5) the roots

W=t =3
and

x‘g”:_a‘ !/(42)—_——4-

Our argument implies that only the following eight triplets of numbers
X, y, 2) can represent the solutions of the original system:

(1£V18, 1Y ), (1=VTE, 12VE ),
T g9 7 — g )
@, 3, 5; (3 4, 5) (—7"2‘/”3. “7+2V“3, —9>;

—T1+ V138 —7—y 113 > :
( 3 , 5 , —9); (—4, =3, —5); (-3, —4, —5).

Substituting these values into the system we check that they all are in fact
solutions.

74. Let (x, y, 2) be a real solution of the system. Consider the first equation
of the system. By equality (1) on page 20, we have

%z—é< 1.
The first equation then implies that
i<z, (1)
Similarly, from the second and third equations of the system we obtain
y<x (2)
and
z<y. (3)
The system of inequalities (1)-(3) is satisfied only if
x=y=2z. (4)

Substituting z=x into the first equation we find
=0, x=1.

From (4) we finally conclude that the system has two real solutions, namely
(0, 0, 0) and (1, 1, 1).

75. Let x;, X3, ..., X, be a real solution of the system. The numbers x;
(k=1, ..., n) are obviously of the same sign. For definiteness, let us suppose
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that they all are positive: x, > 0 (if otherwise, we can change the signs in all
equations of the system). Let us show that

w=VZ (k=12 ..., n). n
Indeed, by inequality (1) on page 20, we have

2 2 3
thtp =2 ]/xk;;—? V3,
whence it follows, by virtue of the equation of the system, that inequality (1)

is fulfilled.
Now adding together all the equations of the system we obtain

2 2 2
R R ETE @
According to condition (1) equality (2) is only possible 1f all the unknowns are
equa! to ¥2. 1t can be easily verified that the numbers x; =x;= ... ==x, =} 2

satisfy the original system and therefore it has a positive solution which is
unllqve Changing the signs of the values of the unknowns we get another real
solution

f=Xp=...=X,=—V 2.
Thus, the system has only two real solutions.

76. Let x, y, z be a solution of the system. Expressing x from the first
equality and substituting it into the second and third ones we obtain

(@—b)+(c—0b) y+(d—b) 2=0, }
(a2 —b%)+ (c*— ) y + (&> —b%) 2=0.
Whence we find, after some simple transformations, the expressions
(a—b) (a—d) (a—b) (a—c)
V="(C=bc—d ' = (@d—ba—o
Substituting these values of y and z into the first equality we obtain
(a—c) (a—d)
6—06—a
Consequently, we can write the inequality
(a—b)* (a—c)? (a—d)®
(b—cF (c—d)* (d—0)°
77. 1f a # 0, then x=a is not a root of the equation. Dividing both sides
of the equation by SV'Id_—x—V we replace it by the equivalent equation

V(a—l—x) +4=5 1/-a-{—x

N —
Putting /= ]/-zi); we find ¢, =4, /,=1. It follows that x1=g—ga and x,=0.

x=—

>0.

xy2 =

If a=0, the original equation has only one root x=0.

78. By substitution we verify that x=1 is not a root. Therefore, after both
sides have been divided by "‘y(l—x)2 the equation turns into the equivalent

equation o -
"i/ [+x\? 'i‘/l—}-x

—I: .

l—x l—x




124 PROBLEMS IN ELEMENTARY MATHEMATICS

JP—
Denoting ]/:%; by ¢ we get the equation #2—1=¢, i.e. 2—¢{—1==0.

| — e
Whence we find tl:L;/_S and t2=$. Since the second value is ne-

gative, then if m is even, the value ¢, should be discarded according to our
conventijon concerning the roots of equations. Thus, for even m we have

n/T¥x_14+V5 +x. (1+V3>"‘

—x 2 T—x 2

and, consequently,

(=)
—— —1
(1+V3\"

(_LZV_> +1
If m is odd, the equation has the roots, namely
( 1+V 3)"‘
~=g —1
LV 5\,
=0
79. Making the substitution }/ 2y—5=1¢=0 we obtain

VEFA+1+ VEF6I+9=14.
This implies 4 147+43=14 and {=5. Solving the equation

X1,2=

V 3y—5=5,
we find y=15. —
80. Multiplying both sides of the equation by ¥ x+ ¥ x we get
x—V ¥= =‘é‘ V x (¢))

Since x >0 (for x=0 the right-hand side of the original equation makes no
sense), equation (1) is equivalent to the equation

2V x—1=2Vx—1.
Squaring both sides of the latter equation we see that it has the unique root

x:% which also satisfies the original equation.

81. Multiplying both sides of the equation by VY x4 1 and putting x2 4+
+ 8x=1¢ we arrive at the equation

Vit Viti=1.

This equation has a unique root: ¢=9. Solving then the equation x2}-8x—9=0
we find x; =-~9 and x,==1. The original equation, by virtue of the convention
concerning the values of roots, is only satisfied by x=1.

82, Cubing both sides of the equation we obtain

x—143 7 =12 VaF 143V =1 V(e 1) 241 =243,
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Whence we find

o433y e —1(V/ x—1+ 3/ x 1) =20, o
On the basis of the original equation we thus can write
2%+3 7 2—1xy 223, @

After some simple transformations we deduce

x 3|/ x2—1 [3 f/E——? 13/(X2—1)2]:0

Thus we find all the numbers which can serve as the roots of the original
equation. Indeed, we obviously have

=0, x,=1, x3=—1.
Solving then the equation

3V 2=2 Y @—1p,

C 27T =4 (x2~1)2, - ( 2_1)222’ =1 :l:3 V_g

we find

Since we are only interested in real roots, it follows that

1+uf_3

Consequent]y, x4.—=]/—1+3 VB x,=—1/1+3"12/:2 )

It is readily checked by substitution that x,, x, and x5 are roots of the
original equation. But the direct substitution of the values x, and x; involves
some difficulties. We proceed therefore as follows. Let us put

a= /x4—l, b=/x4+l
c= |3/EX,'4,

and

and show that

a-t+b=c. (3)
Since x, satisfies equation (2), we have
a3+ 3abc -} b3 =3, - (4)

and thus we must show that (4) implies (3). Note that if a4-b is substituted
for ¢ into (4) this results in an identity. Consequently, according to Bezout's
theorem, the expression ¢3—3abc—a%-—b3 regarded as a polynomial in ¢ is
divisible by the binomial ¢—(a--b). Performing the division we get

8 —3abc—ad—b% = [c— (a+b)] {2 +c (a+b)+ a2 —ab+ b2} 5)

By (4), the left-hand side of (5) is equal to zero. It is however readily seen
that a >0, 6 >0, ¢ >0, which implies that the expression in the braces is
positive. Thus equallty (3) has been proved. We then similarly prove that x;
is also a root of the original equation.

83. Transposing V' x to the left-hand side and squaring both members of

the equation we get
' Vi Vxi—dat16=x—2a.
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Squaring then both sides of the resulting equation we find that x=%i is the
only root of the equation. Substituting it into the equation we obtaih
Va&—16a+64=2V) a®—8a+ 16—V a,

which implies, since the radicals are positive, the relation

la—8|=2|a—4]|—]al. (n
For a>=8 equallty (1) is fulfilled. Consequently, for a =% 8 the original equation
has a root x= = . For 4<<a < 8 condition (1) is not fulfilled because

8—a#2(a—4)—a.
For 0<<a < 4 condition (1) takes the form
8—a=2(4—a)—a

and is only fulfilled for a==0. Finally, for @ < 0 condition (1) turns into the
identity 8—a=2(4—a)+a. Hence, for a==8 and a<C0 the equation has the -
only root

a?

X=—

4

For 0 < a < 8 there are no roots at all.

84. Squaring both members of the first equation and substituting the expres-
sg)n of x®+y? found from the second equation into the resulting equation we
obtain

36xy—1= |/ +64xy+256(xy)“

Again squaring both members of the equation we arrive at a quddratic equa-
tion.with respect to ¢ =uxy:

650£2—85¢ +2=0.

Solving this equation we find tl_-llo and 12_625' Now consider the following
two systems of equations:
x2+y2+4xy=%, x2+y2+4xy=%. .
1 2
1 (1) 2 2)
=10 W=t
Obviously, all the solutions of the orlgmal system are solutions of these
systems.
Solving system (1) we find
1 1
2______ _____
(’H“!/) - 2xy 5 5 —0’

Consequently, x+y=0, and thus we get two solutions of system (1):
t 4 ) t t
Vio® "T7y1 BT Ty BTy
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Transforming the first equation of system (2) to the form (x4~ y)2=635 we reduce
the system to the following two systems:

x+y=—3=, x+y=—i_,
Ve @) Ve @)
xy=—2- ) xy:3 .
85 ) 65
System (2°) has two solutions, namely
x3=i_, yaz;_ and x4=—‘_— y4=—2__—.
V65 V65 Vs’ V65
System (2”) also has two solutions:
x5=—-1%, y5=—V-—1§‘ and x8=—l/-1?v ye=—‘V“-2é—g-

As is readily verified, the original system is only satisfied by the first, second,
third and sixth sets of numbers. Thus, the system has exactly four solutions.

85. Putting _ .
$/x=u, ?/y=v
we can rewrite the given system in the form

u3—v3 =;2/- (v —uv?), 1

u—uv=3. ' f

The first equation is transformed to the form

(u—uv)243uv= % uv,

whence we find
uv=—18.

Combining the latter equation with the second equation of the system and
solving them we find 2,=6, vy;=3 and 4,=—3, v,=—6. Returning to the
original system we get its two solutions:

%, =216, =27 and x,=—27, y,=—2I6.

86. Making the substitution ‘/% =¢>=>0 we transform the first equation
to the form
22 —3t—2=0.

It follows that (=2 (the second root . is discarded). Solving the system

2
‘/i =2, 1
Y
X+xy+y=9, f
we find its two solutions
9

x1=4, ylzl and xzz_—_g, yz:"T'
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which are also solutions of the original system. Thus, the original system

two solutions.
87. Let us put

]/HL‘ —1>0.
i—y

Then the first equation takes the form
—3t+2=0,

whence we find ¢, =1 and {,=2.
Consider now the following two systems of equations:

]/ vl 1 l/ y+1_,
x—y 1 i—y
x+xy+y=7, _ x+xy+y=T.
System (1) possesses two solutions:
(=5, =3 (3, 1).
System (2) also has two solutions:

(Vﬁ—l, 1[—1_%—6“—5) (vm—l, ‘V-I—STO‘-‘?

Hence, the original system has four soiutions.
88. Taking into account that

x+y
]/ Ta— yl VE=g,

and multiplying the first equatlon by x—y we obtain
B2 — VB —2—12=0 for x—y >0

and
By L Y R —y—12=0 for x—y<O.
W henee .
(£ VE=y)h=4 (£ VF—§)=-3.
Thus, we now must consider the two systems of equations
x2—y2 =16, } 0 AR—yr=9, }
xy=15, xy=15.
System (1) has two real solutions:
x=5 y=3 and x,=-—5, y,=-—3.

System (2) also has two real solutions:

9+ Y 381 Y 1—9

sl g w=) S
. 9+ )/ 981 ‘ V98T—9
w==1 —5—. w==) -

and

|
f

has

@

@)
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It can be, however, easily checked that the original system is satisfied only by
two of these pairs of numbers, namely by

6.8 <_‘/K@;I_-f;§ Q]/V9821f9>.

Thus, the original system has two real solutions.

89. Put
Vi—12y+1=t.
Then the first equation can be written in the form
2—8{416=0.
It follows that #; ,=4, and thus we obtain
x2—12y=15. (1)

Noting that y # 0, we multiply the second equation by 2—!;-t which transforms it

.to the form
(5 (5) VB +(ie)
iV itg=e @

Raising to the second power we arrive at the equation
(7)1 (5)
3(=) —16(=)—12=0,
Y y ‘
X x 2
) =6 (&) =-—=.
( y )1 ( y )2 3

1t is obvious that the second value does not satisly equation (2) and therefote
we confine ourselves to the system

x2—12y=15,
X —6.
14

This system has two solutions [ 5, %) and (—3, — %) which, as is readily

This implies

wherefrom we find

seen, satisfy the original system as well.
90. Rationalizing the denominators of the first equation, we obtain
4x2—242% E
£ 4
Whence we find

(i) _5 ad (i) -3
Y 1 4 y/e 4

In the second 'equation we pul
sz-f'xy‘f“i:f. » (‘)

5-323
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and rewrite it in the form

24-{—56=0.
Hence, we obtain ;=7 and ?¢,=—28. Since in (1) we have /=0, the second
root must be discarded. As a result, we arrive at the following two systems
of equations:
x=—=y,
Y @
x4 xy—45=0
and
x——‘-—.-;s-
¥+ xy—45=0. .

The solutions of system (2) are (5, 4) and (—5, —4). The solutions of (3) are
(15, —12) and (—15, 12). These four solutions satisfy the original system as well.

91. Expressing x from the second equation and substituting it into the first
one we obtain '

/'————?‘—“ —
Putting here l/ 9y_§4_y_l =10 we arrive at the equation

2431 —18=0.
Whence we find

Since, by the hypothesis, ¢ is non-negative, we have only one equation
9y2—4y—28=0.

Combining this equation with the second equation of the original sysiem, we
find their two solutions

17 14
=3, y;=2 and 0=, =g
92, Let us put
VE—6byt+1=t=0.
Then the first equation is written in the form

12— 8-+ 16=0.

Whence we obtain /=4, and thus
x2—6y—156=0. (1)

If now we put x®y—=u in the second equation and take into account (1), we get

the equ. tion
9u?—24lu—13230=0,

from which we obtain u; =54 and u2=—2;45,

9




SOLUTIONS AND ANSWERS. ALGEBRA 131

We thus arrive at the two systems of equations

?_6y—15=0
2—6y—15=0, =0 '
y } (@) }

x?y =54, ¥y =—. @

Eliminating x2 from system (2), we obtain the equation
2y2+5y—18=0,
whose roots are y; =2 and y2=—4%. The second root must be discarded be-

cause, by virtue of the equation x2y= 154, it leads to nonreal values of x. Hence,
system (2) has two real solutions: '

o=V, y=2% x=—V7 y=2
System (3) is reduced to the equation
54y*+4 135y 4 245=0,
which has no real solutions. Thus, the original system has two real solutions.

93. Put
V x=u=0, V y=v=0. (1)
Then the system is rewritten in the following way:
u
w—v)o=—,
(42 +v?) u=3v.

System (2) has an obvious solution, namely

u=0, v=0. 3)
Therefore, in what follows we suppose that u # 0, and hence (by virtue of the
equations) we also have v # 0. Multiplying the right-hand and left-hand sides
of equations (2) we obtain

3
a_pa—9
w—vi=o. 4

Multiply then the first equation of system (2) by v, the second by « and adding
them together we obtain the following equation:

u‘—v‘—|—2u202=% uv.

By virtue of (4), we have

4(uv)—Tuv+3=0. (5)
Whence we find
3
(wh=1, ()= x

Now consider the two systems of equations

w=1, } 6) W=%- : ™
(@ +0?) u=3v, (40 u=3.

It is obvious that any solution of system (2) other than (3) is among the solu-
tions of these systems.

5‘
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Multiplying the second equation of system (6) by u we find, by virtue of
the first equation, that u*=2. Whence, taking into account (1), we get

4

w=y7 =YL
Analogously, we also find the solution of system (7) satisfying the condition (1):
V7 V3
==, U=—p—.

It is easy to check that both solutions alsa satisfy system (2). Thus, the original
system has three solutions:

oo (e VL) (W, XT),

94. Squaring both members of the first equation we obtain

—_ 2
sz—y3=x—%. (8)]
By virtue of the second equation, we have
— 2
sz+yz=3%_x. @

Now squaring both sides of the second equation of the original system we receive
—— et
VEaFREye— y2=22-—x2.
Whence, by virtue of (1) and (2), we find

a_‘._ 2 — x__.qi saz_x)
2 "_( 2 )\ 72 .

Removing the brackets we obtain xz—g-az. After this we easily get from equa-

tion (1) the two values of y

3 3
y,=a? I/F Ypo=—2a? l/-'g .

The verification by substitution shows however that the original system has only
(5 . /3 '
one solution (ga , a V 5
95. Let us put _ . .
YVx=u=0 and y y=v=0. )
This reduces the system to the form

ud—v¥=a(u—v), }

U+ w2 vt =62

@

It appears obvious that the latter system falls into two systems of the form-

u—v=0, w4 uvtvi=a, } @

2’ d
ut 4 vt =102, } (%) an ut 4 u? vt =62
Solving system (2') we find 3ut=b?, whence, taking into consideration (1), we get
v —ay= =/ .
y YoV Uzlf”_a}__?l . @)

-
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Passing to system (2"), we transform both equations in the following way:
wWtvl=a—uv, (24 02)2=05%4 u%2,
This yields the values of uv and w202

uv=

2a
a’4-b*

24 2=
u4-v?= %)

It can easily be shown that the system of equations (4) is equivalent to system 2.
From equatlons (4) we receive

(4)

322 —5®
2 —
(atop =",

(%)

(u—v)2=

It should be noted that, by virtue of (1), the right-hand member of the first
equation of system (4) must be non-negative; the right-hand member of the second
equation of system (5) must also be non-negative, Thus we must 1mpose the

condition
362 > a2 > b2 (6)

because, if otherwise, system (5), and, hence, system (2”) have no solutions
satisfying condition (1).
-Solving system (5) we get

_ 1/ 3¢ _ 1/ 3B —a*
u+tv= ]/—-—§a— U—v=+ —gg"

Finally we obtain
1 l/ 32— 36> —a?
=3 ( — 4 — ) ,

1 ( 3a‘—b" 3b2—at)
U= v

2

As is easily seen, by virtue of condition (6), both pairs of values (u v) are
non-negative. Indeed we have a? > 6% and-therefore 3a2—62 > 36—

Thus, if the additional condition (6) is fulfilled, the original system has three
solutions, namely

ot b
1 V-g-’ 1 V"S-—y

L(Vsaa —b? 1/%2 )
4

1 3a2——b" 30’ z\“‘
.‘/2-?

1 3a2 bz 3ba—az
xsf——T

1( 3a2—b‘ 3b2—-a-)
y3=—4- .

If condition (6) is violated, then only the first solution remains valid.
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3. Algebraic Inequalities
96. For the quadratic trinomial
ax?4-bx+4+c (a#0)

to be positive for all x it is necessary and sufficient that @ > 0 and the discri-
minant D of the trinomial be negative. In our case we have

a=r?—1 >0 (1)
and
D=4 (r—12—4(r2—1)=—8(r—1)<0. )

Inequalities (1) and (2) are fulfilled simultaneously for ~ > 1. It should also
be noted that for r =1 the polynomial under consideration is identically equal to 1.
Thus, all the sought-for values of r are determined by the inequality

r=1.
97. If we put

2 2
and take into account that ;—2-—}--57-——1;2—2, the given expression is readily

transformed to the form
3u?—8u--4. (1)
If x and y are of opposite signs, then « < 0 and trinomial (1) is positive. If x
and y are of the same sign, it is easily seen that u>=2.
The roots of quadratic trinomial (1) being equal to —g-and 2, the trinomial
is non-negative for u = 2. Thus, the trinomial is non-negative both for u < 0 and

u==2, and, consequently, the original expression is non-negative for all real
nonzero values of x and y.

98. Note that x2—xJ-1 >0 for all values of x because the discriminant
of the quadratic trinomial is equal to —3 < 0 and the coefficient in x* is posi-
tive. Therefore it is permissible to multipty both inequalities by the denomi-

nator. This results in
—3x24-3x—3 < x24-ax—2,
x4 ax—2 < 22 —2x4-2,
that is
4x24-(a—3)x+1 >0,
x2—(a42)x+4 > 0.
The first inequality is fulfilled for all x if and only if the discriminant of the

quadratic trinomial is negative, i.e. if (a—3)*—16 < 0. Similarly, the second
inequality is fulfilled if and only if

(a+2)2—16 < 0.
Now combining the two inequalities (a—3)2—16 < 0 and (a+2)?—16 < 0 and
solving them as a system with respect to @ we get
—4<a—-3<4 —l<ax?
and
—4<at2<4, —H<a<2
Hence, we finally obtain —1 < a < 2.
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89. By virtue of inequality (1) on page 20, we have
at+ b4 = 2a262,
¢ 4-at = 2c2d?.
Adding together these inequalities, we obtain
@ b8 ot d% == 2 (0202 -+ c2d?). 1)
According to inequality (3) on page 20, after putting u=a2? and v=c2d?, we

receive
a%? +cd® = 2 V a?b?cdR. 2

We always have V a?32d®>=>abcd (the sign > appears if abed < 0), and there-
fore comparing (1) and (2) we arrive at the required proof.

100. The given system is equivalent to the system
RxFap 2], y=x+a.
The inequality '
2x* - 2(a+ 1 x+4a?—1<0
has a unique solution with respect to x if and only if the discriminant of the

trinomial is equal to zero:
(a+1)2—2 (a2—1)=0,

i.e.
6*—23—3=0.
Solving the latter equation we find
ay=3, ay=—1I.

Finally, we consider the two possible cases:
(1) If a=3, then x2+4x+4=0 and x=—2, y=1.
(2) 1f a=—1, then x*=0 and x=0, y=—1.

101. Rewrite the given system of inequalities in the following way:
1
y<2—|x—1].
Since we always have |[x*—2x{=0 and {x—1|>=0, we can write
1
-7 <y<2

The only integers y satisfying this inequality are 0 and 1. Consequently, the
given system of inequalities- considered for integral x and y can be consistent
only for the values y=0 and y=1. Let us consider both cases.

Case 1. If y=0, the system of inequalities takes the form

|x2—2x|<—;—, |x—1]< 2.

The second of these inequalities is satisfied only by the integral numbers 0, 1 and 2.
It can easily be checked by substitution that 0 and 2 satisfy the first inequality
as well, but it is not satisfied by 1. Thus, for the case y=0 two solutions are
found, namely

x=0, y=0 and x,=2, y,=0.
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Case 2. If y=1, the .original system’ of inequalities reduces to
| x2— 2x| <-g-, |x—=1]< 1.

The second inequality is satisfied by the only integral number x=1 which also
satisfies the first inequality. Hence, in this case we have one more solution of
the problem: xg=1, yz=1. Thus, thesystem of inequalities is satisfied by three
pairs of integers. ce
102. There are n summands on the left-hand side of the inequality, the first
n—1 summands being greater than the last one. Therefore,
1 1 1 1 1
aritamet T m > rg=1
103. Let S, denote the left member of the inequality to be proved. Then,
as is easily seen, )
S .5 = 1] 11
m+1 ”‘_3m+4T3m+3+3m+2 m+1°

Reducing the fractions to a common denominator we find
P . 2
Snt1=Sn= G GnropnTs

Thus, S+, > S,;- We have
S, =

1 1
+ytr > L

2o —

and, consequently,
Sn>Sn-1>...>28>8 >1,

i.e. S > 1 which is what we set out to prove.
104, Write the following obvious inequalities:

| I 1 1
< n—hn n—1_n°
Adding them termwise we get ‘
1, .1 1 1 -1 : ‘ .
'2?+'37+--~+;§<1——n—= —= L

which is the required result.
105. Rewrite both sides of the given inequality in the following way:
(a)t=(l-n)[2(n—1)]...lk(n—E~+1)]...(n-1)

a factors

and -
P Toat*=n-n...n,
| Sp—
& {actors




SOQLUTIONS AND ANSWERS. ALGEBRA - 37

. Let us prove that

(n—k+1)k=n )
for nz= k=1, Indeed, we have
nk—k 4 k—n=Fk(n—&)—(n— k) = (n—k) (k—1) = 0. @
Thus, we have proved that
(n!)2=nn. 3)-

Let us note that if a number % is greater than unity and less than n, formula (1),
as it follows from (2), assumes the form of a strict inequality which obviously
leads to a strict inequality in formula (3) as well. For n > 2 there exists such &.”
Hence, in this case we have the strict inequality (n!)? > nn.

106. It can easily be checked that for constructing a triangle with sides a, 6
and ¢ it is necessary and sufficient that the numbers-a, &, ¢ satisfy -the three-
inequalities )

a+b—c >0,
atc—b>0, W
b+c—a > 0.

Let us prove that this system of simultaneous inequalities is equivalent to the
condition set in the problem. Let us put : T
K = pa® - gb? -~ pgc?.

Since g=:1—p, this expression can be rewritten in the form
K==pa®+-(1—p) b2—p (1—p) ®=c2p® + (a® —b*—c%) p+ b2,
where a, & and c¢ are copstants, and p may assume arbitrary values.

Thus, K is a quadratic trinomial in p. In the general case the trinomial K
can take on values of different sign depending on p. The inequality indicated in’
the problem is equivalent to the condition that K > 0 for all p. As is known,
for this to-be so, it is necessary and sufficient that the discriminant

D = (a%— b2 —c?)2 — 4b%c?
of the trinomial 'be negative (here we' take into consideration that the coefficient
in p® is equal to ¢ > 0).
- The discriminant can be represented in the following form:
D= (0%~ b2 —¢?)2 — 4b%% = (a®? — b — ¢ — 2bc) (a® — b2 — 2 -} 2bc) =
= [a2— (b+0)?] [ — (b—c)] = (a+-b+-¢) (a—b—0) (a-+b—c) (a—b+¢) =
o =—(a+b-4-c)(a+b—c) (b+c—a)(c+a—b).

If a {riangle can be constructed, inequalities (1) are fulfilled, and, hence,
D < 0. Thus, we have proved that the existence of such a triangle implies the
inequality D < 0.

Conversely, if D < 0 then

o ' (a+b—c)(b+c—a) (c+a—b) > 0. @)
Let us show that (2) implies inequalities (1). Indeed, suppose that only one ex-
pression in the brackets on the left-hand side of (2) is positive and the other
two are negative. For instance, let ¢+b—c < 0 and &+c—a < 0. Adding to-
gether these inequalities we get 26 < 0 which is impossible. Thus, we have also
proved that the condition D < 0 implies the existence of a triangle with given
sides a, b and c.

. 107, Transform the left member of the inequality in the following. way:

4 (x4 y)(x+-2) x (x4-y+-2) + y?22 =4 (x> + xy -+ x2 4 y2) (% + xy + x2) 4 y?22 =
=4 (22 xy+x2)2 + 4yz (& +-xy + x2) + yP2? = [2 (x* +xy + 52} - y2)?,
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The obtained expression is non-negative for any real x, y and z which is what
we set out to prove.

108. Denoting the left member of the inequality by z we transform z in the
following way:

z=x+2y+4 32426y +4=(x+y+ 1)+ 2 (y+1)2+41.
For real x and y the first two summands are non-negative, and, consequently, z=1.
1—4y

109, Since x= 3

, the inequality to be proved is equivalent to the ine-

quality ,
(5 s
which is readily transformed to the equivalent form
10042 —40y 4= (10y—2)2 =0,
the latter inequality being automatically fulfilled.
110. Since d > 0 and R=r > 0, we have
d24-R*—r*>0 and 2dR > 0.
Consequently, the given inequality is equivalent to the inequality
d? 4 R?*—r?<C 2dR.
Reducing it to the form (d —R)2<r?, we get |d—R|<rji.e. —r<d—R<r.

Hence,
R—r<d<<R-+r.
111, Multiplying both members of the desired inequality by a—-b64-¢, weget
an equivalent inequality whose left member is equal to

(a+b+c)(—f,—+%+ci)=3+(%+%)+(—f—+§>+(%+ci)= |

(Y 5V VTV 5 {3 V)

112. Note that the given expression turns into zero for b=c,c=aand a=b.
Therefore, according to Bezout's theorem, it is divisible by the differences a—b,
a—c and b—c. Arranging the summands in descending powers of the letter a
and performing the division by a—b&, we receive
ad (b2 —c?) + a? (¢8 —b3) 4 b3¢? —c3b? = (a—b) [a? (b —c?) + ac? (c—b) 4~ be? (c—b)).
Taking the factor (b—c) outside the square brackets and dividing the remaining
polynomial by a—c, we obtain

ad (b2 —c%) 6% (2 —a?) + 3 (a2 —b?) = — (b—a) (¢c—b) (c—a) [ac -+ bc + ab].
Since, by the hypothesis, a < 6 < ¢ and a, b and c are of the same sign, the
expression on the right-hand side is negative.

113. We have
1—2Va+a,=(1—Va) =0,
whence
14-a, =2V a.
Writing these inequalities for £=1, 2, ... and multiplying them termwise we
receive

(I+a)(l+a) ... (I4+a,)=27V a@, ...a,=2"

I
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114. It is sufficient to consider the case when a and & are of the same sign
(i.e. positive), since otherwise one of the numbers is greater than unity and the
‘inequality becomes obvious. We have

a2+ b2 =(a+ b)2—2ab=1—2ab,
at + b = (1 — 2ab)? — 2a%62,

But if a+b=1, then 0<ab<-}‘—, since

a+b)‘3_i
2 )13

ab<(

(see_formula (3) on page 20).
Consequently,
1

12 1
4 4 —_— e — — ._=__
at4-bt = (l 2 4) 2. =%
115. Consider the following three cases:

(1) x<<0; then x8—x%+x2—x-+1 > 0 because the first four summands are
non-negative.
(2) 0 < x < 1; transform the polynomial to the form

B4 x2—x3)+(1—x)=x8+x2 (1 —x3)4 (| —x).

Here all the summands are obviously positive and, consequently, the polynomial
is greater than zero.
(3) x=1; write the polynomial in the form

X3 —1)+x(x—1)41.
The first two summands being non-negative, we also have in this case
— x84 x2—x+4+1>0.
116. We have
(I4x)p (1 —x)r=2(1+Cix24+Chxt +...), 1)

the last term of the sum in the brackets being equal to x» for even n and to
nxn=t for odd n. By the hypothesis, we have —1 < x <1, whence it follows

that CZx2k < C,, for all integral k. Therefore,
(I+x)4(1—x)" < 4,
where A, is the value of polynomial (1) for x=+1, i.e. A,=2".

117. The inequality to be proved is equivalent to the inequality
e2(ai+ad+...+ap)+4(xi4+xm+... +x7) 4 e (010, + X0, + ... + xpa,) =0,
which holds true because the left-hand side is equal to

(e, 4 26,)2 4 (ay = 2x)2 + . . . - (£ay + 2x,)%

118. The radicand must be=0, and therefore

1 1
—gsrx 5 N
For nonzero values. of x satisfying condition (1) we have VT1—4x% < 1. There-

fore, if -——;—gx < 0, the inequality indicated in the problem is fulfilled, because

its left-hand side is negative.
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But if 0 < x<7 , then rationalizing the numerator of the left-hand side we

obtam
1— Y T—4x 4x? - 4x
x T+ VITER)x V1
It is readily seen that the numerator of the fraction on the right-hand side does

not exceed 2 for 0 < x<% , and the denominator is not less than unity. The-

refore,

<2<3.

1— Y T4
X
Thus, the inequality in question is true for the values x # 0 satisfying condi-

tion (1). For x=0 and |x| > 5 the left member of the inequality makes no

sense.
119. For definiteness, let x==y. Then putting %=a< 1 we get an equiva-

lent inequality:

Vitam= T+ an. M
Raising both members of (1) to the power mn we obtain the inequality
(14-a™)? = (14-a")™.
It is easily seen that this inequality holds true because 0<<a<C1 and n=m.
120. Put

~ - v

xn=1/a+v at..+Va. 0]
n radicals

It is obvious that x,=V} a+x,-; (=2, 3, ...), and, consequently, x; =

= @-X,-;. Furthermore, let us note that x, > x,-, because when passing from

n—1. to n the radlcal ¥ a is replaced by a greater number V a+ V a.

For this reason we have xj < a-t-x, and, consequently, the quantities we ar/e
interested in satisfy the inequality

x2—x—a < 0. 2
The roots of the trmomlal on the left-hand side are equal to ‘

x(1)=___]f21_ti‘_1, x(-z):iw.

The numbers x, satisfying ineguality (2), the relatfon x0'< x, < x® {s fulfilled
(see page 2]). Hence,

<i]_/'_21__—}—_4a (r=2,3, ..., ()

n

which completes the proof. For n=1 we have x, =) a and the inequality (3)
becomes obvious.

121, Let us denote the expression contammg k radical signs by x:

1/2—r1/2+ +V 2.4 VZ—xk
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Note that x, < 2. Indeed, let us replace 2 in the radical V 2 by 4. Then all

the roots are extracted and the left member becomes equal to 2. This means

that x, < 2. Hence, in particular, it follows that both the numerator and deno-

minator on the left-hand side of the original inequality are different from zero.
.Using then the fact that .

xn=V2+xn—1
we transform the left-hand side of the original inequality in the following way:
2—~Viy1+2_ Vip-1+2—2_ I 1
S—Xpoy . (GaatD—% Vi 242 mt2
1

Since x, < 2, we have > T which is what we set out to prove.

1
Xp+2
122. As is known, for anyreal numbers aand & the following inequality holds
true:
a?-- b?
2

la-b|<< (see formula (1), page 20).

Taking advantage of the fact that the absolute value of a sum does not ex-
ceed the sum of the absolute values of the summands we get
|ayby @b+ ... Fapb, | <|ayby [+ @by [+ ... 4| apb | <

at b | aitbd at+ v}
Capl gl

=a§+a§+...+a2+b§+b§+...+bﬁ <1+‘_,~ .

2 2 ’
which completes the proof.

123. i n=1, then %, =1 and, hence, x;, =1, the assertion being {hcrefore
true. Suppose it is true for all m such that 1 <m<n—1; let us prove that

then it holds for m=n. If all the numbers x;, x;, ..., x, are equal to unity,
the assertion is obviously true. If at least one of these numbers is greater than
unity, then, by virtue of the equality x;x5 ... x,=1, there must be a number

among Xy, Xy, ..., X, which is less than unity. Let the numeration of x, %,, ..., x5
be such that x, > 1, x,~; < 1. The induction hypothesis and the condition

XXy e Xp—g (¥n-1%p) =1
imply
“it%t . gyt Xpa i Xp=n—1,
ie.
ftxet . A KXot Xy + 1 =0
We have (x,—1) (1l —x,-;) > 0 and therefore
Xt xp—1—XpXp-1—1>0.
Consequently
) Xp-1t X5 > Xp—1Xs+ 1
Thus, Co B
XXt oo FXper X > Xt X+ oo F Xt Xy, =0,

and the assertion has been proved.
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4. Logarithmic and Exponential Equations,
Identities and Inequalities
124, As is seen from the equation, it only makes sense for a > 0, a # | and

b >0, b#1. For solving the equation let us make use of the formula for change
of base of logarithms

log.a
log. b

logy a=

(see formula (2) on page 24). Here c is an arbitrary base (¢ > 0, ¢ # 1). The
choice of the base ¢ is inessential here because we only want to reduce all
logarithms to one base. We may, for instance, take a as a common base, since
a > 0 and a # 1. Then the equation takes the form

:—-M loga 2—2 log, x log, l__:_lo_g;x__ logg %,
0g, 2 b log, /a

which yields after some simplifications the new equation
(logg 2+ 2 log, b) log, x =3 logj x.
Hence, there are two solutions, one being
logex=0, e x=1,
and the other being
logg x = % (log, 2+ 2 log, b):% log, 20% =log, 3/ 267,

i.e.

x= ",’/2_172—

125. Let us pass to logarithms to the base 2; using formula (2) on page 24
we get |
1 1

log, x log;x—4 loggx—6"

The latter equation is equivalent to the equation

logs x —5 log, x+6=0.
Hence we have
(]ng x)l:2t xl=4
and
(log; x), =3, x,=8.
126. Raising we obtain
9x~117=4(3%¥-141),
Whence we find
(3¥=1)2—4 (3*~-1)+3=0.

Consequently,
(3¥-1);, =3, x=2 and (3*-1),=1, x,=1.

127. Let us pass to logarithms to the base 3. By formula (2) on page 24
we have '
1—logyx

i_f_]—%;-{—-log;x: 1.
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This results in :
(1—logs x) [1 —(1 +logg x)?| =0

and, hence,
(logg x); =1, n=3
(logg x); =0. Xp=1;
(logs x)3=—2, X = % .

128. Let us pass in the given equation to logarithms to the base 2. By for-
mula (2) on page 24, we obtain
1 —log, x
14 log, x
Multiplying both members of the equation by the denominator, transposing all
the terms to the left-hand side and factorizing we get

(logg x— 1) (loghx + 2 log} x -+ logi x+ 2 log, x4 1) =0.

For x > 1 the second factor is obviously positive and does not vanish. Equating
the first factor to zero we find that for x > I the original equation is solvable
and has only one root x=2.

129. Let us change the logarithms to bring them to the base a (here a > 0
and a # 1 because if otherwise the expression log, 2x makes no sense). By

a

logi x+logh x=1.

virtue of formula (2) on page 24, we get
logs2x | log, 2x

= =0.
logg a®V x log,,% log,ax

" This enables us to consider the following possible cases:
(1) log;2x=0 and we obtain x:% which does not satisfy the original
equation (the logarithm of a number @ # 0 to the base 1 does not exist);

(2) logg ax=1log, (a2 ¥ x) which yields x=a2.
Answer: x=a2.

we transform the original equation

130. Applying the equality log, b=
to the equivalent equation

logy x

logy [x (2 loga—x)]=2.
Whence, after raising, we obtain
x2—2 loga-x+462=0.
Solving this equation we find
%, g=loga + Vlog?a—b2.

For a=10% and loga # —;-(bz—}- 1) both roots are positive and unequal to unity

and, as is readily verified, satisfy the original equation. For loga:-%(b?-f— 1)
we must only take the root x; =62 For a < 10® the equation has no roots.
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131. Passing in the equation to logarithms to the base a we transform it to
the form

— 1 8/ % 1
Vloga Vax(l+m)+Vloga V% (l—m)=a

After some transformations we get
(loggx-H)2 +1/ (log, x—1)%
4log, x 4log, x .
Taking into conslderation that the square roots are understood here in the

arithmetic sense we see that the given equation can be rewritten in the follo-
wing way:

=a.

| logg x+ 1|+ |logg x—1 | =22 ¥V logz % . n

Now consider the following two cases:
(1) Suppose that )
loggx > 1. @)

Then equation (1) takes the form
logs x=a Vliog, ¥,
whernce we obtain
% =a®.
It can be easily seen that condition (2) is then satisfied enly if a > I.
(2) Suppose that

0< log,x<< 1. 3)
Then equation (1) turns into

2=2q Vlogg*.

Hence,
1

xzzaF-
It should be noted that condition (3) is only fulfilled if ¢ = 1. Since we a priori

have a # 1 (otherwise the original equation makes no sense), the second root

%, exists only if a > 1.
We have considered all the possibilities because it is obvious that the values
of x for which log,x=<0 cannot satisfy equation (1). Thus, for ¢ > 1 the
1

equation upder consideration has two roots, namely x; =¢%* and x$=a;;. For
0 < a < 1 the equation has no roots.
132, We have
log (¥ xF 1+ 1) =log (x—40).
Putting ¥ x+ 1 =¢ and raising we get the equation
12—t —42=0,

whose roots are ¢; =7 and ¢,=—6. Since =V x+ [ =0, the root ¢, is discar-
ded. The value of x corresponding to the root ¢, is equal to 48. By substitution

we check that it satisfies the original equation. Thus, the equation has the
unique root x=48.

133. Passing over in the equation to logarithms to the base a we get
1 lgga(p"fx):_% log, (p—q)— log, 4
" logg (x+¢) logg (x+9)

.
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After performing same simplifications and taking antilogarithms we arrive at
the quadratic equation

1
(x+9) (p—x)=-—(p—q)*

The roots of this equation are

1 —_ 1 —

n=g(p—0+Ver, xn=5@—0—Veq.
It is easy to verify that both roots satisfy the inequality
P> X, >—0q,

and, consequently, the original equation as well.

134. After some simple transformations based on the formula for change of
base of logarithms we reduce the given equation to the form

3 =
Iogvs—x]/>-lw+3 =——V6.

Putting logys—x=t we obtain, after performing some simplifications and squa-
ring both sides of the equation, the new equation

124+t —2=0. :
Its roots are #/;=—2 and #,=1. The first root yields the value x=% which,

as is readily seen, satisfies the original equation. The second root gives the
value x=)'5 which does not satisfy the original equation.

) .
135. Using the fact that 0.4=% and 6.25—= (g) we reducé the original
equation to the form '
2 \log2x+! 2\ 2 (logx*=2)
(33

Equating the exponents we pass to the equation
log? x—6 log x4 5=0.
After solving it we find
(logx)y=1, x,=10 and (logx);=25, x,=108, "
136. Passing over to logarithms to the base 10 we obtain
log (4;")
1+ 10 1 .
: log x logx
After simple transformations this leads to the equation

- log (x . il:d'f) élog%%ﬁ .

=(log logn—1)

Taking antilogarithms we obtain
xt—4x-+logn=4g,

x1,2;=2 + YV 4—logn-

A simple argument now leads to the following final results;

whence
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(a) If 0 < n < 10* and n # 103, the equation has two different roots, namely
0n=2+4+V34—Tlogn and x,=2—V I—logn.

(b) 1f n=10%, there is only one root x=3 (x=1 should he discarded); for
n=10% we also get one root x=2.
(c) If n > 10% there are no roots.

137. Passing to logarithms to the base 2 we obtain the equation
1 log, a

log, sin x 2 log, sin x+l =0
Hence,
logs sin x= — log; a.

The quantity on the left-hand side being strictly positive (sinx # 1 because
otherwise the symbol logs, » 2 makes no sense), we have log, a < 0 and, con-
sequently, for a > 1 the equation has no solutions at all. Supposing that

0 < a < | we obtain
log, sin x = & ]/_k)_g;_g.
The plus sign in front of the radical must be discarded because log, sinx < 0.

Thus we have
_l/__ log, a
sinx=2 2
and

- _ log, a
x=(—1)?arc sin 2 1/- 2 4ak (B=0, £1, ...

It can easily be seen that all this infinite sequence of values of x satisfies the
origin al equation.

138. From the second equation we find
2
x—i—y:x_y . 0]
Substituting this expression for x4y into the first equation we obtain
1 —log, (x—y)—logz (x—y) =1,

that is
logy (¥ —y) +logs (x—¢) =0.
Passing to logarithms to the base 3 we transform the last equation to the form
(log, 3 1) logs (x—y) =0.
Since log,34-1 # 0, it follows that logz (x—y)=0 and x—y = 1. Combining
this with equation (1) we obtain the system
xt+y=2
x—-y_—_l. }
Solving it we get

=3 Y=3-
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Finally, we verify by substitution that the above pair of numbers is the solu-
tion of the original system.

139. Taking logarithms of the both sides of the first equation to the base
¢ we obtain

alog, x=blog.y. (N
From the second equation we find
log, x
lo —1 ==
gc X Ogc y logc y
Substituting log. y expressed from equation (I) into the latter equation we get
a
a b l-— b
log, x— - logc x=—-, or log,x b =—.
Now, raising, we obtain
b-a b b
x b =c?, or x=ct0-9),
From the first equation of the system we now find
a b
y=xb=c°.
140. Using the logarithmic identity a'°8s®=b we write the system in the
form
logs x4y =7, "
XY =512,
Taking antilogarithms in the first equation we get x-5¥=257 whence
x=57-9, 2)

Substituting x found from equation (2) into the second equation of system (1)
we get the equation 5!2+42-7¥=1 whose roots are

=4 and y,=3.
Finally, we arrive at the two solutions
=125, y,=4 and x,=625, y,=3.

141. Taking logarithms of both sides of the first equation to the base y we
get a quadratic equation with respect to logyx of the form

2 Iog‘,z,x—5 logy x-+2=0,
whose roots are

logyx=2, log, x:é« .

If logy x=2, we have
x=y (1
By virtue of the identity log, b@:,—a’ we get from the second equation the
relation logy (y —3x) =logy 4, whence we find
y—3x=4. )
Equations (2) and (1) imply a quadratic equation for y of the form
3y2—y+4=0.
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This equation has no real solutions. If logyx=%. we have x=}/57 and
y=x2 In this case, by virtue of (2), we get the equation
—3x—4=0.

Answer: x=4, y=16.
142. Taking logarithms to the base a in the first equation we find
x+ylog, b=1-1log, b. ()

In the second equation we pass over to logarithms to the base a. Then we
obtain

which yields x:%. Substituting y:% into (1) we get the e(juét'ion

x2—x (14 log, b)+4log, 6=0,
having the roots .
x,=log, b and x,=1.
The final answer is
x=logsb, y=logya; x,=1, y,=1
143. In. the first equation we pass over to logaritlims to- the base x. Then
the equation takes the form

3 (108« v 1ogoy ) =10

Putting here log, y=¢ we get the equation
3t2—10{+3=0,

having the roots ¢; =3 and tz=§ In the first case log, y=3, y=4x% and, by

virtue of the second equation of the original system, we obtain x#=8I. Since
x>0 and y >0, here we have only one solution:

x1=3, n=27.
Puttmg then log,,y——a— we find one more solution
=27, y,=3.

144. Let us pass in both equations of the system to logarithms to the base 2.
This results in the following system:

!
g7 (108 %-logy ) =logox, !

(1

10g2X' 10g2 (x+,l/)_3 lngx J

logs3 " log, 3
Since x#1 (if otherwise, the left member of the first equation of the original
system makes no sense), we have logy, x # 0, and system (1) can thus be rewrit-
ten in the following way:

log, x+log, y =log, 12, }

log, (x4y)=3.

Taking antilogarithms we get
xy=12, x+4y=8,




SOLUTIONS AND ANSWERS ALGEBRA 149

whence it follows that
%=6, 1y, =2 and x,=2, y,=6.

145. Converting the logarithms in each of the given equations to the base 2
we get

xlogyy=y Vy(l—log,x), } - o
2 logy x=3 log, y.
From the second equation of system (1) we find x2==y3, whence
3
x=y?. 2
Using (2), we find from the first equation y= §/4. Hence,
C3 2

x=25, y=2°%,
146. Let us transform the system by passing to logarithms to the base 2 in
the ﬁgst equation, to the base 3 in the second and to the base 4 in the third.
We obtain.

logzx+—logzy+—log22—logz }
logg !/"r‘ logs z—}--— logg x=1ogy 9,

log, z+~2— log, "+7 logy y =1log, 16. J
Taking antilo®ithms we come to the system

xVyz=4,
yViz=9, (1
z Y xy=16.

Multiplying the equations of system (1) termwise we find
' (xy2)? =242,
Since x >0, y >0, 2 >_0, we thus have

xyz =24, 2
Squaring the first equation of system (l) and using (2) we get
rjo_2
7

Analogously, we find y-—%z and z=%2. The verification by substitution

confirms that the three numbers thus found form a solution.

147. Passing over to logarithms to the base 2 in the first equation and then
raising we get

yr—xy=4. : (D)

Equatlon (l) and the second equation of the original system form the system

X2 y? =25, }

y2—xy =4, @
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This system has two solutions satisfying the conditions y > x, y > 0, nam'ely:

7 1
X = — ——, =—— and x,=3, =4,
1 V2 Y V-2 2 Y2

148. Dividing both members of the equation by 4% we find
3 1

@) oo vt

This yields
3
3y _3y3 _(3)°
4) g \4
and, hence,
3
X—?.

149, Substituting y expressed from the second equation into the first we
obtain

2
xx+ T= x-2x+ Py
It follows that either x=1 or
1 2
=t

and, consequently,

Answer:
1 3 /=
n=yp=1, xzz;V——- !/2=|/9-
3

150. Putting a*=u and a¥=uv we represent the system in the form
u?4y2 =25,
e |
These two equations imply
(u+0v)2=2(b+c¢) and (u—v)2=2(b—c).
Since the sought-for values of # and v must be positive, the first equation is

reduced to the equation
u4v=yY72 (b+F0). (1)

The second equation indicates that for the system to be solvable, it is neces-
sary to require, besides the positivity of the numbers b andc, that the inequality

b=c @
should be fulfilted. We also have :
u—v==4V2(b—0c) 3
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and therefore, solving the system of equations (1) and (3), we find, taking the
plus sign, the values

=Y 2 (VoFe+ Vi),

u=Y L (V5Fe—vi=o).

In the second case we get
w=Y L (VT v,
v, V 2 (VoFe+ Vi—c).

We have found two solutions of system (1), and if condition (2) is fulfilled all
the values of the unknowns are obviously positive. The two corresponding so-
lutions of the original system have the form

x=logq tty, y,=log,vy; xXy=log, u, y;=l0g, 0.

We now can assert that for the system to be solvable it is necessary and suf-
ficient that 5 >0, ¢ > 0 and b=c. 1f these conditions hold the system has two
solutions.

151. Multiplying the equations we get
(xy)*+9=(xy)>*.
Since x and y are positive, it follows that either xy=1 or xy # 1, and then
X—+y=2n. (n

Let us first consider the second case. The first equation of the original
system then takes the form x27=y", whence we obtain

y=x% (2)
Substituting y=x? into equation (1) we receive
x4 x—2n=0.
This equation has only one positive root
8n+1—1
X =V——i2;-—— . 3)

Using (2) we find the corresp onding value of y:
1 —
=7 (VEnFT—1) (4)

In the second case when xy=1 we have y=%, and the first equation of the

original system takes the form
1
—+x
x*  =x-n,
Since x and n are positive this equality is only possible if x=1. Thus, we
have found one more solution: x,=1, y,=1.
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152. We transierm the system in the form
Bx+y)*-¥=9,
Y/ 324 =2 35+ 2. |
From the second equation we find
324 =2%~¥ Br4 y)Px=p
and, consequently, by virtue of the first equation, we have
324 =2%-v.8]
which results in 22=2%-4, i.e.
x—y=2. (N

Combining equation (1) with the first equation of the original system we
arrive at the two systems )

X g =2, Xx—yw=2,

3x4y=3, } & 354 g =3, @
The solution of system (2) is xl;,.—-g-, y,,w—-—g-. The solution of system (3)
is xzz—%-, yz—_——%. The substitution in the original system confirms that

both pairs of numbers.satisfy it.

153. Put L=q. If a=1, i.e. p=gq, the system is satisfied by any pair

of equal positive numbers. Let us, therefore, suppose that « # 1. From the

second equation .we get x=y* Taking logarithms of both sides of the first

equation and using the above equality we obtain {/logy(a—y’l-l)zo, We

have y > 0 and therefore either logy=0 or a=y*~'. In thei first case we ob-
22

tain x, =1, y,=1 and in the second case x,:;ez"""i, ya=a*"', Both pairs of
numbers satisty the original system as well.

154. Taking logarithms of both equations we get the system

ylog x=xlogy, } (1)
xlogp=ylogg,
which determines the ratio i=1.;gi=ct. Consequently,
y logp
X=ay. (2)

Ii p=gq, the system has an infinite number of solutions of the form s¥=y=a
where @ > 0 is an arbitrary number. If p # g, then, substituting x determiined
from formula (2) into the first equation of system (1) we find

[+ 1

x=a%" ! = y=q%l

Consequently, it p # ¢ the system has a unique solution.
155. Taking logarithms of both members of the equality @?=c—b* we get
2=log, (c—b)+togg (c+b).

Whence we obtain
“Tog;-po B vga

2
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and, hence,
loge+pa-+10g,=p a=2log.4p a-log,—p a.

- 1 .
156. Using the formulz? log”mglqgmr_t we obtam

) 1
logbz,.;.- a=2klogpa and logaakb=—2;- log, b,

n

2
Z\ log o -* a~log ¥ b2 * = Z (2" logy a—-—l- log, b) =

E=0 k—O

=logbaz4k+ log2b 2————2 2=

k=0

(1>n+1_~ .
—-—a-ﬂr—-log ba-+ log,,b—2(n+l)—
—-—1

-z
(4"+*—~1)1ogba+-(4"+1—1) - loglb—2 (n4-1)=

>—~2(n+1)

=g (41— (logh -

3 logh a

logy logy @
157. q logba =(aloga b) logy logy a_ plogy logy @ _ logp a.
158. We have
C=ma;...0,=a-aq...(ag""') =a"g L

Using the formula for changing the base of logarithms we obtain
loggb ; A

log, ¢ n+n(n;1) log, q

log. b=

‘But we have

and therefore
248 -

1°gcb='—3—“(———+n =T A

159 Takmg advantage of the equality Iog,,b— gl i transform the gi-
ven formula as follows: ’
Ibgyc logya Togyb 5N logng

logya = 1 1 c logya’
 lognb “logyc lqgj_v‘ b .

—_—

n
* The symbol Zak denotes the sum ay+a;+as+ ...+ a,.
k=0
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This implies
logy 2 =logy & i
ogy o =logn 3 ' . (hH
because the factor iz%% is diflerent from zero. Taking antilogarithmsin equa-
lity (1) we get
b ¢
=7 @

Thus, b is the mean proportional between a and c¢. Taking then logarithms of
both sides of equality (2) to an arbitrary base N and carrying out the transfor-
mations in reverse order we complete the proof of the assertion.

160. It should be supposed that N # 1 because, if otherwise, the fraction
on the right-hand side becomes indeterminate. Dividing the identity to be pro-
ved by logg ¥V logy N log. N we replace it by the equivalent relation

1 1 1 1
log, N+ logp N+ log, ¥ 10800 N
Passing here to logarithms to the base ¥ we get
logy.a+ logy b+ logy c=logy abe.
The last identity being obviously valid, the problem has thus been solved.
161, We have

log, x logyab log b _
logepx~ logea I+ logea™ I+ logg b,
which is what we set out to prove.
162. Using the logarithmic identity logp a=:g§"z we transform the left
member of the given inequality in the following wacy-:
log | x+loggx= 10g3f +logg x=logg x (1°g p 3+ 1)=
F Ing 7‘ 3
=log x-log | iz logsx —_ logy x )
LT ] log 52
2 08 3 7 A
3 2
Then the given inequality takes the form
logg x
TTogs 2 > 1.
7

We have 2> 1 and —g— > 1, and, by property of logarithms, log3 2 > 0. Con-

2
sequently, the foregoing inequality is equivalent to the inequality
logg x < —log 53 2. :
) 2
Hence, noting that x > 0 according to the meaning of the problem, we finally
obtain
-log 3 2

0<x<3 2,
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163. Since x > 0, the given inequality is equivalent to the inequality
x1o8ax 5 g2,

But a > 1, and therefore taking logarithms of both sides of the last inequality
to the base a we get the equivalent inequality

logd x > 2.

From this we deduce the final result:

either log,x > V2, and, consequently, x > a”%

or loggx <—VZ, and then 0 < x < a~V2.

164, By the meaning of the problem we have x > 0 and therefore the given
inequality is equivalent to the inequality

log, x (x+1) < log, (2x+6).
Since'a > 1, it follows that x(x+1) < 2x4-6, that is
x—x—6 < 0.
Solving this quadratic inequality for x > 0 we get
0<x<3.
165. The inequality to be established is equivalent to
0<x2—5x4+6<1.
Since x3—5x+46=(x—2) (x—3), the inequality 0 < x2—>5x+6 holds true for
x<2

and for
x> 3.

Solving then the inequality x2—5x+6 < I, we find that it is satisfied for
S;V-i— <x< Eﬂ

2 2
Since V5> 2, we have 5_;/-5
refore, the original inequality holds true for

5—V§5
2

< 2 and, consequently, 5_—_#2]/'_5 > 3. The-

<x<2 and 3<x<§-i;/—5,

166. Reducing the fractions on the left-hand side to a common denomina-
tor, we find
—1 :
<l
)

log, x (logy x—1

and, hence,
14 log, x (log, x—1) >0
log, x (logy x—1) )

The numerator of the last expression is positive [indeed, we have 1+ logjx—

2
— log, x== (logzx—%) —|-—3—], the inequality is reduced to the relation
log, x (log, x—1) > 0,

which is fulfilled for x > 2 and 0 < x < 1.
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167. Accarding to the meaning of the problem; we have x> 0 and, hence,
the given inequality is equivalent to the inequality

x3— logéx—zlog,x

> 1.

Taking logarithms of both sides of this inequality to the base 2 and putting
y=Ilog, x, we get an equivalent inequality of the form

y(B—y:—2y)> 0,
which, after the quadratic trinomial has been factorized, can be written in the

form
y(Il—p)@B+y) >0

- The -latter inequality is fulfilled if and only if either all the thrée factors
are positive or one of them is positive and the other two are negative. Acgcor-
dingly, in the first case, i. e. when

y>0, 1—y>0, 3+y>0,
we obtain 0 < y < | and, hence,
l<x<2. (1

The second case reduces to three subcases among which o'nly ofie leads to
a consistent system of inequalities. Namely, when

y<0, 1—y>0, 3+y<0.
We receive y < —3 and, hence,

0<r<g. @

Thus, the original inequality holds if and only if either

0<x'<l

8 ,
or
I<x<2.
168. Putting log, x=y and noting that log, 2—_—_—log;x=-;— we rewrite the
given inequality in the form :
y+—;-+2 cos o =< 0. (1)

The numbers z.—_y—}—l and y have the same sign, and |[2|=2 for all y (see

(2), page 20). Therefore, if z > 0, then the inequality z<C—2cos o is fulfilled
only if z=2 (i.e., y=1) and cosaw=—1 or, in other words, if in the original
inequality x=2 and a=(2k+1)n(k=0, £1, £2, ...). For these values the
sign of equality appears.

But if 2 < 0, i.e. ¥y <0, then z< —2, and inequality (1) is fulfilled for all
a, whence it foliows that the original inequality holds for 0 < x < | and all
real values of. a besides the values found above.

169. The original inequality is equivalent to the relation
0< ]0g4 (xn_s) <1,

whence we find that 1 <x*—5< 4 or 6<x? <9 or V6<|x|<3.
Answer: ¥V 6<x<3and —3<e<—} 6,
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5, Combinatorial Analysis and Newton's Binomial Theorem

. 170. Taking the ratios of the first term of the proportion to the second and
of the second to the third and reducing the fractions to their lowest terms

we obtain
(n+ 1)1 . (n41)! _n—m+1
(m+D(n—m) "ml(n—m++1)I" m+1
and
(n+ 1) . (n+ 1) _n—m+2
m'(n—m4-1)! " (m—Din—m+21" m

The conditions of the problem thus lead to the two equations

n—m-1 n—m+2 5

A X
Solving them as system of simultaneous equations we find m=3 and n=:6.

171. We have
(1 22— 290 = 1+ C} (22— x9) + C3 (2 — 572 +-CJ (2 — 29)0 +
4 Ch (2 — 3P - C5 (2 —a3)P . .. 4 (22— )P,

It is readily seen that x% enters only into the fourth and fifth terms on the
right-hand side. Using this fact we easily find the coeflicient in x& which is equal

to 3C34 Ci.
172, The summands of the given sum form a progression with common ratio
1 +x. Therefore,

(104 (1 xp 1 (I x)r =

Writing the sum in the form of a polynomial
agtax4-.. Fagpx® . apxt,

and removing brackets in the right-hand member of equality (1) we see that if
i < k, then :

(L2t — (1 2k

X

(1

Ay = CZ’L‘— C;nn,
and if m =k, then
a,,.:Ci.".E”l‘-
173. From the conditions of the problem it follows that

Cl=CLy4d, or i-(”—2_—9=n+44.

Solving this equation for n we find n=11.
The general term of the expansion of the expression

—  1\u
(+V3+3)
by the binomial formula can be written in the form

3
= (1l-m)-4m
Chx? .
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By the hypothesis we have %(ll—m)—~4m=0 which yields m =3. Hence, the

sought-for term is equal to C%;.
174. Putting x+%=u we can write

6\1° 1 2 1
(145+-2) =+ wm= 1 clout Clowt + ...+ Clyum,
where
6\* s 6k
uk = (x-l-?) =xk 4+ Chxk-264 ... +Chak-25654 ... +—k . t))
x

For every summand in expression (1) which does not contain x we ha‘)e fhe

condition #—2s=0. Consequently, this summand is equal to C3s-65. Collectin
all these terms we conclude that a summand not containing x in the origina
expression is equal to

14 Clo- C2-6 +Clo- C3-62+-Clo C5-6°+Clo- C§-64+Cig- Clo-6°.
175. After simplifications the inequalities Ty ,; > Ty and Tpyy > Tpy, take

the form
V3 1 1 V3
10—k’ T00—k~ k1"
Solving each of them with respect to £, we get
101_1/3 S g 100 1_{3—1.
V341 YV 341

Both the left and right members of inequality (1) are not integers, the diffe-
rence between them being equal to unity. Therefore there exists only one inte-
ger k satisfying inequality (1). Noting that 1.72 <V 3 < 1.73 we establish, by
direct computation, that

M

64.64 > k£ > 63.135.
Hence, k=064.
176. The general term T4, of the expansion is equal to Chak. 1f Ter=Thsv
then C&=1gk~1—Ckak, that is

nlak-1 n!ak
k=Dl (n—k+ DI R (n—k) "
whence we obtain k= "+: . We have thus established the required condition:
14—
a

the number l—}—% must be the divisor for the number n--1.
Furthermore, the relation Tp=Tg4 =Tp4, is equivalent to the equalities

1 __a . a
(n—kt11)(n—Fk) k(n—Fk) k(ELI)'

that is
Bkl
ey Sl —" A

From the latter relations we obtain the equality n+41=0 which is impossible.
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177. The expansion will contain n terms of the form x? (i=1, 2, ..., n),

n(n—1) terms of the form xix; (i, j=1, 2, ..., n, i # ) and, finally, C} terms
of the form x;x;x, where i, j and & are different numbers. Thus, the number of

different dissimilar terms is equal to

— — 2
n—}—n(n——l)-{—n(n lg(n 2)=n(n+1é(n+ ).

178. The divisors of the number ¢ are obviously the numbers py, ps, ..., ps

and all their possible products. The number of these divisors is equal to
CY+ Ch+...+CE=2x.

The fact that all the divisors are different and that there are no other divisors
is implied by the uniqueness of the representation of an integer as a product of
prime numbers.

179. The equality to be proved has the form

ci? ] on+1

ch, ¢k ck
L NI =™ ey

and is equivalent to the equality

1+(n+1)+’”2“1 C,‘l+”—"§"—l c?,+...+’,:i: cﬁ+...+1*n;‘- ALy | —gnt1,
Since
n+t1 Cﬁ—n—H nl (n+ 1) =C§H,

BT "TR+1 Rl(n—&1 R+ 1) (n—E)!
the left-hand side of the last equality is equal to

14 Chsa+ Chiat-.. +C§H+ et Chi 1= (1 ntt =2n+1,
which is what we set out to prove.

180. The general term on the left-hand side of the equality can be transfor-
med in the following way:

KCE x% (1 —x)n=k=Fk

—ny (n—1)!
T k— D (n—kY
Therefore the left member of the equality can be written in the form

nx [Chor(l—x)=14-Chyx (1 —x)n=24 ... - Chitlxn-1] =
=nx[x4+1—x]*-1=nx.

181. Any splitting of the pack indicated in the statement of the problem is
equivalent to selecting 16 cards out of the 32 cards that are not aces and two
aces out of the four aces. The first selection can be accomplished in C3} ways,
and the second in C§ ways. Since every selection of the above 16 cards can be
combined with any selection of two aces, the total number of ways in which the
pack can be split is equal to Ci§C2.

182. The sought-for number is equal to the number of permutations of 10
digits taken 5 at a time, i.e. to 10X 9X8X7x6=230,240.

183. Imagine that we have an ordered set of n “boxes” which can be filled

by pairs of elements. Let us form the partitions and fill, in succession, the boxes
by the pairs of elements.

n!
Hm—pr (1= k=

xk=1(l—x)r=1-tk=1) = gyCr=} xk=1(] —g)r=1~tk=1),
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A pair put into the first box can be selected in C3, ways. Alter the first pair
has been selected, we can select the second pair in C3n_p ways, then the third
in €%,_, ways and so on. Finally, we obtain a set of C%,C3 5Ch._,...C3
partitions which, however, includes all the partitions differing in the order of
the pairs. Consequently, the number of the partitions we are interested in is
equal to DR
C3,C3n—s...C3__ 2 (2n—1)(2n-—2)(2n—3)... 2.1

nl - 27 nl -

=(@n—1)(2n—3) ... 3.1,

The same result can be obtained by another way of reasoning. Let k&,
(m=1, 2, ...) be the number of partitions of the desired type when tﬁe number
of elements equals 2m. Consider 2n elements. Since the order of the pairs is
inessential a pair containing the first element can be regarded as the first pair.
The pairs containing the first element can be formed in 2n—1 ways. After a
first pair has been selected, the rest of 2(n—1) elements can be partitioned
into pairs_in k,—, ways. Therefore, £,=(2n—1)k,—,. With the aid of this
relation we easily find
ky=(2n—1) (2n—3) ... 5-3-1.

.184. Out of the total number n! of permutations we have fo subtract the
number of those in which the elements a and b are adjacent. To form a ‘per-
mutation in which the elements a and b are adjacent we can take one of the
permutations [whese number is (n—2)!] containing the remaining n—2 elements
and add the two elements a and b to it so that they are adjacent. This can be
obviously done in 2 (n—1) ways (the factor 2 appears here because a and § can
be interchanged). Thus, the number of permutations in which a and b are adjacent
is equal to 2(n—2)!(n—1), and the number we are interested in is equal to

al—2(n—N=@n—1) (n—2).

185. If among these 5 tickets there are exactly two winning tickets, then the
remaining three are non-winning. Out of eight winning tickets, one can select
two in C2 ways, and out of 50—8=42 non-winning tickets, three tickets can
be chosen in C); ways. Each way of selecting two winning tickets can be com-
bined with any choice of three non-winning tickets. Therefore, the total numbet
of ways is equal to
8X742x41x40
TX2 1x2X3

The number of ways of selecting five tickets so that at least two of them
are winning is equal to the sum of the number of ways in which exactlkl two,
exactly three, exactly four and exactly five winning tickets are extracted. Hence,
the desired number Is equal to

C}Ch= = 396,240

CICl+ C3Ch+ CCh + C3 1 =757 x BXUXH0
+8><7><6 5 42X41 | BXTX6X5, 42 | 8XTX6X5X4
IX2x3 7" 1x2 T1Xx2X3x47 I T 1X2Xx3X4X5
= 326,240 -+ 48,216 -+ 2,940 4 56 = 377,452.

. 186. First solution. For convenience, let us think of the parallel lines as lying
one above the other. Suppose that there are n points on the upper line, and m
points on the lower one (Fig. 1). Let us break up the set of all joining line
segments into the pencils of lines with fixed points on the lower line as vertices.
(In Fig. 1 we see such a pencil of segmerits joining a point A with all the points
on the upper line.) Evidently, the number of these pencils is equal to m, and
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that the number of points of intersection of the segments belonging to two arbit-
rary pencils is the same for any pair of pencils. If we denote this number by
k,, then the total number of points of intersection of all the segments is equal
to the product of %, by the number of combinations of the m pencils two at a
time, i.e. to

: m(m—1)
—

To compute the number k&, let us group all the segments joining the m points
on the upper line to two points A and B on the lower line into the pairs of
segments joining a fixed point on the upper line (for instance, C) to the points
A and B. The number of these pairs is equal to n, and there exists exactly one
point of intersection of the segments belonging to two pairs (for instance, such
is the point of intersection of the diagonals of

knChi=F,

the trapezoid ABCD). Therefore, n points
n(n—1 -

Consequently, the total number of points of \
intersection of all the segments joining n points 74
on the upper line to m points on the lower A B
line is equal to T

nn—1)ym(m—1) - potms

’ 2 2 : FIG. 1

Second solution. Each point of intersection of the segments can be obtained
by selecting two points on the first line (which can be performed in Cj ways)‘

and two points on the second line (which can be performed in Cy ways). Com-
bining all the possible pairs of points we get the total of

C,zn-C,z;zm (m——l‘)ln (n—1)

points of intersection.
187. Each parallelogram is specified by choosing two straight lines of the

first family (which can be performed in C} ways) and two lines of the second

family (which can be performed in C7, ways). Thus, the total number of the
paratlelograms Is eqpal to

CE-Ch=

n(n—1)m(m—1)

188. Since in the given alphabet every separate character (a dot or a dash)
and every pair of the characters denote a letter, the number of ways in which
a continuous line consisting of x characters can be read is independent of the
particular form of the line and is equal to the total number of g1l possible’
partitions of the characters forming the line into the groups of one or two adjacent
characters. 'Let us denote this number by p,. | _ ,
* Let 'us now-divide all the possible ways of reading the glven line consisting
of n characters- into two sets. _ ) o

Let the first set comprise the ways -in- which only the first character- of the-
line is read as a separate letter. The number of wagrs belonging to the first set
is equal to the number of ways in which the rest of the line consisting of n—1
characters (remaining after the first character is discarded) can be read, that is

to pp—-1- i . ) - A o
- i'el't lH1e sécond set comprise the ways in which the first two characters of the’
line are read as one letter. The number of ways belonging to the.second set is

6 —323
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equal to the number of ways in which the chain consisting of n—2 characters
(remaining after the first two characters are discarded) can be read, that is
to pp-a.

Since every way of reading the given line belongs either to the first or to the
second set, the total number of ways is equal to the sum of ways belonging to
the first and second sets, i.e.

Prn="Pp-1+Pn-q (1
This equality is a recurrent formula by which one can compute, in succession,
P1y Ps, - .., Py for any n provided p; and p, are known. But in the given problem
py =1 (for a line consisting of one character there is only one way belonging to the
first set) and p,=2 (for a line consisting of two characters there are two ways
of reading one of which belongs to the first set and the other to the second set).
Using formula (1), we find, in succession,
p3=py+p=2+1=3,
Pa=pg-+p,=3-+2=5,
Py=ps+p3=>5+3=8
and so on. Finally, we get
P12 =233.

6. Problems in Forming Equations
189. Let x be the smaller of the factors. Then the statement of the problem

directly implies that
x (x+10)—40=239x+ 22,
that is
x2—29x—62=0,
whence x; =31, x,=—2. Discarding the negative root we find the sought-for
factors which are 31 and 41.

190. Before the first meeting the first cyclist covered s+a km and the second
one s—a km where s is the distance between 4 and B. Consequently, before the

second meeting they covered 2s+-2—s and 2s——’le-s km, respectively;

But if two bodies move with constant speeds, the ratio of the speeds is equal
to the ratio of the distances covered by the bodies, provided the times taken
are equal. Therefore, for finding s we have the equation

1
s—l—a_2+T
s—a ;1

%

Hence ¢=2a% km.

191. If two bodies move with constant speeds, then, for the same path, the
ratio of their speeds is the reciprocal of the ratio of the times taken. Let v be
the speed of the third car, and ¢ the time of motion of the second car by the
moment it was overtaken by the third car. Therefore we have

40_t—05 . 50_ 141
v ¢ v (15"

3
Dividing termwise the first equation by the second, we find t=-2— hours and
then determine v =060 km/hr.
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192, Let the time period between the start and the meeting be x hours. The
distance between the point of meeting and the point B took the cyclist x hours
and the pedestrian x4 ¢ hours. Since, for equal distances, the times of motion
- are inversely proportional to the speeds, we can write

x4+t
P =&

whence we find

I.‘

x=k~l.

193, Let x be the distance between A and B, and y be the distance between
B and C. Then, taking into account that the time of motion is the same in all
the cases mentioned in the statement of the problem, we obtain the system of

equations
Sy _xty
3.5' 47 3.75"

rty 1, ¥y %
3.75 _60+3.75+ 4°
Solving this system we find x=14 km and y=16 km.

194, Let x denote the length of the horizontal path, and y be the length of
the uphill portion. Then we can form the following system of equations:

y 2 15—ty ,9 )
stet— 5 2

10°
11.6—(x+y), x e
3 +7t+5=31%:

Adding together the equations, we find x=4.

195. Let us denote the distance between the points A and B by I, and the
speeds of the motorcyclists by v; and v,. During the time period ¢ the first
motorcyclist covered the distance p+ (—g¢, and the second the distance ¢ +{—p.

Therefore,

! —_
vt:ﬁ%‘l,
1
L _lta—p 0
= i .

On the other hand, the ratio of the speeds is equal to the ratio of the paths
covered before the first meeting, i.e.
u_l=p
Uy p
Substituting v, and v, expressed by (1) into the latter relation we get an
e?uation for determining [. Solving it, we find /=3p—gq. Substituting this value
of { into formulas (1) we obtain

4p—2
o=t

2
v2=-t£.

196. The difference between the delay times of the airplane in the first and
second flights which is equal to tltgtz hours is due to the fact that the distance
of d km was covered by the aircraft at different speeds, namely, during the first

6*
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flight the speed was v km/hr and during the second flight w km/hr (the sbeeds
on the other parts of the flight were equal). Thus, we get the equation

ti—t, d d

wherefrom we find that the initial speed of the airplane is equal to

_ 60vd km
T 60dFv(t,—f) hr'

197, Let us denote the weight of each cut-off piece by x. Suppose that the
first piece contained 100a % of copger, and the second 1006 9% of copper. Then the
WeiEht of copper contained in the first piece after its remainder has been alloyed
with the cut-off plece of the other alloy is equal to a(m—x)+4bx, and the
amount of copper in the second piece after its remainder has been alloyed with
the cut-off piece of the first alloy is equal to & (n—x)+ax. By the hypothesis,
we have : i

a(m—x)4-bx__b(n—x)+ax
m - n ’

w

Solving this equation and taking into account that a # b we obtain
e = mn
“m+n’
198, Let the ratio of the weights of the alloyed pieces be a:B. Then

ap | Bg
1007100 -
atp 100
It follows .that -
a:f=(r—q):(p—r).
The probleni is solvable if either p>r > q or p<r<g.
To find the maximum weight of the new alloy let us consider the ratios

and

4 Q
[r—q] lo—r]"

If , then the maximum weight is equal to

[r—ql  [p—7]
‘ P+Q=P=9p_P—9,.

r—gq p—r
If P < Q the maximum weight is equal to
Tr—al < To—r1"
—r —
P+’rl:-5 P=f—:g P.
If, finalty P > Q , then the maximum weight is
’ "hr—ql 7 p—rl|

r—q ., p—gq
e+=1e=E=q.

199. Suppose that each worker worked for ¢ days and A earned x roubles

whilé B earned y roubles. From the conditions of the problem deduce the fol-
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lowing system of equations:

X
(t—1F=72, }
(=74 =648, ()
(t—1) 2 —(t—7)F =32.4 J

Finally, the last equation yields
| 72 Y _64.8% =324,
* ¥

20 (%)2—9 (%)—IS:O.

From the latter equation we find y:%x (the negative root is discarded). Now,

that is

dividing the second equation of system (1) by the first one and replacing
% by its value 5 we find
6 .(=T_648 (=7 3 .
. 5 t—1 727 —1 4’
whence we obtain /=25. Consequently,
x=175 roubles, y=90 roubles.

©200. Let ¢, be the time elapsed before the first meeting, £, be the time

elapsed before the second meeting and R be the radius of the circle. Durlng

the time ¢, the first body covered the distance vf; and the second the distan-
2 -

that is

. The sum’ of these distances is equal to the circumference of the circle,

2 . !

oty + i’?:m. W

During the time ¢, each body covered the same distance equal to the circum-
ference of the circle, and hence we have : :

vl,=2nR and l—méi=2nR.

. . 2
" Eliminating ¢, from these relations we find R=—;’;. Substituting this vatue
of R into (1) we arrive at a quadratic equation in # of the form

ats C20
5 Toh—g=0.

Solving this equation and discarding the n'?;ative root (according to the meaning
of the problem, we must have /; > 0) we finally receive _

t=(V5+1) .
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201. Let us denote by ¢, and ¢, the capacities of the taps measured in 1/min
and by v the volume of the tank. The times of filling the tank by each tap
alone are, respectively,

v v
h=— and l3=—, 1
T T g, 0
The first condition of the problem leads to the equation
1 1 11
‘h“3‘t2+‘72'§ 11=T§U-
Using equalities (1) we get the quadratic equation
(\*_13q,
=2 —— 10,
(‘l-z ) 6 g, T
whose solutions are i‘z-g— and %:—g- . The second condition of the problem
2 2
implies that
v=(3-60+36) (91 +q2) =216 (9, + ¢2)-

From (1) we find the sought-for quantities:
tl=w=54o min (9 lours),
1
t2=£6(q—’+—q32=360 min (6 hours).

Qs
There is a second solution, namely
¢, =360 min, ¢,=>540 min.
202. Let p be the specific weight of water and s be the cross-section area
of the pipe. Atmospheric pressure p, is determined by the formula
Pg=1C.

If p, is the pressure under the piston when it is elevated, then, by Boyle and
Mariott's law, for the column of air between the piston.and the water level we

l EN
_ Gom_ Ermobron
b ! n ‘zl 29§ em

R

FIG. 2 FIG. 3

have p, (b—x) s=pyhs (see Fig. 2). The equilibrium equation for the column of
water is of the form p,—p,=7yx. This leads to the equation
he

C——— =X
b—x

(after y has been cancelled out), i. e. to the quadratic equation
xt—(b+c)x+(b—h)c=0.
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Solving the equation we find
, q -
=3 [0+~ ¥V F—=cf 1 2he].

203. Let p; and p, be the air pressures under the Fiston in positions / and //,
respectively (Fig. 3), and y be the specific weight of mercury. The equilibrium
equation for the columns of mercury 12 cm and x cm high are, respectively,
76y —py=xy.
Boyle and Mariott’s law applied to the column of air below the piston yields
the equation 5
P1'29'74"=P2 (36—x).

Substituting the expressions of p; and p, found from (1) into this equation, we
obtain the following quadratic equation in x:
29%— X 64 =(76—x) (36—1x),
that is
x3—112x4832=0.
Solving the last equation we find x=56 + V' 3136—832="56 + V2304 = 56--48,
and hence x=8 cm.

204, Let the watch gain x minutes a day. Then it will show true time in
% days. If it were 3 minutes slow at that moment but gained x+-;- minutes

more a day, it would show true time in 3 ] days. Hence,

x+—2-
3 2
1 +l=;v

. it
whence
x2+—g— x—1=0.

Solving this equation, we find x=0.5.

205. If x is the original sum of money each person deposited and y is the
interest paid by the savings bank, then

yom._. dn_
Hrp TP TR T
Multiplying the first equation by s and the second by m, and subtracting the
latter equation from the former, we find

x=PR=dm
n—m

Now taking the original system and subtracting the second equation from the
first one we get

X
ﬁg—o(m—n)=p—q.
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whence we obtain

1200 (p—q)
y—w %..

. 206, Let v, and v, be the speeds of the points, and v; > v,. The first
condition. of the problem is expessed by the equation :

2nR  2nR
e mwg#t_
Uy Uy

The second condition means that the distance covered by the peint moving in
the circle at a highet speed during the time T is by 2nR ’ll(}mger ‘than' that
covered by the other point. Thus, we get another equation

Tv,—Tv, = 2nR.

From the latter equation we find
2nR

022—‘01——7.—.

Substituting this expression for v, into the first equation we get a quadratic
equation for vy: e
oF 2nR° R MR
T AT T T

o= ( l/‘—ﬁ%" ‘)

0.

Solving it we find

and then determine

R ] /T
vz—T < 1 +_t_ —_ ])-

207. Let v be the volume of the solution im the flask and x be the percen-
tage of sodium chloride contained in the solution.

The volume % of the solution is poured into the test tube and evaporateq

until the percentage of sodium chloride in the test tube is doubled. Since the
amount of sodium chloride remains unchanged, the volume of the solution in
the test tube becomes hall as much, and hence the weight of the evaporated

. v
water is equal to 5
After the evaporated solution is poured back inhto the flask, the amount of
sodium chloride in the flask becomes. the same as before, i. e. v%}, and the

velume of the soluiion: is reduced by -2% Thus, we obtain the egiiation -

X
Y100 _x+p
v 1o

T

wherefrom we find
=N p
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“ 208. Let the first vessel comtain x litres of alcohol, then the second vessel
contains 30—x litres. After water has been added to the first vessel, one litre
of the obtained mixture contains 5% titres of alcohol and ]~.—3% litres of water.
After the resulting mixture is added from the first vessel to the second vessel
the latter contains 30——x+%x litres of alcohol and (] —i> x litres of water.

. 30
QOne litre of the new mixture . contains

153%-}—-(;5)2 litres of alechol.

After 12 litres of the new mixture is poured out from the second vessel inta
the first, the first vessel contains

121 i-{- x\? +x(30 x) litres of lohél |
30 56) 35 (30—%) ale
afd the second contains s
18- 1= (ZV'] Hitres of alcohol
{1—35 (30 itres of alcohol.

By the hypothesis,
i _ g e
18 [1“5%+<3%) ]+2m]2 [Jwg‘%_;_(gﬁﬂ TR

whence we get the equation :
x2—30x+4-200=0.

This equation hasthe roots
x=20 and x,=10.

Herice, the first vessel originally contained either 20 litres of alcohol (and then
the second contained 101) or 10 litres (and then the second vessel contained 201).

209. Let x be the distance between the bank the travellers started from and
the place where C left the motor boat. Note that A caught the boat at the
same distance from the opposite bank. Indeed, the only distinction between the
ways in which A and C crossed the water obstacle is that C started out in the
motor boat and then swam and A first swam and then took the motor boat.
Since they swam at an equal speed v (v # v;) and the crossing took them equal
times, the above distances should be equal.

Taking this note into consideration, we easily set up the equation

x+5*—2(s——x)ﬁ_s—«x
N T

its Jeft member expressing the time of motion af the boat from the start to'the
point where it meets A and its right member being equal to the time of motion
of A from the start to that point. ‘ -

The above equation yields

=3 (v+1y)

vt
Therefore the duration of the crossing is equal to’
PoSTE X s ey
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Note. The problem can also be solved without using the equality of the
above mentioned distances. But then we have to introduce some new unknowns,
and the solution becomes more complicated.

210. Let the sought-for distance be s km and the speed of the train be
v km/hr. During 6 hours preceding the halt caused by the smow drift the first

train covered 6v km and the remaining distance of (s—6v) km took it 5_(5(:5 )

hours because the speed of the train on that part of the trip was equal to s v.

5
M hours which
6v

exceeds by one hour the interval of —z— hours indicated by the time-table. Thus,

The entire trip (including the two-hour wait) lasted 84

we obtain the equation 5
s—6v) s
+— =1ty
Reasoning analogously, we set up another equation concerning the second train: .
s , 3 o, 180, 5(s—6v—150)
vt T -
From this system of equations we find s=600 km.

211. Denoting the speed of the motor boat in still water by v and the speed i
of the current by w we get the following system of two equations:

a a

o to—w 1
a a—b, 20 _ a4-b
u——w_'T°+v+w ' v+w_T°+v +w’

. . . 1 1 .
Solving this system with respect to the unknowns TTo and e and taking
their reciprocals we find

2a-+b a(2a+b)

v-{—w:T_T0 and VW= T T g @t T T
It then follows that

U=

)

1 [ 2a4b a(2a--b) ]
[T——T0 +T (a+b)+Tya

and

W=

17 2a+b a(2a+b) ]
7 [T——To—-T(a—]-b)—i-Toa :

212. Let x be the time period during which the second tap was ke&t open
and v (w) be the capacity of the first (second) tap measured in m3/hr. We have
v (x4 5) 4 wx =425,
2vx=w (x+5),
(v+w) 17 =425.
From the second and third equations we get

. x5 _ 50x
v=%7T5 Y315
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Substituting these expressions into the first equation we find
3x2—41x—60=0,
whence x=15 hours (the negative root is discarded).
213. Let the sought-fer speed of the train be v km/hr and the scheduled

speed be v; km/hr. The first half of the way took the train %O— hours and the

1
second half of the way together with the halt took it Zl_l_%ﬁ"'ild hours in the
first trip and %—{—-11—2 hours in the second trip. But both times the train arrived
at B on schedule and therefore
0
From the first equation we can find v;. We have
10 (_1___1_) SR S | A— I
vy, v +10 20" v (v;4+10) 20°

that &s
v} 4 10y, — 2000=0,
and the latter equation has the only ome positive root v; =40.
From the second equation we find that v=60 kmy/hr.

214. Let the distance AB be equal to s km, and the speeds of the first and
second airplanes be respectively equal to v; and v,. Then, by the conditions
of the problem, we have the following system of three equations:

s a N a
wta T |

20, " To O i
3s s
40, —b= 4v, J
Let us put
s
_2‘U_l=x' m:y.

w

From the second and third equations we find x=—5 and y=—g—b, and the

2
2
5

first equation yields a (-1——|--—1-)=b. But 2=2%— , and now we readily
Uy Uy L

8a a
7 2T and s=38a.

215. Let u be the speed of the motor boat in still water and v be the speed
of the current. Then we have the following system:

find that o=

96 96
u+v+u—v_l4‘
2496 72

v _u+v+u—v'
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To solve it let us put —._z Multlplymg both members of the. second

equation by v we find

Rt

.Reducing the terms of this equation to a common denominator and discarding
it we obtain the quadratic equation
2422 — 1682 =0,

whose roots are 2=0 and z=7. Since z # 0, we must take z="7. Hence, u=7v.
Substituting u==7v into the first equation of the system we derive

whence we find
v=2 km/hr,- u=14 km/hr.

216. The distance covered by a body moving w1th constant acceleration a .

during ¢ sec is determmed -by the formula
S= Uot+—2— .

To find v, and a for each body we must substitute the given numerical data
into this formula.
(1) For the first body we have

B=vyty for t=1

and
1

50—3—'=2zi0'+2a for ¢=2,

hence a—--, oy=25—L and s=242 ¢!
whence a=-, vy=20—% and 5 =2¢% -+ 5
(2) For the second body we have

30 =vo+-g- for t=1

and
- - 89 %:200+2a for t=2
t')
whence a—-—?, 00—30+T and s,—30—-t-——‘~1—.

For the moment when the first body catches up with the second we have
s;=5,-+20 which results in a quadratic équation for determining ¢ of the fortm

t2—13t—48=0.
Solvmg 11 ‘we find’ t_16 the negative root being discarded.. .
217. Let v denote the relative speed of the boat Then the tlme of motxon
of the boat is equal to
10 6
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By the hypothesis, we have A
10 6
S e bk @

It is necessary that v > 1, since otherwise the boat cannot move upstream.
Let us pass from the system of inequalities (1) to an equivalent system of ine-
qualities of the form

Co o 3(—1)<16v—4<<4 (v®~1).
Thus, the two inequalities

32 —16v4+1<<0
and
4v2—16v = 0.

must hold simultaneously. The first inequality is satisfied if
8— V61 8+ V61
3 3 :

<u<<

The second inequality is satisfied if v < 0 or v > 4. But since v > 1, we finally

obtain _
4 <u<8—4-—3Z-—G.L .

218. Let x be the volume of water in the vessel A before pouring the water
from A into B. Then the original volume of water in the vessels B and C is
equal to 2x and 3x respectively, and the total volume is equal to x+42x-+ 3x =6x.

After the water has been poured from A into B and from B into C for the
first time, the water level in all three vessels becomes the same, and therefore
the volumes of water in them are in the ratio equal to that of the areas of the
bases which is 1:4:9. Therefore, after the first pouring the volumes of water in
the vessels A, B and C are respectively equal to

6x 3 6x 12

ViRt T fThare Tt
and '
9. _ b ——2—7x
1+44+9 77
After the second pouring from C into B these volumes assume- the values
3 12 4 27 4
=% 7x+1287 and 7x—1287,

respectively. After the third ‘pouring from B into A the volume of water in A4
becomes equal to x—100, and in B equal to

%(x—lOO)~4—_-2(x—-100).

Adding together the volumes of water in all the vessels we obtain th'e‘ fol-
lowing linear equation with respect to x:

(x—100) 42 (x— 100)+37Z x—128 ;:::6,\;.. )

Solving this equation we find .
x==500.
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Thus we find the original amount of water in each vessel:

A contains 500 litres,
B contains 1000 litres,
C contains 1500 litres.

219. Let the desired number have the form xyzt where the letters x, ¢, 2
and ¢ denote the digits in the corresponding decimal places. By the conditions
of the problem, we obtain the following system of equations:

x2412=13,
y*+22=85, M
xyzt — 1089 = fzyx.

The rules of subtraction of decimal numbers imply that in the third equa-
tion of the above system ¢ is equal either to 9 or to

(104+-4)—9=1x,

x=t41. )

But from the first equation of system (1) it follows that ¢ < 4 and therefore (2)
takes place. Then from the first equation of system (1) we get the equation for

determining f:
(4 1)24-£2=13,
whence we find
t=2.
From (2) it then follows that x=3, and the third equation of system (1) takes
the form
3yz?— 1089 = 2z43. 3)

Now let us note that z <9 because if 2=9, then (3) implies that y=0 and
therefore the second equation of system (1) is not fulfilled. From (3) we find

(z—1410)—8=y,

z=y—1. “4)

Finally, from the second equation of system (1) and from (4) we determine
2=6, y=7, Thus, the sought-for number is 3762.

220. Let us begin with finding the distance x between ihe start of motion
and the first meeting. The equation for the times of motion of both points has
the form

a+x_t _x
v Tw’
whence
x=(a——v!)w-
v—w

The time from the start of motion to the first meeting is equal to

a+tx
= .
! v
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Substituting the above value of x into this expression we get

a—uwt
= P

Let © be the time interval between two successive meetings. Then
vt —wt =I,

which results in
{

T=
v—w

.

The successive meetings will thus occur at the moments of time ¢}, ¢, -7,
f;+2t, .... The moment of the ath meeting is

a—w!+41(n—1)
fy=—— T ]
v—w
221, Let y, be the specific weight of the first component of the alloy, v, be
the specific weight of the second component and y be that of water. Suppose
that the weight of the first component is x. According to the Archimedes prin-
ciple, when immersed in water, the alloy loses in its weight a portion of

x  P—x
<E+ Y2 )'Y'
Analogously, for the components the losses in weight are equal to
_P_-y and i
T Y2 v
These losses are given: they are equal to B and C respectively. Consequently,
we have
r B v _C
w P’ owm P

Thus, the loss of weight of the alloy is
B C
A_—P— x-[——-P; (P—x).

Hence,
_A—cC

=£—>p.

B—C
For the problem to be solvable it is necessary that B # C. Furthermore, the

fact that % is a number lying between 0 and ! implies the inequality
A—C
0< T———C <.

It follows that either B> A > C or C > A > B. Therefore, for the problem to
be solvable it is necessary and sufficient that the number A lie between the

numbers B and C.

222, Let us denote the distance from the point A to the mouth of the river
by s, the distance between the mouth of the river and the point B across the
lake by s;, the speed of the towboat (without towing) by v and the speed of

the current by v,. It is necessary to determine the quantity %:x.
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The conditions of the problem enable us to set up the three equations -

3 X
U—UI+—=79 {
71--|-x=4ll.
From the first equation we obtain
R : v+v1 2
= TTo—x M
from the second equation we find
v—y, 2 :
; s 188—x 2)
and from the third equation we get
o _ 1 V
s T AT—x" @

Subtracting equality (2) from equality (1) and using equallty (3) we obtain the
following equation in x:

1 11
122—x 158—x 41l—x’

that is -
—244x 44480 =0.
Solving this equation we find
x=20, x,=224.
It is obvious that the value x, =224 should be discarded because the left member
of equation (1) cannot be negative.

223. Let the distance AB be denoted by s, the distance BC by s, the speed
of the boat by v and the speed of the current by vy (s and s; are supposéd to
be expressed in the same units of length and v and v, in those units per hour).

For the motion of the boat from A to C downstream we have

5 Ty 6. n
For the boat going upstream from € to A we have

5 s

3= )

v—Uy U

I between A and B the current is the same as between B and C, then the trip
from A to C takes

S+51 . .
v+v,“‘5‘5 hours. (3)
Now we have to determine the ratio s-|—31 .
U

m

A —

s ,vm-mi“i‘
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Reducing equations (1), (2) and (3) to a common denominator and. multip-
lying both members of equation (3) by v # 0, we get the system

(s+5,) v="6v (v+v)—sv,, ‘
(s+51) v="0 (v—0;) 504, (4)
(s+95)v=>08.5(@-+tuv)v.
Adding together the first two equations and using the third one we obtain
2(s+ 91)v=0(13v—ul)=1.lu(v—{—vﬂ,
wience we find u=6v,. But from the third equation of system (4) we have
s+5;

=7xX5.5. Consequently,
1

S+S[ ;:S+sl =7.7 hours
v—u; 5y, ' -

224, Let v be the volume of the vessel, o, be the percentage of the acid in
it after the first mixing, ay the percentage of the acid after the second mixing
and so on. We ‘have

(0—-a)ptaq_

v

v !

v—a)a f
(_)_vk_ziﬂ =,
{v—a) ak—l‘f’”‘f___,

[

) - (s=1, 2. ..., r) and adding to-

gether the results we obtain

() o

whence it follows that

() ()

. (v«—a)k 1
v—a\k a v -
C s B

v v v—a
o
Consequently,
1—a)*
( —7) V(P Q=r—
A_nswer: B
U= 2 . )
£/ r—q
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225. At the end of the first year the deposit increased by ]i()% roubles and

the depositor took out B roubles. Therefore, at the beginning of the second year
the deposit was equal (in roubles) to

Pi=A (1+%)—3.

At the end of the second year the deposit was equal to
- 2\ _p= PN _Bli4(2 1
Py=P, (1+100) B=A (1-}-100) B[1+(wo+ 1)]
and at the end of the third year it was
Py=ARR—B(14+k+£k?)

where
p
k=14 100°

Obviously, at the end of the nth year the deposited sum became equal to
Pp=Akn—B (I 4-k+k2+ ... Fkr-1),
i.e,
__Ap—1008
p

1008

Py o

( _p_)"
\l+100 +
To solve the problem we must find # such that P,>=3A. Then
log (3Ap—1008) —log (Ap—1008)
- .
log (1+1—06)

The meaning of the problem indicates that the deposited sum must increase,
and therefore

n=

=

M

Ap > 100B. A
Furthermore, we have p >0, A >0 and B > 0 and hence the expression on the
right-hand side of inequality (1) makes sense.

226. The amount of wood in the forestry at the end of the first year is
equal to :

a (l +T%_O) —x=ay,
at the end of the second to
ay (l—}-l—f—w)—x:a,.
at the end of the third year to
a, (1—}—%) —x=a,
and so on. Lastly, at the end of the nth year the amount of wood is equal to

[ (1"‘1‘36) —x=a,=aq.
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Now we can find x. Putting, for brevity, 1+Tg(-) =k, we get from the last

equation the expression x=ka,_,—aq. Expressing a,_, from the foregoing
equation we obtain
x=Fk(ka,—o—x)—aqg="Fk?a,_,—kx—aq.
But
' p-g=ka, _3—x.
Hence,
x=ka,_g—kx—kx—aq.

Proceeding in the same way, we finally express a, in terms of a; and obtain
the following equation with respect to x:

x=kha—x(k"-14kn-24 ... +k)—aq.

p n
(H-m) _‘l_p_

p\" 100°
(1—}—]—66) —1

227. Before pouring the concentration ¢; (i=1, 2, ..., n) of alcohol was
gi=1 in the first vessel,

It follows that

—a— -
x._akn—__T(k—l)—a

q,:% in the second vessel,

* . . o« e s e . s s e

In= knl_l in the nth vessel.

After all the manipulations the concentrations became respectively equal to
D1y P2r +-«y Pn. Then py=1, and p; for i > 1 is determined from the equation

v v
B 95 +Pi-1g

pi= _gitpi-y (i=2, .

v 2
We obtain this equation by dividing the amount

vey ).

v v
95 +Pi-15

of alcohol contained in the ith vessel after it has been filled from the (i—1)th
vessel, by the volume v of the vessel.

Thus,
p,=q2_gp‘, pa=qs‘|2‘pz e p"=‘7n+2pn—|.
Hence,
qn—l+pn—l

_9ntPr— Int 2 Zgg_,_qn—l +—l—p —

Fn 2 2 2 T gF TgEhn-e
- 1 g, - Q- - Pri~
=gﬂiqul+§?qn 2';‘pn sz%rg_'_ rézl ;qrxzsz_l_ réas_ o

q - q p 1 1 1 1
"‘=?n+_’§i'l'+'"+2n2-1+2n}-1=2kn—1 } 22kn—2+ +m+§f-—i .
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For & # 2 the last sum is equal to
1 1

ettt

1 1 on-1__fn=1 L 1

{ kr—-1 "— . . .
T S W M7 e 7 L oy T &
TETZ

For k=2 it equals

n—I1 1 n—1 2 n+l
Pn= gn + on—1__ gn +ﬁ= on *

- 228 The-quotient is expressed by the fraction of the form EZL—T where p is

a positive integer. The conditions of the problem are written in the form of the
inequalities

p+2 1 p—3 1
pT—'}—_l>? and 0<p2—_4<1—(—).

We now transform the first inequality to the form
3(p+2) > pt+1, thatis 0 > p2—3p—5.
Solving the quadratic equation p2—3p—5=0 we obtain

3LV
pl,2= 2 .

From the inequality 0 > p*-—3p—5 we get p, < p < p;. But p, <0 and p >0,
therefore

3+ V29
0<p<p‘=_+_2_V_.

- H is readily seen that p, lies between 4 and 4.5. Consequently, it follows
from the latter inequalily that p as integer can assume only one of the four
values p=1, 2, 3, 4. Substituting these values into the second inequality

p—3 1
0<p_2—_»-Z<T6'
we find that p# 1, p 22 and p # 3. Thus, p=4, pzp—_l-_—lis-

7. Miscellaneous Problems
229, We haye’

1 1 1
A TaFery T T e aTh

1 1 1 1\
= (E’—n+1)+(n+l_n+2)+“‘+
o d Ly L 1 *
ntk—1 h+k)Tn Atk n(nthk)
230. Let first ¥ # a. Multiplying and dividing the product in question by
x—a and applying, in succession, the formula for the difference of the squares

!
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cof two numbers we obtain
e b a) (hat) (e tal). O i

x—a
_(2—a)(@4a) xitah. . (T e
x—a
_(—af) (a2 T e )
x—a
_ (x8—aB).. .(x<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>