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PROBLEMS ALGEBRA

1. Arithmetic and Geometric Progressions

Preliminaries

Let an' d and S; be, respectively. the nth term. the common
difference and the sum of the first n term s of an arithmetic pro­
gression. Then

and

S ._ (al + anl n [2a l +d (n-l l] n
n - 2 2

(1)

(2)

If un. q and Sn are the nth term , the common ratio and the
sum of the first n terms of a geometric progression. then

and
S = unq-UI = UI (qn_l)

n q-l q-l

(3)

(4)

(5)

band c form an arithmetic

Finally . if S is the sum of an infinite geometric series with
Iql < 1 th en

S =-!!L
I -q '

1. Prove that if pos itive numbers a.
progression then the numbers

1 1
Y fJ+ Y c·' ye' + Y"a •

al so form an arithmetic progression .

2. Positive numbers all a 2 1 •.• , an form an arithmetic progres­
sion. Prove that

I I In-I

y at + ya2 + Yaz+ Yas + ... + V an-1 + Yan Yal + Yan .

3. Prove that if numbers a .. all .. .• an are different from zero
and form an arithmetic progression then

_1_+_1_ +_1_+ ... + _I_=n-l.
alaZ a~a3 G8a, an-Ian alan
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4. Prove that any sequence of numbers aI' az, .. . , an satisfying
the condition

for every n;:; 3 is an arithmetic progression.

5. Prove that for every arithmetic progression aI' a2 , 'as' ..'. ,
an we have the equalities

al-2az+as = 0,
al - 3a2 + 3aS-a4 = 0,

al-4a2 +6as-4a4 +as = 0;

and, generally,

a1-GAa2 +qi1s - •.. +(-lr- 1 G~-lpn+ (_I)n G~an+I = 0

(where n » 2).
Hint . Here and in the problem below it is advisable to apply

the identity C~ = eLl+G~l which can be readily verified. ,

6. Given an arithmetic progression aI' ... , an, an+1, ... prove that
the equa li t ies

hold for n ~ 3.

7. Prove thatH the numbers 10g1i:t, logmx and logn'x(x =;#I)
form an arithmetic progression then

n2 =~ (kn)'logkm.

8. Find an arithmetic progression if it is known 'that the ratio
of the sum of the first ti terms to the sum of thekn:suhs~quElnt

terms is independent of n.
9. The numbers Xl' x2 , ' ••• J Xn form an arithmetic progression.

Find this progression if

xI+XZ+ " ,+xll=a, x~ +x:+ ... + X~ = b2 .

Hint. Here and in the problem below use the equality

12 +22 +32 + ...+ n2 = ~ ( n +l ~(2n + l ) .

10. The number sequence I ; 4,10,19, ... satisfies the condition
that the differences of two subsequent terms form an arithmetic
progression. Find the nth term and the sum of the first n terms
of this sequence.
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11. Consider the table

1
2, 3, 4
3, 4, 5, 6, 7
4. 5, 6, 7, 8, 9, 10

9

Prove that the sum of the terms in each row is equal to the
square of an odd number.

12. Given the terms am+n = A and am - n = B of a geometric
progression a., az' as' ... , find am and an (A =1= 0).

13. Let S" be the sum of the first n terms of a geometric pro­
gression (Sn=l=O, q=l=O). Prove that .

Sn S2n-Sn
S2n- Sn SSn- S 2n '

14. Knowing the sum S; of the first n terms of a geometric
progression and the sum s, of. the reci procals of these .terms find
the product Il; of the first n terms of the progression.

15. Find the sum

1+2x+ 3xz+4x8 + ... + (n + I}x",

16. Find the sum

1+11+111+ ... +111 ...

if the last summand is an nodigi t number.

17. Find the sum

nx + (n-l) x2 + ... + 2X" -1 + Iz".

18. Find the sum

1 3 5 . 2n-l
2'+22+2a+"'+2il'

19. Prove that the numbers 49, 4489, 444889, ... obtained by
inserting 48 into the middle of the preceding number are squares
of integers.

20. Construct a geometric progression

1, q, q2, ..., q", . ..

with Iq I< I whose every term differs from the sum of all subsequent
terms by a given constant factor k. For what values of k is the
problem solvable?
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21. An infinite number sequence Xl' Xa• Xa•••• , Xn• • • • (Xl *0)
satisfies the condition

(x~ +x: + ... + X~_l) (x: +xi + ... + x~) =
= (XIX, +x2xa+ ... +xn _ Ixn)2

for any n~ 3. Prove that the numbers Xli Xa• • ••• Xn• ' " form an
infini te geometric progress ion .

Hint. Use the method of complete induction.

22. Given an arithmetic progression with general term an' and
a geometr ic progression with general term bn. Prove that an < b;
for n ;» 2 if al = b., aa = ba• al * a2 and an > 0 for all natural
numbers n.

23. Prove that if the terms of a geometric progression all

aa• . . . • an. . .. and of an arithmetic progression bll ba• • . • • bn•
satisfy the inequalities

~>o,

then there exists a number ex such that the difference log. all - bn
is indepentlent of n.

2. Algebraic Equations and Systems of Equations

Prelim inaries

In the problems below the original systems of equations should
be simplified and reduced to equivalent systems whose all solu­
tions either are known or can readily be found . In some cases
it is necessary to introduce redundant equations which are a priori
satisfied by the solutions of the original systems but may have,
in the general case, some extraneous solutions. Then the values
of the unknowns thus obtained must be tested by substituting
them into the original systems.

In some problems one should use Vieta's theorem for the equation
of the third degree

XS +px2 -t qx+ r = 0. (I)

The theorem establishes the following relations between the coef­
ficients P. q and r of the equation and its roots xI' X a and xs :

xI +XS+XS=-p, xlxa+ xaXs+xSxl =q, XlX2XS= - f . (2)

Formulas (2) are derived by equating the coefficients in the
equal powers of X on both sides of the identity X S + px2-1- qx + r =
= (X-Xl) (X-X2) (X-Xs)'
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24. Find all real solutions of the system of equations

xS+ys= I, l
x2y +2Xy2 + y3= 2. J

25. Solve the system of eq uat ions

x2+xy+y2 =4, \

x+xy+y =2. J
26. Find the real solutions of the system of equations

x3+y3=5a3, \
x;2y + Xy 2 = a3 J

provided a is real and different from zero.

27. Solve the system of equations

x
2

+ !C = 12 }y x '

-!...+-!...=-!-x y 3 '

28. Solve the system of equations

x4+ X2y2+ y4= 91, }
x2- xy + y2= 7.

29. Solve the system of equations

xS - ys= 19 (x - y), \

xs+ys=7(x+y) . J

30. Find all real solutions of the system of equations

2(x+y) =5xy, }
8(x3 +yS) = 65.

81. Find the real solutions of the system of equations

(x +Y)(X2_ y2) = 9. \
(x-y) (X3 +y2) =5. J

32. Find all real solutions of the system of equat ions

x+y =l, }
x4+ y4=7.

38. Solve the system of equations

x+y = I, }
x~ +y~ = 31.

11



34. Firrdfhe real solutions of the system of equations

x' +y~- x2il = 13. }
X2_ y2+2xy = I.

satisfying the cond ition xy~ O.

. 35. Solve the system of 'equa tions

(x'+ I)vl+ 1)= 10, }
(x + y ) (xy-:-I) = 3. .

Hint. Put xy = v and x+ y = u.

36. Sol ve the system of equations

(x' +!It; 'F 6• ..}

(X2_ y2) JJ..:.= I .
x. .

37. Solve the system of equations

x2+y2 =axy, }
x4 +y4 ~ b~2y.~.

38. Solve the equation

( x+ a) 2+ ( X- a) 2_ (~ +~) x
2_a2= 0

x+b x-b b a x~- b~

by factorizing its left member.

39. Sol ve the equation

..::+~= 10 (~-~) .3 x _ 3 x

40. Sol ve the system of equations

x+ y xy I }--xY+ x+y=a +il .'

x - y + .3L =b +..: .
xy x-:- y b

41. Find all the solutions of the equation

(x-4.5)4 + (x-5 . 5) ~ = 1.

42. Solve the system of equations

Ix-II -tl y - 5 j = l . }
y =5+lx':"'I/*.

• The absolute value of a number .x (denoted as rx n ·is the non-negative
number determined by the conditions

x r= { -x .for x < 0,
I x fOfX;;" O.
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43. For what real x and y does the equality

5x2+ 5y2+8xy+ 2y-2x +2 = 0

13

hold?

44. Find all real values of x and y satisfying the equation

x2 +4xcos (xy)+4 = O.

45. Find thereal'solutionsof the system

x+y+z=2, \
2xy- z2 = 4. J

46. For what value ' of a does the system

x2 + ya= z, }

x+y+z =a
possess a single real solution? Find th is solution .

47. Prove that for every (complex, in the general case) solu-
tion of the system .

X
2
+ y2+ xy + x~ = a, }

x' +yt+X2!?- --i-t - 2= b2

xy

the sum x2 + y2 is real for any real a and b, a =/= O.

48. Solve the system of equat ions

ax+ bu-s-cz =a + b+e, }
bx+ey+az = a+ b+ e,
ex+ay+bz = a +b+ e,

on condition that a , band e are real and a +b+c=/=O.
49. Solve the system of equations

ax+y+z= 1, }
x+ay+z =a,
x+y+az =a2

•

50. What relationship must, connect the numbersc, ~v as for
the system

(I +a1) x + y + z = 1, }
x +(1+a'l)Y+z = I ,
x+y+(l +a3)z= I

to be solvable and have a unique solution?
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5 l , Solve the system of equations

ax + by+ ce + dt = p ; }
-bx +ay+dz-ct = q.
-cx-dy+az +bt = r,
-dx +cy-bz +at = 5,

where the coefficients a. b, c and d satisfy the condition

as+b2 +c2+ d2 =f=. O.
52. Solve the system of equations

Xl + 2X2 +3xs + 4.x. + ...+nxn =al , I,
nX1 +Xa + 2xa+ 3x.+ + (n-l) xn = aa'

(n-l) x1+nx2 + x3+2x.+ + (n- 2)xn =aa· }
.. . ...... •... ........ " I-

2xI +3xa +4xs + 5x. + ... + lXn =Qn ' J
53. Pro ve that if

x, +x,+x,~O'l

x, +x,+x.~ o. I

J
X" +xIOO+ xI = 0,
x100 +xI +x2 = O.

th en
Xl +X2 = ..• = X, o=XlO O = 0.

54. Solve the system of equations

X
2+ xy + xz- x = 2. }

y2+ xy+yz-y =4.
z2+xz+ yz-z= 6.

55. Solve the system of equations

x + y-z= 7. }
x2 +y2 _ Z2 = 37.

XS +yS - Z8 = 1.

56. Solve the system of equat ions

se: 2 1x+y ,
xgz 6

y+ z= s' f
xyz 3

z+ x= 2 "
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57. Solve the system of equations

U
2 .!- 0

2 + W ,= 2, }
0 2 + W 2 +- u = 2,

w2 + u2 +0=2.

58. Solve the system of equat ions

x2+ xy + y2 = I, }
x2 +xz + Z2 = 4,

y2 + yz +Z2= 7.

59. Find the solutions of the system of equations .

X2XS" 'Xn at' I
XI

}
XIXS ' • ' X n

a 2•
X2

X1X 2' . . Xn-I

Xn
an' J

if the numbers aI' ... , an and Xl' ••. , x; are positive.
60. Solve the system of equations

(x+y+z)lax+y+z) =k2
, }

(x+ y + z) (x +ay + z) = [2,

(x+ y+z) (x+ y+az) = m2
,

where at k, I and m are positive numbers and k2 + [ 2 +m2 > O.
61. Find the real solutions of the system of equations

x +y+z =6. }
x 2 + y2 +Z 2 = 14,

xz+yz =(xy+ 1)2.

62. Solve the system of equations

x2+ xy +xz+yz =a, }
y2+ xy +xz + yz = b,

Z2 + xy +xz + yz = c, .

assuming that abc =1=0.

1S
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63. Solve the syst-em of equations

x (.y.. +z) =.a
2

,. }
y(z+x) = b2

, .

z (x } y) = c2 ,

where abc =1= O.
64. Find the real solut ion of the system of equations

y3+ Z3 = 2a (yz + zx + xy), }
Z 3 + x3 == 2b (yz + zx +xy),

x3 +y3= 2c (yz+zx+xy).

65. Solve the .systern of equations

y+ 2x+z =a(x+ y) (z+4 }
z+2y+x = b(y+ z) (x +y),

x+ 2z +y =c (z +x) (y+ z).

66. Solve the system of equations

x+y+z =9, }
· : 1 I I
x+Y+2~1, .
xy+xz+ yz =27.

67. Solve the system of equations

x+y+z=a, .}
xy +yz +xz = a2

•

xyz =a3 •

68. Show that the system of equations

2x +y+z= O. }
yz + zx + xy_ y2 = O.

xy+ Z2= 0

has only the tri vial solution x =y =z =O.

69. Solve the system of equations

x+ y+ Z = 0. .}
x2 + y2+ z2= a2 , .

x3+ y3+ Z3 = a3.
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70. Let (x, y, z) be a solution of the system of equations

x+y+z=a, }
x2+y2 +Z2 = b2,

.!.-+..!..+..!..=..!.. .x y. .Z C

Find the sum
x~ +yS +t3 •

71. Solve the system of equations

x+y+z =2, }

(x +y)(y + z)+ ((y +Z))(Z +x() +(Z)+ x) ((x +Y)) = I, 6 .
x2 y+z + y2 Z+X +Z2 X+y = - .

72. Solve the system of equations

x2 + (Y-Z)2='a, }
if +(X-Z)2 = b,
t 2+ (X_y)2 = c.

73. Solve the system of equations

xy+yz+zx=47. } .
x2 +y2 = i 2,

(z-x) (z-y) = 2.

74. Find all real solutions of. the system of equations

x= I ~:2 'l
2x2

u> l+x2
' f

2y2

z= 1+y2 . '

75. Find the real solutions of the system of equations
2

2x2 = Xl +-,
Xl

2
2xs = x 2 +- ,x2

)
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,

76. Show that jf a, b, c and d are pairwise unequal real: num
bers and x, y, z is a solution of the system of equations

l+x+y+z =O, }
a+bx+cy +dz = 0,

a2 +b2x + c2y+ d2z = 0,

then the product xyz is positive.
In the equations below, if the index of a radical is even. con­

sider only the values of the unknowns for which the radicand is
non-negative and take only the non-negative value of the root.
When the index is odd the radicand can be any real number (in
this case the sign of the root coincides with the sign of the ra­
d icand).

77. Solve the equation

V(a+x)2+4 V'(a-x)2=5 Va2-x2.

78. Solve the equation

}Y (I +x)2-}Y(l-X)2 = VI I-x<

79. Solve the equation

l/y-2+V2y-5+ Yy+2+3V2y-5=7V2.
80. Solve the equation

Vx+Vx--V x-Vx= ~ Jlx+Vx.
81. Solve the equation

YXT+BX+Vx+7= 7 •
¥x+l Yx+1

82. Find all real roots of the equation

VX-I + VX -j- I = x V2.
83. Solve the equation

V x - 4a + 16= 2 V x - 2a+ 4 - VX-.
For what real values of a is the equation solvable?

84. Solve the system of equations

VI-16y2-VI-16x2= 2(x+y). }

x2 + y2 +4xy = +.
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85. Solve the system of equations

x-Y= ~ (V x2y- Vxy2) , }

V- V-x - y = 3.

86. Solve the system of equations

II x - Vl
- Y =2. }

Y x 2 '

x+ yx+ y= 9.

87. Solve the system of equations

l/ r Y+ l + 2 .. ix- y = 3 }
x-y V y+l '

x+xy+y =7.

88. Find all real solutions of the system

" / x+Y 12 }
x+y- V x-y =x-y'

xY= 15.

89. Solve the system of equations

+2 Y x~ - 12y+1 x2+ 17 }
Y 3 12 '

~+-}= V;y+{-ix'
90. Solve the system of equations

x+y~ x - Yxr=y'i 17 }
x_yx2 _ y2 +x+YX2 _ y2 = 4 '

x (x+y) +V' x2 + xy +4 = 52.

91. Solve the system of equations

y2 +V'3y2_2x+3 =; x + 5, }

3x-2y =5.

92. Find the real solutions of the system of equations

4 r 0 x
2+ 17 }"Y+3" J! x'-6y + 1 = -6-'

x2y- 5 2 12 4
~=y-x2 +9'

19
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93. Solve the system of equations

V- YX }(x-y) Y=-2-'

(x+y) Vrx= 3V·Y.
94. Solve the system of equations

Vx+y-,-Vx · y ~a, }
Vx2 +y'i+ V'x'2 _ y'i = a2

95. Solve the system of equations

x V'x - y Vy =-= a (Vi"- VY"")' }.
x2+xy +y2 = b2

3. Algebraic Inequalities ·

Preliminaries

(a> 0).

(a:> 0, b ;» 0).

Here are some inequalities which are used for solving the prob-
lems below. .

For any real a and b we have

a2+b2~2Iabl. (I)

Inequality (I) is a consequence of the obvious inequality (a ± b)2~ o.
Relation (I) turns into an equality only if lal=lbl.

If ab ;» 0, then dividing both sides of inequality (I) by ab we
obtain

(2)

If u~O and ti~O, then, putting u=a2 and v=b2 in (I) we
obtain

u+u V-:­
-2-~ uv. (3)

In inequalities (2) and (3) the sign of equality appears only for
a =b and (u=u).

In addition, let us indicate some properties of the quadratic
trinomial

y=ax2+bx+c

which are used in some problems below.
The representation of trinomial (4) in the form

_ .( b)2 b2 - 4ap
Y - a x +2/i- 4a

(4)

(5)
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implies that if the discriminant of the trinomial satisfies the
condition

D=b2-4ac < 0

(in this case the . roots of the trinomial are nonreal), then, for
all x, the trinomial takes on values of the same sign which
coincides with the sign ofthecoefficient a in the second power of x,

If D = 0 the trinomial vanishes only for x = - ~ . and retains
its sign for all the other values of x.

Finally, if D> 0 (in this case the trinomial has real distinct
roots Xl and x2) , it follows from the factorization

j,. " .
y = a tX-XI) (x'-x2) ,

that the trinorn iai attains the values whose sign is opposite to
that of a only for x satisfying the condition

Xl <X< x2 •

For all the other values of X different from Xl and X
2

the trino­
mial has the same sign as a.

Thus, a trinomial always retains the sign of the coejficient in x2

except for the case when its roots Xl and x2 are real and
. ' .

96. Find all real values of r for which the polynomial

(r 2
- I) x 2 + 2 (r - I) X + I

is positive for all real x.
97. Prove -that the expression

3 (:: + ~: )- 8 (f+f) + 10

.is non-negative for any real x and y different from zero.
98. For what values of a is the system of inequalities

-3 < x
2+ax.,-2 < 2

. x.2- x+ 1

fulfilled for all x?

99. Prove that for any real numbers a, b, c and d the ine­
quality

is valid .



100. Find all the values of a for which the system

x2 +y2 +2x~ I, }
x-y+a=O

has a unique solution. Find the corresponding solutions.
101. Find the pairs of integers x and y satisfying the

of inequalities

22 PROBLEMS IN ELEMENTARY MATHEMATICS

system

,
. I

I

I

I
y-lx2-2x 1++> 0, J

y+lx-11 < 2.

102. Prove that the inequality
1 1 I 1

n+l+n+2+"' +2il >2"
holds for every integer n > I.

103. Prove that the inequality

1 1 1
m+l +m+2+'" +m+(2m+l) > 1

is valid for every positive integer m.
104. Show that for any natural n we have

I I 1 n-l
-22 + -32+ ... + - 2 < --.n n ·

105. Prove that

for n ;» 2.

106. Prove that, given three line segments of length a> 0,
b ;» °and c ;»0, a triangle with these segments as sid'es can be
constructed if and only if pa2+qb2 > pqc' for any numbers p
and q sati sfying the condit ion p+q = 1.

107. Prove that for any real x, y and z we have the inequality
4x (x+y) (x+z) (x + y + z)+y2z2 ;::: O.

108. Prove that the inequality
x2 + 2xy + 3y2+2x +6y + 4 ;:::1

holds for any real x and y.

109. Prove that if 2x +4y = I, the inequality

x2 +y2 ;::: do
is fulfilled.
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110. What conditions must be imposed on the number d ;» 0
for the inequality

d2+R2_,~

0< 2dR ~ 1

to be valid for R~ r > O?

111. Prove the inequality

I + I I I ~ 9
a b" c-::::--- a+b+c '

where a, band c are positive.

112. Prove that if a, band c are numbers of the same sign
and a < b < c. then

a3 (b2 - C2) +b3 (c2_aZ) +c3 (a2 - b2) < O.

113. Prove that if all a2• ai • • • • • an are positive numbers and
aJaZaS •• • an = I, then

(l +al ) (I +az) (I +a) (l +an)~ 2n.

114. Prove that if a+b= 1 then

a·+b·~ ~.

115. Prove that the polynomial
X8_X5+X2_X+ 1

is positive for all real x,

116. Prpve that if [x] < 1 the inequality

(l-x)n+(1 +x)n < 2n

is fulfilled for any integer n~ 2.

117. Prove that

Ix1al +xzaz+ .. .+xnan I:::;;+(x~ +x~ + .. .+ x~) +
++(a~+a:+ .. . +a;'),

where Xl' X2• . . . • Xn and all az• • • . • an and e are arbitrary real
numbers and e> O.

118. For what real values of x is the inequality

I-Yf=4X2 <3
x

fulfilled?
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119;, Prove that for all positive x and yal1d positive integers
m and n (n~ m) we have the inequality

VI x!/J +ym;;p J1x" +,1/.
120. Prove the inequality

Va+ya+ . . . +Va < I+~ ,. a>O.

121. Prove the inequality

2- (-2+~-(~' f=2=+=V=2=+=,.=. .=+=Y=2=",,>+
. 2-V2+V2+ ...+Y2

provided the numerator of the left member of the inequality
contains n radical signs and the denominator contains n-I radi­
cal signs:

122. Prove that for any real numbers aI' a2• . r •• an and .
b1l b2, . . . , bn. satisfying the relations

a~+a;+ +a~ = 1. }
bi + b~+ + b~ = 1,

the inequality lalbJ +a2b2+ + anbn l ~ 1 is valid.
123. Prove that if the numbers Xl' X2• • ~. , x; are positive and

satisfy the relation

then

4. Logarithmic and Exponential Equations,
Identities and Inequalities

Preliminaries

The definition of the logarithm of a number N to a base a
states that

a10ga N = N. (I)

Here N is any positive number. a is an arbitrary base and
a > 0, a =1= I.

The solution of some.problems below .isbased on the follow,ing
formula for converting from logarithms to a 'base a to the loga­
rithms to a base b:

I
· lo~N-c» =-1-' (2)og/l a
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The formula is proved by taking the logar ithms to the 'base b
of the both sides of ident ity (1). 'In particular, for N = b form u­
la <I) implies '

j
IOg'ab = -j-- ' •ogo a

124. Solve the equation
log2x 2 Joga x
--2-- -1- - = IOg 3/-Xlog-aX.
Jogla . og 1 a V a

b .

125. Solve the equation

logx2 logL2 = 10gL 2.
'1 6 64

(3)

126, .Solve the equation

log2 <gx-1 +7) = 2 + log2(3X- 1+ I).

127. Solve the equat ion

logsx ( : ) + logrtt d -l .

128. Prove that the equation'

IOg2x (~ ) log] x+log~. x = 1

has only one root sat isfy ing the ineq ual ity x » I. Fi nd th is root.

129. Solve the equation
log ,/_ a .

a' • x I I1 + ogaxa og 1 2x 0= O.
o~x a 7

130. What cond it ions must be imposed on the numbers a and
b for the equation

I + logo(2 log a_ x) log, b = '---I2 ,.
ogo x

to have at least cine soluti on? F ind all the solut ions of this
equation.

131. Solve the equat ion '"

-V log, V ax+ jogx V ax+-Vloga V-:+ logx j/ ; = a.

132. Solve the equation

log(Vxt:!...±. )) = 3.
log V X ...... 40 . . '

• Here and henceforward til t; .r oots are understood as men tioned on page 18.
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133. Solve the equation
log (p-x) . 2-logp-q 4

1+ Jog: (x+q) = logp_q (x+q) (p ;» q > 0).

134. Sol ve the eq uat ion

log)f6 x -V' -lo-g-
x-S-V=5=-'

+-I-og-jl-;--S-V-=S = - Vir.
135. Solve the equation

(O.4)log' x+ J = (6.25)2-lop'.

136. Solve the equation
4-x

1 + log, --ro = (log log n-I) logx 10.

How many roots has the equation for a given value of n?

137. Solve the equation

logslnx2 ·logsin'xa+ 1=0.

138. Solve the system of equations

log, (x +y)-log3 (x-y) = I, }
x 2 _ y2= 2.

139. Solve the system of equations

xa=ylJ. }
10 ~ = loge X (a =1= b, ab::/= 0).

ge y loge Y

140. Solve the system of equations

log s x + 31oll". v = 7. }
xy = S12.

HI. So1ve the system of equa tions

yx 1oll"1/ x = X ;. }

log4Y logy (y- 3x) = 1.
142. Solve the system of equations

aXbJ'=ab }
2 logax = lo~{- y log~'a b.

143. Solve the system of equations

3 elogy.x-Iog+y) = 10. }

xy=81.
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144. Solve the system of equations

log12 x (loL2 + log2Y)= log2 x, }

logz X logs(x + y) = 3 log, x.

145. Solve the system of equations

x logzy log+ 2=yVy(I- logx2)'}
logy, 2 logV2" x = I .

146. Solve the system of equations

logz x + log, Y+ log, z = 2. }
log~y+ log9 z+ log, x = 2.
log, z+ loglox+ log15Y= 2.

147. Solve the system of equations

logo .s (y-x) +log,+= -2. JI

x2 +y2 = 25.
148. Solve the equation

I 1
4x_3X-"2 = 3x+-r _22X - 1 •

149. Find the positive roots of the system of equations

xX+Y =yX-Y , }

x2y = 1.

150. Solve the system of equations

a2X +azy= 2b, }
aX+Y =c (a> 0).

Urtder what conditions on band c is the system solvable?
151. Find the positive solutions of the system of equations

27

XX+Y=!I',

yX+Y = xzn!l'. }
where n > O.

152. Solve the system of equations
(3x + y)X-Y= 9, }

x-V324 = 18x2 + 12xy+2yz.
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153. Find the positive roots of the system of equations

xY=yX, }
xr =y1, '

where pq ;» O.

154. Solve the system of equations

xY =yX, }
px=qY,

u> 0, p >0 and q:» 0.assuming that x~> 0,

155. Prove that

loge+; a+ loge-b a = 210g;+b a IO~-b a,
if a2+b2=c2 and q> 0, b > 0, c >0.

156. Simplify the expression

(log, a-loga b)2 + (log!.a-loga.b)2+ ...+ (log ' !. a-Iog
a

. ,; b)' 2.
b 2 , b 2n

log log a

157. Simpilify the expression a~ where all the logarithms
are taken to the same base b. ,

158. Let logab= A and logq b= B. Compute logeb where c is
the product of n terms of a 'geometric progression with common
ratio q and the first term a.

159. Prove -that if the relation
Joga N _ 10&a N -10gb N
loge JY - 10gb N -loge N

is .Iulfi lled for a given positiveN =1= I and three positive numbers
a, band c. then b is the mean proportional between zrarrd c, and
the relation is fulfilled for any positive N =1=1.

J60. Prove the identity

I loga N 10gb N loge N
Of/a N lqg" N + JOgbN loge N + loge N loga N = , ,' ' l ogatlc N, ' .' .

16L ·ProvedtJe .ident ity

JOi(a x = I +10gb-.
10&.b X a

162. Solve the inequality

Jog, x+ log3x > 1.
T '

163. Solve the inequality
xlog~ ,HI >a2x (a> I). ,
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164. Solve the inequality

loga x+ loga (x+ I) < loga (2x + 6) (a > I).

165. Solve the inequality ; , ,-.;
log, (x2 -5x + 6) < O.

166. Solve the inequality

1 I < I
log2 X log2x-I .

167. Solve the inequality

" 2 - log2 x- log x' 1 :
X 2 '-- > O.x

168. For what real x and ct is the inequality

log2 x + logx2+ 2 cos 0: ~ 0
valid?

169. Solve the inequality
log I [Iog« (x 2 - ,5)] > O.

'3

5. Combinatorial "'nalysis and Newton's Binomial Theorem

Preliminaries

The humber of permutations of n things taken m at a time is
given by the formula

P(n, m) =n(n-I) .. .(n-m +\). (I)

, The number of permutations of n things taken all at a time is
equal to factorial n: .

nl .'-= \ ·2·3 . . .n, (2)

(3)
P (n . m)

m!

. The number of combinations of tt elements, .m at a time, is . de­
fined Ey the formula

C ( )
_ n (n-l)(n-2) (n-m+ 1)

n, m "7 !.2 .3 m

,: There is a relation 9f the form
C (n, m)= C in, n-m) .

·.l-F@p positive Integers nand anyx and a w~ have binomial for-
mula . . ..

(x+a)n=xn+C(n, l)axn-1+G.(n, 2}a2xn - 2 + ... +
+Ctn, n-2)an- 2 x2 +C(n, n--I)an-1 x+an, (4)
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whose general term is equal to

C(n, k)akxn - k • (5)

Formula (4) implies the equalities

I+C(n, 1)+C(n, 2)+ . .. +C(n, n--:2)+C(n, n_I)+1=2n

and
I --C (n, I) + C (n, 2)-C (n, 3)+ ... + (_I)n = O.

170. Find m and n knowing that

C(n+ I, m+ l):C(n+ I, m):C(n+ I, m-I) =5:5:3.

171. Find the coefficient in x B in the binomial expansion of

(I +X2_X3)'.

172. Find the coefficient in xm in the expansion of the expres-
sion

(I + X)k + (I +X)k+ 1 + ... + (l + x)n

in powers of x. Consider the cases m < k and m~ k.
173. In the expansion, by the binomial formula, of the expres­

sion (xV"X +~r the binom ia I coefficient in the third term is by
44 larger than that in the second term. Find the term not con­
taining x.

174. In the expansion of the expression

(I +x+~ro
find the term not .contain ing x.

175. Find out for what value of k the (k+ I) th term of the
expansion, by the binomial formula, of the expression

(I +V3)lOO

is simultaneously greater than the preceding and the subsequent
terms of the expansion?

176. Find the condition under which the expansion of (1 +a)n
in powers ot a (where n is an integer and a =1= 0) contains two
equal consecutive terms. Can this expansion contain three equal
consecutive terms?

177. Fin d the total number of dissimilar terms obtained after
the expression

has been cubed.
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178. Let PI' P2' ... , Pn be different prime numbers and q=PIP2" .p.;
Determine the number of the divisors (including I and q) of q,

179. Prove that if each coefficient in the expansion of the exp­
ression x (I + xt in powers of x is divided by the exponent
of the corresponding power, then the sum of the quotients thus
obtained is equal to

2n +1_1

n+l .

180. Prove that

C(n, l)x(l-xt-1+2C(n. 2)x2(I-x)n- 2 + +
, +kC(n, k)xk(l_x)n-k + + nC (n , n)xn =nx,

where n > 0 is an arbitrary integer.

181. In how many ways can a pack of 36 cards be split in two
so that each portion contains two aces?

182. How many five-digit telephone numbers with pairwise dis­
tinct digits can be composed?

183. Given a set of 2n elements. Consider all the possible par­
titions of the set into the pairs of elements on condition that the
partitions solely differing in the order of elements within the
pairs and in the order of the pairs are regarded as coincident.
What is the total number of these partitions?

184. Determine the number of permutations of n elements taken
all at a time in which two given elements a and b are not adja­
cent.

185. Eight prizes are distributed by a lottery. The first parti­
cipant takes 5 tickets from the urn containing 50 tickets. In how
many ways can he extract them so that (I) exactly two tickets
are winning, (2) at least two tickets are winning.

186. m points are taken on one of two given parallel lines and
n points on the other. Join with line segments each of .the m
points on 'tpe former line to each of the n points on the latter.
What is the" number of points of intersection of the segments if
it is known that there are no points in which three or more seg­
ments intersect.

187. n parallel lines in a plane are intersected by a family of
m parallel lines. How many parallelograms are formed in the net­
work thus formed? '

188. An alphabet consists of six letters which are coded in
Morse code as

•__<I. • __
t t . • • , t
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A wdtd:' was -transmitted without spaces between the letters so
.'t1itit the resultant continuous line of dots and dashes contained
12 characters. In how many ways can that word be read?

'6. ProblernsInPormlng Equations

189. In multiplying two numbers one of 'f/hich exceeds the
other by 10 the pupil reduced, by mistake, the tens digit in the
product by 4. When checking the answer by dividing the product
thus obtained by the smaller of the factors he obtained the quo­
tient 39 and the remainder 22. Determine the factors.

190. Two cyclists simultaneously start out from a point A and
proceed with different but constant speeds to a point Band
then return without stopping. One of them overtakes the other
and meets him on the way back at a poiat c kilometres from B.
Having reached A he starts for ' B, and again meets the second

cyclist after covering fth the distance between A and B. Find

the distance from A to B.

191. Two cars simultaneously start out from a point and pro­
ceed in the same direction, one of them .'going at a speed of
50 k m/hr and the other at 40 krn/hr. In half an hour a third car
starts out from the same point and avertskes the first car 1:'5
hours after catching up with the second car. Determine the speed
of the th ird car.

192. A pedestrian and a cyclist start out from points A and B
towards one another. After they meet the pedestrian continues to
go in the direction from A to B while the cyclist turns and
also goes towards B. The pedestrian rea~esB t hours later than
the cyclist. Find the time period between the start and mee:Ung
if the speed of the cyclist isk times that of the pedestrian.

193.. Walking without stopping a postman went Iroma point A
throtl@ a point B to a point C. The distan-ce from A to B was
covered wieh a speed of. 3.·5 ·krn/hr and from B to C .of 4 km/he.
:TQ,get backJrom C to A in the same time foB-owing the -same
.ro ute w!tij a constant speed he was to walk 3 .75 km per hour.
However, after walking at that speed and reaching B he stopped
Jar 14 minutes and then, in order to reach A at the appointed
't ime he had to move from B to A walking 4 km per hour. Find
' the distances between A and B and between Band C. .

. 1~4. The distance from a point A to a point B is 11.5 km.
The toad between A and B first goes uphill, then horizontally
and then downhill. A pedestrian went from A to B in 2 'h ou rs
and 54 minutes but it · took him 3 hours and 6 minutes to get
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back from B to A. His speeds were 3 krn/hr uphill, 4 krn/hr on
the horizontal part of the road and 5 krn/hr downhi II. Determine
the length of the horizontal part.

195. In a motorcycle test two motorcyclists simultaneously
start out from A to B and from B to A, each driving at a con­
stant speed. After arriving at their terminal points they turn back
without stopping. They meet at a distance of p km from Band
then, in t hours, at q km from A. Find the distance between
A and B and the speeds of the motorcyclists .

196. An airplane was in flight from A to B in a straight line.
Due to a head wind, after a certain time, it reduced its speed to
v krn/hr and therefore was t1 minutes late. During a second flight
from A to B the airplane for the same reason reduced its speed
to the same level but this time d km farther from A than in the
first flight and was t2 minutes late. Find the original speed of
the airplane.

197. There are two pieces of an alloy weighing m kg and
n kg with different percentages of copper. A piece of the same
weight is cut from either alloy. Each of the cut-off pieces is alloyed
with the rest of the other piece which results into two new
alloys with the same percentage of copper. Find the weights of
the cut-off pieces.

198. Given two pieces of alloys of silver and copper . One of
them contains p% of copper and the other contains q% of cop­
per. In what ratio are the weights of portions of the alloys if the
new alloy made up of these portions contains r% of. copper? For
what relationships between p, q arid v is the problem solvable?
What is the greatest weight of the new alloy that can be obtai­
ned if the first piece weighs P grams and the second Q grams?

199. Workers A and B have been working the same number of
days. If A worked one day less and B 7 days less then A would
earn 72 roubles and B 6.4 roubles 80 kopecks, If, conversely,
A worked 7 days less and B one day less B would earn 32 roub­
les and 40 kopecks more than A. How much did in fact either
worker earn?

200. Two bodies move in a circle in opposite directions, one of
them being in a uniform motion with linear speed v and the
other in a uniformly accelerated motion with linear accelera­
tion a. At the initial moment of time the bodies are at the same
point A, and the velocity of the second one is equal to zero. In
what time does their first meeting take place if the second meet­
ing occurs at the point A?

2-323
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201. A tank was being filled with water from two taps. One of
the taps was first open during one third of the time required for
filling the tank by the other tap alone . Then, conversely, the
second tap was kept open for one third of the time required to
fill the tank by using the first tap alone, after which the tank was

:~ full. Compute the time needed to fill the tank by each tap se­

parately if both taps, when open together, fill the tank in 3 hours
and 36 minutes.

202. A cylindrical pipe with a piston is placed verticalIy into
a tank of water so that there is a column of air h metres high
between the piston and the water (at the atmospheric pressure).
The piston is then elevated b metres above the water level in the
tank. Compute the height of the column of water in the pipe if
it is known that the column of liquid in a water barometer is c
metres high at the atmospheric pressure.

203. A cylindrical pipe with a moving piston is placed verti­
cally into a cup of mercury. The mercury level in the pipe is
12 em above that in the cup, and the column of air in the pipe

between the mercury and the piston is 29 ~ em high. The piston

is then moved 6 em downward . What is the resultant height of
the column of mercury if the external air pressure is 760 mm Hg?

204. At a certain moment a watch shows a 2-minutes lag although
it is fast. If it showed a 3-minutes lag at that moment but gained
half a minute more a day than it does it would show true time
one day sooner than it aetualIy does. How many minutes a day
does the watch gain?

205. Two persons deposited equal sums of money in a savings
bank. One of them withdrew his money after m months and received
p roubles, and the other withdrew the money after n months and re­
ceived q roubles. How much money did either person deposit and
what interest does the savings bank pay? -

206. In a circle of radius R two points uniformly move in the
same direction. One of them describes one circuit t seconds faster
than the other. The time period between two consecutive meetings
of the points is equal to T. Determine the speeds of the points.

207. A flask contains a solution of sodium chloride. ~ th part

of the solution is poured into a test tube and evaporated until
the percentage of sodium chloride in the test tube is doubled .
The evaporated solution is then poured back into the flask . This
increases the percentage of sodium chloride in the flask by p%.
Determine the original percentage of sodium chloride.
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208. Two identical vessels, each of 30 litres, contain a total of
only 30 litres of alcohol. Water is added to the top of one ves­
sel, the resulting mixture is added to the top of the other vessel
and then 12 litres of the new mixture are poured from the second
vessel into the first. How much alcohol did each vessel contain
originally if after the above procedure the second vessel contains
2 litres of alcohol less than the first?

209. Three travellers A, Band C are crossing a water obstacle
s km wide. A is swimming at a speed of v krn/hr , and Band C
are in a motor boat going at VI krn/hr. Some time after the start
C decides to swim the rest of the distance, his speed being equal
to that of A. At this moment B decides to pick up A and turns
back. A then takes the motor boat and continues his way with
B. All the three travellers simultaneously arrive at the opposite
bank. How long did the crossing take?

210. A train left a station A for B at 13:00. At 19:00 the
train was brought to a halt by a snow drift. Two hours later the
railway line was cleared and to make up for the lost time the
train proceeded at a speed exceeding the original speed by 20%
and arrived at B only one hour later. The next day a train
going from A to B according to the same timetable was stopped
by a snow drift 150 km farther from A than the former train.
Likewise, after a two-hour halt it went with a 20% increase of
speed but failed to make up for the lost time and arrived at B
I hour 30 minutes late. Find the distance between A and B.

211. A landing stage B is a kilometres up the river from A.
A motor boat makes trips going from A to B and returning to A
without stopping in T hours. Find the speed of the boat in still
water and the speed of the current if it is known that once, when
returning from B to A, the motor boat had an accident at a dis­
tance of b km from A which delayed it for To hours and reduced
its speed twice so that it went from B to A during the sa me
time as from A to B.

212. A tank of a volume of 425 mS was filled with water from
two taps . One of the taps was open 5 hours longer than the
other. If the first tap had been kept open as long as the second
and the second tap as long as the first, then the first tap would
have released one half the amount of water flowed out from the
second. If both taps had been opened simultaneously the tank
would have been filled in 17 hours.

Taking into account all these conditions determine how long the
second tap was open. \

213. According to the timetable, a train is to cover the distan­
ce of 20 km between A and B at a constant speed . The train

2*
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covered half the distance at that speed and then stopped for
three minutes; in order to arrive at B on schedule it had to
increase the speed by 10 krn/hr on the remaining half of the trip.
Another time the train was delayed for 5 minutes after passing
half the way. At what speed must the train go after the stop in
order to arrive at B on schedule?

214. Two airplanes simultaneously take off from A and B.
Flying towards 'each other, they meet at a distance of a kilo­
metres from the midpoint of AB . If the first airplane took off b
hours later than the second, they would meet after passing half
the distance from A to B. If, conversely, the second airplane took
of! b hours after the first, they would meet at a point lying at
the quarter of that distance from B. Find the distance between A
and B and the speeds of the airplanes.

215. A motor boat and a raft simultaneously start out downstream
from A. The motor boat covers 96 krn, turns back and arrives at .
A in 14 hours. Find the speed of the motor boat in still water
and the speed of the current if it is known that the two craft met
at a distance of 24 km from A when the motor boat was returning.

216. Two bodies simultaneously start out in the same direction
from two points 20 metres apart. The one behind is in uniformly
accelerated motion and covers 25 metres during the first second
and +of a metre more in the next second. The other body is in
uniformly decelerated motion and passes 30 metres in the first
second and half a metre less in the next second. How many se­
conds will it take the first body to catch up with the second?

217. A boat moves 10 km downstream and then 6 km upstream.
The river current is 1 krn/hr. Within what limits must the rela­
tive speed of the boat lie for the entire trip to take from 3 to
4 hours?

218. The volumes of three cubic vessels A, Band C are in the
ratio. 1:8:27 .while the amounts of water in them are in the ratio
I :2: 3, After water has been poured from A into B and from B

into C, the water level in the vessels is the same. 128-} litres
of water are then poured out from C into B after which a cer­
tain amount is poured from B into A so that the depth of water
in A becomes twice that in B. This resuIts in the amount of wa­
ter in A being by 100 litres less than the original amount. How
much water did each vessel contain original ly?

219. Find a four-digit number using the following conditions:
the sum of the squares of the extreme digits equals 13; the sum
of the squares of the middle digits is 85; if 1089 is subtracted
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from the desired number, the result is a number expressed by the
same digits as the sought-for number but written in reverse order.

220. Two points move in a circle whose circumference is I metres
at the speeds v and w < v. At what moments of time reckoned
from the start of the first point will successive meetings of th e
points occur if they move in the same direction, and the first
point st arts t seconds before the secon d and is a metres behind
the secon d point at the initial moment (a < l)?

221. A piece of an alloy of two metals weighs P kg and loses
A kg in weight when immersed in water. A portion of P kg of
one of the metals loses B kg in water and a portion of the same
weight of the other metal loses C kg . Find the weights of the
com ponents of the alloy and test the solvabili ty of the problem
depending on the magnitudes of the qu antit ies P, A, Band C.

222. Log rafts floated downstream from a point A to th e mouth
of a river where they were picked up by a towboat and towed

across a lake to a point B 17 ~ days after the departure from A.
How long did it take the towboat to bring the log rafts to B across
the lake if it is known that, alone, the towboat goes from A to
B in 61 hours and from B to A in 79 hours and that in towing
the relative speed' of _the towboat is reduced twice?

223. The current of a ri ver between A and B is negligibl y sma ll
but between Band C it is rather strong. A boat goes downstream
from A to C in 6 hours and upstream from C to A in 7 hours.
If between A and B the current Were the same as between B and C
the whole distance from A to C would be covered in 5.5 hours .
How long would it take to go upstream from C to A in th e
latter case? ' .

224. A vessel contains a p% solution of an acid . alitres of the
solution are then poured out and the same quantity of a q% solu ­
tion of th e acid is added ' (q < p). After mixing this operation is
repeated k-l times which results in - a r% solution . Find the
volume of the vessel.

225. 11 roubles rar e invested in a savings bank which pays an
interest of p%. At the end of every year the depositor t akes out
B roubles . In how many years will the rest be three times the
original sum? Under what conditions is the problem solvable?

226. A fore stry has a p% annual growth rate of wood. Every
winter an amount x of wood is obtained. What must x be so that
in n years the amount of wood in the forestr y becomes q times
the original amount a?
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227. One of ti identical cylindrical vessels is full of alcohol and
the others are half-full with a mixture of water and alcohol, the
concentration of alcohol in each vessel being -} th that in the pre­
ceding one. Then the second vessel is filled to the top from the
first one after which the third is filled from the second and so on
to the last vessel. Find the resultant concentration of alcohol in
the last vessel.

228. Consider a quotient of two integers in which the divisor
is less by unity than the square of the dividend . If 2 is adde d
to the dividend and to the divisor the value of the quotient will
exceed ~ but if 3 is subtracted from the numerator and deno-

minator, the quotient will remain positive but less than /0 ' Find
the quotient.

7. Miscellaneous Problems

Algebraic Transformations

229. Compute the sum

1 I I
n(n+l) + (n +l)(n + 2) +. " + (n +k-I) (n +k)'

230. Simplify the expression

(x+a) (x2+a2) ... (X2 IH +a2R-').

231. Simplify the expression

(x2-ax+a2)(x'-a2x2+a') ... (x2R_a2R-'x2T·-'+a2R).

232. Given two sequences of numbers

al • a2 • • • • • an.
b., b2 • • • • • bno

prove that

albl + a2b2+ ... +a.b; = (al-a2) 81 + (a2-aS) 82 + ...
...+ (an_I-a,,) 8n - l +an8".

where 8k=bl +b2 + ...+ bk.
233. Show that the equality

a2 +b2+ e2 = bet ac-i-ab,

where a, band c are real numbers, implies a = b = e.
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234. Prove that if as+bs+es=3abe then either

a2 +b2 +e2 = be+ea+ ab or a +b+e = 0.

235. Show that if
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a~+a~+ + a~ = p2.
b~+ b~+ + b~ = q2.

alb l +a2bz+ +a.b; = pq

and pq=1= 0, then a l = MIt a2 = M s ' ...• an = Mn where 'j., = .!!...- . (Allq
the quantities are supposed to be real .)

236. It is known that the number sequence all as. as' ... satisfies,
for any n, the relation

a"+ I - Za;+a"-1 = 1.

Express an in terms of al' as and n,
237. The sequence of numbers ap az' a3• . . . • an• . . . satisfies

for n > 2 the relation

an = (ex, +~) an_I-ex,~a,,-s.

where ex, and ~ (ex, =I=~) are given numbers. Express an in terms
of a, ~. al and as·

8£ZOUT'S THEOREM . PROPERTIES OF ROOTS
OF POLYNOMIALS

238. The roots Xl and X 2 of the equation x2 - 3ax + a2 = O satisfy
the condition x~+x~=I.75. Determine a.

239. Given the equation x2+px -\-q=O. form a quadratic equation
whose roots are

YI = x~+ x~ and Y2 = ~+ x~.

240. Let Xl and x2 be the roots of the eq uation

axS
-\- bx+ e =° (ac =1= 0).

Without solving the equation express the quantities

I) ~+~ and 2) 4+x~x~+X1
Xl X2

in terms of the coefficients a, band e.

241. What conditions must be imposed on the real coefficients
all b., as' bs• as and b, for the expression

(a1 +bl x)2+ (as+bsx)2 + (as +bsx)2

to be the square of a polynomial of the first degree in X with
real coefficients?
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242. Prove th at the roots of the quad ratic equat ion Xi + px + q = 0
with rea l coefficients are negative or have a neg ative real part
if and onl y if p > 0 and q ;» O.

243. Prove tha t if both root s of th e equati on

x2+ px + q = O

are positi ve, then the roots of the equ at ton qy2 + (p-2rq) y +
+ 1~ pr = 0 are posit ive for all r~ O. Is this asser t ion true for
r < O?

244. Find all rea l values of p for which t he roo ts of the equati on

(p- 3) x2-2px+ 6p = 0

are real and positi ve.

245. For any positive 'A all the root s of the equation

ax2 +bx+ c+'A = 0

are real and positive. prove that in this case a = 0 (th e coefficients
9. band c are real) .

~4'6 , Prove that both roots of the equation x2+x +1= 0 satisfy
the equati on

where m, nand p are arb itrary in tegers.

247, The system of equati ons

a (x2 + y2)+ x+y-A = O. }
x~·y+ t. = 0

has real solutions for an y A.. Prove that a = O.

248. Prove that for an y real va lues of a. p an d q the equation

I I 1
x - p + x=q = ar

has real roots .

249. Prove that the qu adrat ic equat ion

a2x2 + (b2 + a2
- c2

) x + b2 = 0

cannot have real roots if a+b > c and Ia- b I< c.

250. It is known that Xl ' X2 and Xs are the root s of the equation

xS_ 2x2 +x + 1=0 .

.Forrn..a . rrew algebraic oequat ion whose roots are the numbers
YI = x2XS • Y2 = XSXI• Ys = X IX2•
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251. It is known that Xl ' X 2 and xa are the roots of the equation
x 3 _ x2 _ 1= 0.

Form a new equation whose roots are the numbers

YI = X2 -+ x3• Y 2 = xa-l-Xl ' Ya= Xl -+ x 2 •

252. Express the constant term c of the cubic equation

xa-+ ax2 -+ bx -+ c= 0

in terms of the coefficients a and b, knowing that the roots of the
equation s form an arithmetic progression.

253. Let it be known that all roots of an equat ion

xa-+ px2 -+ qx +- r = 0

are positive. What additional condition must be imposed on its
coeffic ients p, q and r so that the line segments of lengths equal
to the roots .are the sides of a triangle?

Hint . Consider the expression
(x,+ x2 -xa) (x2 -+xa - xI ) (xa+ XI -X2 ) .

254. The equations

and :

x 3 + P 2X +q. = 0

(PI =1= P2• ql =F q2) have a common root. Find this root and also the
other roots of both equations.

255. Find all the values of A for which two equations
I.X3_X2 _ X_ (A-+ 1) = 0

and
AX2

- X - (A -j- J) ~ 0

have a common root. Determine this root.
256. All the roots of the polynomial

p (x) = x3 + px + q

with real coefficients P and q (q =1= 0) are real. Prove that p < O.
257. Prove that the equation

x3+ax2 _ b = 0

where a and b (b > 0) are real has one and only one positive root.
258. Find all the real va lues of a and b for which the equat ions

x3+ax2+ 18=0
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x3+bx+ 12=0

have two common roots and determine these roots.

259. Prove that

V20 +14l/2 + V 20- 14 V' 2 ,~ 4 .

260. Let a. band c be pairwise different num bers.
Prove that the expression

a2 (c-b) +b2 (a-c) +c2 (b-a)

is not eq ua I to zero.

261. Factorize the expression

(x+ y+Z)3_x3_yS_zs.

262. Prove that if three real numbers a, band c satisfy the
relationship

1 1 1 1
a+T+c= a+b+c '

then two of them are necessarily equal in their absolute values
and have opposite signs.

263. Find out for what complex values of p and q the binomial
x'-I is divisible by the quadratic trinomial x2+px+q.

264. For what values of a and n is the polynomial xn_ax"-l +
+ax-l divisible by (x-l)2?

265. The division of the polynomial p (x) by x-a gives the
remainder A, the division by x-b gives the remainder B and the
division by x-c gives the remainder C. Find the remainder poly­
nomi al obtained by dividing p(x) by (x-a) (x-b) (x-c) on con­
dition that the numbers a, band c are pairwise different.

MATHEMATICAL INDUCTION

The following problems are solv ed by the method of complete
mathematical induction. To prove that an assertion is true for
every natural n it is sufficient to prove that (a) this assertion is
true for n = 1 and (b) if this assertion is true for a natural number
n then it is also true for n + 1.

266. Prove that

1+ 3+ 6+ 10+ ... + (n-
21)n

+ n(n;rl) =n (n+ l~ (n+2) •
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267. Prove that .

12+22+32 +...+n2=n(n+l~(2n+l).
268. Prove that

I lin (n+3)
I x 2 X3 + 2x3 x4 + ... + n (n+ 1) (n+2) 4 (n+ I) (n+2)'

269. Prove De Moivre's formula
(cos <p + i sin <p)n = cos n<p + i sin n<p.

270. Prove that for any positive integer n the quantity an= an;~n

h I+YS db l-YS. itive j twere a= 2 an = 2 IS a post rve 10 eger.
271. Prove that if real numbers aI' a2 • • • • • an, ... satisfy the

condition - I < a,~ 0, i = 1, 2, ... , then for any n we have the
inequality

(1 + al ) (I + a2) • • • (I + an)~ 1+ ~ + a2 + .,,+ an'

272. The generalized nth power of an arbitrary number a (de­
noted by (a)n) is defined for non-negative integers n as follows: if
n=O then (a)n=l and if n>O then(a)n =a(a-l) ... (a-n+l).
Prove that for the generalized power of a sum of two numbers we
have the formula

(a +b)n= C~ (c), (b)n+ C~ (a)l (b)n_l + .'.. +C~ (a)n(b)o

which genera Iizes Newton's binomial theorem to this case.

THE GREATEST AND LEAST VALUES

To find the least value of a quadratic trinomial

y~~ax2+bx+c (I)

for a > °it is represented in the form

y = a (x+ :af-b2..~a4ac. (2)

The first summand on the right-hand side being non-negative for
any x and the second summand being independent of x , the tri­
nomial attains its least value when the first summand vanishes.
Thus, the least value of the trinomial is

It is assumed for
b

X=Xo= - 2a'

(3)

(4)
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A similar technique yields the greatest value of a trinomial
y =ax2+bx +c for a < O.

273. Two rectilinear railway lines AA ; and BB' are mutually
perpendicular and intersect at a point C, the distances AC and
BC being equal to a and b. Two trains whose speeds are, resp ec­
ti vely,vl and v, start simultaneously from the points A and B
toward C. In what time after the departure will the distance bet­
ween the trains be the least> Find this least distance.

274. Two stations A and B are on a rectilinear highway passing
from west to east, B lying 9 ktn to the east of A. A car starts
from A and moves uniformly eastwards at a speed of 40 krn/hr .
A motorcycle simultaneously starts from B in the same direction
and moves with a constant acceleration of 32 krn/hrv Determine
the greatest distance between the car and motorcycle during the
first two hours of motion .

Hint . It is advisable to plot the graph of the distance between
the car and motorcycle again st the time of motion.

275. Find the greatest value of the expression
8

log~ x + l210g; X log2-
X

when x vades between I and 64.

2i6 . Find the greatest value of the function
x

y= ax 2 +b (a > 0, b > 0).

277. Find the least value of the expression
1+ x2

l+x
for x ;;::: O.

278. Find the least value of the function

rp (x) = Ix-aj + Ix -bl + Ix-cl +Ix-dl,

where a < b < c < d are fixed real numbers and x takes arbitrary
real values .

Hint. Mark a, b, c, and d on a number scale .

COMPLEX NUMBERS

279. Find all the values of 'l satisfying the equality

z2 + lzl= 0
where Iz I denotes the modulus of the complex number z,
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280. Find the complex number z satisfying the equalities

I Z- 1 2 1 = ~ and IZ- 41=1.
z - 8i 3 z - 8

281. Compute the product

45

282. Among the complex numbers z sa tis fy ing the cond ition,

Iz- 25i I~ 15,

find the number having th e lea st argum ent. Make a dr awing.

283. Find the condition for a compl ex nu mber a +bi to be rep ­
resentable in the form

. I-ix
a +bt = I+ix'

where x is a real number?

284. Find the greatest value of the modul i of com plex numbers
z sa ti sfying the equation

285. Through a point A n rays are drawn which form the an gl es

211: with each other. From a point B lying on one of the rays at
n

a di stance d from A a perpendicular is dr awn to the next ra y.
Then from t he foot of th is perpend icular a new perpendicular is
drawn to the ne ighbour ing ra y and so on, unl imi tedl y. Determ ine
the length L of th e broken line thus obtained which sweep s ou t
an infinity of circuits round the point A . A lso investigate the
variation of L as the number n is increased and, in particular, the
case when n approaches infinit y .

286. A six-d ig it number begins w ith 1. If this d igit is carr ied
from the extreme left decimal place to th e ex t reme right without
changing the order of the other digits the new number thus obtained
is three times the original number. Find the or iginal number.

287. Prove th at if a na tural number p = abc where a, band c
are the decimal digits is divis ible by 37 then the numbers q = bca
and r = cab are a lso divisibl e by 37 .

288 . Prove that the sum of the cubes of three successive integers
is divisible by 9.

289. Prove that the sum

S; = n3 + 3n2 +5n + 3
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is divisible by 3 for any positive integer n,

290. 120 ident ica l balls are tightly stacked in the form of a
regular triangular pyramid. How many balls lie at the base of the
pyramid?

291. k smaller boxes are put in a box . Then in each of the
smaller boxes ei ther k st il l smaller boxes are put or no boxes and
so on. Determine the number of empty boxes if it is known that
there are m filled boxes .



GEOMETRY
A. PLANE GEOMETRY

Preliminaries

Here are some basic relations between the elements of a triangle
with sides a, band c and the respective opposite angles A, Band C.

1. Law of sines:

where R is the radius of the circumscribed circle.
2. Law of cosines:

a2 =b2 +c2-2bc cos A.

For computing the area S of a triangle use the following for­
mulas:

1
S=2 aha'

where a is a side of the triangle and h" is the altitude drawn to
this side;

S = Vp (p-a) (P-b) (p-c) (Heron 's formula)

a+b+c
where p= 2 ;

S= ; ab sinG;

S =rp,

where r is the radius of the inscr ibed circle.

I. Computation Problems

292. In a triangle ABC the angle A is twice as large as the
angle B. Given the sides band c, find a.

293. The legs of a right triangle are equal to band c. Find the
length of the bisector of the right angle.

294. Given two sides a and b of a triangle, find its third s ide
if it is known that the medians drawn to the given sides intersect
at a right angle. What are the conditions for the triangle to exist?
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295. The vertex angle of a triangle with lateral sides of lengths
a and b (a < b) is trisected- by straight lines whose segments inside
the triangle form the ratio m :n (m < n). Find the lengths of the
segments.

296. Intersect a given triangle ABC by a straight line DE pa­
rallel to BC so that the area of the triangle BDE is of a given
magnitude k2 • What relationsh ip between k2 and the area of the
triangle ABC guarantees the solvability of the problem and how
many solutions has the problem?

297. Through a point lying inside a triangle three straight lines
parallel to its sides are drawn . The lines divide the tr ian gle into
six parts three of which are triangles with areas Sl' S2 and 53'
respecti vel y. Find the area of the given triangle.

298. Given the sides band c of a triangle. Find the third side
x knowing that ,it is equal to the altitude drawn to it. Under
what condition connecting fJ and c does the triangle exist? (1j

299. In a triangle ABC the altitudes AA I , BB I and CCt are
drawn, and the points Al' B, and C, are joined . Determine the
ratio of the area of the triangle AIBtCt to that of the triangle
ABC if the angles of the triangle ABC are given.

300. In a triangle ABC through the point of intersection of the
bisectors of the angles Band C a straight line parallel to BC is
drawn . This line intersects the sides AB and AC at points M and N
respective ly , Find the relationship between the line segments MN,
BM and CN.

Consider the following cases:
(1) both bisectors divide interior angles of the triangle;
(2) both bisectors divide exterior angles of the triangle ;
(3) one of the bisectors cuts an interior angle and the other cuts

an exterior angle.
When do the points M and N coincide?

301. Inside an equilateral triangle ABC an arbitrary point P
is taken from which the' perpendiculars PD, PE and PF are dropped
onto BC, CA and AB respectively . Compute

PD +PE +PF
BD +CE +AF '

302. Find the ratio of the area of a triangle ABC to the area
of a triangle whose sides are equal to the medians of the triangle
ABC.

303. In a triangle with sides a, band c a semicircle is inscribed
whose diameter lies on the side c. Find the radius of the semi­
circle,
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304. Determine the acute angles of a right tr iangle knowing that
the ratio of the radius of the circumscribed circle to the radius
of the inscribed circle is 5:2.

305. About a given rectangle circumscribe a new one with given
area m-, For what m is the problem solvable?

306. On the side AB of the rectangle ABCD find a point E from
which the sides AD and DC are seen at equal angles. What rela­
tionship between the sides guarantees the solvability of the problem?

307. Find the area of an isosceles trapezoid with altitude h if
its nonparallel sides are seen from the centre of the circumscribed
circle at angles a.

308. Given the upper and lower bases a and b of a trapezoid .
Find the length of the line segment joining the midpoints of the
diagonals of the trapezoid.

309. Each vertex of a parallelogram is connected with the mid­
points of two opposite sides by straight lines. What portion of the
area of the parallelogram is the area of the figure ~unrled by
these lines?

310. P, Q, Rand S are respectively the midpoints of the sides
AB, BC, CD, and DA of a parallelogram ABeD. Find the area
of the figure bounded by the straight lines AQ. HR, CS and DP
knowing that the area of the parallelogram is equal to a2

•

311. Given the chords of two arcs of a circle of radius R. find
the chord of an arc equal to the sum of these arcs or to their
difference.

312. The distance between the centres of two intersecting circles
of radii Rand, is equal to d. Find the area of their common
portion.

313. Three circles of radii '0 '1 and R are pairwise externally
tangent. Find the length of the chord cut off by the third circle
from the internal common tangent of the first two circles.

314. Two circles of radii Rand r (R > r) are internally tangent.
Find the rad ius of the third circle tangent to the two given circles
and to their common diameter.

315. Three equal circles are externally tangent to a circle of
rad ius r and pairwise tangent to one another. Find the areas of
the three curvilinear triangles formed by these citcles.

316. On a line segment of length 2a+2b and on its parts of
lengths 2a and 2b as diameters semicircles lying on one side of
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the line segment are constructed. Find the radius of the circle
tangent to the three semicircles.

317. Given two parallel straight lines and a point A between
them. Find the sides of a right triangle with vertex of the right
angle at the point A and vertices of the acute angles on the given
parallel lines if it is known that the area of the triangle is of a
given magnitude k 2

•

318. n equal circles are inscribed in a regular n-gon with side
a so that each circle is tangent to two adjacent sides of the polygon
and to two other circles. Find the area of the star-shaped figure
formed in the centre of the polygon.

319. Through a point C of an arc AB of a circle two arbitrary
straight lines are drawn which intersect the chord AB at points
D and E and the circle at points F and G. What position does
the point C occupy on the arc AB if it is possible to circumscribe
a circle about the quadrilateral DEGF?

320. Circles are inscribed in an acute angle so that every two
neighbouring circles are tangent. Show that the radii of the circles
form a geometric progression. Find the relationship between the
common ratio of the progression and the magnitude of the acute
angle.

321. A light source is located at a point A of a plane P.
A hemispherical mirror of unit radius is placed above the plane
so that its reflecting inner side faces the plane and its axis of
symmetry passes through the point A and is perpendicular to the
plane P. Knowing that the least angle between the rays reflected
by the mirror and the plane P is equal to 15° determine the
distance from the mirror to the plane and the radius of the illu­
minated circle of the plane P.

322. The centres of four circles of radius r are at the vertices
of a square with side a. Find the area 8 of the common part of
all circles contained inside the square.

323. A trapezoid is divided into four triangles by its diagonals.
Find the area of the trapezoid if the areas of the triangles adjacent
to the bases of the trapezoid are equal to 8 1 and 8 2 ,

324. Express the diagonals of an inscribed quadrilateral of a
circle in terms of its sides. Based on this result, deduce the Ptolemy
theorem which states that the product of the diagonals of a
quadrilateral inscribed in a circle is equal to the sum of the
products of the two pairs of opposite sides.
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2. Construction Problems

325. Given two circles of different radii with no points in common
and a point A on one of them . Draw a third circle tangent to the
two given circles and passing through th e point A . Consider various
possible cases of location of the point A on the circle.

326. Giv en a circle and a straight line with point A on it.
Construct a new circle tangent to the given line and circle and
passing through the point A . Consider in detail how many so­
lutions the problem has in various particular cases.

327. Given a straight line and a circle with point A on it.
Construct a new circle tangent to the given line and circle and
passing through the point A. Consider in detail how many solu­
tions the problem has in various particular cases.

328. Construct a right triangle, given the hypotenuse c and the
altitude h drawn to it. Determine the lengths of the legs of the
triangle and find the relationsh ip between hand c for which the
problem is solvable.

329. Given the lengths of th e sides AB, BC, CD and DA of a
plane quadrilateral. Construct this quadril ateral if it is known
that the diagonal AC bisects the angle A.

330. Reconstruct the triangle from the points at which the extended
bisector, median and altitude drawn from a common vertex intersect
the circumscribed circle.

331. Draw three pairwise tangent circles with cent res at the
vertices of a given triangle. Consider the cases when the circles
are externally and internally tangent.

332. Inscribe a triangle ABC in a given circle if the positions
of the vertex A and of the point of intersection of the alt it ude hE
with the circle and the direction of the altitude hA are known.

333. Intersect a trapezoid by a straight line parallel to it s base
so that the segment of this line inside the trapezoid is trisected
by the diagonals.

334. Construct a square, given a vertex and two points lying
on two sides not passing through thi s vertex or on their ext ensions.

335. Through a point M lying on the side AC of a triangle ABC
draw a straight line MN cutting from the triangle a part whose

area is ~ that of the whole triangle. How many solutions has th e

problem?

336. Make a ruler and compass construct ion of a rectangle w it h
given diagonal inscribed in a given triangle.
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337. About a given circle circumscribe a triangle with given
angle and given side opposite thi s angle. Find the solvability
condition for the problem.

338. Given a st ra ight line CD and two point s A and B not
lying on it. Find a point M on the line such that

L.AMC = 2 L. BMD.

3. Proof Problems

339. Prove that a median of a triangle is less than half -sum of
the sides it lies between and greater than the difference of this
half-sum and half the third side .

340. Prove that in any triangle ABC the distance from the centre
of the circumscribed circle to the side BC is half the distance
between the point of intersection of the a lt itudes and the vertex A.

341. Prove that the sum of the distances from any point lying
inside an equil ateral tr iangle to the sides of th e triangle is a con­
stant independent of the position of the point.

342. Prove that in any triangle a shorter bisector of an interior
angle corresp onds to a longer side.

343. Prove that if P, Q and R are respectivel y the points of
intersection of the sides BC, CA and AB (or their extensions) of
a triangle ABC and a stra ight line then

PB QC RA
PC QA RB = I.

344. In a right triangle ABC the length of the leg AC is three
times that of the leg A B. The leg AC is tri sected by points K
and F. Prove that

L. AKB + L. AFB + L. ACB = ~ ,

345. Let a , b, C and h be respect ively the two legs of a right
triangle, the hypotenuse and the altitude drawn from the vertex
of the right angle to the hypotenuse. Prove that a tr iang le with
sides h, C+h and a+b is right.

346. In an isosceles triangle with base a and congruent side b
the vertex angle is equal to 20°, Prove that a3 +b3 =3ab2 •

347. Prove that an angle of a triangle is acute, right or obtu se
depending on whether the side opposite thi s angle is less than,
equal to, or greater than the doubled length of the corresponding
median.

I

~
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348. In an isosceles triangle ABC the vertex angle B is equal
to 20° and points Q and P are taken respectively on the sides
AB and BC so that L ACQ = 60° and L CAP = 50°. Prove that
.LAPQ = 80°.

349. Prove that if the sides a, band c of a triangl e are connected
by the relation a2=bz+bc then the angles A and B subtended by
the sides a and b satisfy the equality LA = 2.L B .

350. A triangle AOB is turned in its plane about the vertex 0
by 90°, the new positions of the vertices A and B being, respec­
tively, Al and BI. Prove that in the triangle OABI the median of
the side ABI isan altitude of the triangle OAIB (analogously, the
median of the side AlB in the triangle OAIB is an altitude of
the triangle OABI)'

351. Prove that the sum of the products of the altitudes of an
acute triangle by their segments from the orthocentre to the cor­
responding vertices equals half-sum of the squares of the sides.
Generalize this assertion to the case of an obtuse triangle.

352. Let the lengths a, band c of the sides of a triangle satisfy
the condition a < b < c and form an ar ithrnetie progression. Prove
that ac= 6Rr where R is the radius of the circumscribed circle of
the triangle and r is the radius of the inscribed circle.

353. Prove that the square of the bisector of an angle in a
triangle is equal to the difference of the product of the sides includ­
ing this angle and the product of the segments of the base. What
is the meaning of this equality for the case of an isosceles triangle?

354. In a triangle ABC two equal l ine segments BD = CE are
set off in opposite directions on the sides AB and AC . Prove th at
the ratio in which the segment DE is di vided by the s ide BC is
the reciprocal of the rat io of the sid e AB to the sid e AC.

355. From a vertex of a triangle the med ian, the bisector of
the interior angle and the altitude are drawn. Prove that the
bisector lies between the median and the altitude .

356. Prove that the straight line which is the reflection of a
median through the concurrent bisector of an interior angle of a
triangle divides the opposite side into parts proportional to the
squares of the adjacent sides.

357. On the sides of a tr iangle ABC points P, Q and Rare
taken so that the three straight lines AP, BQ and CR are con ­
current. Prove that

AR .Bp .CQ= RB .PC · QA.
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358. Prove that the radius R of the circumscribed circle of a
triangle and the radius r of the inscribed circle satisfy the relation

[2 =R2-2Rr

where l is the distance between the centres of these circles .
359. Prove that in any triangle the ratio of the radius of the

inscribed circle to the radius of the circumscribed circle does not
I

exceed 2"

360. Prove that for any right triangle we have the inequality

0.4 < i < 0.5 where r is the radius of the inscribed circle and h

is the altitude drawn to the hypotenuse.
361. Prove that for any acute triangle we have the relation

ka+kb +kc= r +R where kat kb and k c are the perpendiculars
drawn from the centre of the circumscribed circle to the corres­
ponding sides and r (R) is the radius of the inscribed (circum­
scribed) circle .

Hint. Express the left-hand and right-hand sides of the required
equality in terms of the sides and the angles of the triangle.

362. The vertices A, Band C of a triangle are connected by
straight lines with points AI, BI and CI arbitrarily placed on the
opposite sides (but not at the vertices) . Prove that the midpoints
of the segments AA I , BBI and CCI do not lie in a common straight
line.

363. Straight lines DE, FK and MN parallel to the sides AB,
AC and BC of a triangle ABC are drawn through an arbitrary
point 0 lying inside the triangle so that the points F and Mare
on AB, the points E and K are on BC and the points Nand D
on AC. Prove that

AF BE CN
AB +BC +CA = 1.

364. A square is inscribed in a triangle so that one of its sides
lies on the longest side of the triangle. Derive the inequality
V 2r < x < 2r where x is the length of the side of the square and
r is the radius of the inscribed circle of the triangle.

365. Prove that the mid points of the sides of a triangle, the
feet of the altitudes and the midpoints of the segments of the
altitudes from the vertices to the orthocentre are nine points of
a circle. Show that the centre of this circle lies at the midpoint
of the line segment joining the orthocentre of the triangle with
the centre of the circumscribed circle and its radius equals half
the radius of the circumscribed circle.

I

I
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366. From the foot of each altitude of a triangle perpendiculars
are dropped on the other two s ides" Prove th e followin g asser­
tions: (1) t he feet of th ese perpend iculars are the vertices of a
hexagon whose three s ides are parallel to the si des of th e triangle ;
(2) it is possible to circumscribe a circl e about this hexagon.

367. Prove th at in a right tri angle th e sum of the legs is equal
to the sum of the diameters of th e inscr ibed an d circumscribed
circles.

368. Prove that in a right triangle the b isector of the right
angle is simu ltaneously the bisector of the an gle between th e median
and altitude drawn to th e hypotenuse.

369. Two triangles ABC and AIBICI are symmetric about the
centre of their common inscribed c ircle of radius r . Prove that th e
product of the areas of th e triangles ABC, AIBICI an d of the s ix
other triangles formed by the intersecting si des of th e tr iangles
ABC and AIBICr is equal to r16

•

370. Prove that the differ ence of the sum of the squar es of th e
dis tances from an arbitrar y poin t M of a pl an e to two opposite
vertices of a parallelo gram ABC D in the plane and t he sum of
the squares of the di st ances from th e same point to the ot her two
ver t ices is a con stant quanti ty.

371. On the sides of a triangle ABC equil ateral triangles ABC.,
BCA I and CAB I are con structed which do not overlap the triangle
ABC. Prove that the str a ight lines AA I, BB It and CCI are con­
current.

372. On the sides AB , AC and BC of a tr ian gle ABC as bases
three similar isoscel es triangles ABP, ACQ an d BCR a re construc­
ted, the first two triangl es lying outside th e given triangle and
the third being on th e same side of BC as the tr iangle ABC . Prove
that either th e figure APRQ is a parallelogram or the points A,
P, R, Q are in a straig ht line .

373. A po int 0 of a plane is connect ed by st ra ight lin es with
th e vertices of a parall elogr am ABCD ly ing in the pl an e . Prove
th at th e ar ea of th e triangl e AOC is equal to the sum or diffe­
rence of the areas of two adjacent tri an gles each of which is for­
med by two of the stra ight lines OA, OB, OC and OD a nd th e
corresponding side of th e parallelogram . Consider th e cases when
the point 0 is inside and outside the parallelogram.

374. In a trapezoid ABCD th e sum of th e base angl es A and D

is equal to ;. Prove that th e line segment connect ing th e

midpoints of the bases equals half the difference of the bases.
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375. Prove that the sum of the squares of the d iagonals of a
trapezoid is equal to the sum of the squares of its sides plus twice
the product of the bases.

376. Prove that the straight line joining the midpoints of the
bases of a trapezoid passes through the point of intersection of
the diagonals.

377. Prove that if the line segment connecting the midpoints
of opposite sides of a quadrilateral equals half- sum of the other
two sides, then the quadrilateral is a trapezoid.

378. Prove that if the diagonals of two quadrilaterals are res­
pectively equal and intersect at equal angles, then these quadri­
laterals have the same area.

379. Prove that at least one of the feet of the perpend iculars
drawn from an arbitrary interior point of a convex polygon to
its sides lies on the side itself but not on its extension .

380. Prove that the bisectors of the interior angles of a paral­
lelogram form a rectangle whose diagonals are equal to the diffe­
rence of two adjacent sides of the parallelogram.

381. Given a parallelogram, prove that the straight lines con­
secutively joining the centres of the squares constructed outside
the parallelogram on its sides also form a square.

382. Prove that if in an arbitrary quadrilateral ABeD the bi­
sectors of the interior angles are drawn, then the four points at
which the bisectors of the angles A and C intersect the bisectors
of the angles Band D lie on a circle.

383. Two tangent lines are drawn to a circle. Prove that the
length of the perpendicular drawn from an arbitrary point of the
circle to the chord joining the points of tangency is the mean
proportional between the lengths of the perpendiculars drawn from
the same point to the tangent lines .

384. Prove that the feet of the perp endiculars dropped from an
arbitrary point of a circle onto the sides of the inscribed triangle
lie in a straight line.

385. Three equal circles intersect in a point. The other point
of intersection of every two of the circles and the centre of the
third circle lie on a straight line. Prove that the three straight
lines thus spec ifi ed are concurrent.

386. Two circles are internally tangent at a point A, the seg­
ment AB being the diameter of the larger circle . The chord BK
of the larger circle is tangent to the smaller circle at a point C.
Prove that AC is the bisector of the angle A of the triangle ABK.
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387. A circle of rad ius r is inscribed in a sector of a c ircle of
radius R. The lengthol the chord of the sector is equal to 2a.
Prove that

1 1 1
7 =Jr+;-·

3~8. Two tangent lines are drawn to a circle. They intersect a
st ra ig ht line passing through the centre of the circle at points A
and B and form equal angles with it. Prove that the product of
the line segments AC and BD which are cut off from th e giv en
(fixed) tangent lines by any (moving) tangent line is a constant
quantity.

389. Prove that the sum of the squares of the lengths of two
chords of a circle intersecting at a right angle is greater than the
square of the diameter of the circle and the sum of the squares
of the four line segments into which the chords are divided by
the point of intersection is equal to the square of the diameter.

390. Prove that if a chord of a circle is trisected and the end­
points of the chord and the points of division are joined with the
centre of the circle, then the corresponding central angle is di vi­
ded into three parts one of which is greater than the other two.

391. Prove that if two intersecting chords are drawn from the
endpoints of a diameter of a circle, then the sum of the products
of each chord by its segment from the endpoint of the diameter
to the point of intersection is a constant quantity.

392. From each of two points of a straight line two tangent
lines are drawn to a circle. Circles of equal radi i are inscribed in
the angles thus formed with the vertices at these points. Prove
that the centre line of the circles is parallel to the given line.

393. The diameter of a sem icircle is divided into two arbitrary
parts, and on each part as diameter a semicircle lying inside the
given semicircle is constructed . Prove that the area contained be­
tween the three semicircular arcs is equal to the area of a circle
whose diameter is equal to the length of the perpendicular erecte d
to the diameter of the or iginal semtctrcle at the point of division.

394. Prove that if two points lie outside a circle and the straight
Iine passing through them does not intersect the circle, then the
distance between these two points is greater than the difference
between the lengths of the tangent lines drawn from the given
points to the circle and less than their sum . Show that either the
former or the latter inequality is violated if the straight line in­
tersects the circle.

395. Through the midpoint C of an arbitraty chord AB of a
circle two chords KL and MN are drawn, the points K and M
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lying on one side of AB. Prove that QC= CP where Q is the
point of intersection of AB and KN and P is the point of inter­
sect ion of AB and ML.

396. A circle is arbitrarily divided into four parts, and the
midpoints of the arcs thus obtained are connected by line segments.
Show that two of these segments are mutually perpendicular.

397. Prove that for any closed plane polygonal line without
self-intersection there exists a circle whose radius is +the peri­
meter of the polygonal line such that none of the points of the
polygonal line lies outside this circle .

398. Can a triangle be equila teral if the distances from its ver­
tices to two given mutuall y perpendicular straight lines are exp­
ressed by integers?

399. On one side of a stra ight line at its points A and B two
perpendiculars AA I = a and BBI = b are erected. Prove that for
constant a and b the distance from the point of intersection of
the straight lines AB I and AlB to the straight line AB is also
constant irrespective of the position of the points A and B.

400. A circle is inscribed in a right angle with point A as ver­
tex, Band C being the points of tangency . Prove that if a tan­
gent line intersecting the sides AB and AC at points M and N
is drawn to this circle, then the sum of the lengths of the seg-

ments MB and NC is greater than ~ (AB +AC) and less than
I
2(AB+AC).

401. Prove that if a circle of rad ius equal to the altitude of an
isosceles triangle rolls upon the base of the triangle, then the length
of the arc cut off from the circle by the congruent sides of the
triangle remains constant. Is this assertion true for a scalene tri­
angle?

402. Prove that the ratio of the diagonals of an inscribed qua­
drilateral of a circle is eqiial To the ratio of the sums of the pro­
ducts of the sides passing through the endpoints of the diagonal s.

403. Prove that the sum of the squares of the distances from a
point on a circle to the vertices of an equilateral inscribed triangle
is a constant independent of the position of the point on the
circle.

404. Prove that if a circle is internally tangent to three sides
of a quadrilateral and intersects the fourth side , then the sum of
the latter and the side opposite to it is greater than the sum of
the other two sides of the quadri lateral.
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405. Prove that if a circle is internally tangent to three sides
of a quadrilateral whose fourth side does not intersect the circle,
then the sum of the fourth s ide and the side opposite it is less
than the sum of the other two sides of the quadrilateral.

406. Two equal semicircles whose diameters lie in a common
straight Iine are tangent to each other. Draw a tangent Iine to
them and inscribe a circle tangent to this line and to the two
semicircles. Then inscribe another circle tangent to the first one
and to the semicircles after which inscribe one more circle tangent
to the second one and to the semicircles and so on. unlimitedly.
Using this construction prove that the sum of the fractions

I I I I I
IX2+2X3+3X4+4 XS+'" +n(n+l)

tends to unity for n ---- 00, that is

I 1 1
I X2+2 X3+'" +n(n+l)+···=l.

407. An elastic ball of negligible dimensions rests at a point A
at a distance a from the centre of circular billiards of radius R.
To what point B of the cushion must the ball be directed so that
it returns to the point A after being reflected twice from the cu­
shion?

408. A ray of light is issued from a point A lying inside an
angle with reflecting sides. Prove that the number of reflection of
the ray from the sides is always finite. Determine this number if
the angle is equal to ex. and the initial ray is directed at an angle ~

to one of the sides. Under what conditions does the reflected ray
again pass through the point A?

4. Loci of Points

409. Two fixed points A and B and a moving point M are taken
on a circle. On the extension of the 1ine segment AM a segment
MN = MB is laid off outside the circle. Find the locus of points N.

41~. Given two parallel stra ight lines and a point 0 between
them. Through this point an arbitrary secant is drawn which in­
tersects the parallel lines at points A and A'. Find the locus of
the endpoints of the perpend icular of length OA erected to the
secant at the point A',

411. Find the locus of points for which the sum of their dis­
tances from two given straight lines m and 1 is equal to the length a
of a given line segment. Consider the cases of intersecting and
parallel lines.
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412. Find the locus of points for which the difference of their
distances from two given straight lines m and I is equal to a line
segment of given length. Consider the cases of parallel and inter­
secting lines.

413. Two line segments AB and CD are taken in the plane.
Find the locus of points M for which the sum of the areas of the
triangles AMB and CMD is equal to a constant a2

•

414. Given a circle K and its chord AB. Consider all the in­
scribed triangles of the circle with given chord as base. Find the
locus of orthocentres of these triangles.

415. Inside a given circle a point A not coincident with the
centre is fixed . An arbitrary chord passing through the point A is
taken, and through its endpoints two tangent lines to the circle
intersecting at a point M are drawn. Find the locus of point s M.

416. Prove that the locus of points M, for which the ratio of
their distances from two given points A and B equals

E: -I- Iq '" ,

is a circle with centre on the straight line AB.
Express the diameter of this circle in terms of the length a of

the line segment AB. Also consider the case

.E- =l.q

417. Given a line segment AB and a point C on it. Each pair
of equal circles one of which passes through the points A and C
and the other through the points C and B has, besides C. another
common point D. Find the locus of points D.

418. A polygon is deformed in such a way that its sides remain
respectively parallel to given directions whereas all its vertices
but one sl ide along given straight lines. Find the locus of posi­
tions of that vertex.

419. Given a circle K of radius r and its chord AB whose
length is 2a. Let CD be a moving chord of this circle with length 2b.
find the locus of points of intersection of the straight lines
AC and BD.

420. Through a point P lying in a given circle and a point Q
belonging to a given straight line an arbitrary circle is drawn
whose second point of intersection with the given circle is Rand
the point of intersection with the given straight line is S. Prove
that all the straight lines RS thus specified have a common point
lying on the given circle .
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5. The Greatest and Least Values

421. Given two parallel straight lines and a point A between
them at distances a and b from the lines . The point A is the
vertex of the right angles of the right triangles whose other two
vertices lie on either parallel line. Which of the triangles has the
least area? .

422. Given a right triangle with acute angle a. Find the ratio
of the radii of the circumscribed and inscribed circles and deter­
mine the value of a for which this ratio attains its minimum.

423. A right triangle with legs al and b1 is cut off from a qu­
adrilateral with sides a and b. How must the quadrilateral of ma­
ximum area with sides parallel to those of the initial quadrilateral
be cut off from the remaining part of the quadrilateral?

424. Two' points A and B are taken on a side of an acute
angle. Find a point C on the other side of the angle such that
the angle ACE attains its maximum value. Make a ruler and com­
pass construction of the point C.

425. On a ~iven straight line l find a point for which the diffe­
rence of its distances from two given points A and B lying on
one side of the straight line attains its minimum value, and also
a point such that this difference attains the maximum value.

426. Through a point A inside an angle a straight line is drawn
which cuts off from the angle a triangle with the least area. Prove
that the segment of this line between the sides of the angle is
bisected at the point A.

427. Prove that among all triangles with common vertex angle
rp and given sum a+ b of the lengths of the sides including this
angle the isosceles triangle has the least base.

428. Among all triangles with equal bases and the same vertex
angle find the triangle having the greatest perimeter.

429. In a triangle ABC an arbitrary point D is taken on the
base BC or on its extension. and circles are circumscribed about
the triangles ACD and BCD. Prove that the ratio of the radii
of these circles is a constant quantity. Find the position of the
point D for which these radii attain their least values .

430. Cut off two equal circles having the greatest radius from
a given triangle.
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B. SOLID GEOMETRY

Preliminaries

Here is a number of formulas to be used for computing volumes
and surface areas of polyhedrons and solids of revolution, the
notation being as follows: V, volume; Stat' lateral surface area;
S, area of base; H, altitude.

Pyramid: V= s; .
Frustum of a pyramid:

V = ~ (S1 +S2 +VS1S2), where S1 and S2 are the areas of the
upper and lower bases.

Right circular cone: V = 1tR;H, where R is the radius of the

base; Slat = nRI , where l is the slant height.
Right circular cylinder: V = nR2H, where R is the radius of the

base; Stat = 2nRH.
, V 1tHFrustum of a cone: = 3 (R~ + R: + R1R2) , where R1 and Rz

are the radii of the bases; Slat = n (R 1 + R 2) l, where l is the slant
height.

Sphere: V= ~ nR3; S = 4nR2, where R is the radius of the

sphere.

Spherical sector: V = 21t~2h, where R is the radius of the sphere

and h is the altitude of the zone forming the base of the sector.

Spherical segment: V=+nh2(3R-h); Stat=2nRh, where R is

the radius of the sphere and h is the altitude of the segment.

1. Computation Problems

431. The volume of a regular triangular prism is equal to V
and the angle between the diagonals of two faces drawn from one
vertex is equal to a . Find the side of the base of the prism.

432. From the vertex S of a regular quadrangular pyramid the
perpendicular SB is dropped on the base. From the midpoint 0
of the line segment SB the per pend icular OM of length h is drawn
to a lateral edge and the per pend icular OK of length b is drop ped
on a lateral face . Compute the volume of the pyramid.

433. Find the lateral area of a regular n-gonal pyramid of
volume V if the radius of the inscribed circle of its base is equal
to the radius of the circumscribed circle of the parallel section
drawn at a distance h from the base.
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434. A regular pentagonal pyramid SABCDE is intersected by
the plane passing through the vertices A and C of the base and
the midpoints of the lateral edges DS and ES. Find the area of
the section if the length of the s ide of the base is equal to q and
the ~ength of the lateral edge is equal to b.

435. A regular triangular pyramid is cut by the plane passing
through a vertex of the base and the m idp oints of two lateral
edges . Find the ratio of the lateral area of th e pyramid to the
area of the base if it is known that the cutting plane is perpen­
dicular to the lateral face opposite that vertex.

436. A pyramid of total surface area S is cut off from a regular
quadrangular prism by a plane passing through a diagonal of the
lower base and a vertex of the upper base. Find the total surface
area of the prism if the vertex angle of the triangle in the section
is equal to a . .

437. Compute the volume of a regular triangular pyramid kno­
wing that the face angle at the vertex is equal to a and the ra­
dius of the circumscribed circle of the lateral face is equal to r.

438. A regular quadrangular pyramid with side of its base equal
to a is cut by a plane bisecting its dihedral angle at the base
which is equal to 2a. Find the area of the sect ion.

439. Above the plane ceiling of a hal1 having the form of a
square with side a a roof is made which is constructed in the
following way: each pair of adjacent vertices of the square forming
the ceiling is joined by straight lines with the midpoint of the
opposite side and on each of the four triangles thus obtained
a pyramid is constructed whose vertex is projected into the mid­
point of the correspond ing side of the square . The elevated parts
of the faces of th e four pyramids form the roof. Find the volume
of the garret (i.e. the space between the ceil ing and the roof)
if the altitude of each pyramid is equal to h.

440. Find the dihedral angle formed by two lateral faces of
a regular triangular pyramid if the dihedral angle formed by its
lateral face and base is equal to a.

441. In a regular triangular pyramid SABe the face angle at
the vertex is equal to a and the shortest d istance between a lateral
edge and the opposite side of the base is equal to d. Find the
volume of the pyramid.

442. The base of a pyramid is an isosceles trapezoid in which
the lengths of the bases are equal to a and b (a > b) and the angle
between the diagonals subtended by its lateral s ide is equal to rp ,
Find the volume of the pyramid if its altitude dropped from the
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vertex passes through the point of intersection of the diagonals
of the base and the ratio of the dihedral angles whose edges are
the parallel sides of the base is 2:I.

443. An angle BAC of 60° is taken in a plane P. The distances
from a point S to the vertex A. the side AB and the side AC are
erspectively 25 em, 7 em and 20 em . Find the distance between
the point S and the plane P.

444 . A regular hexagonal pyramid with face angle at the vertex
equal to ex. is intersected by a plane passing at an angle ~ to the
base through its longest diagonal. Find the ratio of the area of
the plane section to the area of the base.

445. All the three face angles of a trihedral angle are acute
and one of them is equal to c ; The dihedral angles whose edges
are the sides of this face angle are equal to ~ and y respectively.
Find the other two face angles.

446. Compute the volume of a regular pyramid of altitude h
knowing that its base is a polygon for which the sum of the inte­
rior angles is equal to ns: and the ratio of the lateral area of the
pyramid to the area of the base is equal to k.

447. Consider a cube with edge a. Through the endpoints of
each triple of concurrent edges a plane is drawn. Find the volume
of the solid bounded by these planes.

448. A regular hexahedral pyramid is intersected by a plane
parallel to its lateral face and passing through the centre of the
base. Find the ratio of the area of the plane section to the area
of the lateral face.

449. Through each edge of a tetrahedron a plane parallel to the
opposite edge is drawn. Find the ratio of the volume of the pa­
rallelepiped thus formed to the volume of the tetrahedron.

450. On the lateral faces of a regular quadrangular pyramid
as bases regular tetrahedrons are constructed . Find the distance
between the exterior vertices of two adjacent tetrahedrons if the
side of the base of the pyramid is equal to a.

451. Through a point on a diagonal of a cube with edge a
a plane is drawn perpendicularly to this diagonal.

(1) What polygon is obtained in the section of the faces of the
cube by the plane?

(2) Find the lengths of the sides of this polygon depend ing
on the distance x from the centre of symmetry Oof the cube to
the cutting plane.

452. Consider the projection of a cube with edge a onto a plane
perpendicular to a diagonal of the cube. What is the ratio of the



PROBLEMS. SOLID GEOMETRY 65

area of this projection to the area of the section of the cube by
the plane passing through the midpoint of the diagonal perpendi­
cularly to it?

453. Given a regular quadrangular pyramid with altitude hand
side of the base a. Through a side of the base of the pyramid and
the midpoint of a lateral edge not intersecting this side the plane
section is drawn . Determine the distance from the vertex of the
pyramid to the cutting plane.

454. Given a regular tetrahedron SABC with edge a. Through
the vertices of the base ABC of the tetrahedron three planes are
drawn each of which passes through the midpoints of two lateral
edges. Find the vol ume of the portion of the tetrahedron Iying
above the three cutting planes.

455~ A rhombus with diagonals AC = a and BD = b is the base
of a pyramid SABeD. The lateral edge SA of length q is perpen­
dicular to the base . Through the point A and the midpoint K of
the edge SC a plane parallel to the diagonal BD of the base is
drawn . Determine the area of the plane section thus obtained.

456. In a regular quadrangular prism two parallel plane sections
are drawn. One of them passes through the midpoints of two adja­
cent sides of the base and the midpoint of the axis of the prism
and the other divides the axis in the ratio 1: 3. Knowing that the
area of the former section is S, find the area of the latter.

457. A triangular pyramid is cut by a plane into two poly­
hedrons. Find the ratio of volumes of these polyhedrons if it is
known that the cutt ing plane divides three concurrent latera l ed­
ges of the pyramid so that the ratios of the segments of these edges
adjacent to the common vertex to the remaining parts of the edges
are 1:2,1:2 and 2:1.

458. Find the volume of a triangular pyramid if the areas of
its faces are So, SI' 8 2 and 8 3 , and the dihedral angles adjacent
to the face with area So are equal.

459. In a cube with edge a through the midpoints of two pa­
rallel edges not lying in one face a straight line is drawn. and
the cube is turned about it by 90°. Determine the volume of the
common portion of the initial and turned cubes.

460. Through the vertex of a cone a plane is drawn at an
angle ex; to the base of the cone. This plane intersects the base
along the chord AB of length a subtending an arc of the base of
the cone with central angle ~. Find the volume of the cone.

461. A cone and a cylinder have a common base. and the vertex
of the cone is in the centre of the other base of the cylinder.

3-323
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Find the angle between the axis of the cone and its element if
the ratio of the total surface area of the cylinder to the total
surface area of the cone is 7: 4.

462. A cylinder is inscribed in a cone, the altitude of the
cylinder being equal to the radius of the base of the cone. Find
the angle between the axis of the cone and its element if the ratio
of the total surface area of the cylinder to the area of the base
of the cone is 3:2.

463. In a cone with slant height 1 and element inclined to the
base at an angle a a regular n-gonal prism whose all edges are
congruent is inscribed. Find the total surface area of the prism.

464. The four sides of an isosceles trapezoid are tangent to
a cylinder whose axis is perpendicular to the bases of the trape­
zoid. Find the angle between the plane of the trapezoid and the
axis of the cylinder if the lengths of the bases of the trapezoid
are respectively equal to a and b and the altitude of the trape­
zoid is equal to h.

465. A sphere is inscribed in a right prism whose base is a
right triangle. In this triangle a perpendicular of length h drop­
ped from the vertex of the right angle on the hypotenuse forms
an angle IX with a leg of the triangle. Find the volume of the
prism.

466. In a regular n-gonal pyram id with side of the base a and
lateral edge b a sphere is inscribed. Find its radius.

467. A sphere is inscribed in a regular triangular pyramid.
Determine the angle between its lateral edge and the base if the
ratio of the volume of the pyramid to the volume of the sphere
. I t 27 V3
IS equa a 4n'

468, About a sphere of radius r a regular n-gonal pyramid
with dihedral angle at the base a is circumscribed. Find the ratio
of the volume of the sphere to that of the pyramid.

469. Find the ratio of the volume of a regular n-gonal pyramid
to the volume of its inscribed sphere, knowing that the circums­
cribed circles of the base and lateral faces of the pyramid are of
the same radius. .

470. Find the altitude of a regular quadrangular pyramid if it
is known that the volume of its circumscribed sphere is equal
to V and the perpend icular drawn from the centre of the sphere
to · its lateral face forms with the altitude of the pyramid an
angle a .
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471. A sphere of radius R is inscribed in a pyramid whose
base is a rhombus with acute angle ex. . The lateral faces of th e
pyramid are inclined to the plane of the base at an angle "'P.
Find the volume of the pyramid .

472. The congruent bases of two regular n-gonal pyramids
are made coincident. Find the radius of the inscribed sphere of
the polyhedron thus obtained if the sides of the bases of the py­
ramids are equal to a and their altitudes are equal to hand H
respectively.

473. The congruent bases of two regular n-gonal pyramids are
made coincident, the altitudes of the pyramids being different.
Determine these altitudes if the radius of the circumscribed sphere
of the polyhedron thus formed is equal to R and the sides of the
bases of the pyramids are equal to a. What is the relationship
between the values of a and R for which the problem is solvable?

474. An inscribed sphere of a regular n-gonal pri sm touches
all the faces of the prism. Another sphere is circumscribed about
the prism. Find the ratio of the volume of the latter to that of
the former.

475. A regular tetrahedron is inscribed in a sphere, and another
sphere is inscribed in the tetrahedron. Find the ratio of the sur­
face areas of the spheres.

476. A sphere is inscribed in a regular tetrahedron, and another
regular tetrahedron is inscribed in the sphere. Find the ratio of
the volumes of the tetrahedrons.

477. Given two concentric spheres of radii rand R (R > r).
What relationship connects Rand r if it is possible to construct
a regular tetrahedron inside the larger sphere so that the three
vertices of its base lie on the larger sphere and the three lateral
faces are tangent to the smaller sphere?

478. A plane dividing a cube into two parts passes through
two opposite vertices of the cube and the midpoints of the six
edges not containing these vertices. Into each part of the cube
a sphere is placed so that it is tangent to three faces of the cube
and the cutting plane. Find the ratios of the volume of the cube
to the volumes of the spheres.

479. From a point on a sphere of radius R three equal chords
are drawn at an angle ex. to one another. Find the length of these
chords.

480. In a triangular pyramid SABC the edges SA, SC and SB
are pairwise perpendicular, AB =BC=a and BS =b. Find the
radius of the inscribed sphere of the pyramid.

3*
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481. Find the dihedral angle rp formed by the base of a regular
quadrangular pyramid and its lateral face if the radius of the
circumscribed sphere of the pyramid is three times that of the
inscribed sphere.

482. In a sphere of radius R a regular tetrahedron is inscribed,
and all its faces are extended to intersect the sphere. The lines
of intersection of the faces of the tetrahedron with the sphere
cut off from its surface four spherical triangles and several spherical
lunes. Compute the areas of these spherical parts.

483. A sphere is inscribed in a cone. The ratio of the surface
area of the sphere to the area of the base of the cone is 4: 3.
Find the vertex angle of the axial section of the cone.

484. A hemisphere is inscribed in a cone so that its great circle
lies in the base of the cone. Determine the vertex angle of the
axial section of the cone if the ratio of the total surface area of
the cone to the surface area of the hem isphere is 18: 5.

485. In a sphere of radius R a cone is inscribed whose lateral
area is k times the area of its base. Find the volume of the cone.

486. The ratio of the altitude of a cone to the radius of its
circumscribed sphere is equal to q. Find the ratio of the volumes
of these solids. For what q is the problem solvable?

487. Find the ratio of the volume of a sphere to that of a right
cone circumscribed about the sphere if the total surface of the
cone is n times the surface area of the sphere.

488. Determine the radii of the bases of a frustum of a corte
circumscribed about a sphere of radius R knowing that the ratio
of the total surface area of the frustum to the surface area of the
sphere is equal to m.

489. A sphere of radius r is inscribed in a cone. Find the volume
of the cone knowing that the distance from the vertex of the cone
to the tangent plane to the sphere which is perpendicular to an
element of the cone is equal to d.

490. A sphere of radius R is inscribed in a cone with vertex
angle of its axial section equal to a. Find the volume of the part
of the cone above the sphere.

491. Determine the radii of two intersecting spheres forming
biconvex lense with thickness 2a, total surface area S and dia­
meter 2R.

492. A sphere is inscribed in a cone, the ratio of theirvolumes
being equal to k, Find the ratio of the volumes of the spherical
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segments cut off from the sphere by the plane passing through
. the line of tangency of the sphere and cone.

493. In a sphere 5 of radius R eight equal spheres of smaller
radius are inscribed so that each of them is tangent to two adja­
cent spheres and all the eight spheres touch the given sphere 5
along its great circle . . Then in the space between the spheres a
sphere 51 is placed which touches all the spheres of smaller ra dius
and the sphere 5. Find the radius p of the sphere 51'

494. In a sphere 5 of radius R eight equal spheres are inscr ibed
each of which is tangent to three adjacent spheres and the given
one. Find the radiu s of the inscribed spheres if their centres are
at the vertices of a cube.

495. In a sphere two equal cones with coinciding axes are in­
scribed whose vertices are at the opposite endpoints of a diameter
of the sphere. Find the ratio of the volume of the common por­
tion of the cones to that of the sphere knowing that the ratio of
the altitude h of each cone to the rad ius R of the sphere is equal
to k,

496. The areas of two parallel plane sections of a sphere drawn
on one side of its centre are equal to 51 and 52' and the distance
between them is d. Find the area of the section parallel to the
two given sect ions and equidistant from them.

497. Three equal spheres of radius R tangent to one another
lie on a plane P. A right circular cone with its base in P is
externally tangent to the spheres. Find the radius of the base
of the cone if its altitude is equal to qR.

498. Given four equal spheres of radius R each of which
is tangent .to the other three . A fifth sphere is externally tangent
to each given sphere, and one more sphere is internally tangent
to them . Find the rat io of the volume Va of the sixth sphere to
the volume V& of the fifth.

499. Three equal pairwi se tangent spheres of radius R lie on
a plane . A fourth sphere is tangent to the plane and to each
given sphere. Find the rad ius of the fourth sphere .

500. Four equal spheres of radius R lie on a plane. Three of
them are pairwise tangent, and the fourth sphere touches two of
these three. Two equal tangent spheres of smaller radius are placed
above these spheres so that each of them touches three 1arger
spheres. Find the ratio of the radius of a larger sphere to that
at a smaller.
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2. Proof Problems

501. Gi ven a fru stum of a cone with lateral area equal to the
area of a circle whose radius is equal to the slant height of the
fru stum . Prove that it is possible to inscribe a sphere in the
fru stum.

502. Given a frustum of a cone whose altitude is the mean
proportional between the diameters of the bases. Prove that it is
possible to inscribe a sphere in the given frustum.

503. Prove that the straight lines joining three vertices of a
regular tetrahedron to the midpoint of the altitude dropped from
the fourth vertex are pairwise perpendicular.

504. Let R be the radius of the circumscribed sphere of a re­
gular quadrangular pyramid, and r be the radius of the inscribed
sphere. Prove that

R V­-~ 2+ 1.r

Hint . Express ~ in terms of tan ~ where ex. is the dihedral

angle between the base of the pyramid and its lateral face.

505. From a point 0 in the base ABC of a triangular pyramid
SABC are drawn the straight lines OA', OB' and OC' respectively
parallel to the edges SA, S8 and SC which intersect the faces
SBC, SCA and SAB at points A'. B' and C'. Prove that

OA' OB' OC'
s;r+Si3+ sc = I.

506. Consider two triangles ABC and AIBICI with pairwise
'non parallel sides lying in intersecting planes. The straight lines
joining the corresponding vertices of the triangles intersect in one
point O. Prove that the extensions of the corresponding sides of
the triangles are pairwise concurrent and the points of intersection
lie in astra ight line.

507. Show that the line segments joining the vertices of a trian­
gular pyramid to the centroids of the opposite faces meet in one
point and are divided by this point in the ratio 1:3.

508. Show that the area of any triangular section of an arbit­
rary triangular pyramid does not exceed the area of at least one
of its faces.

509. One of two triangular pyramids with common base is inside
the other. Prove that the sum of the face angles at the vertex of
the in ter ior pyramid is greater than that of the exterior one.
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510. Four spheres with non-coplanar centres are pairwise tangent
to one another . For every two spheres a common tangent plane
is drawn perpendicularly to their centre line. Prove that the six
planes thus constructed have a common point.

5·11. Prove that if the sums of the lengths of any pair of op­
posite edges of a triangular pyramid are equal, then the vertices
of the pyramid are the centres of four pairwise tangent spheres.

512. What condition on the radii of three pairwise tangent
spheres guarantees the existence of a common tangent plane to
the spheres?

513. Prove that if a point moves inside the base of a regular
pyramid in its plane. then the sum of the distances from this
point to the lateral faces remains constant.

514. Prove that two planes drawn through the endpoints of two
triples of edges of a parallelepiped meeting in the endpoints of
a diagonal of the parallelepiped trisect this diagonal.

515 . Show that if a plane drawn through the endpoints of three
edges of a parallelepi ped meeting in one vertex cuts off a regular
tetrahedron from the parallelepiped. then the latter can be inter­
sected by a plane so that the section is a regular hexagon.

516. Prove that every plane passing through the midpoints of
two opposite edges of a tetrahedron divides this tetrahedron into
two parts of eq ual volumes.

517. Prove that if all dihedral angles of a triangular pyramid
are equal, all the edges of the pyramid are also equal.

518. The endpoints of two Iine segments AB and CD lying in
two parallel planes are the vertices of a triangular pyramid.
Prove that the volume of the pyramid does not change when the
segments are translated in these planes.

519. Prove that a straight line intersecting the two faces of a
dihedral angle forms equal angles with them if and only if the
points of intersection are equidistant from the edge.

520. Consider two line segments AB and CD not lying in one
plane. Let MN be the line segment joining their midpoints. Prove
that

AD+BC > MN
2

where AD. BC and MN designate the lengths of the corresponding
segmen ts.

521. Prove that every face angle of an arbitrary tetrahedral
angle is less than the sum of the other three face angles.



72 PROBLEMS IN ELEMENTARY MATHEMATICS

522. Prove that any convex tetrahedral angle can be intersected
by a plane so that the section is a parallelogram .

523. Prove that if the faces of a triangular pyramid are of the
same area. the y are congruent.

3. Loci of Points

524. F ind the locus of pro jections of a point in space on pla­
nes passing through another fi xed point.

525. F ind the locus of centres of the sections of a sphere by
the planes passing through a given straight line l. Consider the
cases when the line and the sphere intersect . are tangent or have
no points in common.

526. Find the lQCUS of centres of the sections of a sphere by
the planes passing through a given point C. Consider ' the cases
when the point is outside the sphere. on its surface or inside it.

527. Find the locus of points from which it is possible to draw
three tangent lines to a given sphere of radius R which are the
edges of a tr ihedral angle with three right face angles .

528. Find the locus of feet of the perpend iculars dropped from
a given point in space on the straight lines lying in a given plane
and int ersecting in one point.

529. Given a plane P and two points A and B not lying in it.
Consider alt the possible spheres tangent to the plane P and pas­
s ing through A and B, Find the locus of points of tangency .

53{). A trihedral angle is intersected by a plane, a triangle ABC
being the. section. F ind the locus of the centroids of triangles ABC
on condition that

(a) vertices A and B are fixed;
(b) vertex A is fixed.

4. The Greatest and Least Values

531. A cube is intersect ed by a plane passing through its dia­
gonal. How must this plane be drawn to obtain the section of the
least area?

532. A triangular pyramid is inte rsect ed by the planes parallel
to two nonintersecting edges. Find the section havin~ the greatest
area.



TRIGONOMETRY

Preliminaries

(9)

( 13)

(12)

(14)

(1)
(2)
(3)
(4)

(5)
(6)
(7)
(8)

(10)

(11)

. (15)

Here are some formulas to be used in the suggested problems.
1. Addition and subtraction formulas:

sin (x+y)= sin x cosy+ cos x sin y,
sin (x-y) = sinx cosy-cosx sin y,
cos (x+ y) = cos xcosy-sin x sin y,
cos (x---'- y) = cos xcos y+ sin x s in y.

2. Double-angle and triple-angle formula s:

sin 2x = 2 sinxcos x,
cos 2x = cos- x- sin! x,
sin 3x = 3 sin x- 4 sin s x,
cos 3x = 4 cos"x-3 cos x .

3. Sum and difference of trigonometric functions:

sin x +sin y = 2 sin x t y cos x 2 Y ,

sinx-siny=2cosxtYsin X;y,

cosx+cosy=2cosxty cos X; y ,

2 . x+Y . y-x
cos x-cos y = sm ---r- sm -2- .

4. Product formulas:

sin x sing = ~ [cos (x-y) -cos (x + g»),

I
cos x <:osy =2 [cos (x- y)+ cos (x + y)J I

sin xcosy =+ [sin (x-y) + sin (x+y)J,

• 2 I-cos 2x
sin x = 2 '

2 I + cos 2x
COS x= . ' 2 •

(16)

( 17)
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5. Expressing sin x, cos x and tan x in terms of tan ~:

x
. 2 tan 2"

smx= ,
I +tan2 "::"

2

I-tan2 .!-
cosx= 2 ,

l+tan2 .!­
2

x
2 tan 2"

tanx=---­
I-tan2 ~

2

6. Inverse trigonometric functions . . .
(a) Principal values of inverse trigonometric functions:

y= arc sin x, if x= siny and
1t 1t

-2~Y~2"'

y= arc cosx if x=cosy and O~y~n,

y=arc tanx if x= tany and
1t 1t

-2 <y<T '

y= arccotx if x=coty and °< y <no

(b) Multiple-valued functions:

(18)

(19)

(20)

(21 )

(
(22)

(23)

(24)

Arc sinx = (_1)n arc sinx+nn, n= 0, ±I, ±2, ... , (25)

Arc cos x = ±arc cos x + 2nn, (26)

Arc tan x = arc tan x + tin, (27)

Arc cot x = arc cot x +nn. (28)

Formulas (25) to (28) determine the general expressions for the
angles corresponding to given values of trigonometric functions.

1. Transforming Expressions Containing
Trigonometric Functions

533. Prove the identity

sin" x+ cos" x = l-fsin 2 2x.

534. Prove the identity

cos2 a + cos- (a + ~)-2cosa cos ~ cos (a +~) = sin2~.
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535. Prove that
tan x + tan 2x- tan 3x = -tan x tan 2x tan 3x

for all permissible values of x.

536. Prove that the equality

tan3x=tanxtan ( ~ -x) tan (~ + x)

for all permissible values of x.

537. Prove the identity

sina + s in ~ + sin v-sin (a -+ p+ y)=
= 4sin a. ; fis in ~; Ys i n y; a. .

538. Prove that

sina+sinfJ+sinV =4cos ~ cos ~ cos '1'2

if
a+~+V=:rt ·

539. For a+p +y=:rt prove the identity
sin 2na -I- sin 2n~ + sin 2ny= (-It ' 14 sin na sin n~ sin fly

. where n is an integer.

540. Prove that if cos (a + ~) = 0 then
sin (ex -:- 2~) = sin ex.

541. Prove that if 3 sin ~ = sin (2ex +~) then
tan(ex+~) =2tana

for all permissible values of ex and ~ .

542. Prove that if sin ex = A sin (ex + ~) then

sin ~
tan (ex + ~) = ~ Acos -

for all permissible values of ex and ~ .

543. Prove that if the angles ex and P satisfy the relat ion
sin B n

s in ( 2a. +~) m (Iml >lnl),
then

l+tan fi
tan a. I - tan a. . tan ~

m+n m --n

75
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544. Prove that if cos x-cos y -cos z ee O, the formula

cos (x +y + z) =;=

= cos xcos y cos z (1- tan x tan y-,- tan y tan z - tan z tan x)

holds t rue .

545. Prove that if ex, ~, "I are the angles of a triangle then

t a- ~ ~ y ya-
an 2" tan "2+ tan 2" t an ""'f + tan 2' tan 2" = 1.

546. Let x+ y +z= ~ k. For what integral ~ is the sum

tan y tan z+tan z tan x+tan x tan y

independent of x, y and z?

547. Find the algebraic relation between the an gles ex, ~ and l' if

tan ex + tan ~ + tan l' = tan ex tan ~ tan 1'.

548. Rewrite as a product the expression

cot- 2x-tan2 2x-8 cos 4x cot 4x.

549. Transform into a product the expression
sin! ex +sin" ~+sin""I+2 cos ex cos ~ cos "1- 2.

550. Compute
1

2 sin 100 . 2 sin 709

without using tables.

55t. Prove that

552. Prove that
2n 4n 6n I

cos T +cos T +cos T =: - 2"'

553. Compute

. ,n + . ,3n + . ,5n + . 4 Ts:sm .T6 sin 16 sin 16 si n 16

without using tables.

554. Prove that
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2. Trigonometric Equations and Systems of Equations

A. TRIGONOMETRIC EQUATIONS

555. Solve the equation
• S • S Is In X cos X - S In X cos X =--= 4" •

556. Solve the equation
I -tan" .
I +tan x = 1+sm 2x.

557. Solve the equation

1+ sin x -l-cos x-l-sin 2x+ cos 2x= O.

558. Solve the equation

1+ sin x+cos 3x = cos x-]- sin 2x +cos 2x.

559. Solve the equation

(sin 2x + V3 cos 2X)2_S = cos (~ -2X) .

560. Solve the equation

2sin 17x+ V3cos5x+ sin 5x = 0.

561. Solve the equation

sin"x (tan x -]- I) = 3 sin x (cosx-sinx) + 3.

562. Solve the equation

sins x + COSS x = 1-+sin 2x.

563. Solve the equation

1 1 1 1 1 1
sin2 x - cos2 X - tan 2 x - cot2 X - sec2 x - csc2 X = -3.

564. Solve the equation
• 4 X + 4 x _ 5

SIn 3" cos 3 -8'

565, Solve the equat ion

{ (sin- x + cos- x)= sin? x cos- x + sin x cos x.

566. Solve the equation

(I + k) cosx cos (2x-a) = (1 + k cos 2x) cos (x-a).

567, Solve the equation

sin ax sin bx= sin ex sin dx,

11
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. !
!
I

, ~

where a, b, C and d are consecutive positive terms of an arithme­
tic progression.

568. Solve the equation

2+cosx = 2 tan i .
569. Solve the equation

cotx -2 sin 2x = 1.

570. Find tan x from the equati on
2 cosx cos (P-x) = cos B,

571. Fi nd cos e if
sin a + sin (<p - a )+sin (2q> +a) = s in (<p +a ) + sin (2<p-a)

and the angle rp is in the third quadrant.

572. Find cot X from the equation

cos' (a +x)+cos" (a- x) = a,

where 0 < a < 2. For what a is the problem solvable?

573. Find tan ~ if sin a +cos a = Y27 and the angle a lies
between 0° and 45°.

574. Solve the equat ion
sin 2x-12 (sin x - cosx)+ 12 = O.

575. Solve the equation
sec2 ~

2
1+2csc x=--r.

576. Solve the equation
t2 _ l+sin x

co X - 1-l-cos.e '

577. Solve the equation
2 tan 3x-3 tan 2x = tan- 2x tan 3x.

578. Solve the equation
2 cot 2x- 3cot 3x = t an 2x.

579. Solve the equation
6 tan x +5 cot 3x = tan 2x.

580. Solve the equation
• S S 1 1

SIn x- cos x= cosx - sin x •
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581. Solve the equation

tan (x-: )tan xtan (x +~) = ~ cos
2

X X •

tan "2 -cot"2

79

582. For what a is the equ ation

s in"x - sinx cos x - 2 cos- x es a

solvable? Find the solutions.

583. Determine all the values of a for which the equation

sin! x -2 cos- x -+ a2 = 0

is solvable. Find the solu tions.

584. Solve the equation
x x x x x 1

cos n 31 cos 2n 31 cos 4n 3T cos 8n 3fcos 16n 3f= 32 •

585. Solve . the equation

cos 7x-sin5x = V3 (cos 5x-sin 7x).

586. Solve the equation

2 -(7 + sin 2x) s in?x + (7 + sin 2x) sin! x = O.

587. Find sinx and cosx if

a cos x + bsinx =c.

What condition connecting a, band c guarantees the solvabil it y
of the problem?

588. Solve the equation

a sin x+b a cos x+ b
-bcosx+a bs in x+a

589. Solve the equation

32 cos"x- cos 6x :o= I.

590. Solve the equation

8 s ins x + 3 cos2x + 2 cos 4x -+ I = O.

591. Solve the equation

cos 3x cos" X -+ sin 3x s ina x = O.

592. Solve the equation
. 8 + 8 17sm x cos x = 32 •
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593. Solve the equation

sin" x +COSIO X = ~~ cos- 2x.

594. Solve the equation

sin" x+ sin" 2x+ sin" 3x = (sin x + sin 2x+ sin 3X)8.

595. Solve the equation

sin 2n x+cos2n x = 1,

where n is a positive integer.

596. Solve the equation

. (1t I- 3X) 2' (31t X )sm TO~ "2 = sm 10-2 •

597. Solve the equation

(cos 4x-cos 2X)2 = sin 3x+5.

598. Solve the equation

(sin x+ cos x)VT = tan x + cotx.

599. Prove that the equation

(sinx +V3"cosx) sin 4x=2

has no solutions.

600. Determine the range of the values of the parameter A. for
which the equation

sec x+ esc x = A.

possesses a root x satisfying the inequality 0 < x < ~ .

B. SYSTEMS OF EQUATIONS

601. F ind all solutions of the system of equations

s~n(x+y)=,O, }
sin (x-y) =0,

satisfying the conditions 0~ x~ nand 0~ y~ n,

602. Solve the system of equations

sin x = esc x + sin y. ·~f

cos x -e sec x-l-cos y.



PROBLEMS . TRIGO NOM ETRY 81

603. Solve the system of equations

sin" x=t sin y, }'

cos" x = z cosy.

604. Solve the system of equations

tan x + tan y =; I , 1
cos xcos y = Y2' )

605. Solve the system of equations

. . [}sm x sm y= \Y2'

tan x tan y = "3.

606. Solve the system of equations

x+Y =qJ, }
cosxcosy = a.

For what a is the system solvable?

607. Find all the values of a for which the system of equations

sinxcos2y=a2 + 1, }
cos x sin 2y= a

is solvable and solve the system.

608. Solve the system of equations

cos(x-2y) =acos3y, }
sin (x-2y) = a cos" y.

For what values of a is the system solvable?
609. Find cos (x-} y) if x and y satisfy the system of equations

sinx +siny =a, }
cos x + cos y = b

and a2 +b2 + O.
610. For what values of a is the system

x-y =a, }
2 (cos 2x -+- cos 2y) = I +4 cos" (x -y)

solvable? Find the solutions.
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611.. Find all the solutions of the system

8cosxcosycos(x-y) + I =0, }

x+y=a..
For what a. do the solutions exist?

612. Solve the system of equations

tan x+ ta~x = 2 sin (y + ~ ) , }
tan y + ta~!I = 2 sin (x- ~ ) .

613. Eliminate x and y from the system of equations

a sin- x+b cos' X = 1, } .
a cos' y +b sin" y = 1,

a tan x = b tan y,

under the assumption that the system is solvable and a =1= b.
614. Express cosc and sin ~ in terms of A and B if

sina.=Asin~, tana.=Btan~.

615. Solve the system of equations
tan x = tans y,}
sin x = cos2y.

616. Solve the system of equations

sin x +sin y = sin (X +y) I }

Ixl+IYI=l.
617. Solve the system of equations

sin (y-3x) = 2 sin"x, }
cos (y-3x) = 2 COSS x.

618. What conditions must be satisfied by the numbers a, b
and c for the system of equations

sin x+ siny =2a,}
cos x + cosY -= 2b,

tan x tan y = c
to have at least one solution?

3. Inverse Trigonometric Functions

619. Compute arccos [Sin (--y)].

,
i
I

i
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620. Compute arc sin ( cos 3: n ) .

621. Prove that

I 1 1 I n
arc tan 3"+arc tan "5+arc tan "7 -+ arc tan 8" = 4" .

622. Der ive the formula

• :It
arc stn x-j arc cos x= 2"'

623. Show that for a < 3~ the equation

(arc sin x)S+ (arc cos x )3 = ans

has no root s.

624. Prove that

{
arc sin V I - x2 if 0~ x ~ I;

arc cosx= 1t-arc sin V1-·x2 if -I ~x~ O.

625. Prove the formulas

arc sin (-x) = -arc sin x and arc cos ( - x) = ,r[ - arc cos x.

626. Pro ve that if -]- -f- 21m ~ x :s;; 1- + 2kn then

arc sin (sin x) = x -2kn.

627. Prove that if 0 < x < I and
l+x ' l- x2

a=2 arc tan I -x' ~ = arc Stll I +x2

then a +~ = n;

628. Find the relationship between

arc sin cos arc sin x and arc cos sin arc cos x,

4. Trigonometric Inequalities

629. Solve the inequality sin x > cos- x.

630. For what x is the inequality

4 sin" x+ 3 tan x -2 sec> x > 0

83

fulfilled?

631. Solve the inequality sinxsin2x< sin3xsin4x if
11:

O<x<'2'
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632. Solve the inequality

sin2x--.!...

4 >0.
Y3 -(sin x+cos x)

633. Find all positive values of x not exceeding 2n for which
the inequal ity

cos x-sin x-cos 2x >°
is sat isfied.

634 Sol the ! lit t x tan x-2. ve e meq ua I y an "2 > tan x +2 •

635. Solve the inequality

cos" x cos 3x-sin3 x sin 3x > : .
636. For 0< <p <; prove the inequality

cot ~ > 1-j-cot «p.

637. Prove that the inequality

(1- tan- x) (1-3 tan' x) (1+ tan 2x tan 3x) >°
hold for all the values of x entering into the domain of defini­
tion of the left-hand side.

638. Prove that the inequality

(cot- x-I) (3 cot- x- I) (cot 3x tan 2x-l) ~-I

is valid for all the values of x belonging to the domain of defi­
nition of the left-hand side.

639. Putting tan e= n tan «p (n > 0) prove that
(n _ I )2

tan" (8-q» ~~.

640. Prove the inequality

sinx-I +-!.- 2 2-sinx
s;nx-2 2 ::--"3-sinx'

prove that

For what values of x does it turn into an equality?

641. Prove that if °~ q>~ ; , the inequality

cos sin q> > sin cos q>
is fulfilled.

642. By the method of complete induction,

t an nce > n tan e
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;S _. 1 isit ive integer greater than unity and a is an angle

: a. . ; J .. ...; the inequality 0 < ci. < 4 (:-1)'

1t
643. Let 0 < al < a 2 < ... < an < "2' Prove that

t < sin ct.l + ... + sin ct.n < t
anal + anan·cos (::(1 ••• + cos ct.n

644. Prove that if A, Band C are the angles of a tr iangle
then

1t
645. Prove that if 0 < x < 4" then

cos x
sin2 x (cos x- ~in x) > 8.

5. Miscellaneous Problems

646. Compute sin ( 2 arc tan ~ - arc tan (52) .

647. Prove that if tan a = ~ and sin ~ = ;10 where the angles

ex and ~ are in the first quadrant then ex +2~ = 45°.

648. Prove that the expression

sin x+tanx
Y= cos x -j-cot x

assumes positive values for all permissible values of x.

649. Prove that the equality sin a sin 2a sin 3a = . ~ does not

hold for all the values of ex.

650. Express sin 5x in terms of sin x. With the aid of the for­
mula thus obtained compute sin 36° without using tables .

651. Find the greatest and the least values of the function

qJ (x) = sin" x + cos" x,

652. Find the greatest and the least values of the function

y =2 sin 2 x+4 cos- x+6 sin xcosx.



653. Find out for what integral values of It the number 3rt is
a period * of the function
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I
l
I

. 5cosn x S1I1- X.
n

654. Prove that if the sum

a l cos (a l + x) + aacos (aa+ x ) + ... + an cos (an + x)

vanishes for x = 0 and x = Xl =1= krc where k is an integer, then it
is ident icaJly equal to zero for all x.

655. Prove that the function cosV-X is nonperiodic (I.e. there is
no constant number T =1=0 such that cosVx +T = cosV"X for all x).

656. Prove the formula

. x
sin "2

• fi X • (n + l) x
SIn 2"" SIn--2-

sin x -j- sin zx-} ... + sinnx=-- - - - -

Hint. Use De Moivre's formula
(cos x + i sin x)" =- cos nx + i sin nx,

657. Compute the sum
n 2n fin

cos '4 cos T cos T
-2-+-zr-+' .. +-2-n - .

Hint. Apply De Moivre's formula.

658. Consider the function
f (x) = A cosx-]- B sin x ,

where A and B are constants.
Prove that if a function f (x) vanishes for two values Xl and Xa

such that
xI -XZ=1= k rt,

where k an integer , then f (x) is identically equal to zero.

* A function t (x ) is said to be periodic if there exists a number T :j; 0 such
that the identity f (x + T) =: t (x) is fulfilled for all the permi ssible va lues of x .
The number T is then called a period of the function • .



SOLUTIONS
AND ANSWERS

ALGEBRA

I. Arithmetic and Geometric Progressions

1. By the hypothesis, we have

b-a=c-b=d and c- a= 2d.
Denote

and
A __ I
z- Ya+Yb

Let us show that A1 =A2 • If d=O then a=b=c and Aj,=Az=O. Therefore
we suppose that d :f. O. Rationalizing the denominators we obtain

y7-Yii Yb-Yc 2 Yb-Y~-Yii
A 1 = 2d + d = 2d

and

Yc-yli
2d

2Yb-Yc-Ya
2d

Thus. A j = Az which completes the proof.

2. If the common difference d of the given progression is equal to zero the
validity of the formula is obvious. Therefore we suppose that d :f. O.

Denote the left -hand side member of the desired equality by S. Rationalizing
the denominators we get

S = Va; - Va; + ya; - Va; +... + Va,; - ya,;-::-;
az-~ as-a2 an-an- 1

Since . by the hypothesis, az-a j = as- a2 = ... = an- an - j= d we obviously
obtain

n-l(n -I)d

Now we can write

S= an-aj
(yan+ YQJd

which is what we set out to prove.

3. By the hypothesis we have

aZ-al=aS-aZ= ' " =an-an- 1 =d.
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If d= 0 then the desired equality is obvious. Assuming that d t= 0 we can write

which is what we set ~t to prove.

I I 2
4. At n =3 we have - - +--=--. Whence, -----=----

ala2 a2aS alaS alaZ ~a3 alaS aaaz
and consequently a3-aZ=a2-~' Therefore it is sufficient to show that

for any n:;;"" 4. Let us write down, in succession, the equality given
mulation 01 the problem for the cases n-2, n-I and n:

_1_+_1_+ ...+ I n-3
ala2 a2a3 an-3 an - 2 ai an - 2 •

_1_+_1_+" .+ . I n -2
~a2 a2a3 an - 2an - 1 ala"~l j

_1_+_1_+ ...+_1_=n-I .
alUz a2a3 an - l a" ala"

Subtracting termwlse equality (2) from (3) and (I) from (2) we get

__1 1_. =(n --2) al],",:l-an
al]-lan alaI] alan-Ian

and

in the for-

(I)

(2)

(3)

Reducing the fractions to a common denominator and cancelling we find

al-an - l = (n- 2) (an-I-an).

~ -an-l =(n-2) (an-2-an- l).

Hence, an-I -an=an-2-an-1 which is the required result.

5. We shall use the method of induction . Note that the equality holds for
n=2 since a2-al =a3-a2 and, consequently, al-2a2+aS= 0. Suppose that
the desired formula is valid for a certain n or. in other words, for any arithme­
tic progression Xl ' Xz' .. .• xn+1 the equality

XI -C~X2+C~X3 + .. .+(_ 1)" - 1C~-lxn+(_I)n C~Xn+1 =0 (I)

holds. Now passing to n+ I we use the identity

C~ =C~_l +C~=~
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which results in

al-CA+laz+C~+laS+'" +(_l)n C~+lan+1+

+(_l)n+l c~tlan+2= [a,. -C~a2+'" +(_l)n C~an+J-

- [aZ-C~a8+'" + (_I)n-l C~-lan+l+(_l)n C~an+2]'

By the hypothesis, both expressions in square brackets are equal to zero
because they are of form (I). Therefore, the desired formula is valid for n+ I
as well. Thus, the assertion is proved.

6. We carry 011t the proof by induction. For n = 3 it readily follows that

ai-3 (al+d)z+3 (a l + 2d)Z-(al +3£1)2=0.

Suppose we have' already established that for a certain n and any arithmetic
progression Xl' Xz • • • . , Xn+l the identity

x~-ch:+ .. .+(-l)nC~X~+I=O
holds. Then passing to n+ 1 as in the preceding problem we obtain

a;- C:'+lai+ C~+1a;+ ... +(_l)nC~+1a~+~+
. +(_I)n+l C~t~a~~= [ai- C~a~+ . .. +(-1)nC~a~+11-

- [a~- C:'a;+ ... +(-I)nC~a~+21= 0,

and thus the required formula has been proved.
It should be noted that for an arithmetic progression a,. , all• . . . • an, an+!

the more general formula

a~- C:'a~+ C~a~- ... +(_l)n-lC~-la~+(-I)nc~a~+1= 0

holds where k;;;;, 1 is an integer.

7. By the well -known property of the terms of an arithmetic progression we
have

210gm x= logn x+ logk x,
Whence we obtain (see (3), page 25)

2 I I
logx m = logx n + logx k

and. consequently.

2=logxm +Iogx m.
logx n logx k

Using formula (2) given on page 24 we deduce

2= logn m+logk m,
Let us rewrite this equality as

logn nZ=logn m+ logn (n1og"m).

Now, raising we obtain n2=mnlogkm or

n2 = (kn)IOllk m

which is what we set out to prove.

8. Let

(I)
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Denote the common difference of the progression by d. We are only interested
in the case d f: 0 since for d =O all terms of the progression are equal and the
equality (1) is automat ically fulfilled. Using the for mula for the sum of terms
of an arithmetic progression we get from (1) the equal ity

n knT tal +al + d (n - 1)]=2 tal + nd +al +(n+ kn - l) dJc

from which, after cancell ing ; and rearranging the terms, we find

(2al - 2alkc-d+cdk)+n (d - cdk2 - 2cdk) = O.

Since this equalit y holds for any n we conclude that

2al - 2a1kc- d + cdk = O
and

d-cdk2-2cdk =O.

Cancelling out d f: 0 in the second equalit y we obtain

I
c=k (k + 2)' (2)

(3)(a f: 0).a, 3a, Sa, ...

The first equaliti y can be represented in the form

(2al - d)( l-ck) = O.

By virtue of (2), the second factor is different from zero and hence d = 2a l '
Thus, if d f: 0 equal ity (1) can be valid for all n only in the case of the

progression

Now it is easy to ver ify directly that progression (3) in fact sat isfies the
conclition of the problem . Thus, the sought-for progression is given by (3).

9. Let d be the common difference of the progression. We have

b2 =x;+(xl +d)2+ ... + [Xl +(n - I) d]2=nx;+2xld [1 + 2 + ... + (n -I») +

+ d2 [1 2+22+ .. . +(n-I)2) = nxi+ n (n-l) Xld+ n (n -I ~(2/1 - -1) d2

and, besides
n (n-I)

a=nxi +--2- d.

Eliminating Xl from these equations, after some simple tr ansfurmations we
obtain

/

Hence, (
\

( 12 (nb'l- a2)
d = ±} n2(n2- I ) ;

XI is then de-fined in either case by the formula

Xt =~[a_n (~ I)d).

Thus, there are two progressions sat isfying the conditions of the problem for
n2b2- a2 f: O.
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10. Let the sequence 0 1• 02, •••• an possess the propert y th at

a2-a1=d. as-a2=2d, .... Qn-Qn - l= (n - l )d.

Adding togeth er the equ alities we find th at

n(n-J)
an =Q1 +d 2 .

Using thi s formula we get

[
1,2 I 2·3 (n-1) nJ

Sn=a! +a2+ · ·· +an=a1n+ 2'"3+'" +--2- d.

In Problem 266 it is proved that

1·2 2·3 (n-1)n n(n2 - 1)
2+2+'''+-2- 6

Consequ ently,

91

n (n 2 - 1)
Sn =aln+ 6 d.

For the problem in question we have d = 3, al = I. The refore.

an=l + ~ n(n-I) and Sn=+n(n2+1).

11. Th e nth TOW contains the numbers n, n+1, .... 3n - 3. 3n-2 (the
tot al of 2n- I numbers). The sum of th ese numbers is equ al to

(n+3n-2)(2n-l) (2n- 1)2.
2

12. Let q be th e common ratio of the progression. Th en

am+n = a1qm+n-1 = A.
arn- n =a1qm-n-I = B.

A 2VAWhence q2fl=1J and, hence, q = B ' Now we have

13. We have
Sn = a1+alQ+ +alqn-l,

S2n-Sn =alQn+otqn+I+ + a1q2n-l =qnSn

and, furthermore,

S3tl- S2n = alQ2n+ alq2n+ 1+...+a1q3n-! = q2nsn.
It follows that

1 S" S2n-Sn
qn= S2n-Sn= San-S2"

which is what we set out to prove.

14. We have

n(,,-I) ( "-')"
0n=a1.otql . . . . .alq,,-1 =a1 q-2-= a!q-2- •
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Noting that

and
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we conclude that

and thus we obtain
n

n _(~)2n- s; .

15. Denote the sought-lor sum by Sn ' Multiplying each item 01 this sum by
x and subtracting the resulting quantity from Sn we obtain

Sn-xSn = I +x+x2+ . .. +xn-(n+l) xn+l.

Applying the formula for the sum of a geometric progression to the one ente­
ring into the right-hand side for x i= I we find

l-xn + 1

(l-x)Sn = I (n+l)xn+1•-x

Hence,
l-xn + 1 (n+ l)xn +1

Sn =(I_X)2 I-x (x i=I).

For X= I we thus obtain

16. Let us denote the desired sum by Sn ' Transforming the terms of the
sum by using the formula for the sum of terms of a geometric progression we .
can write

1+1O=~,
9

I + 10+ 100= 10
3

9
1 ,

10'1-1
1+ 10+ 100+ ... + 10'1-1=-9- '

Since we have 1= 10;-1 the addition of the right-h and sides of the latter

equalities yields

s,,=}(10+ 102 +... + lon -n)=} (10"+~-10 n).
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17. By adding together the elements of th e columns we can repr esent the
requ ired sum in th e form

(X+X2+ X3+ +X" -2+ X,, - I+X")+
+(X+X2+ X3 + + X" - 2+ X,,- I)+
+ (X+ X2+ X3+ +X" -2 )+

+(x+X2)+
+ x.

Now summing the terms in t he brackets we find t hat for x 1" I t he sought -lor
sum is equa l to

x" - I x,, - I - I x,, -2 _ 1 x2- 1 x - I
x x_I +x x-I + x x- I + " , + x x_ 1 +x x_ l=

x x [ x" - 1 ] x2 (X" - I ) nx
=x _ I [x+ x2+ . .. + x"-nj = x_1 x x - I ~n = (x-I )2 x - I '

For x= I this sum is equal to n (n: I) as the sum of terms of an ar ithme t ic

progression.

18. Let S" denote the required sum. Then

25,,=1+ }+;2+;1+"'+22: -=-11= 1+ (~ ++ ) + ( :2+~) +
1

(2 5) ( 2 2n-3) 1-2,, - 1 2n- 1
+ 23 +'23 + ... + 2"-1+ 2"-1 = 1+ J +S,, - 2i'"'

1-2
\\ hence

19. T he gen er al form of these numbers Is

n n- I n n
,-'"-.., --'-...,-""-.. .-'~

44 . .. 4 88 ...89 =4 ·1 1. .. 1.10" +8 ·11 ... 1+1.
n

,--/--.,
T he number 11...1 can be written in the form of the sum of the terms of a
geometr ic prog ress ion with th e common ratio 10:

n
-"- 10" -1
II . . . I =1+ 10+ J02 + .. .+ 10"-1= -9- .

Thus we have

-!. (10"-1) lOn +~ (10"-1)+ I=-!. 102" +.! lon+..!..- (2"10"+ 1)29 9 9 9 9- 3 .

20. By the hypothesis. we have I q I < 1 an d, consequent ly.

I
q" =k(q,,+1 + q" +2+ . . . )=kqn+l

1
- - . (I)
- q
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Hence, 1- q= kq and thus, if the problem has a solut ion, we have

I
q = k + 1 • (2)

It is, however, easily seen th at if, conversely, equal ity (2) implies t hat I q I < I,
then the equali ty (2) impl ies equality (I), and the correspond ing progression
sati sfies the condition of the problem. Thus, the problem is solvable for any k

satis fying the inequalit y Ik~ II < 1. The latt er holds for k > 0 and k < - 2.

21. The proof is carried out by complete induct ion . Let us first consider a
sequence of three terms Xl' Xz, xs ' Opening brackets in the formula

(x~+ xi)(x:+ x:) = (xI XZ+X~X3 )Z ,
we find that

x~+x:x;-2xlx:XS= 0,

whence (X~-XIX3)2 = 0, and, consequently, XIXS= x~ . If Xl i= 0 this implies that
the numbers Xl> Xz, x3 form a geometric progression. Now assume that the sug-
gested assertion is proved for a sequence consisti ng of k (k~ 3) terms .

Xl ' Xz, " ' , xk' (I)

Let q be the common rati o of the progression. Consider a sequence of k + I
terms

(2)

Let us writ e down the corresponding condition

(xi +x~+ . . . +X:_l +x~) (x~+x: + . .. + x1+x~+l)=
= (x IXZ+xzxs+ ., ,+Xk- lXk + XkXk + l )Z (3)

and put , for brevity, xi+x~+...+xLI = aZ• Note that a t= 0 since Xl t= O.
By the induction hypothesis we have

XZ =qxl; x3 = qxz; . .. ; xk = qxk- l ' ' (4)

Therefore equali ty (3) can be rewritten as

(a2+xg) (q2a2 +x:+d= (qaZ+XkXk+ 1)2.

Opening the brackets and grouping the terms we see that

(xJiq-xk +1)2a2= O.

Since a:j;O. then alongside with (t) we get X/t+1=qX/t . Hence, the sequence
Xl. Xz• . . . , X/t, Xk+l is a geometric progression with the same common ratio

q =~.
Xl

It follows that a sequence composed of first n terms of the given sequence
is a geometric progression for any natur al n , Therefore, t he given infinite sequ­
ence is also a geometr ic progression which is what we set out to prove.

22. Let a l = bl =a. Then, by virtue of the condition az=bz, we have

a+d = aq , (I)

where d and q are the common difference and ratio of the corresponding prog­
ressions; Note that the condition an > 0 for all n implies that the difference d
must be non-negative . Since, in addition, al t= az we conclude that d > O.

Therefore, formula (I) implies
d

q=I+- > I.a
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(2)

is equivalent to the

Now we have to prove that
a+(n-l)d < aqn-l

for n > 2. Since, by equality (I), d = a (q - I), rel ation (2)
inequality

a(n-I)(q-l) < a(qn-l_l).

Dividing both sides by the positive quantity a (q-l) we obtain

n-l < l+q+ ... +qn-2 .

Since q > I, this inequality holds true. The problem has thu s been solved.
23. By the hyp othesis, we have

a1 > 0, ~=q > 0 and bz-b l = d > 0,
al

where q is the common ratio of the geometric progression and d the difference
of the arithmetic progression. Taking advantage of the fact that an=alqn-I
and bn =bl +(n-I) d we obtain

log. an-bn=(n-I) (log. q-d)+ log. al-bl'

For the difference on the left-hand side to be independent of n it is necessar y
and sufficient that loga q-d=O. Solving this equation we find

1
Ifa=q . (1)

Consequently, the number a exi sts and is defined dy formula (I).

2. Algebraic Equations and Systems of Equations

24. Rewrite the system in the form

(x+y)(x2-xy +yZ)=I, } (I)

y (x+ y)Z= 2, (2)

and divide t he first equation by the second. Discarding the denominator and
then collecting similar terms we obtain

y2-3xy+2xz=0. (3)

Solving quadratic equation (3) in y we get the two roots y = x and y = 2x and
thus obtain two new equations. Solving then each of these equations simulta­
neously with equation (2) we find real solutions of the corresponding systems.
There are only two solutions:

I v- 13n
Xl = "2 4 , YI ="2 V 4

and
I V-xZ = 3" 3,

Each of these pairs of numbers sat isfies the original system as well . This
can be verilied either by the direct substitution or by analyzi ng the method by
which the solutions were found .

25. Let us transform the equations of the system to the form

(x+y)Z-xy=4, }
(x+y)+xy=2.

Whence we obtain
(x+y)Z+(x+y)=6
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and, hence, either x+ y=2 or x+ y= -3. Combining either of the latter equa­
tions with the second equation of the original system we arrive at the follow­
ing two systems of equations:

x + y = 2, } x + y = - 3, } (2)
xy = O, (I) xy = 5.

System (1) has two solutions

and
x2 = O,

System (2) also has two solutions
3 . yIT

X3 = -Z+t-2- ,

and
3 . yIT

x4 = - z - t -2- '

3 . yIT
Y3=-Z-t-2-

It is obvious that each solution of the original system belongs to the set of
soluti ons of the above system. A simple argument shows that the converse is
also true. By the way, it is sti ll easier to verify it by, a direct substi tution.
Thus, the problem has four solutions.

26. Transform the equat ions of the system to the form

(x +y) [( x+y)2- 3xy] =5a3 , }

xy (x+ y)= a3 ,

and then put x+y =u and xy =v. Substituting xy (x + u)= a3 into the first
equation we find u3 = 8a3 . Since we are only interested in real solution s, we
have u = 2a. From the second equation we now find

a3 I
v=u--:-Z a2.

Thus, we have arr ived at the following system pf equat ions in x an-i y:
I

x+ y=2a. xY=Za2.

Solving this system we g~t

2+V2
xl =a 2 '

and

2-Y2
Yl ~a 2

(I)

These numbers also sati sfy the original system and consequentl y the latter
has two real solutions.

27. Reducing the equations to a common denominator we then transform the
system to the form

(x +y) [(x+ y)2-3xyJ= 12xy, }
3 (x+y) = xy .

Putling x+y=u, xy= v and substit ut ing xy= v= 3 (x + y)= 3u into the fi rst
equation we see tha t



Note that U:/:: °(if otherwi se, the second equat ion wou ld impl y xy = 0
which contradicts the original equat ion) . Therefore , it follows from equation

. (I) t ha t either U= 12 or u=-3.
In the first case (u = 12) we get the sys tem

x+ y= 12, }
xy=36,

This system has two solut ions

I

. l
I
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whence x = y = 6.
In the second case (u = -3) we have .

x+y =-3, }
xy= - 9.
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x=; (± ys-I), y=f (=j= YS-I).

The three solutions thus found satisfy the orig jnal system as well. Thus, th e
sys tem has three solutions.

28. Squaring the second equation and subtracting it from the first equation
we obtain

xy (x2 + y2 ~xy) = 2 1 . (I )

Whe nce, by virtue of the second equation of the system, we derive xy = 3.
Substituting y into the second equation of th e sys tem, we arrive at the

biquadratic equation
. . xf-I Ox2+9=O.

It follows that XI =3, x2 = - 3, xs= I, x4=-1 and therefore the corresponding
values of yare Yl=l, Y2=~I, Ys=3, Y4 =-3. A direct verifica tion sho ws
that all the four pairs of numbers are solutions of th e origina l system . Conse­
quently, the system has four solut ions:

xl = 3, 111 = 1; xz=-3, Y2=-I;
xs= I , Ys = ;;!; x 4 =-I . Y4=;o-3.

29. Transform the system to the form

(x- y) (x2 +y'z+ xy -19) = 0, }
(x+ y) (x2+ y2_xy~ 7) ;= O.

The orig inal system is thu s re duced to the fol lowing four sys tems of equ a-
tions: .

x-y=o,} (I) x- y = D, } (2)
x+y=O, . X2+ y2- xy - 7 = O, .

x2+ y2+ XY-19=O,} (3) x2+ y2+ XY- 19=O,} (4)
x-:'y=O, X2 + y2- xy - 7 = O.

'The -first system has a single solution x = 0, y = D. The second one has two
solutions x=± y7, y=± Y7. The th ird syste m also has tWQ SOh-1Iions
x = ± YI9, y = =f YT9. Now taking the fourth system we note that th e addi­
tion and subtract ion of both equations leads to the equi va len t system

xy = 6, }
x2+y2 =13.

This'system ' has four solutions:

x = ±2, y= ±3 and X= ±3, y= ±2 .

4-3 23
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Thus, the system under considerat ion has nine solutions:

(0, 0), (y7; yf), (- Yl. - Yl), (Y19, - yf§), (- Yl9, yig),
(2, 3). (-2. -3), (3, 2), (-3, -2).

30. Transforming the system to the form

2(x+y)=5xy, }
8 (x+ y) [(x+y)2-3xyJ=65,

substituting x+ y found from the first equation into the second one and put­
ting xy =v we get

25u3-12v2-13=0.

This equation is obviously satisfied by v= I. Dividing the left-hand side by
v-I we arrive at the equation

2002+ 13v+ 13=0.

The latter equation has no real roots. Thus. there is only one possibility: V= 1.
Substituting this value into the first equation we obtain the system

xy=I, I
x+y=-}. J

I I
Hence, xl=2, Yl="2 and x2="2 ' Y2=2.

Both pairs of numbers also satisfy the original equation. Thus, the system
has two and only two real solutions.

31. Adding together the equations and then subtracting the second equation
from the first one we get the equivalent system

(x-y) (x2+ y2+xy) = 7, }
(x-y) xy=2. (I)

Representing the first equation in the for~

(x-y)3+3xy (x-y)=7,

we see that, by virtue of the second equation, (x- y)3 = 1.
Since we are only interested in real solutions we have x-y= 1. Taking this

into account we easil y deduce xy = 2.
Solving then the system

xy=2, }
x-y=I,

we find its two solutions
xl=2. Yl=l; x2=-I. Y2=-2.

It can be readily verified that both pairs of numbers satisfy the original
system. Thus, the system has two real solutions.

32. Transforming the second equation to the form

(x 2 +y2)2 - 2x2y2 = 7

and putting X2+ y2= U. xy=v we rewrite this equation as

u2 - 2v2 = 7.

Squaring the first equation of the system we get another relationship between
II and v:

u+2v= 1.
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Eliminating u from the last two equations we obtain

v2-2v-3=O,

whence

..J9

t'l = 3, t'2 =-1.

Then the corresponding values of U are

ul=-5 and u2=3.
Since U=X2+y2 and we are only interested in real solutions of the original
equation. the first pair of the values of U and v should be discarded . The second
pair leads to the system

X2 + y2=3, }
xy=-I.

This system has four real solutions

(1+V5 1- ,Y5) (1- VS 1+V5 )
2 • 2' 2' 2 '

( - I+ Y5 -1-V5) (~I-V5 -I+VS).
2 • 2 ' 2' 2

It is easy, however, to verdfy that the original system is satisfied only by
the first two of them. Thus, t~e problem has two real solutions.

33. Raising the first equation to the fifth power and subtracting the second
equation from the result we get, after some simplifications, the equation

xy (X3+y3)+2x2y2+6=0. (I)

From the first equation after it has been cubed it follows that X3 + y3= 1-3xy
which makes it possible to transform equation (I) to the form

x2y2_ X'l - 6 = 0.

Solving the latter equation we obtain

(xy)! =3, (xY)2=-2.

Combining these relations with x+ y = 1 we find the four pairs of numbers

( l+ i V'IT l-iV'IT) (l-iVIT '
(2, -I); (-1. 2); 2' 2 and 2'

I+i VIT) .
2 .

It can be easily checked that they all satisfy the original system of equations.
34. Transform the equations of the given system to the form

(X 2_ y2)2+X2y2= 13, }

X2_ y2+2xy = I.

Substituting x2_ y2 found from the second equation into the first one we get

5 (xy)2-4xy-12=0.
It follows that

(xYh =2,
6

(xyh=-S' (1)

xy=2.

Since we are only interested in the solutions for which xy;;. 0, there Is only
one possibility, namely

4·
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(2)

(6)

(4)(3)

(5)

u +V = 5, .}
u-v=I ,
u+v=-3, }
u-o= J.

(5) and (6) are, respectively ,

Subst ituting y expressed from the lat ter relati on into the second equation we
get

x4 +3xz-4 =0.
Among all the roots of th is equation there are only two real roots XI = I and
xz=-J. By virtue of (2), the corresponding values of y are Yl =2 and Y3= - 2.
Both pairs of the numbers (x, y) satisfy the orig inal system as well. Thus, the
problem has two solutions

. Xl = I, Yl = 2 and xz= - l. yz=- 2.

35. Opening the brackets in the equations of the system and putting x +y = u,
xy = 0 we rewrit e the system in the form .

u2 + oz- 2v= 9, } (I)
uv-u =3.

If now both sides of the second equat ion are multiplied by 2 and then the cor­
responding sidesof the fi rst equation are added to and subt..acted from the
obta ined result , then system (I) is replaced by the equivalent system

(u +v)Z~2 (u+v)= IS, }

(u ~v)z+2(u- o)= 3.

Prom the first equation of system (2) We find

(u+vh = 5; (~+ vh =~ 3.
From the second equation we gel

(u~vh=-3; (u ~vh =1.

Thus, the deterrninatfon of all solutions of system (2) Is reduced to solving the
following four systems:

u + v= 5, }
u-v=-3,
u+v=-3, }
u-v =-3,

The solutions of systems (3), (4),

and

ul =I ,
uz = 3,
ua= - 3,

vl = 4;
vz= 2;
va ~O;

(10)

(
I . y'I5 I + .VTS )'2 - I -'-2' 2 · l ----r , .

(0. -3), (I, -2), (-2, I).

U4= ~J ; v4= ~2.

To find all the solut ions of the orlginal system we now have to solve the fol­
lowing four systems of two equations which only differ in their right -hand sides:

x+y=I , l (7) x+y =3, } (8)
xy=4, ( xy = 2.

X+ y=-3,} (9) X+Y=-l,}
xy =O, xY=- 2.

Solving these equations we find all the solutions of the original system. We
obviously obt ain eight solutions:

.(1.+. i VTS l- i .J05)
2 2' 2 2 '
(2, I), (1 , 2), (-3, 0),



SOLUTIONS AN D ANSWERS. ALGEBRA 101

36. Note first that according to the meaning of the problem we have x =;= 0
and y i= O. Multip lying the left -hand and right-hand sides of the equations we
obta in

X 4 _ y4= 6. (I )

Mult iplying either equat ions by xy and adding them together we obtain
X4_ y4+ 2x2y2= 7xy. (2)

By (I) and (2), we now can write

2x2y2 -7xy+ 6 = 0,
whence

(XYh = 2; (3)

Thus, every solut ion of the original system satisfies equation (I) and one of
the equations (3) . We can therefore combine each of the equations (3) with
equation (I) and solve the corresponding systems . But th is leads to an equation
of eighth degree and complicates the solut ion of th e problem. Therefore we
shall apply another techni que. Note that if either equat ion of the or igina l
system is again mult iplied by xy and then the second equation is subtract ed
from the first one thi s results in the equat ion

X4+ y4= 5xy, (4)

which is 'also sati sfied by every solution of the original system.
Let us consider the two possibilities:
(I) Let

xy = 2 (5)

in accordance with (3). Then, by (4), we have x4 + y4= IO. Combining this
equation with (I) and solving the resulting system we find

and, hence,
4/- v- 4/;:;""

Xl = V 8, Xz= - 8, xs= i V 8,

By virtue of (5), the corresponding values of y are

2 V- 4 .-
Yl = j/g = 2, Yz=- j!2, Ys= -i

(2) In the second case we have

V-
2,

3
~= ~ . ~

Equation (4) then results in the relat ion X4 + y4 = H. Combining it with (I)

we obt ain x4 = ~7 . It follows that

V27 -V 27 V27 4 r 27
X 5 = T' x6 = - T' x7 = i 4 ' xs = - i V '4

and the corresponding values of y are

V'3 V4 ' 3 . V:f" .V3
Y6= T ' Y6=- T' Y7= -1 T ' YS=I T'

Thus, every soluti on of the original system belongs to the set of the eight pairs
of numbers thus found. It is, however, readily seen that all the eight pai rs of
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numbers satisfy the original system. Consequently, all the solutions of the system
have been found.

37. Let us rewrite the second equation in the form
(x2+y2)2_2x2y2 =bX2y2.

Substituting the expression x2+y2= axy found from the first equation we obtain
. (a2 - 2- b) x2y2= 0.

There are two possible cases here:
(I) a2 - 2- b -:j; O. It is easily seen that in this case the system has only one

solution x =O, y =O .
(2) a2 - 2- b= 0. If this condition is satisfied, the second equation is obtai­

ned by squaring both sides of the first equation. Therefore, if any x and y form
a pair of numbers satisfying the first equation. the same pair satisfies the second
equation as well. Consequently, the system has an infinitude of solutions.

38. Let us transform the left-hand side to the form

x+a (x+a_~ x-a)+x-a (x-a _!!.... x+a)_o
x+b x+b b x-b x-b x-b a x+b - .

Noting that the expressions in the brackets differ by the faetor- -F we obtain

(:t~-i;-:) (~t:- : ;=:)=0.
For a -;= b the latter equality implies

[x2-(a+b) x-abl [x2+(a+b) x-ab] =0,

and thus we find the four roots of the original equation:

(a+b) ± Y (a+b)2+4ab
x t,2 = 2 '

-(a+ b) ± y(a+W+4ab
XS ,4 = 2

If a = b the equation is satisfied by any x,

39. Putting f- f=t we transform the equation to the form

Whence we obtain

Solving then the two quadratic equations for x we find the four roots of the
original equation:

Xt=3+ 'V2T, x2=3-Y2i". xs=6. x,=-2.
40. Let us put

x+y=u and x-y=u.
xy xy

Then the equations of the system can be written as

I I}u..L-=a+-,
I u a

I I
u+V-=b+"b"

(1)
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Solv ing either equ a ti on we find
Iu() =­

- a
and
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( 2)

(5)

I
VI = b, O2 = 7) ' (3)

Now we have to solve the four systems of form (I) whose r ight-han d si des con­
ta in a ll the possib le combinations of the va lues of U and v deter mined by for­
mu las (2) and (3) . Wr it e system (I ) in the form

2...+ 2... = u, }r ~ (4)
---=0.
Y x

This yields

I I }X-= "2(u-v),

I I
Y="2(u+ v).

It follows from formula (5) that for sy stem (4), and, hence, for the or iginal
system to be solvab le, the numbers a lind b mu st satisfy, bes ides ab :f: 0, som e
additional conditions implied by the form of th e equat ions of the original sys tem ,
Let

laI :f: Ib I·
I I

Th en , substituting t he val ues uee a, o= b and then u=(i ' v=7i
right-hand sides of formulas (5) we find two solut ions, na me ly

2 2 2ab 200
xl=-a_-b' Yl=a+b and x2= b- _- a' Y2=a +b'

Furthermore , let

(6)

int o th e

Iab I :f: I. (7)

T hen substituting th e values u=a, o= ~ and then u= ~ , v= b into the r ight­

hand s ides of formulas (5) we find two more soluti ons:

2b 2b 2a 2a
xS=ab_I' YS=ab + l and x.= I_ OO ' Y.= l +ab

Thus, if both conditions (6) and (7) are ful filled the system has four solut ions;
if one of the conditions is violated then the syste m has onl y two solut ions and ,
finally, if both condi t ions are violat ed (wh ich may happen onl y in the cas e
l a l= l b l= l ) then the system has no solutions at a ll.

41. As is easily seen, the numbers

Xl = 4 .5 and X2 = 5.5

satisfy the equation . Therefore, the polynomial (x -4 .5)4+(x-5.5)4-1 is d ivi­
sible by the product (x -4.5) (x-5.5) . To perform the di vision and reduc e the
problem to a quadrat ic equa ti on it is convenient to represent the above poly­
nomial in the form

l(x-4.5)4-I] + (x-5.5)4,
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Factor ing the expression in the square brackets by the formula

a 4-1 = (a- I) (a + I) (a 2+ I)~ (a - I) (as + a 2+a + I) ,

we come to the equation

(x-5.5) {(x-4.5)3+ (x- 4.5)2+ (x ......4.5 )+ I} + (x-5.5)4=0.

Now takin g the common factor outside the brackets we obtain

(x-5.5) {(x-4.5)S+(x~4 .5)2 +(.t-4.5)+ I + [(x-4,p) """'IJ~} ~

=(x-5.5) (x - 4.5) {2 (x -4.5)2-2 (x-4.5H4} =0.
Hence, we have

Xl = 5.5, Xe = 4.5,
JO±i Y7

XS,4= 2

42. From the second equation of the system we conclude that y-5 = Ix- I I~O ,

and, consequentl y, y~ 5. Therefore the first equation can be rewritten in the
form

y-5 =1 -l x - l l·

Adding th is equat ion to the second one we get

2 (y-5) = 1.
I I

Whence we lind y =j"

From the second equation we now obtain Ix-ll= ~- and, henee, x-I = d: +.
Therefore Xl =} and X2 =} . The system thus has two solutions .

I II ? II
Xl= 2", Yl='2 and x2 = T ' Y2=""§" '

43. Grouping the terms we reduce the left-hand side to the form

(2x+y-I)2+(x+ 2y+ 1)2=0.
Thus we obta in

whence it follows that
X= I, y=- 1.

(2)

5x2+ (8y-2) X+ (5y2+ 2y+ 2) = 0. (I)

For real values of y this equation has real roots if and only if its dlscrirninant
js non-negat ive, i. e.

(8y-2p-4 .5 (5y2 +2y+2) ~O.

Let us demonstrate another method of solution. Arranrging thesummands in
the left-hand side in the ascending powers of X we get the following quadratic
equation in x:

Removing the brackets we transform this inequality to the form
-36 (y+ 1)2~O.

The latter is fulfilled only for y = -I , and t hen equatio n (I) implies that x = l.
44. We trans form the equat ion to the form

[x + Z cos (Xy»)2 + 4 [1- COS2 (xy )J= 0.
Both summands being non-negati ve, we have

x + 2 .cos (xy)= 0, cos2 (~y) = I ,
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It follows that cos (xy) = ± 1. In the case of the plus s ign we hav e the system

cos (xy) = 1, x+ 2 cos (xy) = O.

Whence we find x=-2 and y =1m where k=O, ± I , ±2,
In the case of the minus sign we have

cos (xy) =-1, x+2 cos (xy) =0.

1t
This implies x=2 and #=2 (2m+ I) where ni=O, ±I , ± 2, . . .. Thus, the

equation has two infinite sequences of different real solutions, the value of x in
either sequence being the same.

45. Eliminating z from the system we obtain

2xy-(2-x-y)2=4
or

i. e.
(X-2)2+ (y-2)2 =O.

For real numbers x and y the latter equ ality holds only for x =2 and y =2.
From the first equation of the system we find z = ~2. The system th us has

only one real solution:
x=2, y=2, .1=-2.

46. First method. Note that from the given X and y the
quely determined by the first equation in the form

Z=X2+y2.

Substituting this value of z into the second equation we get

x2 + x+ y2...t-y=a.

The latter equation is equivalent to the equation

value of z is uni-

(1)

(2)

If now a+; < 0, then equa ti on (2) has no real solut ions because real xand y

result in a non-negative number on the left -hand side. But if a++ > 0, equa­

tion (2) and, conseq uently, the whole system, has obv iously more than one
solution.

Consequently, a unique real solution exists only if a+~- =0. In this case

equation (2) takes the form

(x+-} f+(y ++y=o
and has the only real solution x = -~, y = - -}. Finding then z from equ a­

tion (I) we conclude that the given system has a unique real solution only for
1

a=-"'2' namely:
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Second method. It is easily seen that if the given system has a solution
X=Xo, Y=Yo. z =zo, then it also has another solution X=Yo. y=Xo• z =zo'
Therefore. for the solut.ion to be unique it is necessary that x = y. Under this
condition the system takes the form

2x2=z, }
2x+z=a.

Elim inating z we obtain the quadratic equation for x:

2x2+2x-a =O.
For this equation also to have a unique real root it is necessary and suf­

ficient that the discriminant of the equation be equal to zero:

D=2z-4X2 (--a) =4 (I +2a)=O.

Hence a= -f, and the corresponding value of x is equal to-+. Thus. we

arrive at the former result .

47. Let xo, Yo be a solution of the system. By virtue of the first equation
we have

[(x~+y~)-alZ=4y~+-h+2. (I)
xoyo

and, according to the second equation,

(X5+y~)2=xM+-h+2+b2. (2)
XoYo

Removing the square brackets on the left-hand side of equality (I) and sub­
tracting equal ity (2) from it we get

-2a (x~+yn + a2= _ bz•
Hence. we obtain

2 2 a2+b2

xo+Yo=~.

Since a and b are real. the assertion has been proved.

48. It is readily seen that the system always has the solution

x = I, y= 1, z = 1. (1)

It is also obvious that in the case
a=b =c (~

all the thr ee equations take the lorm x+ y + z = 3, and the system has an infi­
nitude of solut ions.

Let us show that if condition (2) is not fulfilled, i. e. if among a. b, c there
are unequal numbers, then solution (1) is uniqu e.

First adding together all the three equations of the given system we obtain

(a + b+ c) (x + y+ z) = 3 (a--j-b + c).
Cancelling out a+b+c we recieve

x+ y+z =3. (3)
Whence, we find z=3-x-y. Substituting this expression into the first two
equations of the system we obtain

(a-c) x+(b-c)y=a +b-2c, } (4)

(b- a) x+(c-a) y=-2a+b+c.
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Multip lying the fir st of these equations by c-a, the second by c - b and adding
them together we get

[- (a-c)z +(b-a) (c - b)]x= (a+ b-2c) (c- a) +(c-b)(-2a+b+c) . (5)

Equation (5) being satis fie d by x = I, the coeffi cient in x must identically coin­
cide with the right- hand side of the equatio n for all a, b and c. Opening the
brackets in both expressions we see th at they actua lly coincide and are equal:

- ~ [2az-4ac+2c2-2bc+2b2+ 2ac- 2abj = - ~ [(a- c)2+ (b-C)2+ (a - b)2J.

Thus, if there are unequal numbers among a, b and c, the equatio n (5) is satis ­
fied only by x = I. From equations (4) it then readily follows th at y = I, and
from relation (3) we see th at Z = I. Thus, if the condition

(a- c)z+(b-c)2+(a-b)2 :f:. 0,

hoIds, the system has the unique solution

x= l, y =I , z= l.
49. Adding together all the equat ions we get

(a+2) (x +y+z) = I +a+az. (I)
If a :f:. -2, we have

1+ a+ a2
x+ y+ z= a+ 2 .

Combining this equati on with each equation of the original system and solvi ng
the systems thus obtained we find, for a :f:. I, the values

I+ a I (a+I)2
x =-a+2' y=a +2' z= a+2 .

For a=-2 the system is inconsistent because equalit y (1) is not fulfilled for
any x, y and z. For a = 1 the system is indefinit e and any thre e numbers sat is­
fying the condit ion x +y+z=1 form its solution .

50. It is easily seen that if among the numbers ai' az, as two numbers are
equal to zero, the system has an infinite number of solutions. Indeed, let, for
instance, a2 =0 and a3=0. Putting then x = O and choosing y and z so that
the equation y+z = I is sati sfied we thus sat isfy all th e three equations of the
system.

Therefore, when establishing the condition for un iqueness we may suppose
th at at least two numbers are diffe rent from zero. Let , Ior exa mple,

a2 :f:. 0 and a3 :f:. O. (1)
Subtr act ing the first equation from the second and the second equat ion from
the third one we find a\x =a2y =aSz. It follows. by virtue of (1), that

(2)

Substituting these expressions into the first equation we get

x(I +a\+a1+ a1
) = J. (3)

a 2 as

This equation is solvable only if the expression in the bracket s is different
from zero.

Taking into account (I) we arr ive at the condition

D =aJaz+azas+a\aS+alaZaS :f:. O. (4 )
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If this condition is fulfilled, we find from (3) and (2) the values

(5)

These three numbers yield a solution of the system, and this solution is unique
according to the method by which it is obtained.

Thus. (4) is a necessary condition for the system to be solvable and have
a uniqlle solution.

It can be readily veryfied that if we assumed another pair of numbers aI,
au, or al • a~ to be diff-erent from zero, an analogous argument would again lead
us to condition (4) and to the same solution (5). Furthermore, since from con­
dition (4) it follows that at least one of the three pairs of the numbers is non.
zero, the above condition is not only necessary but also sufficient.

51. Let liS mult iply the equations by a, -b, -c and -d. respectively, and
then add them together. We get (a~+b~+c~+cr) x=ap~bq-cr-ds which
implies

ap-bq-cr-ds
x= a2+b~+c~+d~'

Analogously, we find

~+~-~+~ ~+~+M-~
y= a2+b2+c2+d2; z= a2+ b2 + c2 + d2 ;

dp-cq+br+as
a2+b2+c2+d2 .

52. Adding together all equations of the system we find

+ + + _ 2 (al+ a2+'" +an) (I)
Xl X2 .. , Xn - n(n+i) .

Let us denote the tight-hand side of this equation by A. Now subtracting the
second equation from the first one we get

(Xl +X2+' " +xn)-nxi =al-a2'
By virtue of (I), we can write

A-(a\-a2)
x I = n .

Generally, xk(\~k~n-l) is obtained by subtracting the (k+l)th equation
from the kth equation. Similarly, we obtain

A-(ak-aHI)
Xk= n .

Finally, subtracting the first equation from the last one we get

A-(an-a l )
xn = . n . .

The values thus found can be expressed by the general formula

A-(ai-ai+I)
Xi= n (l~i~n), (2)

where an+! is understood as being equal to a l . The direct substitution shows
that the set of numbers (2) in fact satisfies all the equa tions of the system.
Thus, the given system has a unique solution.
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53. Adding up all the equalities and divi ding the result by 3 we obt ain

XI + X2 + XS + " ' + x I OO= O ( 1)

The lett-h and side of the new equali ty contai ns a hundred of summands, and
it can be represented in the form

(x. + X2 + xs)+ (X4 +X6+ x 6) + ...+-(X , 7+X9S + X99)-j-XI OO= 0.
But each of the sums in the brackets is equal to zero by virtue of the origina l
equali t ies. Therefore, X100 = O. Similarly . transposing x100 to the fi rst place and
representing equality (I) in the form

(X100 +X1+x2)+ (XS+x4 +x6) t- .. . + (X96 + X97+X98)+X99 = 0
we find that x9S ;=0. Transferr ing the] X 99 to the first place and regrouping the
~ ~ mmands in triads we conclude that X~S = 0 anJ so on. Thus, -

XI = X2= · · · = XI0 J =O,

which is what we set out to prove.
54. Adding together the equalities we get

(x+y + z)2_(x + y + z)-12=0. (I)

Putting x+ y+ z= t we find from equation (I) that
t~ = -3, t 2 =4. (2 )

Substituting the sum y+z=t -x into the first equation of the original
system we get

whence we obtain
2

x= t -I . (3)

Analogously, substituting x+z =t-y into the second equation and x+y =
;= t-z into the thi rd equation we receive

4
y= t-l (4)

and
6

z=t _l ' (5)

Substituting the two values of t [see (2)J into formulas (3). (4) and (5) we lind
the two solut ions of the original system:

(- ~, -I, -;)~ (1 ' ~, 2) .
55. We rewrite the system in the form

x+y=7+z, }
X2+y2 = 37-/-Z2,

xS+y3 = I +Z3.

Squaring the first equation and eliminating x2 +y2
equation we find

which implies
xU=6+7z

(I)

by means of the second
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Further, we obtain

that is
x3+113=(7 +z)3-3 (6+ 7z) (7+z) =z3-18z + 217. (2)

Comparing (2) with the last equation of system (I) we find that z = 12. But
then we have

X+II = 19, }
xy=90.

Solving this system of two equations we receive,

x1=9, Y1=IO, z1=12, and xz=IO, Y2 =9. z2=12.

It is readily verified by substitution that these two sets of numbers satisfy
the original system as well. Thus, the original system has two solutions.

56. Dividing the first equation by the second one and by the third we obtain

y+z 5 z+x 4
x+y 3' x+Y=3'

Multiplying both equations by x+y we find

5X+2Y-3Z=O.}
x+4y-3z=O.

These equations imply that y = 2x and z = 3x. Substituting the Ialter expressions
into the first equation of the original system we see that x2 = \. Finally, we get

x1~ 1 . 111=2, zl=3 and x2 = - I, Y2=-2, z2=-3.

The direct verification shows that both solutions sat'isfy the original system as well.
57. Noting that the difference of every two equations of the system can be

factorized, we form the differences between the first and second equations and
between the first and third ones. Combining lfle two equations thus obtained
with the third equation of the original system Wf arrive at the following system:

(u-w)(u+w-I)=O, )
(v-w) (v+w-I)=O. (I)

W2+U2+V=2.

It is obvious that any solution of the original system satisfies system (1).
Since, conversely. all equations of the origill.P.1 system can be obtained by
addition and subtraction of the equations of sY:$tem (I). any solution of system
(I) is a solution of the original system. and, hence. ithese two systems are equivalent.

System (I) can be decomposed into the following four systems:

u-w=O. } u-w=o. 1
VI_W=O, (2~ v+w-I =0. J (3)

W2+U2+V =2, W2+U 2+V =2,

U+W-I =O,) u+w-l=O, } !
v-w=O, (4) v+w-l =0. (5) !

W2+U2+V=2, W2+U2+V=2. t

It apparently follows that all the solutions of the above four systems and I
only they are the solutions of the original system. Each of the four systems is III

readily reduced to a quadratic equation and has two solutions . Below, omitting

!
\
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-1+Yl7)
4 •

-1-Yl7)
4 •

the calculations, we give the corresponding solutions (u, v, w). The solutions
of system (2):

(
- I +YT7 -I + yT7

4 ' 4 '

(
- 1- yT7 - 1- YT7

4 4

The solutions of system (3):

(I, O. I) ; ( -i-, ~ ,- -}).
The solutions of system (4):

(0, I, I); (~ _.l _.l).
2' 2' 2

(1)

(2)

(3)

The solutions of system (5):

(I" I, 0); (- ~, -~, ;).

Thus the original system has the tot al of eight solutions.

58. Subtracting the first equation from the second weget Z2_ y2+ X(Z-y)=3
whence we find (z-y) (x+y+z) =3. Subtracting the second equation from the
third we sl milarly find

(y-x) (x +y+z)=3.

From the two latter equations it follows that
z-y =y-x.

Now we rewrite the original system in the form

(X_y)2 = 1-3xy, }
(x-z)2=4-3xz,

(y -z)2 =7-3yz.

From (I) we conclude that the right-hand sides of the tirst and third equations
of system (2) are equal, i. e. 1-3xy = 7-3yz, whence it follows that

2
z-x=-.

y
According to (I) we have

z+x =2y,

and therefore, solving (3) and (4) as simultaneous equations we find

(4)

I
z =y+-.

y

Substituting the expression of x thus obtained into the first equation of the ori­
ginal system we obtain

3yf_4y2 + I = 0,
which implies

1
Y3,.=±V 3 .
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As a result, We ftrtd the following foul' sets of numbers:

(0, I, 2), (0, -I, -2)i

(/3 ' -;3)' - y43 );

(
2 1 4' )

-Y3 . Y3 ' Y3 .
The corresponding verification shows that they all satisfy the original system.

59. Multiplying the left -hand and right-hand sides of the equations we get

(X 1X2. .. xn)n - 2 = a1a 2· . .an>

whence

(k= 1, 2, ... , n).

we find

J

j'
,I
Ii
\

j
I

(1)

(1)

Let us rewrite the kth equation of the system in the form
2

GkXk =X1XZ" .Xn ·

It follows, by virtue of (1), that

The substitution into the original system indicates that this set of numbers sa­
tisfies it. Thus, the problem has a unique solution .

60. First note that for a= 1 the system takes the form

(x+y+z)2=k2
, }

(x+y+Z)Z=l2,

(x+y+z)2=m2.

The latter system is solvable only if the additional condition
k 2 == l2= m2

holds. In this case we obviously obtain an infinite number of solutions. In what
follows we may thus suppose that

a ;to I. (2)

Adding together all equations of the system and putting, for brevity,

x+y+z=t

we get
/2 (a+ 2)=k2+ [2 +m2 •

By the hypothesis, the right-hand side is positive and therefore for a= -2 the
system has no solutions at all. For

a ;to~2 (3)

(4)
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• i

Now, transforming the equations of the system to the Iorrn

t2+t (a-l) x=k2
, }

t~+t(a~l)y =12,

t2+t(a-l)z=m2 ,

and wiving them we determine, according to (4). two sets of values of x and y :

.. I a +2 k2(a+I)-l2-m2

x=± V k"+l" +m2 (a+2) (a-I) •

' "'1 1 a+2 [2(a+1)-k9~m2

y=± V k"+l"+m" (a+2)(a-I) ,

.. I a+2 m2(a+ 1)-k2-f2

z=± V kt +l~+m2 (a+2)(a-l) .

Finally, we check by substitution that both triplets of numbers satisfy the ori ­
ginal system. Thus, in the general case when a 1= 1 and a 1= -2 the system has
two different solutions. .

61. Squaring the first equation and subtracting the second equation from the
resulting relation we lind

xy +yz + zx= II.

The third equation then implies that
(xy)2+3xy -10=,0.

Solving this equation we get

(xYh =2, (xYlz=-5.

(I)

(2)

(3)

the original system we

Now there can be two possibilities here:
(I) Let

xy=2.

Eliminating x+ Y from the first and third equations of
arrive at the following equation in z:

z2-6z+9=0.
Hence, Zlll = 3.
The first equation of the original system then gives

x+y=3.
Combining this equation with equation (3) and solving them we get

xill = I, yl\) = 2,
X~11 = 2, y ~l) = I .

(2) Now, in conformity with (2), we suppose that

xy= - 5. (4)

From the first and third equations we then obtain

z2- 6z+ 16=0.

This equation has no real roots and, consequently, we may not consider the
case (4).

Thus, the set of possibl~ solutions (x, y . z) cor sists of
(I, 2, 3) and (2, J, 3).
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(1)

Substituting these values into the original system we check that both triplets
satisfy it. Thus, all real solutions of the system have been found.

62. One can easily note that the left-hand sides of the equations can be facto-
rized which brings the system to the form

(x+y) (x+z) =a, l
(x+y) (y+z)=b, f
(x+ z) (y+z)=e.

Let us put. for brevity,

x+y=u, x+z=v, y+z=w.

Then we can write

uv=a, )'
uW =b,
vw=e.

Multiplying all the equations we find
(UVW)2 = abc,

whence

.,. ,
"! -!

(2)

uvw=± Vabe. (3)

Now all the solutions of system (2) are found without difficulty. First taking
the plus sign in formula (3) and then the minus sign we conclude that system (2)
has two solutions, namely

¥abe ¥abe ¥abe
(4)Ul=-e-' vl=-b- , Wl=-a-

and

Uz=
- Vabc

V2
- Y£iijC -¥abe

(5)
e

,
b Wz= a

Now we have only to solve the two systems of equations obtained after the va­
lues (4) and (5) have been substituted into the right-hand sides of the equations

x+y=u'l
x+z=v, (6)
y+z =w. f

Adding together equations (6) we get x+y+z= u+~+w . Whence. by vir­

tue of (6), it readily follows that

u+v-w u-v+w -u+v+w (7)
x = 2 ,y= 2 ,z= 2 •

Thus, the original system has only two solutions which are determined by for­
mulas (7) after the values (4) and (5) have been substituted into them.

63. Adding together all the equations we lind

a2+b2+e2 (1)xy+xz+ yz 2
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(2)
a, )
~,

1'.

a2 - b2 + c2

XZ = 2

-a2+b2+c2

YZ= 2

By virtue of the equations of the system we now easily obtain

aZ+b2-c2

xy = 2

For brevity we have denoted the obtained fractions by a, ~ and 1'. It should
also be noted that if the original system is solvable, all the three numbers
a, /3 and yare different from zero . Indeed, let, for instance, a = O. Then
/31' = xyz2= O. Adding the first equation of system (2) to the second and third
ones wI! get

a2 =~, b2= T

which implies a2b2 = 0 and thus, according to the conditions of the problem,
we arrive at a contradiction. Hence, a~y i= O. Syst em (2) therefore coincides
with system (2) of the preceding problem. Consequently, it has two solut ions

Ya/3T Ya/3'l' Ya~y
Xl = --T- , Yl = --~- • ZI = -a-- (3)

and

-yaiiY
y

(4)

It can be readily verified that the same two sets of numbers satisfy the ortgr­
nal system as well. Thus, all the solutions of the system are given by formu­
las (3) and (4).

64. Let us put
xy+ xz+yz =13. (I)

Then the system is written in the form

y3+ Z3 = 2a{3, l
z3+x3 = 2bt3, (2)

X1 + y3=2ct3• f
Adding together all equations of this system we find that

X3+ y3+ Z3 = (a+ b+ c) {3. (3)

Subtracting in succession the equations of system (2) from the latter equation
we obtain

x3=(b+c-a)t3, y3=(c+a-b)t3, z3=(a+b-c){3,
whence we lind

x =Vb+c-a.t. y=Vc+a-b.t, z=Va+b-c.t. (4)

Substituting these expressions into equation (I) we conclude that either 11= 0 or

tz=V(b+c-a)(c+a-b) + V (b+c-a)(a +b- c) +
+ V(c+a-b) (a+b-c).

Substituting these values of t into formulas (4) we find two solutions of the
original system.
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65. Put

(I)

x+y=u. x+z =v, y+z =w.
Then the system is rewritten in the form

u+Q = auv, \
u+w=buw, f
v+w=cvw.

Obviously, system (I) has the following solution:

u=O, v=O, w=O. (2)

that if u=O then the first equation (I) implies v=o and
implies w=O. Therefore we shall only limit ourselves to the

Note furthermore ,
the third equat ion
cases when

uvw t= 0.
From system (1) we find

w

-v

_I+_1=a'lv u

_I+ _1 =b,
w u

_I+_1=c.)
w u

Th is system has th e same form as system (6) in Problem
same method we obta in

I a+b-c
u= 2·

a-b+c
2

-a+b+9
2

62. App lying the

(3)

Hence, system (I) can have a solution other than solution (2) only if the addi-
tional condition .

(5)

(4)

(7)(6)
x+y=O, l
x+z =0,

v+ z =0, f

a+ b- c= a f:. 0, a-b+c=p t= 0, }

- a+ b+ c= 1' f:.°
holds. If condition (4) is fulfilled, we obtain from formulas (3) the expressions

2 2 2
u=--a;-' v=ll' w=--:; .

To com plete the solution we have to solve the following two systems:

2
x+Y=a'

2
x+z=ll '

2
y+z=-.

y

System (7) appea rs only if condition (4) is fulfilled. Either system has exact ly
one solution. Namely, the solution of system (6) is

x=O, y=O, z=O,
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(8)

and system (7) has the solution

x=_1 +-..!.- __l, y = _l l +_1 }
a ~ y a ~ v '

I I I
z=-a-+T+Y'

Thus, the original system has only a zero solution x=y =z =O, and if the
additional condition (4) is fulfilled, there appears one more solution determ ined
by Iorrnulas (8) and (4).

66. The form of the second equation of the system indicates that x to 0,
y to 0 and z to O. Reducing the fractions on the left-hand side of the second
equation to a common denominator we get, by virue of the third equation, the
relation

xyz =27. (1)

Multiplying then the third equation by z and taking into account (I) , we
can write

27+ (x+y) z2= 27z.

Substituting the expression x +y =9-z found from the first equation of the
system into the latter equation we obtain

z3 -9z2 +27z~27= 0,

ie. (Z-3)3=0. Therefore z =3. Substituting th is value both in the first equa­
tion and in (I) we find that x =3 and y=3. This result is, by the way,
quite obvious since all the unknowns are involved symmetrically into the equa­
tions of the system . Thus, if the system is solvable, the only solut ion is the
triplet of numbers x = 3, y = 3, Z = 3. The direct substitut ion into th e original
system confirms tha t thi s set of numbers is in fact a solution . Thus , the system
is solvable and has the unique solution

x =3, y=3, z=3.

67. Substituting the quantity x+ y found from the first equation into the
second one we get

xy +z(a-z)=a2.

Expressing xy from this equation and substi tuting it into the third equation
we obtain

z3-az2+a2z_a8 =0.

The left-hand slde of the latter equation is readily factorized:
(z-a) (z-al) (z+al) =0.

It follows that

Substituting z = a into the first and second equations we arrive at the system

x+y =O, xy =a2

whose solution is x= ± ia, y = f ia. It is readily verified that both triplets
of numbers (x, y, z) of the form

(ia, -ia, a) and (- ia, ia, a)

satisfy the original system . Analogously, we find two more pairs of solutions
corresponding to the values Z2 and 28:

(a, - ia, ia), (- ia, a, ia) and (ia, a, -ia), (a, ia, - ia).
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Thus, the system is sati sfied by the above six solutions, and there are no
other solutions .

This result can be achieved in a shorter way if we use a relationship between
the system under considerat ion and the roots of the cubic equation .

IS-aI2+a2/-a3=O. (I)

Namely, according to Vieta' s formulas [see (2), page 101 the three roots

I I = a, 12 = ia, 13 =- ia

of equation (I) (tak en in any order) form a solutio n of the system in question.
Thus, we have a lready obtained six (i .e. 3!) solutions. Let us show that the
system has no other solutions. Indeed, let (Xl' YI' Zl ) be a soluti on of the
system. Consider the cubic equation

(I- Xl) (t -YI) (t - zl)= O (2)

whose roots are the numbers Xl ' YI and Zl ' Removing the brackets in equa­
tion (2) and using the equaliti es

Xl + YI + ZI = a,

XIYI + YIZI +XI ZI = a2
,

XIyIZI = a3,

we reveal that equation s (2) and (I) coincide. Consequentl y, Xl' YI and z. are
the r oots of equation (I) which is what we set out to prove. The same argu­
ment can be used in solving th e preceding problem.

68. Substituting X found from the first equation into the second one we get

3y2+Z2=O . (1)

By virtue of the third equation, it follows that

3y2-xy =O. (2)

Therefore, we have either y =O or x= 3y.
In the case y =O we see that according to (I) we have z=o. By virtue of

the first equat ion of the given system we also conclude that x= O.
In the case Y=- 2z we substitute X expressed by the equality x= 3y into

the second equation of th e system and thus obtain

2y2+ 4yz =,0. (3)

If now y=O, we arrive at the former case, and if y=- 2z, then condit ion (I)
implies that z =O, and, consequently, y=O and x = O. The assertion has thus
been proved.

69. From the identity

(X+ Y+ Z)2= XL f- y2+Z2+ 2 (xy+xz+ yz), (I)

by virtue of the first and second equations of the system, we get

xy+xz+yz= O. (2)

Now let us consider the identity obtai ned by cubing the tri nomial x + y + z:

(x + y +Z)3= X3+ yS+Z3 + 3x2y+ 3x2z + 3xy z + 6xyz +3XZ1+ 3y2Z+3yz2. (3)

Its right-hand side can be represented in the form

x3 + yS+zs +3x (xy+ xz + yz) +3y (xy + yz + xz) +3z2(x+ y) .
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Consequently, identi ty (3), by virtue of th e equations of the system and equa ­
Iity (2), impl ies that

3z2 (x + y) = 0. (4)

There can be the follo wing two cases here :
(1) If z = 0, th en , according to (2), we have xy = O. Taking Into account th e

first equati on of t he system, we get the two sets of values

x1=a, Yl=O, ZI=O (5)

xz=O, yz=a, Z2=0. (6)

It can be easil y seen tha t formu las (5) and (6) determine two solut ions of th e
original system .

(2) If x+ y = O, then from th e condition (2) we aga in get xy = O, and . hence,
x =O and y = O. Fr om th e first equation of t he system it th en follows th at
z = a, and we thus arrive at anot her solution of th e original sys tem:

~=~ ~=~ ~=~ m
Thus, if a :j; 0 th e system has three different solutions, an d if a=O it possesses
onl y a zero soluti on .

70. Let us cons ider the identity

(x+ y+z)S = xs+ yS+ ZS + 3x2y+ 3x2z+3xy2+6xyz+3xz2 +3y2z+3yz2. (1)

Transform its right-hand membe r as follows:

x3+ y3+Z3+3x (xy+xz+ yz)+3y (xy + xz +yz)+3z (xy+xz + yz)-3xyz.

It folIows th at identi ty (I) can be rewrit ten as

(x + y +Z)3=XS+ y3+ Z3 + 3(x+ y + z) (xy +xz+ yz)-3xyz. (2)

From relation (2) it is seen t hat for det ermining the sum XS+y3+Z3 it is
suf ficient to express xy +xz+ yz and xyz from th e or ig inal sys te m.

Squ ar ing the first equation and su btracting th e second one from th e result
we get

(3)

Let us rewrite the third equation in t he for m

xyz =c(xy + xz +yz). (4)

Now tak ing into consideration (3) and (4) we final ly find from (2) t he exp ress ion

xS+ yS+ z3= a3_ ; a (aZ _ b2)+; e (a2 - b2)= a3 + ~ (a2 _ b2 ) (e- a).

71, Removing the brackets we rewrite the second equat ion in the form

x2+ y2+Z2+3xy + 3xz +3yz = I,
wh ich implies

(x+ U+Z) 2+ xy +xz + yz = I.

Now using th e first equa ti on of th e sys tem we derive

xy+xz+ yz =-3.
The th ird equa ti on of the syst em ca n be represented in the form

x (xy+xz)+ y (yz + xy) +z (xz + yz) = - 6

(1)
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(2)

and therefore, taking into account (I), we obtain

x (3+ yz)+ y (3+xz)+ z (3+ xy) =6.
which Implies

x+y+z+xyz==2,
I. e.

xyz =O.

We thus arr ive at th e foll owing system:

x+y+z ==2, )
xy + xz+ yz = - 3;

xyz=O.

From the last equation of this system it follo ws that at least one of the
unknowns is equal to zero. Let x =O, then

y+z=2, yz=-3,

whence either y =3, z =-I or y=-I, z=3~ The cas es y =O and z =O are
tr eated a nalogously. Thus, we get th e follo wing si x solutions (x , y, z) of
system (2);

(O 3, -I);
(3, ~I , 0);

(-I, 0, 3);
(3, 0, -1);

(0, -1, 3);
(-I, 3, 0).

It is read ily check ed tha t all th ese solutions satisfy the original system as well.
Thus, th e proble m has six solutions .

72. Remov ing th e brackets in all the equations we note th at if the third
equation is su btracted from the sum of the first two, th en the foll owing equation
is ob tain ed:

(X -y+Z)2 = a-b+c. (1)
Similarl y, we deduce

(x+y-z)z=a+b-c (2)
and

(y +z-x)2=b+c-a. (3)

It can be easily shown that, conver sely , th e original system is a consequence
of th e syst em of equa ti ons (I) , (2) and (3) . In deed, adding, for exa mple ,
equa tio ns (2) and (3), we obtain th e second equation of the origina l system and
so on . Thus, the original syste m Is equivalent to that obta ined . Th erefore, it is
sufficient to find all soluti ons of the sys tem of equat ions (I), (2) a nd (3).

Let us put , for brevity,

Y b+c-a= al> ya-b+c=b1 , y a+ b~c=cl '

Then th e syst em of equat ions (I), (2), (3) is equi val ent to the following eight
lin ear systems

x~y+Z=±bl' J
x+y-z=±Ct , (4)

- x+y+z=±al'

Taking the plus sign on the right-hand sid es of all equ ations we easil y find
the following unique solution of the corresponding system:

iii + CI ii i + c1 b, +at
x=-2-' y=-2-' z=-2-'
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Considering all the possible combinations of signs of the right -hand members,
we find another seven solutions :

(I )

b1 +al) .
2 '

- bl + a1 ) .

2 '

bl - a1 )" .

2 '

a1+Cl -b1 +a1) . ( 01 - Cl
- 2- 2' 2'

bl -a1) . ( - b1- C1
2 ' " 2'

-a1+cl -b1-a1) . ( b1-C1 -a1-c1
2 2 ' 2 ' 2

(
- bl - Cl -al-,-Cl -hl-a1)

2 ' 2 • 2 .

The eight solutions thus found obviously represent all the possible solutions of
the system.

73. Rewrite the third equation of the system in the form

Z2+ xy - z (x + y)= 2.

Substituting Z2 found from the second equation and z (x+ y) expressed fro m the
first one into (I) we get .

X2 + y2+ XY - 47+ xy = 2, or (x+y)2=49.

Whence we peri ve
x+y=±7. (2)

Mult ipl ying both sides of the first equa t ion by 2 and add ing the second eq ua tion
to it we obtain

(x+ y)2+2z (x+y) = 94 +Z2. (3)

There lire two possible cases here :
(I ) If in formula (2) the plus sign is chosen, then substitut ing x+ y .expres­

sed from the equation x+!I=7 into p) we net z2-14z+45 =O. Denoting the
roots of the latter equation by zi) and z~) we "find zi1) = 9 and ?~l) = 5. For
z =9 it follow s from equation (I) that xy = -16. Combining t h is equa ti on with
x+y=7 and sol v ing them we find

7 + rill ( 1) 7 - rillxli) 2 Yl = 2

and

(1 )
Y2

7+Vrn
2

Fina lly , if z =5, then from (I) we determine xY= 12. Solving the system

xY= 12, }

x+y=7,

we obtain x~l)= 4 , y~1)=3 .and x~1)=;= 3, y~l)=4 .

(2) In the case x+ y = - 7 we similarl y obtain the equa tion Z2 + 14z+45=O.
1ts root s are ..z ~2) = -9 and Z~2) = -5. Solving then in succession the two syst ems
of equations of form

xy=-16, }
x+y=-7.

(4)
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and

(2) -7+ ym
YI = 2

xy=12, }
x+y=-7,

we find from system (4) the roots

X~2) -7 - y'Ti3
2

(5)

and

-7+yill
2

(2) -7 - ym
Y2 = 2 •

and from system (5) the roots

X~2) = -4, y~2) = - 3
and

x~21 = -3, y~Z) = -4.

Our argument implies that only the following eight triplet s of numbers
x, y, z) can represent the solutions of the original system:

(7+ yill 7- ym 9)' (7- yill 7+ yill 9)'
2 • 2 ' • 2' 2 ' ,

(4, 3, 5); (3, 4, 5); (-7 - 2
y m, -7+2

y ill , -9);
(-7+2

y m, - 7- 2
Y ill , -9); (-4, -3, -5); (-3, -4, -5).

(2)

(1)

and

Substituting these values into the system we check that they all are in fact
solutions.

74. Let (x, y, z) be a real solution of the system. Consider the first equation
of the system. By equality (I) on page 20, we have

2z
I +Z2";; I.

The first equation then implies that
x E;;; z.

Similarly, from the second and third equations of the system we obtain
y..;,x

Z~y. (3)

The system of inequalities (I ).(3) is satisfied only if
x=y =z. (4)

Substituting z = x into the first equation we find
Xl = 0, X z= 1.

From (4) we finally conclude that the system has two real solutions. namely
(0, 0, 0) and (I, 1. I).

75. Let Xv X2' ..• , Xn be a real solution of the system. The numbers Xk
(k= I, ... , n) are obviously of the same sign. For definiteness, let us suppose
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(2)

(I)

that they all are positive: Xk > 0 (if otherwise, we can change the signs in all
equations of the system) . Let us show that

Xk ~ Y2 (k = I , 2, .. . , n).

Indeed, by inequality (I) on page 20, we have

2 y-2 , 1'-
Xk+- ~ 2 x,,·-=2 r 2,x" x"

by virtue of the equat ion of the system, that inequality (I)whence it follows,
is fulfilled .

Now adding together all the equations of the system we obtain

2 2 2
X l +X2+'" + xn=- +- +···+-.Xl X 2 X n

According to condition (1) equal ity (2) is on1y possi ble if all the unknowns are
equa l to yZ. It can be easily ver ified that the numbers Xl = X2 = ... = Xn = Y2
satisfy the original sys tem and therefore it has a positive solut ion whi ch is
unique. Changing the signs of the values of the unknowns we get another real
solution

Xl = x2 = ... = xn = - Y2.
Thus, the system has only two real solut ions .

76. Let X, y, z be a solution of th e syste m. Expressing x from the first .
equality and substituting it into the second and third ones we obtain

(a-b)+(c-b) y+(d-b) z =O, }
(a2_b2)+(c2_b2)y+(d2_ b2) z=0.

Whence we find, after some simple transformations, the expressions

~-~~-~ ~-~~-0
y=- (c-b)(c-d) ' z=- (d - b) (d-c)'

Substituting these values of y and z into the first equality we obtain

(a-c) (a-d)
X=- (b-c) (b-d) .

Consequently, we can write the inequality

(a-b)2 (a-c)2 (a-d)2
xyz = (b-C)2 (C-d)2 (d-b)2 > 0.

77. If a i= 0, then x=a is not a root of the equation. Dividing both sides
of the equation by V"c1-X)2 we replace it by the equivalent equat ion

V ra+X)2+4= 5 Va+x.
\a-x a-x

. Va + x 63Putting i = -- we find /1 = 4, /2 = I. It follows that Xl =65 a and Xz = 0.a-x
If a=O, th e original equat ion has only one root x =O .

78. By substitution we verify that X = 1 is not a rool. Th erefore, after both
sides have been diVided by V (l-x)2 the equation turns into the equivalent
equation

V( I + X) 2_1= Vl +X.
I-x i-x
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Denoting V: ~; by / we get th e equation /2-1 = t , i. e. /2-/-1 == 0.

. I+V5 I ~V5
Whence we find /1 = 2 and /2= 2 . Since the second value is ne-

gative, th en if m is even, the value /2 should be discarded according to our
convention concerning the roots of equations. Thus, for even m we have

V I+X_ l+Y S , +Xt=(I+V5)'"
I-x 2 I -x 2

and, consequently,

C+tsf ~I
x= m'e+t5

) +1

If m is odd ; the equation has the roots, namely

C±2VS)'" ~I
x

1
•

Z
= C ±{--5r'~I .

79. Making the substitution Y 2y-5 ==/~O we obtain

y/2+2t+1+ yt2+6t+9 =14.
This imp lies /+1 +/+3=11 and / =5. Solving the equ ation

Y2y-5=5,
we find s> 15.

80. Multiplying both
.~

sides of the equation by Y x+ Yx we get
.'. I -

x- Vxll-x=2 Y x, (I)

Since x > 0 (for x = 0 the right-hand side of the original equation makes no
sense) . equation (I) is equivalent to th e equation

2 yx~I=2V~-1.

Squ aring both sides of the latter equ ation we see that it has the unique root

x=~ which also satisfi es the original equ ation.

81. Multiplying both sides of the equation by y x+ 1 and putting x2 +
+ 8x= t we arrive at the equation

yt+Yt +7==7.
This equat ion has a unique root: / =9. Solving then the equation x2+8x-9=O .
we find oT! ==-9 and x2 """ 1. The original equation, by virtue of the convention
concerning the values of roots . is only sa t isfied by x = 1.

82. Cubing both sides of the equ ation We obtain

x-I+3 V(X-I)2 Vx+l+3 Vx-I V(x+I) I>.+x+l=2x3 •
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(1)

(2)

V- (V- V-)2x +3 x 2 - 1 x- l+ x + l =, 2x3
•

On the basis of the original equation we thus can write

V- V-2x +3 xZ - 1x : 2 = 2x3 •

After some simple transformations we deduce

x Vx2 _ 1 [3 V2-2 V (x2 - I)Z] = O.

Thus we find all the numbers which can serve as the roots of the or iginal
equat ion. Indeed, we obviously have

Xl = 0, x2 = I, xs=- l.

Solving then the equation

V- V3 2=2 (X2_1)2,

we find

27 =4(xZ~I)Z, (X2_1)2 =2;, x2=1 ±3~3 .

Since we are only interested in real roots, it follows that

x2=1+3 ~3 .

.. 1/ 3 Y 3 .. f 3 Y2
Consequently, x, = I+~, Xe =- V I+~.

It is readil y checked by substitution that Xl' X2 and Xs are roots of t he
original equati on. But the direct substitution of the values x, and X6 involves
some difficultie s. We proceed therefore as follows. Let us put

Q= Vx, - I , b= if x, +I
and

V-
c= 2 x~ ,

and show. that
a+ b=c. (3)

Since x~ satisfies equa tion (2), we have
as+3abc+b3 = c3 , (4)

and thus we must show that (4) implies (3). Note that if a+ b is subst ituted
for c into (4) th is results in an identity . Consequentl y, according to Bezout' s
theorem, the expression c3-3abc-as-bs regarded as a polynomial in c is
div isible by the binomial a-fa+b) . Performing the division we get

c3-3abc-as - b3 = [c-(a + b)J {c2+ c (a+ b)+ az- ab+ b2 } . (5)

By (4), the left-hand side of (5) is equal to zero. It is however readily seen
that a > 0, b > 0, c > 0, which implies that the expression in the braces is
positive. Thus, equality ' (3) has been proved. We then simil arly prove that X 6

is also a root of the original equation.

83. Transposing Y x to the left-hand side and squaring both members of
the equation we get

Y"k · y x - 4a+ 16=x-2a.
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(I)

Squaring then both sides of the resulting equation we find that x= ~ is the

only root of the equation. Substituting it into the equation we obtaih

Ya t - 16a+64 = 2 Y aZ - 8a+ 16- yii2,
which implies, since the radicals are positive, the relation

Ia-8 1= 21a- 41- 1u ].

For a~8 equality (I) is fulfilled. Consequently, for a ~8 the original equation

has a root x = ~2. For 4~a <8 condition (I) is not fulfilled because

8-a i= 2 (a-4)-a.

For 0~ a < 4 condition (I) takes the form

8-a=2 (4-a)-a

and is only fulfilled for a=O. Finally, for a < 0 condition (1) turns into the
identity 8-a =2 (4-a)+a. Hence, for a~8 and aso;;;O the equation has the
only root

For 0 < a < 8 there are no roots at all.

84. Squaring both members of the first equation and substituting the expres­
sion of xZ+yZ found from the second equation into the resulting equation we
obta in

36xy-1=v- ¥+64XY+ 256(xy)3.

Again squaring both members of the equation we arrive at a quAdratic equa­
tion with respect to t = xy:

Now consider the following

X
2+y2+4xy=

: ' }

xY=65'

650/3-85t + 2 = O.

Solving this equation we find t l = ]10 and tz= :5'
two systems of equations:

x
Z+y3+4xy=

5]1 , }
(I)

xY= 10'

(2)

Obviously, all the solutions of the original system are solutions of these
systems.

Solving system (I) we find
1 I I

(x+y) Z=S-2xy=S -5"=0.

Consequently, x+y=O. and thus we get two solutions of system (I):

/ t t t
x1 =YlO' YI=-ylO; x~=-YIO' yz=ylO'
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(2")

Transforming the first equ ation of system (2) to the form (x+ y)2= ;5 we reduce

the system to th e following two sys tems:

x+Y = '2r~5 ' I
r I (2')

XY=65 , )

System (2') has two solutions , namely

2 I I 2
Xa= Y65' Ya= Y65 and x4= Y65' Y4= y 65 .

System (2") also has two solut ions:

2 I 2
X/i=- Y65' Y/i=- y65 and Xs=- Y65' Ys=- Y65 .

As is readily verified, the original system is only satisfied by the first, second,
third and sixth sets of numbers. Thus, the system has exactly four solutions.

85. Putting

V- V-x=u, y =tI

we can rewrite the given system in the form

US-tiS = ~ (U 2t1-Utl2 ), l
u-tl =3. f

The first equation is transformed to the form

7
(U- tl)2+3utI="2 Uti.

whence we find
Uti = 18.

Combining the latter equation with the second equation of the system and
solving them we find Ul = 6, til = 3 and u2 = -3, tl2 = -6. Returning to the
original system we get it s two solut ions:

Xl =216, Yl = 27 and x2= - 27, Y2=-216.

86. Making the substitution y; = t~0 we transform th e first eq uation

to the form
2(2_3t-2 =0.

It follows that t=2 (the second root - ~ is discarded ). Solving the system

yX = 2, l
X+XY;Y =9. f

we find its two solutions

and x2 = - 9.
9

Y2=-4"'
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which are also solutions of the original system. Thus, the original system has
two solutions . ' .

87. Let us put

.. ;y+l=t>O.V x-y .

Then the first equation takes the form

12 -3t+2=O,

whence we find t l = I and t2 = 2.
Consider now the follow ing two systems of

.. ;y+I=1 )
V x-y ,~ (I)

x+xy+y=7, f

equations:

.; ;y+I=2 'I
V x~y' ~

x+xY+V =7. f
(2)

.. Iffi=9
Ys= V 2

System (I) possesses two solutions:

(-5, -3): (3, I).

System (2) also has two solutions:

(YIO-I, Y~-5); (~YTO-l, - Y~-5).

Hence, the original system has four solutions.

88. Taking into account that

l( x+ y =_1_. _ Yx2:- 2
x-y Ix-YI y.

and multiplying the first equation by x-y we obtain

x2_ y2_Yx2 _ y2_12=O for x-y>O
and

Thus , we now must consider the tW9. systems of e$jllatipfts

X2_y2 = 1.6, } X2_y2=9, }
(I)

xy= 15, xY= 15.

System (I) has two real solutions:

x1=5, Yl=3and x2 = - 5, yz=-3.

System (2) also has two real solutions:

.. 1 9+Y%f
xs= V ~

and

(2)

x = :- .. /9+Y981
• . V . 2
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It can be, however, easily checked th at the original system Is satisfied enty by
two of these pairs of numbers, namely by

. (5, .3); (-VV~+9. - VV9~1"79).
Thus , the original system has two real solutions.

89. Put
Vx2 - l2y + I = I .

Then the first equation can be written in the form

12-8/+ 160;=0.

It follows that II, 2 = 4, and thus we obtain

x2 - 12y = 15.

Noting that· y ;i: 0, we multiply the second equation

. to the form

(I)

by 2x which transforms it
y

(~) 2 -2 (~) Y.1+4x +(1+4X) =0.
2y 2y 3y \ 3Y

This implies

x ../~
' 2y "'- r 1+3y =0.

Raising to the second power we arrive at the equation

3 (;r-16 (;) -12 =0,

wherefrom we find

(2)

H is obvious that the second value does not satisfy equation (2) and therefote
we confine ourselves to the system

x'-1::~5. }
This system has two solutions (5, ~) and ( -3, - ~) which, as is readily

seen, sa tisfy the original system as well.

90. Rationalizing the denominators of the first equation, we obtain

4x2-2y2 17
y2 4 •

Whence we find

(X) 5- andYI - 4
In the second 'equation we put

Vx2 +xy +4 =t.

5-323

(1)
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and rewrite it in the form
t2+t -56=0.

Hence, we obtain 1( =7 and t 2 = - 8. Since in (I) we have 1;;.0, the second
root must be discarded. As a result, we arrive at the following two systems
of equations :

and

5 }x= 4" Y'

x2 + xy-45 =0
(2)

(3)x =-- ~ y, }

x2 + xy - 45= 0.

The solutions of system (2) are (5, 4) and (-5, -4). The solutions of (3) are
(15, -12) and (-IS, 12). These four solutions satisfy the original system as well.

91. Expressing x from the second equation and substituting it into the first
one we obtain

2 + .. 1 3 2 4 1 _ 2 2y+5+
5y V y -3"Y -"3-"3-3- .

/
r 9y2_ _4y _1

Putting here J 3 = 1;;.0 we arr ive at the equation

t2 + 3/ - 18 = 0.

Whence we find
t) =3. 12=-6.

Since, by the hypothesis, is non-negative, we have only one equation

9y2_4y-28 =0.

Combining this equation with the second equation of the original system, we
find their two solutions

92. Let us put

Then the first equation is written in the form

t2-8t+ 16=0.

Whence we obta in t = 4, and thus

x2 -6y - 15= 0. ( I)

If now we put x2y = u in the second equation and take into account (I), we get
the equ.f ion

245
from which we obtain Uj = 54 and U 2 = -""9'
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(3)

We thu s arrive at the two systems of equations

x2 - 6y - 15= 0, } X
2
- 6Y- 15= 0, )

(2) 245
x2y = 54, x2Y= _ g '

EliminaHng x2 from system (2), we obtain the equation

2y2+ 5y - 18= O,
1

whose roots are Yt = 2 and Y2 = -4 2 , The second root must be discarded be-

cause, by virtue of the equation xZy = 54, it leads to nonre al values of x, Hence ,
system (2) has two real solutions:

x1 = y27, Yl=2; X2 =- Y 27, Y2 =2.
System (3) is reduced to the equati on

54y2+ 135y+245=O,
which has no real solutions. Thus, the original system has two real solutions.

93. Put
(1)

Then the system is rewritten in the followin g way;

(U
Z-

[12) 0= ~ . } (2)

(u2+0Z) u=30.

System (2) has an obvious solution, namely

u=O, 0=0. (3)

Therefore, in what follows we suppose th at u i= 0, and hence (b y virtue of the
equations) we also have 0 i= O. Multiplying the right-hand and left -hand sides
of equations (2) we obtain

3
~-~=-. ~2

Multiply then the first equation of system (2) by 0, the second by u and adding
them together we obtain the following equation:

7
u4-v4+ 2U

2V 2=:r Uti.

By virtue of (4), we have

Whence we find
3

(uoh=I, (uo)z=4'

Now consider the two systems of equations

Uti = I , } uo- 3 }
(u2+02)U=30, (6) - '4'

(uz+ 0 2) u = 31, .

It Is obvious that any solution of system (2) other than (3) is among
tions of these systems.

S·

(5)

(7)

the solu-
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Mu lt iplying the second equation of system (6) by u we find, by virtue of
the first equation, that u4 = 2. Whence, taking into account (I), we get

4/-
84/- V

u=~ 2, v=-2-'

Analogously, we also find the solution of system (7) satisfying the condition (I):

}'27 V'3u=-2-' v=-2-. -.

It is easy to check that both solutions also satisfy system (2). Thus, the original
system has three solut ions:

(0 , 0); ( ,r2" Y-Z). (3 ya y 3).
r , 2 ' -;r-' 4

(1)

94. Squaring both members of the first equation we obtain
,r-- a2

r X~ -!l2=X- 2"

By virtue of the second equation, we have
,r-- 3az
r xz+y z=T-x, (2)

Now squaring both sides of the second equation of the original system we receive
.r-- -- a4

r x2+yZ yxz- YZ=Z-x2•

Whence, by virtue of (I ) and (2), we find

a; _x2 = ( X _ a; ) C~z _x) .
Removing the brackets we obtain x = ~ aZ• After this we easily get from equa­

tion (I) the two values of Y

Yl=a2 V ~ Yz=-az V ~ .
The verification by substitution shows however that the original system has only

( r- ) .
one solution ~ at, aZ V ~ . '

95. Let us put
yx=u~o and yy=v~O, (I)

This reduces the system to the form
u3_v3=a(u-v), } (2)

u4 +U2V2+v4 == b2 •

It appears obvious that the latter system falls into two systems oftbeform

u~.{) =o, } uZ+uv+v2=a, }
(2') and (2")

u4 + U2VZ+V4 = bz, u 4 + u 2v 2+ v4 = b2.

Solving system (2') we find 3u4 =b!, whence, taking into consideration (1), we get

u ~ Vh}/ 2i v= Vh}/Zi (3)
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(5)

(4)

Passing to system (26
) , we transform both equa tions in the following way:

u2 + (12 = a-U(I, (u 2+ V2)2=b2+ U 2(12.

This yie lds the values of U(I and U2+(l2 :

uv= a
2;b2'1

a2+bZ
U2+fJ2=~ . )

It can easily be shown that the system of equations (4) is equivalent to system (2").
From 'equat ions (4) we receive '

(U+fJ) 2=3a
2

2-;;b

2

, }

3b2 - a2

(U-V)2=~.

It should be noted that, by virtue of (I), the right-hand member of the first
equation of system (4) mu st be non-negative; the right-hand member of the second
equation of system (5) must also be non-negative, Thus, we must impose the
condition

(6)

because, If otherwise, system (5), ' and, hence, system (2") have no solutions
satisfying condi tion (I).

. Solvlng system (5) we get

-. /r";a:-a"2--:-:b2:- .. 7 3b1_a2
U+V= V~' U-fJ =± V ~.

Finally we obtain

I ( .. / 302
- b2

-. / 3b2

2
-
0

a2
) ,

U=2" V2iI±V
1 ( .. / 3a2

- b2
.. /3b2

2a
at ) •

, v= '2 V ~=f V
As is easily seen, by virtue of condition (6), both pairs of values (u, fJ) are
non-negative . Indeed, we have a2 ;;;;" b2 andf herefore 3a2- b2:;;;.3b2-a2 •

Thus, if the additional condition (6) is fulfi lled, the original system has three
solutions, namely

b b
Xl = 'j7'3'" , Yl = Y3 ;

_ I ( ... /3a2- b2 .. /~:::-;-;'bf~-dJ""',')i
)(2 -4 V 2a + V 2a •

_ 1 ( .. /3a2- b2 .. /3b2 -a2 ')2,
Y2-4 V ' '"2il - V 2'il '

__ I ( .. /3a2~b2 .. /3b2-a2 )2
XS - 4 V--2a- - V 2a '

YS=+ ( y3a
2

2a b
2 + -(3b

2;a2 r
If condition (6) is violated, then only the first solution remains valid.
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transformed to the form

3. Algebraic Inequalities
96. For the quadratic trinomial

ax2+bx+c (a i= 0)
to be positive for all x it is necessary and sufficient that a> 0 and the dlscri­
minant D of the trinomial be negative. In our case we have

a=r2-1 > 0 (1)
and

. D =4(r-I)2-4(r2-1)=-8(r-l) < O. (2)

Inequalities (I) and (2) are fulfilled simultaneously for r > I. It should also
be noted that for r = I the polynomial under consideration is identically equal to I.

Thus, all the sought-for values of r are determined by the inequality .

r;;:' I.
97. If we put

-=-+.k'..=uy x

x2 y2
and take into account that z+z=u2 - 2, the given expression is readily

y x

3u2-8u+4. (I)

If x and yare of opposite signs, then u < 0 and trinomial (I) is positive . If x
and yare of the same sign, it is easily seen that u;;:. 2.

The roots of quadratic trinomial (1) being equal to ~ and 2, the trinomial

is non-negative for u;;:' 2. Thus, the trinomial is non-negative both for u < 0 and
u~ 2, and, consequently, the original expression is non-negative for all real
nonzero values of x and y.

98. Note that x2-x+ I > 0 for all values of x because the discriminant
of the quadratic trinomial is equal to -3 < 0 and the coefficient in x2 is posi­
tive. Therefore it is permissible to multiply both inequalities by the denorni­
nator, This results in

-3x2 +ax'- 3< x2 +ax- 2,
x2+ax-2 < 2x2-2x+2.

that is
4x2+(a-3)x+1 > O•

.t2- (a+ 2)x+4 > O.

The first inequality is fulfilled for all x if and only if the discriminant of the
quadratic "trinomial is negative, i. e. if (a-3)2-16 < O. Similarly, the second
inequality is fulfilled if and only jf

(a+2)Z-16 < O.

Now combining the two inequalities (a-3)2-16 < 0 and (a+ 2)2-16 < 0 and
solving them as a system with respect to a we get

-4 < a-3 < 4, -I < a < 7
and

-4<a+2<4, -6<a<2.
Hence, we finally obtain -I < a < 2.
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Xl =0, Yl =.0 and xz= 2, 112 =0.

99. By vir tue of inequality (I ) on page 20, we have

a4 + b4 ;;;" 2a2b2,

c4 +d4 ;;;" 2C2d~ .

Adding together these inequalities , we obtain
a4+b4 + c4+ d4 ;;;,,2(a2b2+ e2d2). (1)

Accord ing to inequa lity (3 ~ on page 20. alter putt ing u = a2b2 ami v = c2dz, we
receive

a2b 2+c2d2 ;;;"2 V a2b2c2d2. (2)

We always have Va2b2e2d~;;;" abed (the sign > appears if abed < 0), and there­
fore compari ng (I) and (2) we arrive at the required proof.

100. The given system is equivalent to the system

x2+ (x+a)2 + 2x ~ 1, y = x+a.

The inequalit y
2x2+ 2 (a+ I) x+ a2- 1~O

has a unique solut ion with respect to x if and only if the discriminant 0( the
trinomial is equal to zero:

i.e.
a2 - 2a- 3 = 0.

Solving the latter equation we find

a\ = 3, a2 = -I.

Fin ully , we consider the two possible cases:
( I) If a=3, t hen x2 + 4x + 4= 0 and x=-2, y = 1.
(2) If a = -I , then x2 = 0 and x=O, y=-1.

101. Rewrite the given system of inequali t ies in the following way:

I
Y+2" > Ir - 2x J,

y < 2-l x-ll·
Since we always have 1~ -2xl;;;"0 and ' l x- I I ~ O, we can write

I
-"2 <y<2.

The only integers y sati sfying th is inequality are 0 and I. Consequentl y, the
given s-ys tem of inequali t ies considered for integral x and y can be consistent
only for the values y =O and y = I. Let us consider both cases.

Case J. If y = 0, the system of inequalities takes the form
I

Ix2- 2x\ <"2 ' I X-II < 2.

The second of these inequalit ies is sat isfled only by the integral numbers O. I and 2.
It can easi ly be checked by subst itution that 0 and 2 sat isfy the first inequal ity
as well, but it is not sat isfied by I. Thus, for the case y =O two solutions are
found, namely
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Case 2. If y = I , the .or iginal system' of inequalities reduces to

3Ix2
- 2x J < "2 ' Ix~ I I < 1.

The second inequality is satisfied by the only Integral number x=}· which also
satisfies the first inequ ality . Hence, in this case we have one more solution of
the problem: X3 = I, Y3 = I. Thus, the system of inequal ilies is satisfied by three
pairs of integers.

102. There are n summands on the left- hand 'side of the inequality, the first
n-I summands being greater than the last one. Therefore,

I I I II
n+l+n+2+" '+2n > n 2n =="2 '

103. Let Sm denote the left memb er of the inequality to be proved . Then ,
as is eas il y seen, .

I I I I
Sm+l-Sm=3m+4+3m+3+3m+2- m+I'

Reducing the fractions to a common denominator we find

2
Sm+I-Sm= (3m+2) (3m+3) (3m+4) >0.

Thus, Sm+l > s.; We have
, I I I
S1= "2+'3+4 > I,

and, consequent ly,
s.; > Sin-1 > . .. > S2 > s, > I,

i.e. 8 m > 1 whi ch is what we set out to prove.

104. Wri te the following obvious inequalities:

I I I 1
22 < j .2=T-"2 '
1. " I I I

32 < 2.'3="2-'3'

1 , I I . .' I
;i2 < (n-I)n=n-I -n'

Adding them termwise we get

I +.I + I I n-l22 32 •• , +fi2 < I-n=~ I

which is the required result.

105. Rewrite both sides of thegtven inequality in the follow ing way:

(nl)2=(l ·n) [2(n-lll · .. Ik(n-k+ I)J .. .(n ·l)
..... 'II fa:tors .;

and .
n"=n·n n.

'-- ---
If hctorl
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(I)

(n-k+l)k~n (I)
for n;;:;' k;;;' I. Indeed. we have

nk-k2+k-n=k (n-k)-(n-k)=(n-k) (k-I)~O. (2)

Thus. we have proved that
(nl)2~ nn . (3f

Let us note that if a number k is greater than unity and less than n, formula (I),
as it follows from (2). assumes the form of a strict ineq ualit y which obviously .
leads to a strict inequality in formula (3) as well. For n > 2 th ere ex ists such k. :
Hence, in this case we have the strict inequality (nl) 2 > nn.

106. It can easily be check-ed that for con structing a tri angle with side s a, b
and c it is necessary and sufficient that the numbers a. b, csat rsfy the th ree."
inequalities

a+b-c > 0, J
a+c-b > O.

b+c-a> O.
Let us prove that this system of simultaneous inequal ities is equivalent to the
condition set in the problem. Let us put .. . : ,

K "'"pa2+qb2..;,.:.,pqc2.

Since q=.l -p, this expression can be rewritten in the form

K :=pa2+(I-p) b2_p (1- p) C2=C2p2+(a2_ b2_c2) p+b2,

wher e a, band c are constants, and p may assume arbitrary values.
Thus, K is a quadratic trinomial in p. In the general case the trinomial K

can take on values of different Sign depending on p. Th e inequality indicated in
the problem is equivalent to the condition that K > 0 for all p. As is known,
for this to ·be so, it is necessary and sufficient that the discriminant

D = «(12 _ b2_C2)2_4b2c2

of the trinomial be negative (here we take into consideration th at the coefficient"
in p2 is equal to c2 > 0) .

. The discriminant can be represented in the following form:

D = (Qz ....b2 _ cZ)2 _4b2c2= (aZ_b2 - c2 _ 2bc)(a2-b2-c2+2bcl=
::: [a2-(b+c)~J [a2- (b- c)2J=(a+b+c) (a-b-c) (a+b-c) (a-b+c) =

=- (a+b+c) (a+b~c) (b+c-a) (c+a-b).

If a trial1gJ~ can . be constructed , inequalities (I) are fulfilled, and, hence,
D < O. Thus, we have proved that the existence of such a triangle implies the
inequality D < O.

Conver-sely, if D < 0 then

(a+b-c) (b+c-a) (c+a-b) > O. (2)

Let us show that (2) implies inequalities (I) . Indeed, suppose that only one ex ­
pression in the brackets on th e left-hand side of (2) is positive and the other
two are negative. For instance, let a+b-c < 0 and b+c-a < O. Adding to­
gether these inequalities we ge t 2b < 0 which is impo ssible. Thus , we have also .
prover! that the condit ion D < 0 implies the existence of a triangle with given
sides a, band c.

. .107: 1)allsfoHP the lei! member of the inequality in th e following. way :

4 (x-t y) (x+ z) x (x+ y +z) + y2Z2=4 (x2+xy+xz+ yz) (x2+xy+xZ)+yZZ2=
~ 4(X2+X~+XZ)2+4!1z (x2+x!I+xz) + fJ ZZ2 = [2(x2+xfJ +xz) + fJZ) 2,
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The obtained expression is non-negative for any real x, y and z which is what
we set out to prove.

loa. Denoting the left member of the inequality by z we transform z in the
followIng way:

z=x2+2xy+3y2+2x+6y+4=(x+y+ 1)2+2 (y+ 1)2+ I.

For real x and y the first two summands are non-negative, and, consequently, z~ I.

109. Since x= I~4Y, the inequality to be proved is equivalent to the ine­

quality

c~4yr+y2~2~ ,

which is readily transformed to the equivalent form
100y2-40y+4=(10y-2)2 ~O,

the latter inequality being automatically fulfilled.

110. Since d > 0 and R ~r > 0, we have
d2+R2_ r 2 > 0 and 2dR > O.

Consequently, the given inequality is equivalent to the inequality
d2+R2_r2<.2dR .

Reducing it to the form (d-Rj2"';;; r2, we get! d- R I ,.;;;;; r,i. e. -r <. d- R <; r,
Hence,

R-r<.d..;,R+r.

til. Multiplying both members of the desired inequality by a +b+c, weget
an equivalent inequality whose left member is equal to

(a+b+c) (~ +i-++)=3+(; +%)+(~ +;)+(:+:)=
=9+( Jf~-V:Y+(V: -vrY+(Vti-- V;r~9.

112. Note that the given expression turns into zero for b=c, c=aand a=b.
Therefore, according to Bezout's theorem, it is divisible by the differences a-b,
a-c and b-c. Arranging the summands in descending powers of the letter a
and performing the division by a-b, we receive
a3 (b2 _ C2 ) + a2 (eS_b3 ) + b3c2 -e3b2 = (a-b) [a2 (b2 -c2 ) + ac2 (e-b) + be2 (c-b)J.

Taking the factor (b-c) outside the square brackets and dividing the remaining
polynomial by a-c, we obtain

a3 (b2_c2)+bs (c2-a2)+c3 (a2_ b2) =- (b-a) (c-b) (c-a) [ac+bc+ abl .
Since, by the hypothesis, a < b < c and a, band c are of the same sign, the
expression on the right-hand side is negative.

113. We have

whence

1+ak ~ 2 'V(ik.
Writing these inequalities for k= I, 2, '" and multiplying them termwise we
receive
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114. II is sufficient to consider Ihe case when a and b are of the same sign
(I.e. positive). since otherwise one of the numbers is greater than unity and the
' ineqlJa lily becomes obvious. We have

a2+b2=(a+W-2ab= 1-200,
a4 + b4 = (I - 2abrl - 2a2b Z•

But if a+b=I, then Oo;;;;ab":;; ~, since

ob «; (at br = ~

(see formula (3) on page 20).
Consequen tI y,

a4+b4:>- (I _2. -!...) 2 - 2.-!... = -!... •
-- 4 16 8

115. Consider the following three cases:

(I) x.,;;;;;O; then X8_X6+X2_X+ I > 0 because the first four summands are
non-negative.

(2) 0 < x < I; transform the polynomial to the form

xS+ (X 2_X5)+ (I - x)= xS+ x2(l-x~)+(I-x).

Here all the summands are obviously positive and, consequently, the polynomial
is greater than zero.

t3) x:;;:. I; write the polynomial in the form

x5 (XS- J)+x (x-I)+ I.

The first two summands being non- negative, we also have in this case

X8_X5+X2_X+ I > O.
116. We have

(1+x)n+(I-x)n=2(I+C~x2+C~4+ ".),
the last term of the sum in the brackets being equal to xn for even n and to
nxn :» for odd n, By the hypothesis, we have - 1 < x < I, whence it follows
that C~kX2k < C~~ for all integral k. Therefore.

(I+x)n+(1-x)n < An,

where An Is the value of polynomial (I) (or x=± I, i.e. An=2n.

117. The inequality to be proved is equivalent to the lnequali ty

82 (a~+~+... +a~)+4 (X~+ x~+ . .. +X~) ± 4e (x1a1+x2a2+ ... +x"an):;;:. 0,

which holds true because the left-hand side is equal to

(8al ± 2xl )2+ (ea2 ± 2X2)2+ ... + (ean ± 2Xn)2,

Its. The radicand must be:;;:.0, and therefore

I I
-2~x<:::2' (I)

For nonzero values. of x satisfying condition (I) we have YI-4x2 < I. There­

fore, if - f.,;;;;; x < 0, the inequality indicated in the problem is fulfilled, because

its left-hand side is negative.
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. ~ut; if 0 < x.<-} , then rationalizing the numerator of the left-hand side we

obtain
1- yr::4XZ

x
4x

It is readily seen that the numerator of the fraction on the right -hand side does

not exceed 2 for 0 < X 0;;;; { , and the denominator is not less than unity . The­

refore,
I-YI-4x2
-.....:....---0;;;;2<3.

x

Thus, the inequality in question is true for the values x f: 0 satisfying condi­

tion (I). For x=O and Ixl > +the left member of the inequality makes no

sense.

119. For definiteness, let x ~ y . Then putting Jt.. =a';;;;;' I we get an equiva­
x

lent inequali ty:

'VI+am~VI+a'" (I)

Raisill({ both members of (1) to the power mn we obtain the inequality

(I +am)n ~ (I + an)m.

It is easily seen that this inequality holds true because 0,;;;;;. a';;;;;' I and n:?: m.

120. Put

(I)

It is obvious that .t,,:: ya+xn':' l (n =2, 3, . .. ); and, consequently , x~ =
= a+x,,_I ' Furthermore, let us note that x" > Xn- 1 because when passing fr~:

n-I to n the radical va is replaced by a greater numberVa+Ya..
For th is reason we have x~ < a+xn and, consequentl y, the quantities we aT!
interested in satisfy the inequality

x2 - x - a < O. (2

The roots of the trinomial on the Ielt-hand side are equal to

(Il _ I - YT+""4a (2l _ I + Vr::t=4cix- 2 ,x - 2 .

The numbers Xn satisfying inequality (2), the 'relatlon x(ll < xn < X<214s fulfilled
(see page 21). Hence,

I+VI +4a
x" < 2 (n =2, 3, ... ), (3)

which completes the proof. For n'= I we have XI = Va and the inequality (3)
becomes obvious.

12\, Let us denote the expression containing k radical signs by Xk:

y 2+V 2+..·+ V~2+ Y'2 =Xk'
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Note that Xk < 2. Indeed, let us replace 2 in the radi cal Y2 by 4. Then all
the roots are extr acted and the left member becomes equal to 2. This means
that xk < 2. Hence, in part icular, it fo llow s that both the numerator and deno­
minator on the left-hand side of the original ineq uali ty are different from zero .

.Using then the fact that .
X,, = Y 2+ X,,-1

we transform the left-hand side of the original inequality in the following way:

2- Yxn - l + 2
2-xn- 1

yxn - l ± 2- 2
(X" - l +2)-4

I
xn + 2 '

Since x" < 2, we have Xn~ 2 > ~ which is what we set out to prove;

122. As is known, for any real number s a and b the following inequality holds
true :

a2 + b2

Ia -b 1~ - 2- (see formula (I), page 20).

Taking advanta ge of the fact that the absolute val ue of a sum does not ex­
ceed the sum of the absolut e values of the summands we get

Ial bl +a2b2+ .·· +a"b" I~ Ialbll+1 a~b2!+'" + Ia"b" I~
al+b~ + a:+b: + + a~ +b·~

.;;;; 2 2 ... 2
2 2 2 b2 b2 2=01 + a2+ . . . + a,, + 1+ 2+ ·· .+b" .;;;;1 +1 = I,

2 2

which completes the proof.

f23. If n =·l, then xl =1 and, hence, xl :;;;-. I , the assertion being therefore
true . Suppose it is true for all m such that I ~ m r;;;;; n-I; let us prove that
then it holds for m = n. If all the numbers Xi , XI' • .. • x" are equal to unity,
the assertion is obviousl y true. If at least one of these numbers is greater than
unity, then, by virtue of the equalltyx.x, .. . Xn = 1. there must be a number
among Xl ' x2 , ••• , xn which is less than unit y. Let the numeration of X l> xz, .. . • xn
be such that x" > 1, X" - l < J. The induction hypoth esis and the condition

XlX2 ... xn- z (xn - 1xn)= 1
imply

l.e .

Xl + X2+'" +x"- Z+ X"-lXn +I :;;;-.n.

We have (x,,-I) (l- xn- l) > 0 and therefore

X,,+Xn- l - XnX,,- I -1 > o.
Consequently

Thus,
Xl+ X2+ ...+ X"-l + X" > Xl +Xz+'" +X,,-2+Xn- lX,, + I :;;;;. n• .

and the assertion has been proved.



142 PROBLEMS IN ELEMENTARY MATHEMATICS

4. Logarithmic and Exponential Equations,
Identities and Inequalities

124. As is seen from the eq uation , it on ly ma kes sense for a > 0, a t: I and
b > 0, b:/: I . For solving t he equati on let us make use of the formula for change
of base of logari thm s

log" a
logba=-l b

og"

(see formu la (2) on page 24). Here c is an arbitrary base (c > 0, c :/: I). The
choice of the base c is inessential here because we onl y want to red uce all
logarith ms to one base. We may, for instance, take a as a common base, si nce
a > 0 and a :/: I. Then th e equa tion takes t he form

loga x i I loga x
-- loga 2- 2 loga x loga b a/ logax,
loga2 loga V a

which yields after some simplifications the new equation

(loga 2+2 loga b) loga x = 3log~ x,

Hence, there are two solutions, one being

)ogax =O, i.e, x=I,

and the ot her being

1 I V-loga x = 3" (loga 2+2 10gab)=3"loga 2b2 = loga 2b2 ,

i.e.

x=V2b2•

125. Let us pass to logarithms to the base 2; using formula (2) on page 24
we get

I I
log2 X • log2x - 4 log2x - 6 '

The la tt er equati on is equivalen t to the equation

logix - 510g2 x+ 6= O.
Hence we have

and

126. Raising we obt a in

Whence we find

Consequently,
(3X - 1h = 3, x1 = 2 and (3X - 1)2= I , x2= 1.

127. Let us pass to logar ithms to the base 3. By for mula (2) on page 24
we have

1-logs X+ 1o 2 x = l .
1+ logs x ga
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and, hence,
(togaxh= I,
(Ioga xlz= o.
(togaxh = -2,

Xt=3;

xz=l;
1

x3 = g '

128. Let us pass in the given equation to logarithms to the base 2. By for­
mula (2) on page 24, we obtain

I- logzx I Z 4
1+ logz X ogzx+ 10gz x= I.

Multiplying both members of the equation by the denominator. transposing all
the terms to the left-hand side and factorizing we get

(Iogzx-I) (Iog;x+210g~x+ logi x+210gz x+ I) = O.

For x > I the second factor is obviously positive and does not vanish. Equating
the first factor to zero we find th at for x > I the original equation is solvable
and has only one root x=2.

129. Let us change the logarithms to bring them to the base a (here a > 0
and a i= I because if otherwise the expression log 1 2x makes no sense). By

a
virtue of formula (2) on page 24. we get

loga 2x + loga 2x

loga aZyx 10ga..!..logaax O.
a

This enables us to consider the following possible cases:

(I) loga2x=O and we obtain x= ~ which does not satisfy the original

equation (the logarithm of a number a i= 0 to the base I does not exist);

(2) 10gaax=loga(aZYX) which yields x=az.
Answer: x=az.

130. Applying the equality log" b=-I_1- we transform the original equation
ogb x

to the equivalent equation
10gb [x (2 log a-x)]= 2.

Whence, after raising, we obtain
xZ - 2 10g a ,x + b2 = O.

Solving this equation we find

Xl. z=loga ± YlogZa -b2 •

For a:;;;. lOb and log a i= +(b2 + I) both roots are positive and unequal to unit y

and, as is readily verified, satisfy the original equation. For log a =+(b2 + l)

we must only take the root Xl =bz. For a < 1010 the equation has no roots.



144 PROllLEld:S IN J;I,EMENTARY MATHEMATICS

(I)

131. Passing in the equation to logarithms to the base a we transform it to
the form

VlogaV ax (I+JO~a);)+V log, V: (1-IO~aX) =0.

After some transformations we get

"'II OOit X+I)2 +"11 (loga~""'1)2 =a.r 4"logax r 4 Joga x
Taking lnte consideration that the square roots are understood here in the

arithmetic sense we see that the given equation can be rewritten in the folio.
wing way:

loga x> I.

Now consider the following two cases:
(1) Suppose that

Then equation (I) takes the form

logax=a Yloga x •
whence we obtain

Xl = alP.

It can be easily seen that condition (2) is then satisfied only if a > 1.
(2) Suppose that

0< logaxe;;;;; I.

Then equation (I) turns into

2=2a Ylogax.
Hence,

(2)

(3)

equation under consideration has two roots, namely Xl = (lal

o< a < I the equation has no roots.

132. We have

It should be noted that condition (3) is Dilly fulfilled if Q~ I. Since We II priori
have a:f:: 1 (oth erwise the original equation makes no sense), the second root
Xz exists only if a > I.

We have considered all the possibilities because it i~ obvious that the values
of x for which logax.,;;;0 cannot satisfy equation (I). ThUll. for Q > I the

I

and x,=aa!. For

log (Y x+ 1+I) = log (x~40).

Putting Yx+ I =t and raising we get the equation

tZ~t-42=O,

whose roots are tl=7 and tz=-6. Since t=yx+ I ~O. the root t2 Is discar­
ded. The value of x corresponding to the root t l is equal to 48. By substitution
we check that it satisfies the original equation. Thus, the equation has the
unique root x;=:o48.

133. Passing over in the equ ation to logarithms to the base a we get

1+la¥a(P-x) 210ga (p-q)- loga 4
loga(x+q) loga(x+q)
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135. Using the fact

equation to the [arm

After' pel'rormlng some simpl ifications and taking antilogarithms we arrive at
the quadratic equation

1
(x+q) (P-x)=T (p_q)2.

The roots of this equation are

I .r= I «r:':
~=T~~~+r~, ~=T~-~~rM'

It is easy to verify that Qt;lth roots satisfy the inequality

P > X1• 2 >-q,
and, consequently, the original equation as well.

134. After some simple transformations based on the formula for change of
base of logarithms we reduce the given equation to the form

logvs x ... .r _1_·_3_+3=~Y6.V ogvS'" x

Putting 10gVS'"x=t we obtain, after performing some simplifications and squa­
ring both sides of the equation, the new equation

. . . t2+t -2 ".;;0. . .

Its roots are t1=-2 and t2 =:· \. The first root yields the value X= ~ Which,

as is readily seen, satisfies the original equation. The second root gives the
value X= YS which does not satisfy the original equation.

that 0.4=; and 6.2q= ( : ) 2 we reduce the original

(; rQg'x+l = ( ; r (log x'~2).

Equating the exponents we pass to the equation
log2x-610gx+S=O.

After solving it we find

(loRx)i=I, x1=IO and (Iogxh=5, x2= 1Q4.

136. Passing over to logarithms to the base 10 we obtain

log (4j~X) . I
1+ logx .(log logn-I) Jogx •

After simple transformations this leads to the equation

( 1-x) logn
log x'-ro =log lQ •

Taking antilogarithms we obtain

x2-4x+log n =0,
whence

Xl,2=2 ± Y4_log n.
A simple argument now leads to the following final results;
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(a) If 0 < 11 < 10· and 11 :t: 10~, the equation has two difierent rools, namely

xl =2 + Y4-log1l and x~ = 2 - J!4-log1l.

(b) If 11= loa, there is only one root x =3 (x =1 should be discarded); for
11 = 10· we also gel one root x =2.

(c) If fl > 10· there are no roots.
137. Passing to logarithms to the base 2 we obtain the equation

I IOg2 a +1 -0
log. sin x 2 log. sin x - .

Hence,

I 2 . IOg2 a
og. SIn x= - -2-'

The quantity on the left-hand side being strictly positive (sin x :I: I because
otherwise the symbol logsln x 2 makes no sense), we have log. a < 0 and, con­
sequently, for a > I the equation has no solutions at all. Supposing that
o < a < 1 we obtain

I . .. / log. a
og2sin x = ± V - -2- .

The plus sign in front of the radical must be discarded because log2sin x < O.
Thus we have _y_log,a

sinx=2 2

and ylOg";Q
x= (- I)karc sin 2 - --2-+1tk (k =O, ±I, .. .).

It can easily be seen that all this infinite sequence of values of x satisfies the
origin al equation.

\38. From the second equation we find

2
x+g=--. (I)x-g

Substituting this expression for x+ y into the first equation we obtain

1-log2(x-g)-Ioga (x-g) = J,
that is

log. (x- g) + logs (x- g) = O.

Passing to logarithms to the base 3 we transform the last equation to the form
(log. 3+ I) loga(x- g) = O.

Since log23+ I :1= 0, it follows that logs (x-g)=O andx-y=I.Combining
this with equation (I) we obtain the system

x+y =2, }
x-g = I.

Solving it we get
3

x="2'
I

g="2'
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Finally, we verify by substitution that the above pair of numbers
tion of the original system.

139. Taking logarithms of the both sides of the first equation
c we obtain

147

is the solu-

to the base

alogex=blogey. (I)

From the second equation we find
loge X

10gex-logeY=-\-- .
oge Y

Substituting loge Y expressed from equation (I) into the latter equation we get
a

a b l- b_b
loge x- b logex=a' or loge X -a-.

Now, raising, we obtain
b-a b b'

x-b- =ca , or x=ca (b-a) •

From the first equation of tile system we now find
a b

b b-ay = X =c .

140. Using the logarithmic identity a1og" b=b we write the system in the
form

Jog5 x+ y = 7. } (J)
xl/=512•

Taking antilogarithms in the first equation we get x ·51/=57 whence
x=57 - 1/. (2)

Subst ituting x found from equation (2) into the second equation of system (I)
we get the equation 512+ y 2- 7y = 1 whose roots are

y, = 4 and Y2 = 3.
Finally, we arrive at the two solutions

x,=125. y, =4 and x2=625, Y2=3 .
141. Taking logarithms of both sides of the first equation to the base Y we

get a quadratic equation with respect to logyx of the form

210g~x-510g!lx+2 =O,

whose roots are

)ogll x =2,

If logy x = 2, we have
x =y2 • (1)

By virtue of the identity loga b -I_I-, we get from the second equation the
ogb a

relation logy {y-3x)=logy 4, whence we find

y-3x=4. (2)

Equations (2) and (I) imply a quadratic equation for Y of the form
3y2 _ y+4=O.
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(I)

Then we

(I)

til = 10gb a; xz= I, Yz = I.
we pass over to logarlthrns to the base x, 'Then

I ' «r
This equation has no real solutions . If logy x=2"' we have x= r Ii and

y;;= x2• ln .this case. by virtue nf (2). we get theequation

x2-3x-4=O.

Answer: x=4. y=16.

142. Taking logarithms to the base a in the first equation we find

x+ y loga b= 1+ loga b.
In the second equal ion we pass over to logarithms to the base a.
obtain

2 I loga Y (oga b 2 I
oga x= - t--b I - oga v-

oga ogara

which yields x= -!... Substituting y =~ into (I) we get the eq,uation
y x

xZ-x(1 + foga b)+ loga b=O,
having the roots

Xl = loga band Xz= I.
The final answer is

XI =Ioga b.

143. In t1Je first equation
the equation takes the form

3 (Iogx Y+-
I

_I_) = 10.
og... y

Putting here logx y = t we get the equation
3tZ-IO/+3=0.

' . I
having the roots tl = 3 and 12= 3 ' In the first case logxy=3"y=rand. by

virtue of the second equation of the original system, we obtain x4= 81. Since
x > 0 and y > O. here we have only one solution:

Xl = 3. Yl= 27.

Putting then lo~x Y= ~ we find one more solution

xz= 27. Yz,=3.
144. Let us pass in both equations of the system to logarithms to the base 2.

This results in the following system:

I~;:zl; (Iogz x+ logzY) = logzx, }

10 x » logz(x+ y) 3 logz X
gz logz3 logz3

Since x;e1 (if otherwise, the left member ,of the first equation of the oriIDnal
system makes no sense). we have logzx ;e 0, and' system (I) can thus be rewrit­
ten in the following way:

logzx+ log, y = logz J2, }

IDgz (x+y)=3.
Taking antilogarithms we get '

xy=12, i+y=8.
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wheOOl it follows that

Xl =6, YI =2 and x2=2. Y2=6.
145. Converting the logarithms in each of the given equations to the base 2

we get

Xlog2Y=Y ¥y(l-log2 x), } (1)
21og 2 X= 3 logzy.

From 'the second equation of system (1) we find x2=yS , whence
3

x=y2. (2)

Using (2), we find from the first equation y = Vr. Hence,

3 2

_25 _25x - , y- .

146. Let us transform the system by passing to logarithms to the base 2 in
the first equation, to the base 3 in the second and to the base 4 in the third.
We obtain

I . I
log~+2Iog2 y +2 IOg2 z = IOg2 4, 1

1 1 I
logs Y+210gs z+210gs x= logs9,}

1 I I
k>g,z+"2 log, t+210g,y~log,16. )

Taking antilcfltithms we come to the system

x¥yz=4. }
Y VXi=9, .

z¥xy =16.
Multiplying the equations of system (I) termwise we find

(xyz)2=24 2•

Since X > 0, Y > 0, z >0, we thus have

xyz =24.
Squaring the first equation of system (I) and \Ising (2) we get

16 2
x=2-i=3'

(I)

(2)

y2-xy =4. . (I)

second equation of the original system form the system

X2.+. y2 =25, }
~_~=~ . W

Equation (I) and the

Analogously, we find y=2; and z=¥.. The verification by substitution

confirms that the three numbers thus found form a solution.

147. Passing over to logarithms to the base 2 in the first equation and then
raising we get
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This system has two solutions satisfying the conditions y > x, y > 0, namely :

7 1
x j= - Y2 ' Yj= Y 2 and x2= 3, 112=4.

148. Dividing both members of the equation by 4X we find

This yields
3

(~r=3~3 =(~)2
and. hence,

3
x=2"'

149. Subsli<tuting y expressed from the second equation Into the first we
obtain

x

xj= yj= l ,

(I)

It follows that either x = I or

and. consequently,
I

x=V 3 .

Answer:

I 3V-g '
X2=V a ' Y2= .

150. Pulling aX= u and aY = v we represent the system in the form

U
2 + v2 = 2b. }

uu ecc.

These two equations imply

(u+v) 2=2(b +c) and (u- v)2= 2(b-c).

Since the sought -lor values of u and v must be positive. the 'first equation is
reduced to the equation

The second equation indicates that lor the system to be solvable, ;it is neces­
sary to require. besides the positiv ity 01 the numbers b and C., that the inequality

b ~ c ~

should be fulfilled. We also have

U-II=± Y 2 (b-c) (3)
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Ul = Y22 (Yb+c + Vb-c),

VT (./- ./-)
vl=-2- y b+c- y b-c .

and therefore, solving the system of equations (1) and (3), we find, taking the
plus sign, t he values

In the second case we get

V2" (./- ,/-)
u 2 = - 2- y b+c- y b-c ,

v 2 = V22 (J!b +c+ Vb-c).

We have found two sol ut ions of syste m (I) , and if condition (2) is fulfilled all
the values of the unknowns are obv ious ly positive. The two corresponding so­
lutions of the original system have th e form

Xl = loga ul ' Yl = loga Vl : Xz = loga Uz, Yz = (oga Vz•

We now can assert that for the system to be solva ble it is necessary and sul­
ficient that b > 0, c > 0 and b ~c. If these conditions hold the system has two
solutions. .

151. Multiplying the equations we get

(xy) x+Y =(xy)211.

Since X and yare positive, it follows that either xy= I or xy i= I , and Ihen

x + y=2n. (I)

Let us first cons ider the second case. The first equati on of lh e or ig inal
system lhen lak es the form XZn == yn , whence we obtai n

y =xz. (2)

Substituting y =.t2 int o equation (t) we receive

x2 +x-2n = O.

This equation has only one positive root

J!8n+ I - I
Xl = 2 • (3)

Using (2) we find the corresp ending va lue of y:

Yl ={ (YSn+ 1_1)2. (4)

I
In the second case when xy = I we have y = -, and the first equation of the

x
original system takes th e form

Since x and n are posit ive this equality is only possible if x = I. Thus, we
have found one more solut ion: Xz= I. !/z= I.
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( I)

(3)

x-y=2. (I)

the firs] equation af the original system we

lijlll. W~ trlll1sftrm til, system in the form

(3x+y)X-u=9 . }

x-V324 = 2 (3x+ y)2.

From the second equation we find
324=2x-u (3X+y)2(X-V)

and, consequently, by virtue of the first equation, we haU
324=2x-u·81

which results in 22 = 2x - u, i.e.

Combining equation (I) witll
arrive at the two systems

X-!li=2,} (2) X~1I"""2.}
3x+!I=3, 3x+!I= ......3.

The solution of system (2) is XI"'" f' !ll'ii'4 , Ihe iOlutiqn of system (3)

is x~ = - ~ , Y2 = - : . The substitution in the original system confirms that

both pairs of numbers satisfy it.

153. Put .!L = a.. If a.= I, i.e. p= q, the system is satisfied by any pair
p

of equal positive numbers. Let us, therefore, suppose that . a. :f:: I. From the
~cm~ equation we get x == y.. Taking logarithm. of both~ides of the first
equation and using the above equality we obtain ytogy(a.-y~-I)=O. We
have Y > 0 and therefore either log y=O or a. =y~- . In the first case we ob-

. ct I

t . I I d I th d ct~ I (:1;-1 m Ih . fam XI = , YI = an In e secon case x, ... a ,y,-.=(X .';'0 · pairs 0
numbers satisfy the original system as well.

154. Taking logarithms of both equations we get the system

y log x=x log y, }
x logp=y log q,

x log q
which determines. the ratio -=-1- =a.. Consequently,

y og p

x=a.y. (2)

If p = q, the. system ~as an infintte number or solutions of th~ form A;;;=V>= a
where a > 0 IS an arbitrary number. If p:/= q, then, substltutrng x determined
from formula (2) into the first equation of system (I) we find

ct · 1

X=a.a.-I, y=a.ct - 1.

Consequently, if Pi: q the system has a unique solution.

ISS. Taking logarithms of both members of the equality a)=c!-bt we get

2= toga(c-b)+ tog~ (c+b).
Whence we obtain
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and, hence,

153

10gb 10gba
157. a 10gb a = (a loga /I) 10gb lOlUJ a= b10gb 10gb a= 10gb a.

158. We have
n(n-l)

c=Uta! .. .an=a·aq . . . (aqn-1) =anq-2-

Uslng the formula for changing the base of logarithms we obtain

loge b.= log!f b . A m

logac +n (n-l) 1
n 2 oga q

.But .weh~ve

and therefore
. ·· 2AB ·

logeb=2nll +h(n-I)A .

I
159. Taking advantage of the equality toga b = -I-- we transform the gl­

og/l a
yen formula as follows:

n

• The symbol ~ all denotes the sum ao+a1+ a2+ ...+an'
1<=0
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This implies

PROBLEMS IN ELEMENTARY MATHEMATICS

b C
logNa- =log.'\./} , (I)

because the factor IIOgN
c is different from zero. Taking antilogar ithms In equa­

ogNa
lity (I) we get ·

(2)

Thus, b is the mean proportional between a and c. Taking then logarithms of
both sides of equality (2) to an arbitrary base N and carrying Gut the transfor­
mations in reverse order we complete the proof of the assertion.

160. It should be supposed that N i= 1 because, if otherwise, the fraction
on the right-h and side becomes indeterminate. Dividing the identity to be pro­
ved by loga N 10gb N loge N we replace it by the equivalent relation

_I_+_1_+__1 _ 1
Joga N 10gb N loge N logabe N .

Passing here to logarithms to the base N we get

10gNa+ 10gN b+ 10gNC= 10gNobc.
The last identity being obviously valid, the problem has thus been solved.

161. We have
loga x _logx ab _I + logxb-I + 1 b------ - oga
logabx logxa 10R~a '

which is what we set out to prove.

162. Using the logarithmic identity 10gb a= II
Oge

b
a

we transform the left
age

member of the given inequality in the following way·:

log3 x
log-!.. x+ logsx=--l+ logax= logs x (IOg-!.. 3+1) =
. 2 logs 2" 2

3 JOlts X logs x
=Iogsx·log 1 -=~=---. '

- 2 log.!- log 3 2
2 3 2 -

"2 2

Then the given inequality takes the form

logax I---->log 3 2 •
'2

. 3
We have 2 > I and 2" > I, and, by property of logarithms, log 3 2 > O. Con-

2
sequently, the foregoing inequality is equivalent to the inequality

logs x < -log 3 2.
T

Hence, noting that x > 0 according to the meaning of the problem, we finally
obtain

O<x<3

-log 3 2

T
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163. Since x> 0, the given inequality is equivalent to the inequality

xlOgaX > aZ•

But a> I, and therefore taking logarithms of both sides of the last inequality
to the base a we get the equivalent inequality

lo~x > 2.

From this we deduce the final result:

either loga x> Y2, and , consequently, x> aV"f

or loga x < - yz, and then 0 < x < a- V2".

164. By the meaning of the problem we have x > 0 and therefore the given
inequality is equivalent to the Inequality

loga x (x+ I) < loga (2x+6).
Since a > I, it follows that x (x+ I) < 2x+ 6, that is

xZ - x - 6 < O.

Solving this quadratic inequality for x > 0 we get

0< x <3.
165. The inequality to be established is equivalent to

0< x2-5x+6 < 1.

Since xa-5x+6=(x-2) (x-3), the inequality 0 < x2-5x+6 holds true for

x<2
and for

x> 3.

Solving then the inequality xZ-5x+6 < I, we find that it is satisfied for

5- ys < x < 5+ Y5 .
2 2

«rt: 5-YS 5+YSSince y 5> 2, we have --2- < 2 and, consequently, 2 > 3. The -

refore, the original inequafity holds true for

p- YS < x < 2 and 3 < x < 5+ys
2 2

166. Reducing the fractions on the left -hand side to a common denomina ­
tor, we find

and, hence,
l+logzx(1ogzx-l) 0

logzx(logzx-I) > .

The numerator of the last expression is positive [indeed, we have 1+ log: x-

- logz x = ( logz x- ~ ) 2+ ~], the inequal ity is reduced to the relation

logz x (logz x-I) > 0,

which is fulfilled for x > 2 and 0 < x < I.
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167. Accord,ing to the meaning of the problem; We have x> 0 and, .hence,
the given inequality is equivalent to the inequality

3-log:x-~loglx 'I
x > .

Taking logar ilhms of both sides of this inequality to the base 2 and putting
y = logzx, we get an equivalent inequality of the form

y(3-y2_2y) > 0,

which, after the quadratic trinomial has been factorized , can be written in the
form

y (I ~y) (3+y) > O.

The latter inequality is fulfilJed if and only if either all .the three factors
are positive or one of them is positive and the other two are negative. Accor-.
dingly, in the first case, i. e. when

11 > 0, I - y > 0, 3+y > 0,
we obtain 0 < y < I and, hence,

I <x < 2. ( I)

The second case reduces to three subcases among which only one leads to
a consistent system of inequalities. Namely, when

y<O, l-y>O, 3+y<0.

We receive y < -3 and, hence,

or

I
O<x<S'

Thus, the original inequality holds if and only if either

I
0< x < S'

(2)

t c x c z;
, I I

168. Putting log2x =y and noting that logx 2=-1--=- we rewrite ' the
, °g2 X Y

given inequality in the form
I

y+-+2cosa<;0. (I)y
I ' . .

The numbers z = y+- and y have the same sign, and I z I~ 2 for all 11 (seey
(2), page 20). Therefore, if z > 0, then the inequality z~ -2 cos a is fulfilled
only if z =2 (l.e ., y= I) and cos a=-I or, in other words, if in the original
inequality x =2 and a =(2k+ 1):t(k =O, ± I, ±2, ... ). For these values the
sign of equality appears.

But if z < 0, i.e, y < 0, then z;<;-2, and inequalit y (I) is fulfilled for all
a, whence it Iol.ows that the original inequality holds for 0 < x < I and all
real values of Ct besides the values found above .

169. The original inequality is equivalent to the relation

0< log4 (x9 - 5) < I,

whence we find that I < x2 - 5 < 4 or 6 < x2 < 9 or Y6 < I x I < 3.
Answer: Y 6' < x < 3 and -3 < ~ <- y6.



SOLUTIONS AND ANSWERS. ALGE$RA 157

5, Combinatorial Analysis and Newton's Binomial Theorem
170. Taking the ratios of the first term of the proportion to the second and

of the second to the third and reducing the fractions to their lowest terms
we obta in

and

(n+ 1)1 . (n + I)!
(m+ 1)1 (n ~m)! . m! (n-m+ 1)1

n-m +1
m+l

(n + I)' . (n+ 1)1 n- m+2
m! (n ~m+I)! . (m-I)!(n-m +2)! m

The conditions of the problem thus lead to the two equations

f!-m+ 1 I and n-m+2 5
m+1 m S'

Solving them as system of simultaneous equations we find m = 3 and n = 6.
171. We have

(l+x2_ x3)9= I +C~ (X2_ X3)+ C: (X2 _X3)2+C~ (x2- x3? +

+ C~ (X2_ X3)4+C; (x2_ x3)5+ . .. + (X2_X3)9.

It is readily seen that x8 enters only into the fourth and fifth terms on the
right-hand side. Using this fact we easil y find the coefficient in x8 which is equal
to 3C~+ C:.

172. The summands of the given sum form a progression with common rat io
I +x. Therefore.

(I+x)"+(I +x)k+l+ . .. +(I+X)'1 =(I+x)n
H

_ ( I + x)4 . (I). x

Writing the sum in the form of a polynomial

ao+ajx+ . . . +a",xm+ ... +anxn,

and removing brackets in the right-h and member of equality (I) we see that if
Iii < il. then .' . .

. am=Cr:::l- Cr+1.
and if m;?- k, then

178. From the conditions of the problem it follows that

C~ = C~+44. or n (n
2
- 1) n +44.

Solving this equation for n we find n =11.
Th~ · general term of the expansion of the expression

(x Vx+~ yt
by the binomial formula can be written in the form

~(lI-m)-4m
c'iix 2 •
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By the hypothesis we have ~ (11-m)-4m=O which yields m=3. Hence, the

sought-tor term is equal to C~I'

174. Putting x+~=u we can write
x

(I+X+ ~r =(1 +U)IO= I +cfo U+C~OU2+ ... +C}g uiO•

where

(I)

(I)•

For every summand in expression (I) which does not contain x we have the
condition k-2s = O. Consequently, this summand is equal to C~s ·6s. Collecting
all these terms we conclude that a summand not containing x in the original
expression is equal to

I+ C~o ' C~·6 +C~o' C;'62 +C~o C: .63 + c10 ' C: .64 +C}g. C~0·65 .

175. After simplifications the inequalities Tkt-I > T k and Tk+L > Tk+2 take
the form

val I Va
-k- > 101-k' 100-k > k+ I .

Solving each of them with respect to k, we get

101 V3 k 100ya-I
V3+1 > > V'3+1 •

Both the left and right members of inequality (I) are not integers. the diffe­
rence between them being equal to unity. Therefore there exists only one inte­
ger k satisfying inequality (I). Noting that 1.72 < Jr 3 < \.73 we establish. by
direct computa tion, that

64.64 > k > 63.135.
Hence, k = 64.

176. The general term Tk+L of the expansion is equal to C~ ak. If Tk = Tk+ \.
then C~-lak-l=C~ak. that is

n! ak - 1 n!ak

(k-I)t (n-k+ 1)1 kl (n-k)! •

whence we obtain k= n+: .We have thus established the required condition:
1+-a

the number I+..!. must be the divisor for the number n+ I.
a

Furthermore, the relation Tk=Tul=Tk+z is equivalent to the equalities

I a a2

(n-k+l)(n-k) k(n-k) k(k+l)'

that is
k

n-k+1
a, k+l

n_k=a.

From the latter relations we obtain the equality n+ 1= 0 which is impossible.
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177. The ex pans ion will conta in n terms of th e form x? (i =l . 2... . . n),
n(n- I) ter ms of the form xlx j (i. i =l . 2, .... n, i =I: j) and , finally, C~ terms
of t he form XiXjXk where i, i and k are different numbers. Th us , the number of
different dissimilar terms is equa l to

n+n(n_I)+n (n-l )(n -2) n (n +l) (n+ 2)
6 6

178. The d ivisors of the number q a re obviously the numbers PI' P2• . . . • Pk
and all t heir possib le produ ct s . Th e nu mber of these divi sors is equal to

cZ+ cl+ . . . +ci=2k •

The fact that all the divisors are d ifferent and th at th ere are no ot her divisors
is imp lied by th e un iqueness of the represen tat ion of an integer as a product of
pr ime numbers.

179. Th e equality to be proved has the form

C~ C~ C~ C~-l I 2n +l - l
1+-2-+T+"'+k+ I+ " ' + -n- +n +1 = n + 1

and is equiva lent to the equality

1+(n+I)+n t
l

CA+nt
l C~+ ...+~~: c~+ . .. +n~l C~-1+1 = 2n +l .

Since
n+ l k n +l nl (n+I )! k+l
k+ 1 Cn=k + 1 kl (n-k)1 (k + 1)1 (n-k)1 Cn+lo

the left -hand s ide of the last equality is equal to

I + C~+1 + C~+1 + . . .+ c~tl + .. . +C~+l + 1=(1 + l)n+ I =2n+ l ,

which is what we set out to prove .

180. The general term on the left -hand side of the equality can be transf or­
med in the follow ing way :

k n l
kCn xk (l- x)n- k =k k! (n":" k)! xk (I-x)n- k =

(n- I)I k-l
= nx (k - I )! (n-k)! xk - 1 ( I_x)n- l - lk-l) = nxCn_1 Xk - l (I - x)n - I-lk- I ) .

T herefore the left member of the eq uality can be wr itten in the form

nx [ C~_l(l -x)n-l +cLlx(l-x)n- 2 + . . . +C~:~xn-t] =

=nx [x + I- x)n-l =nx.

181. Any splitting of the pack indi cated in t he sta tement of the problem is
equivalent to selecting 16 cards out of th e 32 cards that are not aces and two
aces out of the four aces. The first selection can be accomplished in C~~ ways.
and the second in C: .ways. Since every selection of the above 16 cards ca n be
combined with any select ion of t wo aces, th e tot al number of ways in wh ich t he
pack can be spli t is equal to C~~ C: .

182. The sought -for number is equa l to the number of permutations of 10
digit s taken 5 a t a time, i.e, to IOX9 X 8 X7 X6 =30,240.

183. Imagine that we have an ord ered set of n " boxes" wh ich can be filled
by pa irs of elements. Let us form th e partitions and fill, in succession . the box es
by t he pairs of ele ments .
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A pair put into the first box can be selected in C~n ways. Arter the first pair
has' been selected, we can select the second pair in C~It-2 ways, then the third
in C~n-4 ways and so on. Finally, we obtain a set of Ct.c:n :....2cin-4 ... ~
partitions which, however, includes all the partitions differing in the order of
the pairs. Consequently, the number of the partitions we are interested in is
equal to

cinc;n_~ .. .C; 2n (2n-I)(2n-2)(2n-3) ... 2·1 .
n! 2nn l

= (2n- l) (2n-3) . . . 3.1,
The same result can be obtained by another way of reasoning. Let km

(m = I, 2, ... ) be the number of partitions of the desired type when the number
of elements equals 2m. Consider 2n ' elements. Since tbe order of the pairs is
inessential a pair containing the first element can be regarded as the first pair .
The pairs containing the first element can be formed in 2n-I ways. Af,t~r a
first pair has been selected. :the rest of 2 (n-I) elements can .be partitioned
into pairs. in kn - t ways. Therefore, kn =(2n-l) kn - 1 • With the aid of this
relation we easily find

kn =(2n-l) (2n-3) ... 5·3·1.

.. 184. Out of the total number nl of permutations we have to subtract the
number of those in which the elements a and b are adjacent. To form aper­
mutation in which the elements a and b are adjacent we can take one of the
permutations [whose number is (n -2)!] containing the remaining n-2 elements
and add the two elements a and b to it so that they are adjacent. This can be
obviously done in 2 (n':""l) ways (the factor 2 appears here because a and b can
be interchanged). Thus, the number of permutations in which a and bare adjacent
is equal to 2 (n-2)1 (n-I) , and the number we are interested in is equal to

nl""':'2 (n-I)I =(n-I)! (n-2).

185. If among these 5 tickets there are exactly two winning tickets, then the
remaining three are non-winning. Out of eight winning tickets, one can select
two' iriC: ways, and out' of 50-8=42 non-winning tickets, three tickets can
be chosen in C:2 ways. Each way of selecting two winning tickets can be corn­
bined with any choice of three non-winning tickets. Therefore, the total number
of ways is equal to

C2~ . C S _ 8x742x4l X40 326240
! t 2 - ! X2 I X2 x3 .,

The number of ways .of selecting fi~e tickets so that at least two of them
are Winning is equal to the sum of the. number of ways in which exactly two,
exactly.three, exactly four and exactly five winning tickets are extracted. Hence,
the desired number is equal to

C2C3 + CSC2 + C'C1 + C5.1= 8X7 X 42x41 X40+
8 42 8'2 . 8'2 8 I x2 IX~X3 '

+8 X7X6 ~+8X7X6X5 ' 42+ 8X7X6x5X4
I xsxa X 1X2 I x2x3X4 X I 1X2x3X4x5

= 326,240+48,216+2,940+56= 377,452.
, 186. First solution. For convenience, let us think of the parallel lines as lying

one above the other. Suppose that there are n points on the upper line, and in
points on the lower.. one (Fig. I). Let us break up the set of all joining line
segments into the pencils of lines with fixed points on the lower line as vertices.
(In Fig. 1 we see such a pencil' of segments Joining a point A with all the points
on the upper line.) EVidently, the number of these pencils is 'equal to m, and
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that the number of points of intersection of the segments bekulging to two arbit­
rary pencils is the same for any pair of pencils. If we denote this number by
kn • then the total number of point s of inte rsect ion of a ll th e segments is equal
to ' the product of kn by the number of combinations of the m pencils two at a
time, i. e. to

kC2 _k m(m-l)
n m - n 2 .

To compute the number kn let us group a ll the segments joining the n points
on the upper line to two points A ' and B on the lower line into the pairs of
segments joining Ii fixed point 0/1 th e upper line (for Instance, C) to the points
A and B. The number of these pairs is equal to n. and there exists exactly one
p(lini of . In tersec tlon. of the segments belonging to two pairs (for instance, such
is the point of intersection of the diagonals of . ints _
the trapezoid ABCD). Therefore, ~

kn=C~=n(n~l). ~~D
. ,

Consequently. the total number of points of
intersection of all the segments join ing n points ~

on the upper line to m points on the lower !,__
line is equal to "

n (n-I) m (m-I) mpolnts
--2- 2 FIG. I

Second solution. Each point of intersection of the segment s can be obtained
by selecting two points on the first line (Which can be performed in C;. ways)
and two points on the second line (which can be performed in C~ ways). Com­
bin ing all the possible pairs of points we get th e total of

C2 ' C2_ m (m-I) n (n - l)
m n - 4

points of intersection.
187. Each parallelogram is specified by choosing two straight lines of the

first family (whi ch can be performed in C~ ways) and two lines of the second
family (Which can be performed in C;. ways). Thus, the total number of the
phtllHelugrams Is eqpal to

C~ ,C;' = n(n-I);(m-I) •

188. Since in the given alphabet every separate character (a dot or a dash)
and every pair of th e charact ers denote a letter. the number of ways in which
a continuous line consisting of x characters can be read is independent of the
particular form of the line and is equal to the total number of1l1I)lO!lSible '
parttt tons ~f the characters f~rming the line into the groups of one or two adjacent
characters. Let us denote nils number bYPn' . . . "
" Let 'u.s "<?,'" ~iVide all the possible ways of reading the given line CQnsistl~it
6f n characters- Into two sets . '

Let th e first set comprise the ways in which only the first character of {h e:
line is read as a separate letter . The number of ways belonging to th e first set
is equal to the number of ways in which the rest of the line consisting of n-l
characters (remaining after the first character is discarded) can be read. that is
tp_Pn-I' ... ' . - - . . . .
- Let the secondset comp-rise the ' ways inwhlch the first two characters of ·t he·

line are read as one letter. The number of ways belongtng .to theseeeadset -ill.

6 -323
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equal to the number of ways in which the chain consisting of n-2 characters
(remaining after the first two characters are discarded) can be read, that is
to Pn-z,

Since every way of reading the given line belongs either to the first or to the
second set, the total number of ways is equal to the sum of ways belonging to
the first and second sets, i . e.

Pn=Pn-l+Pn-z, (I)
This equality is a recurrent formula by which one call compute, in succession,
Pi' Pz, . . . , p" for any n provided Pl and P2 are known. But in the given problem
Pi = I (for a line consisting of one character there is only one way belonging to the
first set) and P2 = 2 (for a line consisting of two characters there are two ways
of reading one of which belongs to the first set and the other to the second set).

Using formula (I), we find, in succession,

Pa = pz+Pl = 2+ I = 3,
P, = Ps+P2 =3+2 =5,
p, =p4+Ps=5+3=8

and 90 on. Finally, we get
P12 =233.

x(x+ JO)-40=39x+22,

6. Problems in Forming Equations

189. Let x be the smaller of the factors.
directly implies that

Then the statement of the problem

that is
x2 - 29x - 62= O,

whence Xl =31, x2 = - 2. Discarding the negative root we find the sought-for
factors which are 31 and 41.

190. Before the first meeting the first cyclist covered s+a km and the second
one s-a km where s is the distance between A and B. Consequently, before the

I I ..
second meeting they covered 2s+T s and 2s-Ts km, respectively.

But if two bodies move with constant speeds, the ratio of the speeds is equal
to the ratio of the distances covered by the bodies, provided the times taken
are equal. Therefore, for finding s we have the equation

2+ I
s+a Iis=a=-··-l-·

2-T
Hence t=2ak km.

191. If two bodies move with constant speeds, then, for the same path, the
ratio of their speeds is the reciprocal of the ratio of the times taken. Let v be
the speed of the third car, and t the time of motion of the second car by the
moment it was overtaken by the third car. Therefore we have

40=t-0.5 and 50=~.
tJ t tJ t+ 15

3
Dividing termwise the first equation by the second, we find t =2' hours and

then determine u=60 krn/hr.
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192. Let the time period between the start and the meeting be x hours. The
distance between the point of meeting and the point B took the cyclist x hours
and the pedestrian x+t hours. Since. for equal distances, the times of motion
are inversely proport ional to th e speeds, we can write

x+t =k,
x

whence we find
t

X=k_I'

193. Let x be the distance between A and B, and y be the distance between
Band C. Then, taking into account that the time of motion is th e same in all
t he cases mentioned in the statement of the problem, we obtain the system of
equations

t5+ ~ =;:;~, }
x+y 14 y x
3 .75 =60+3.75+"4'

Solving this system we find x= 14 km and y = 16 km.

194. Let x denote the length of the horizontal path, and y be the length of
the uphill portion. Then we can form the following system of equations:

JL+~+11.5-(x+y) 2~ )
3 4 5 io: J
11.5-(X+Y)+~+1L=3 ..!..

3 4 5 10'

Adding together the equations, we find x = 4.

195. Let us denote the distance between the points A and B by l, and the
speeds of the motorcyclists by VI and V2• During the time period t the first
motorcyclist covered the distance p+ l-q, and the second the distance q+l-p.
Therefore,

Vl =l+~-q, }

l+q-p (I)
v2 = - -t - '

On the other hand. the ratio of the speeds is equal to the ratio of the paths
covered before the first meeting, i, e.

VI t-p
V2 =-p-'

Substituting VI and 02 expressed by (I) into the latter relation we get an
equation for determining l , Solving it. we find l=3p-q. Substituting this value
of I into formulas (I) we obta in

4p-2q · 2p
V1= -t-' v2=7'

196. The difference between the delay times of the airplane in the first and

second ftights which is equal to t1;;t2 hours is due to th e fact th at the distance

of d krn was covered by the aircraft at different speeds, namely, during the first

6*
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flight the speed was v km/hr and during the second flight w krn/hr (the speeds
on the ' other parts of the flight were equal). Thus, we get the equation

t I - t 2 d d
6O="iJ-r;

wherefrom we find that the initi al speed of the airplane is equal to

60vd km
w= -

60d+ ~I(t2 -tl) hr "

. 197~ Let us denote the weight of each cut-off piece by x, Suppose that the
first piece contained lOOa % of copper, and the second lOOb %of copper. Then the
weight of copper contained in the first piece after its remainder has been alloyed
with the cut-off piece of the other alloy Is equal to a (m-x)+bx. and the
amount of copper in the second piece after its remainder has been alloyed with
the cut-off piece of the first alloy is equal to b (n-x)+ax. By the hypothesis,
we have

a(m- x)+bx b(n-x)+ax
m n

Solving this equation and taking into account that a f!: b we ebtain

mn
x=;n'+1i'

IllS. Let the ratio of the weights of the alloyed pieces be a: :~ . Then

ap ~q

100+100 r
Ct+~ =100 '

ItIollows. that .
Ct:~= (r-q) :(p-r),

The problem is solvable if either p > r > q or p < r < q.
To find the maximum weight of the new alloy let us consider the ratios

-_P- and __Q_
[r-ql Ip- r l'

If -_P_= __Q_, then the maximum weight is- equal to
Ir-ql [p-rl

P+Q =p-q p =p-q Q .
r-q p"--r

If ~I <~I . the maximum weight is equal to
j r-qr IP-rl

p+P---:-r p=p-q P.
r-q r-q

If, finally, -I-P-I > -I-Q- .-, ' then the maximum weight is,r - q p-r

Q +r~q Q=p-qQ .
p-r p-r

199. Su ppose that eaoh worker worked for t days and A earned x roubles
while B'earned y roubles, From the conditions of the problem deduce the Iol-
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lowing system 'of equations:

(t- I )~ =72 , I
t I

. (t-7) ; =64.8, }

y x · I
(t -I), -(( -7) , = 32.4, J

From the first two equations we find
t - I 72 t - 7 64,8
-t-=7' - t -=-""' y '

Finally1 , t ~e l ast equat ion yields

721L.-64 .8 ":' =32,4,
x U

165 .

(1)

20 ( ~r-9 (f)- 18 =0,

From the latter equation we find y = f x (~he ~egat jve root is discarded), Now,

div iding the second equation of system (I) by' the first one and repl acing
y , 6x by its value 5" we find

6 t - 7 64 .8 t - 7 3
5 't-I=72" ' t - [=4 '

whence we obt ain t = 25. Consequently,
x = 75 roubles, y = '90 roubles.

, 200, Let t1 be the time elapsed before the fi rst meeti ng, t2 be the tim e
elapsed before the second meeting and R be the rad ius of the circle. Durlng :
the time t1 the first body covered the dist ance vt] and t he second the distan-

at~ce T' The sum' of these distances is equal to the circumference of the circle,

that is

(1)

During the time t'2 each body ' covered the slime distance equal to the circum­
ference of the circle, and hence we have

2
vt2 =2JtR and ~2 =2nR.

Eliminating t 2 from these rel at ion~ we find R = ~. Substituting this value
no

of R into (1) we arrive at a quadratic equation in t1 of the form

at~ . 2v2

T+vtl--a =O.

Solving this equation and discarding the negative root (according to the meani ng
of the problem, we must have t, > 0) we finally receive , .

t] = (,V5~J) ~,, a
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201. Let us denote by q1 and q2 the capacities of the taps measured in l/min
and by v the volume of the tank . The times of filling the tank by each tap
alone are, respectively ,

( I)t1=~ and t2=~'
q1 q2

The first condition of the problem leads to the equation
I I II

q1' 3t2+q2'3 t 1= 18 v.

Us-ing equalities (1) we get the quadratic equation

( 21 ) 2 _~ q1 + I = O ,
q2 6 q2

and !!l=-23 . The second condition of the problem
q2

whose solutions are !!.J= 3
2

q2
implies that

tJ = (3·60+36) (q1 +q2)= 216 (q1 + q2)'

From (I ) we find the sought-for quantities:

t1
__ 2J6 (q1+ q2)

540 min (9 hours),
q1

t2-
- 216 (q1+q2) 360 min (6 hours).

q2

There is a second solution, namely'
t1 =360 min, t2 = 540 min.

202. Let Y be the specific weight of water and s be the cross-section area
of the pipe. Atmospheric pressure Pa is determined by the formula

Pa=YC.

If P1 is the pressure under the piston when it is elevated, then, by Boyle and
Mariott's law, for the column of air between the piston .and the water level we

FIG . 2 FIG. 3

have P1 (b-x) s=Pahs (see Fig. 2). The equilibrium equation fer the column of
water is of the form Pa-P1=Yx. This leads to the equation

he
c-b_x =x

lafter '( has been cancelled out). i, e. to the quadratic equation
x2 - (b+ c)x+ (b-h) c = O.
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Solving the equation we find

x=} [(b +c)- Y(Ii~c)2 +4hc] .

167

3
Pi·294" =P2(36-x).

tbat is

203. Let Pi and P2 be the air pressures under the piston in positions I and II.
respectively (Fig. 3), and y be the specific weight of mercury. The equilibrium
equation for the columns of mercury 12 ern and x ern high are, respectivel y,

76y-Pi=12y, }
76Y-P2 =XY' (I)

Boyle and Mariott's law applied to the column of air below the piston yields
the equation

Substituting the expressions of Pi and P2 found from (1) into this equation, we
obtain the following quadratic equation in x:

3
29 '4 X 64 ~(76-x) (36-x).

x2-112x+B32=O.

Solving W1e last equation we find x=56± y3136-832 =56 ± Y2304=56±48,
and hence x=8 cm.

204. Let the watch gain x minutes a day. Then it will show true time in

f days. If it were 3 minutes slow at that moment but gained x+ { minutes

more a day, it would show true time in __3_)_days. Hence,

x+2"
3 2

--1-+1 =7'
x+2"

whence

y n
x+x 100T2=q.

the second by m, and subtracting the

3
x2 + - x- I = 0.

2

Solving this equation, we find x = 0.5.
205, If x is the original sum of money each

interest paid by the savings bank, then

x+x I~O ~ ='P.

Multiplying the first equation by nand
latter equation from the former. we find

person deposited and !I is the

x=pn-qm.
n-m

Now taking the original system and subtracting the second equation from the
first one we get

xy
1200 (m-n)=p-,-q,
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-'" 12Q.D (p -q) %
, y - qrn-pn'

!lO6. Let tit and u2 be the sp~ds of the points, and VI > tJ2. The first
condition of the problem is expfSStd by the equation

E!!!i _ 2nR =;x t .
V 2 v} '

The ~econd condition means that . the dista~ce covered by' rhepotnt !TIOVi.Af in
the circle at a higher speed during the time T Is by 2nR longer than . hat
covered by the other point. Thus" we get another equation

Tv}~ TV2 == 2nR.

From ,th~ latter equation we find
21tR

V2=Vl----r-.

Substituting this e-xpression for V2 into the first equation we get a quadratic
equation for VI:

2 2ttR ' 'btR ' 'In/<
Vl--- 01--- • --=0.T T · t :

Solving it we find

and then determine

207. Let 0 be the volume of the solution in the flask and x be the percen­
tage of sodium chloride contained in the solution .

The volu me ~ of the solution is poured into the test tube and evap'pr-a~4

until the percentage of sodium chloride in the test tube is doubled. Since the
amount of sodium chloride remains unchanged, the volume of the solut ion in
the test tube becomes hall as much, and hence the weight, of the evaporat-ed

water is equal to~ : '

After the evaporat ed solution is poured back into the fla~k, the amount of

sodium chloride in the nasI< becomes the same as belore•. i. e. v I~O ' and the

~~tume .9tthe, s<)j~HQIJ '· is .renuceo by -2
0

. Thus, we obtain the, .eqUation '- . n

o ·.t ..
iOOx+p

----c;'= JOO • ,
v-'2tj

wherefrom we lind
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x2-30x+ 200 = O.

" 208. Let the first vessel contain x litres of alcohol, then the secondve~el
contains30-x Irtres. After water has been added to the first vessel. one litre

of the obtain ed mixture contains io.litres of alcohol andl-~ litres of water.

Alter the resulting mixlure is added from the first vessel to the second vessel

the latter contains 30- x+3~ x litres of alcohol and (I - ~) x li Ires of water.

One litre of the .I111W mixture ,contains

x (X )21-~+ 30 . Iltres of alcohol ,

Alter 12 .litres of the new mixture is poured out from the second vessel into.
the first, the first vessel contains

12 [I-fo+(~r] +~(30~X) Iitres of alcohol

and the second contains

18[1-3~+(i6r] iitresof alcohol.

By the hypolhesis,

18 [1-~+(::orJ+2"'12 [l-35+(~rJ+);,~~,
whence we get the equation

This equation has the roots
xl =20 and xl =IO.

Hence, th~ ' firsfvessel original1y conta in~d either 20 litres of alcohol (and then
the second contained 10I) or 10 litres (and then the second vessel contained 201).

209. Let x be the distance between the .bank t.he travellers started from and
the place where C left the motor boat. Note that A caught the boat at the
same distance from the opposite bank. Indeed, the only distinction between the
ways in which A and C crossed the water obstacle is that C started ~lJt :ln: th~
motor boat and then swam and A first swam and then took the motor boat.
Since they swam at an equal ' speed v (v i= Vol) and the crossing took them equal
times, Ihe above distances should be equal.

Taking this note into consideration, we easily set up the equation

x+s-2 (s-x) ~
VI V

its left lnem,ber expressing the time of motion of the boat from fh~ :;tart , to -t ~e
point where it meets A and its right member being equal to the time of motion
of A from the start to that point.

The above equation yields

x=oS (v+Vd.
3V+Vl

Therefore the duration of the crossing is equal 10

'T=s-x+~::;!. ~.
v vI vI 3v + vI
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Note. The problem can also be solved without using the equality of the
above mentioned distances. But then we have to introduce some new unknowns.
and the solution becomes more complicated .

210. Let the sought-for distance be s km and the speed of the train be
o krn/hr. During 6 hours preceding the halt caused by the snow drift the first

train covered 60 km and the remaining distance of (s-6o) km took it 5 (S;6U)

hours because the speed of the train on that part of the trip was equal to ~ c.

The entire trip (including the two-hour wait) lasted 8+ 5
(S;:60) hours whicho .

exceeds by one hour the interval of !... hours indicated by the time-table. Thus.
o

we obtain the equation
8+5 (s-6u) I +!....

6u u

Reasoning analogously, we set up another equation concerning the second train:

!...+~=8+ 150+5 (s-60-150) .
o 2 0 60

From this system of equations we find s=600 krn,
21 t. Denoting the speed of the motor boat in still water by 0 and the speed

of the current by w we get the following system of two equations:

_a_+_a_=T }
v+w v-w '

_a__T +a-b+~_T +a+b
v-w-- 0 v+w v+w- 0 o+w·

Solving this system with respect to the unknowns _+1 and _1_ and taking
o w v-w

their reciprocals we find

2a+b a (2a+b)
o+w=T_To and o-w=T (a+b)+Toa'

It then follows that

and
1 [2a+b a(2a+b) ]

w='2 T-To -T(a+b)+Toa .

212. Let x be the Ii me period during which the second tap was kept open
and v (w) be the capacity of the first (second) tap measured in mS/hr. We have

o (x+5)+wx=425, }
20x=w(x+5),

(o+ w) 17=425.

From the second and third equations we get

x+5 50x
v = 253x+5' w=3x+5'
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Subst-ituting these expressions into the first equation we find
3x2-4Ix- 60= 0,

whence x= 15 hours (the negative root is discarded).
213. Let the sought-for speed of the train be v krn /hr and the scheduled

speed be VI krn/hr . The first half of the way took the train ..!.Q. hours and the
VI

second hall of the way together with the halt took it VI~1O+2~ hours in the

first trip and I~+ 1
12

hours in the second trip . But both times the train arrived

at B on schedule and therefore

..!.Q.__10_+.!- ~_10+~
VI -VI +1020' VI - v 12'

From the first equation we can find VI' We have

10 (_I l_)=..!... 100 1
VI VI +10 20 • VI (VI +10) 20 •

that is

V~+10vl - 2000= O.

and the latter equation has the only one positive root VI =40.
From the second equation we find that v=60 krn/hr.
214. Let the distance AB be equal to s km, and the speeds of the first and

second airplanes be respectively equal to VI and V2' Then, by the conditions
of the problem, we have the following system of three equations:

S a sal
2VI +-;;-= 2V2 -0;-'

_S S_=b t
2v2 2VI '

~_b=_S. )
4vt 4v2

Let us put
s S

2v
I

=x, 2v
2

=y.

From the second and third equations we find x=; band y= ; b, and the

fir.st equation yields a (_I_+_l_)=b. But ;2=L= 53 , and now we readtly
VI V2 VI Y

Sa 8a
find that vI = "3b ' v2=5b and s=8a.

215. Let u be the speed of the motor boat In still water and tI be the speed
of the current. Then we have the following system:

~+~=14 }u+v U-ti •

24__ 96 + 72
-V-u+v u=u-
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To solve it let us put '::'=z. Multiplying both members of Ute secorid
u

equati on by u we find

24=~+~.
z+l z-l

.Reducing the terms of th is equation to a common denominat or and discarding
it we obtain the quadratic equation .

24z2 - 168z== 0,

whose roots are z =O and z =7. Since z i= 0, we must take z = 7. Hence, u=7u.
Substituticg u ""7u into the first equation of the system We derive

96+ 96= 14
8u 6u '

whence we find
u= 2 km/hr, ' u= 14 krn/hr .

216. The distance covered by a body moving with const ant acceleration a .
during ( sec is determined- by the formula

a(2
5=uo(+ 2 '

To find Vo and a for each body we must substitute the given . numerical data
into this formul a.

(I) For the first body we have

a
25= Vo+2' for t = 1

and

50i= 2VO + 2a for 1=2,

I . 5 . t2 -

whence a=3' uo= 25 ~6 and 51 = 246 t+6 ,
(2) For the second body we have

a
30=vo+ 2" for (= 1

and
1

. 592"=2uo+2a for t =2,

I I ( 2
whence a= -:--: 2' , uo= 3O+ '4 and 52 = 30 4 t'- 4 '

For the moment when the first body catches up with the second we have
SI = 52 +20 which results in a quadrat ic equat ion for determining t of the form

(2-13t - 48=0.

Solving ' j( we 'find t~'I6, the negativ e root being discarded;

217. Let u denote the relat ive speed of theboat . Then the tim e of motion
of the boat is equal to
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By the hypothesis, we have
10 6

30;;;;; 0+ I +v=T~4.

173

(1)

It is necessary that 0 > I, since otherwise the boat cannot move upstream.
Let us pass from the system of inequalities (I) to an equivalent system of ine­
qualities of the form

3 (u2 - I)~ 160-4~ 4 (02 ._ I),

Thus, the two inequalities

and
4u2-16u~O.

must hold simultaneously. The first inequality is satisfied if

8- y6f __ ,;:::: 8+ y6T
3 ....0""" 3

The second inequality is satisfied if v < 0 or u > 4. But since v> I, we finally
obtain

, 4,,;;;;uo;;;;;; 8+ y6T
3

218. Let x be the volume of water in the vessel A before pouring the water
from A into B. Then the original volume of water in the vessels Band C is
equal to 2x and 3xrespectively, and the total volume is equal to x+2x+3x=6x.

After the water has been poured from A into B and from B into C for the
first time, the water level in all three vessels becomes the same, and therefore
the volumes of water in them are in the ratio equal to that of the areas 01 the
bases which is I: 4:9. Therefore, after the first pouring the volumes of water in
the vessels A, Band C are respectively equal to

6x 3 6x 12
1 '1+4+9 7 x, 4 '1+4+9 y x .

and
6x 27

9'1+4+9 7 x,

After the second pOLlring from C into B these volumes assume the values

3 12 4 27 4
7 x, T x+ 1287 and 7x-1287'

respectively: After the third 'pouring from B into A the volume of water inA
becomes equal to x-lOO, and in B equal to

I
"2 (x-IOOH = 2 (x- 100).

Adding together the volumes of water in all the vessels we obtain the fol­
lowing linear equation with respect to x:

27 4
(x-100) +2 (x-IOOl+-r x-I.287'~'6.X,.

Solving this equation we find
x=500.
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(I)

Thus we lind the original amount of water in each vessel:
A contains 500 lltres,
B contains 1000 lltres,
C contains 1500 Iitres.

219. Let the desired number have the form xuzt where the letters x, y, z
and t denote the digits in the corresponding decimal places. By the conditions
of the problem, we obtain the following system of equations:

X
Z+ t2

= 13, )
y2+ Z2=85,

xyzl- 1089 = tzyx.

The rules of subtraction of decimal numbers imply that in the third equa­
ti on of the above system t is equal either to 9 or to

(lO+t)-9=x.
i. e.

x=t+l. ~)

But from the first equation of system (I) it follows that t < 4 and therefore (2)
takes place. Then from the first equation of system (I) we get the equation for
determining I:

whence we find
t=2.

From (2) it then follows that x=3, and the third equation of system (I) takes
the form

3yzz- 1089 = 2zy3. (3)

Now let us note that z < 9 because if z=9, then (3) implies that y =O and
therefore the second equation of system (I) is not fulfilled. From (3) we find

(z-I+ IO)-8=y,

i. e.
z=y-1. (4)

Finally, from the second equation of system (I) and from (4) we determine
z=6, y=7. Thus. the sought-for number is 3762.

220. Let us begin with finding the distance x between lhe start of motion
and the first meeting. The equation for the times of motion of both points has
the form

a+x-I =!..
tI w·

whence

x
(a-tit) w

tI-W

The time from the start of motion to the first meeting Is equal to

1 _a+x
1- tI •
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Substituting the above value of x into this expression we get
a-WI

t1 = - -
(I -W

Let T be the time interval between two successive meetings. Then
VT-WT =l,

which results in
l

T=--.
(I-W

175

The successive meetings will thus occur at the moments of time tlo tl +T,
11+ 2T, .. .. The moment of the nth meeting is

t
n
=a-wI+ l (n- I) •

(I-W

221 . Let '1'1 be the specific weight of the first component of Ihe alloy, '1'2 be
the specific weight of the second component and 'I' be that of water. Suppose
that the weight of the first component is x. According to the Archimedes prin­
ciple, when immersed in water, the alloy loses in its weight a portion of

( ...I.+P-X) y.
Yl Y2

Analogously, for the components the losses in weight are equal to
P P
-Y and -V.
Yl Y2

These losses are given: they are equal to Band C respectively. Consequently,
we have

y B
Y;=P'

y C
y;=p'

Thus, the loss of weight of the alloy is
B C

A=p x+ p (P-x).

Hence,

For the problem to be solvable it is necessary that B:I= C. Furthermore. the

fact that; is a number lying between 0 and I implies the inequality

A-C
0< B-C < I.

It follows that either B > A > C or C > A > B. Therefore, for the problem to
be solvable it is necessary an d sufficient that the number A lie between the
numbers Band C.

222. Let us denote the distance from the point A to the mouth of the river
by S, the distance between the mouth of the river and the point 8 across the
lake by SI' the speed of the towboat (without towing) by (I and the speed of

the current by (II' It is necessary to determine the quantity
25

1 =x.
tI
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The conditions of the problem enable lis to set up the three equations

s . x 1
V + V

1
+2'=<61,

s x
lJ_v:+T=79. J

-+x=411.
Vi

From the first equation we obtain

V+VI 2
-s-=122-x'

from the second equation weflnd

V-VI 2
7=158~x

and from the third equation we get

VI t
7 =40 s '

(I)

(3)

Subtracting equalit y (2) from equality (I) and using equali ty (3) we obtain the
following equation in x: .

1 1 I
122-x-i58=X= 411 -x'

that is
X2 - 244x+4480= O.

Solving this equation we find

X l = 20, x2 = 224.
. . . .

It is obvious that the value x2 = 224 should be discarded because the left member
of equation ( I) cannot be negative.

223. Let the distance AB be denoted by s, the distance Be by St. the speed
of the boat by V and the speed of the current by VI (5 and 51 are supposed to
be expressed in the same units of length and V and V1 in those units per hour).

For the motion of the boat from A to C downstream we have

.!..+~=6.
v ; v+v1

For the boat going upstream from C to A we have

(I)

_51_+~=7. (2)
v-Ox U .

If between A and B the current is the same as between Band C, then the trip
from A to C takes

Now we have to determ ine the ratio s+ SI •
v -vI
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(4)

Reducing equations (I) , (2) and (3) to a common denomin ator and , multip-
lying both members of equation (3) by v i: O. we get the system '

(5+51) v=6v (V+V1)-501 . }

(5+51) v = 7v (0.-V1)+501 '

(S+51)0=5.5 (V+Ol) (I .

Adding together the first two equations and using the third .one we obtain

2 (s+ ~1) V= v (13v-vtJ = I lu (V+V1),

whence we find v =6v1• But from ' the third equation of system (4) we have

s+ 51 =7 X5.5. Consequently,
VI

S+51 _5+S1 - 7 7 h
V-VI - 5v

I
- . ours.

224. Let V be the volume of the vessel, 0: 1 be the percentage of the acid in
it after the first.r:nix,ing, O:z the percentage of the acid after the second mi xing
and so on. We ii avcf '

(v--£1) p+£1q
v

(v-a) 0:1+aq =Ct.,
t l ..

M'ullipl ying the sth equality by (v-;ay-s (5= I, 2, .. .; r) and adding tQ.

geiher the results we obtain

(v- a)k a [ v-a (V-a)2 (V-a)k-lJ'- p+-q 1+-+ - +.. .+ - =1'.V v , v,v v
whence it follows that

(v- a)k +~ (~r -1
v p v q ~-1

. u :

r« . :

Consequently,

(1:- ~ r(p-q)=r- q•

a

V
.

l ~ £..::::!L
p- q

v=---===-,

Answer:
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(I)

a(I+I~)-x=a1'

225. At the end of the first year the deposit increased by ~to roubles and

the depositor took out B roubles. Therefore, at the beginning of the second year
the deposit was equal (in roubles) to

P1 = A (1 +I~O)-B.
At the end of the second year the deposit was equal to

P2=P1 (1+ 160 ) - B= A(1+I~Or-B[I+(I60 +-1)]
and at the end of the third year it was

Ps= AkS-B (I +k+kZ)

where

Obviously, at the end of the nth year the deposited sum became equal to

P«> Akn-B (I +k+kz+ .. . +kn- 1) ,

i. e.

P = Ap-lOOB (I+ L)n+ l OOB •
n p \ 100 P

To solve the problem we must lind n such that Pn:;;;;' 3A. Then

log (3Ap-IOOB)-log (Ap-lOOB)
n:;;;;. () •

log 1+160
The meaning of the problem indicates that the deposited sum must increase,
and therefore

Ap> 100B.

Furthermore, we have p > 0, A > 0 and B > 0 and hence the expression on the
right-hand side of inequality (I) makes sense.

226. The amount of wood in the forestry at the end of the first year is
equal to

at the end of the second to

a1 (1 +160) -x=a,.

at the end of the third year to

a2 ( 1+160) - x = as

and so on. Lastly, at the end of the nth year the amount of wood is equal to

an- 1(1+160) -x=an=aq.

I.
i
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Now we can find x, Putting, for brevity, 1+I~O =k, we get from the last

equation the expression x =kan-l-aq. Expressing an- \ from the foregoing
equation we obtain

x = k (kan_~-x)-aq = k2Qn_2 -kx-aq.
But

Hence,
x=k'an_ s-k2x-kx-aq.

Proceeding in the same way, we finally express a~ in terms of al and obtain
the following equation with respect to x :

x=kna-x(kn- l +kn- 2+ . . . +k)-aq.
It follows that

227.

(I+L )n_q
kn-q 100 P

x=a kn-I (k-l)=a (I +L)n-I 100'
100

Before pouring the concentration qi (i = I, 2, ... , n) of alcohol

ql = I in the first vessel,

q~ = ~ in the second vessel,

........... . -.

was

qn= k}-l in the nth vessel.

After all the manipulations the concentrations became respectivel y equal to
PI' P2' . .. , Pn' Then PI = I, and Pi for i » I is determined from the equation

v v
qjT+Pi-l2" +

Pi= qi Pi-l (i=2, ... , n).
v 2

We obtain this equation by dividing the amount

v v
qiT+Pi-IT

of alcohol contained in the ith vessel after it has been filled from the (i -I)th
vessel, by the volume v of the vessel.

Thus,

Pn
Hence,
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For k f: 2 the last sum is equal to

I I
1 kn - l '- 2n-' I 1 2n- 1 _ kn- 1 I

Pn=2k I 1 + 2n- 1=(2k)n 1(2-k)+~'
- T-"2

For k=2 it equals

n-I In-I 2 n+1
Pn=y+ 2n-1 = -""2r'+2n= 2iJ'

- - 228. The -quotient is expressed by the fraction olfhe form p2~ 1 wherepis

a positive integer. The conditions of the problem are written in the Iorrn of the
inequalities

p+2 I p-3 1
p2+ 1 > 3" and 0 < p2-4 < 10'

We now transform the first inequality to the form
3(p+2) > pl+I , that is 0> p2-3p-5.

Solving the quadratic equation p2-3p-5=O we obtain

3 ±V29
Pl,.= . 2 .

From the inequality 0 > p2-3p-5 we get P2 < p < Pl' But P2 < 0 and P > 0,
therefore

3+V29
0< P < PI= 2 .

- It Is readily seen that PI lies between 4 and 4.5. Consequently, it follows
from the latter inequality that P as integer can assume only one of the four
values p = I, 2, 3, 4. Substituting these values into the second inequality

p-3 I
0< p2_4 < TO '

p 4
we lind that pf: I, pf:2 and p;l:.3. Thus, p=4, p2 - 1= 15'

7. Miscellaneous Problems
229, We have

I I 1
n(n+l) +(n+I)(n+2) +"'+(n+k-I)(n+k)

= (~ -n~1)+(n~1-n~2)+"'+ -

(
1 I) 1 .1 . k

+ n+k-I il+k ~ii- rl+k=n(n+k) .

230. Let lirst :t f: a. Multiplying and dividing the product. In .questlon by
x":'a and applying, in succession, the formula for the dilierenceof the squares
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.of two numbers we obtain
, .. 2. (2"-1 2·-')" (x-;::a) (x+a) (xZ+a ) (x'+a') . . . X. +a

x-a

(x2_aZ) (xZ+aZ)(x' +a4) . . .(x2" - ' +a2" - ' )-'----'--'----"--'-'-"---''--""----'---..'---''- =
x-a

(x4_a4) (x4+a4) . .. (x2 " - ' +a2" - ' )
- x-a

(x8_a8) . . . (x2"-' +a2"-')

x-a

Let now x = a. Then the product is equal to

181

2"_1

-2a·.2a2,2a4. . .202"-' '= 21la 1+ 2+ 2'+ . .. +2"-' = Zna 2- I = 2na2· ...I.•

231. Multiply and divide the given expression by the product

(x+d) (xz+aZ) (x4+a4)...(x2" -:" , +a2'R.:- ' ).

wnlch 1s different from zero for all real x 1i= -a. HIs readi1yseen that the
result can be written as follows:

(x3+a3) (x8+aO) (xl Z+a12) (X 3. 2n-, + a3 ' 2" - ' )

(x +a) (x2 +a2) (x4+a4) (X2"~i +a2" - ' )

the numerator and denominator of this fraction are products similar to .that in
the for~oing problem. Therefore, multiplying the numerator and denominator
by the product (x-a) (x3_a3 ) we transform the expression to the form

3.2" 3.'2". 2ri+'+ ·211 -2·"+.2"+'X -a x-a x . a x . a
__ . ' xS'--:' a3 " x2" _ aZ· = ----x2+ ax + a2

This fnethod is Inapplicable for x = ± a. But in these cases a simple compu­
tation shows that for x =-a the product is equal to 3na2 (2

n
- 1) and for·x=a

it is equal to a2 (2":-1l.

232. It is obvious that

SIl~Sk-l=bk (k-2. 3; 4. n) . (I)
and

~ =~. ~

Substituting the values of b!. bz. ' " .b" obtained from (1) and (2) into the sum

thbl +a2b z+ .'. +anbll•
we get

alb l +a2.bz+·· · +anbn=~SI+az {Sz-SIJ+aa (S3- S Z)+
. + ... +an (S,,-Sn-l) =Sl (al-aZ)+Sz (aZ-a3) +. .+

+Sn-l (all-I-an) +anSn·

233. Multiply both members of the equallty by 2 and transpose its right
member to the left. After simple transformations we get

2 {az+bz+cz-ab-ac-bc)=az-2ab+bz+a3-2ac+
+ c2+ b2- 2bc+ c2oe.(a_ b)2+ (a-c)2 +(b-C) 2= O.

Since a, band c arereal, the latter relation is only possible If a =b =c.
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234. Let us multiply a2+b2+cz-bc -ca-ab by a+b+c. Carrying out
simple computations we find that the product is equal to a3 +b3 + cs- 3abc,
that is, according to the condition of the problem, it is equal to zero. Hence,
the assertion stated in the problem is true.

235. Since p t= 0 and q t= 0 we can write

('; r+(; r+ .. ·+(~ r=l,
( ~lr+(~2r++(b; r= I,
~ .!2.-+!2.~+ + an!!E- = 1.
P q P q P q

Adding the first two of these equalities termwise and subtracting the doubled
third equality we find

( '; - b; r+(;2 - ir+...+(~-b; r= O.
Taking into account that all the quantities involved are real we conclude that

~_.!2.--'0 ~-~-O un_ bn _ oP q F"" P q- ..... P q-'

which immediately implies the assertion of the problem.
236. Put Pn=an-an-l' Then the statement of the problem implies the

formula Pn= Pn-l + I. showing that the numbers Pn form an arithmetic prog­
ression with unity as common difference. Therefore, Pn=P2+n-2. Now we find

an=(an -an-l)+(an-l-an-2)+'" +(a2-al)+al =
= Pn+ Pn- l + ' " + P2 + al = (n - l ) pz+ (n - 2)+ (n - 3)+

(n-2) (n-I) ,
+ ... +I+al=(n-I)(aZ-a1)+a1+ 2 ;

and, finally.
(n-2) (n-I)

an=(n-I) a2-(n-2) al+ 2 •

237. First solution. The given relation can be written In the tWQ forms

an-(Wn-l = P(an-1-aan- 2)
and

an-~an-l = a (an-l-~an-2) '

Putting an-(Wn-l =un and an-~an-I =Un we find that

un=~Un-l' un=aun-tr
whence it follows that

or
an-aan- 1= ~n-2 (a2-aal),
an- ~an-l= a n- 2 (a2- fla.).

ElIralnating an-I from these relations we finally obtain
fln-1_an-1 pn-2_ an-2

an= ~ . 02 -afl ~ . 1Jt.-a -a
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Second solution. Making n In the original relation take on consecutive values
3, 4, . ,. we find

a2_~2 a-~
as= (a + ~) a2- a~al=---R az - a~ --R a1

a-I-' a-I-'

The general formula
an-l_~n-l an-2_~n-2

an= ~ a2-a~ ~ ~a- a-
can now be easily proved by induction.

238. We have Xl +x2=3a, xlx2=a2. Therefore
s 2 . 7

Xl +X2=(XI +xZ)Z-2X1Xz =7a2=T

I
whence aZ= 4" .

I
a2=-2'

239. We find

tHence, there are two possible values of a, namely a1=2" and

Y1 = (Xl +x2)Z-2xIX2=pZ_2q,

Y2=(X\ +x2)3_3 (Xl+Xz) XIX2= - p3 +3pq.

The coefficients of the quadratic equation y2+,y+S =O with roots Y1 and Us
are respectlvaly equal to

T=- (UI +Y2) = ps- p2- 3pq + 2q
and

s= UIY2 = (pZ_2q) (- p3 +3pq).

240. We have Xl+X2=-~ and XIX2= .5.- . With the aid of these for-
a a

mulas we find

and

~+~~+x:= (~+X;)2_X~X: = ( :: -2 ~r-(-;y.
241. Let

(a l +blx)2 +(a2+b2x)2 +(aa +bax)2= (A +BX)2, (I)

for all X where B :j; O. Pulting X=- ~ we get

(at-bi ~ Y+(az-ba ~ y+(aa-ba ~ y=O.
All the quantit ies involved being real, we thus have the three equalities

a l = Mlt az= M z• aa = 'Aba. (2)
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' ,. A
where /"=8' Besides, the condition

~+~+~~O ~
should hold because, if otherwise, all the three numbers QI' bz and bs were
equal to zero, and then the left member 01 (I) were independent of x,

Let now, conversely, condit ions (2) and (3) be fulfilled. .Then

(at +blx)2 + (a2+b2x)2 +(as +baX)2 =
. . =b: (A+X)2+b~ (A+X)2+bi (A+X)2=

= (A V bi+b~+b:+V bi+Qi+bfx)2,

and, consequently, the sum indicated in the problem is a square of a polyno­
mial of the first degree. Thus, conditions (2) and (3) are necessary and sufficient.

242. Let us denote the roots of the equation by Xl and Xz. Then x I+ Xz= - p
and xlx z=q.

If XI and Xz are negative then, obviously, p > ° and q > O. But if
XI = Ct+i~ where Ct < 0 and ~ :j: 0, then Xz= Ct - i~ , and we see that

p=-xl-xz"", - 2a > 0
and

Q=XIX2=~Z+P2 > 0.
Conversely, let it be known that p > 0 and q > 0. Then, if XI and Xz are real,

from the equality xlxz= q it follows that Xl and X z are of the same sign, and
the equality XI +xz=-P implies that the roots are negative . But if xl=Ct+i~,
xz=Ct-i~ and ~ :j: 0, then XI +xz=- p=2Ct , and, ccnsequently.ze is negative.

243. The roots of the equation ~+pK+q=O being positive, the discrimi­
nant D of the equation satisfies the condition

D=pz-4q~ 0, . (I)

and the coefficients p and q satisfy the inequalities

p"",,- Xl-X, < 0 (2)
and

q=XIXZ > O. (3)

Let Ytandyz be the roots of the equation

qyz+ (p-2rq) y+ I-pr =O. . ; (4)
The discriminant of this equation Is equal to

DI =4raql+pZ-4q

and, by virtue of (I), it is non-negative for all r. Consequently, YI and Yzare
real for allr. Taking into account (2) and (3), and applyillg.Vjeta~&theorem we
get, for r ~ 0, the inequality .

I-pr
YtYz=-- > 0, (5)q

and, hence, YI and Y2 are of the same sign. Furthermore, we have

p-2rq
Yl+Yz =--- >° (6)

q .

and, hence, YI arid Yz are positive for r ~ 0 which is what we·set out to prove.
11 is obvious that the assertion remains true if we require. ij)a1 the inequa­

lit ies
I-pr>. 0 and p.-2rq < 0,
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hold simultanecus Iy, that is
I, >­
P

and

185

(7)

p
, > 2Q ' (8)

Thus. fQr l'Ieg.tive , 'satisfyine condItions (7) and (8) the roots Yl and Y2 are
positive. If these conditions are not observed, one (or both) roots 01 equation (4)
is nonpositive.

244. Let us first suppose that p t= 3. For the roots of 8 quadratic: equation
with r~lIl ,cQtlI.ficients .to be. real it is necessary and sufficient that the discrirni­
nant D of this equation be non-negative. We have

D =4p2_24p (p-3)=4p (18-5p)

and therefore the condit ion D;?:. 0 holds for
O~p";3.6. (I)

The real roots Xl and X2 are positive if and ani y il the ir sum and product are
positive, i. e.

. 2p 6p
~l+X~==~ > 0, XIX2=~ > O. (~)p-6 P ~.j

The system of IrtequaIities (I), (2) is satlsfled for
,.: 3 < p.<: 3.6.

It should also' be rioted that for p = 3 the equation under consideration has
the unique root X = 3.> O. Therefore,all the sought-for values are determined
by the condition

3~p";;;;;3.6.

245. We , shall prove the assertion by contradiction. Let us suppose that
a -j:.O. Then lor the roots Xl and x%we have

_ - b ± Vb2-4a (C+A)
Xl 2- 2 ", (l ..

"Now there are two possible cases here;
(1) Let a > O. Then A is chosen so that the inequality

b2

A>4ij-C

is fulfilled. In this case we obviously have b2-4atc+~) <: 0' and, lienee; the
given equation has nonreal roots.

(2) Let a < O. Then if A >-C, we have

- b+ Vb2-4a (c+A) > 0,

-b+ Vb2-4a (c+A) . ti . Th b thand, hence, the root .? ' ' 2a . , IS nega ive. us, 0 assump-

tions lead to a contradiction. The' assertion has thusbeen proved.

246. The roots Xl , 2 .ot the . equation XZ+~+ 1== Osotisfy the equation
xS~L00IC9ll£w~1l_ Therefore, -xi:nz=x~~, =xe 2 = 1 which implies the assert ion
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(2)

247. Substituting Y expressed from the second equation into the first we get
t he equation

2ax2+ 2 (a'"+ 1) x+a",2 =0, (I)

which, by the hypothesis, has real roots for all values of A. Let us show that
th en a =O . Suppose the contrary. Then for the discriminant D of tbe quadratic
equation (I) the following inequality

D= 4 (ai.. +1)2-8a2A2~O

holds Ior all A. However, the left member of 1nequality (2) has the form

-4a2A2+8A+ I
and is negative for all sufficiently large absolute values of A. For instance, If

A= 10 , the left member of equation (I) is equal to -321. Thus we arrive at a
a

contradiction.

248. The equation in question takes the form

x2-(p+q+2a2)x+pq+(p+q) (12=0

after reducing the fractions to a common denominator and dIscarding It. Com­
puting the discriminant D of this quadratic equation we get

D =(p+q+2a2)2-4 [pq+(p+q) a2] =(p-q)2+4a'.

Since D~ 0 for all real a, p and q, the quadratic equation has real roots, and
hence the same is true for the original equation.

249. Consider the discriminant of the given quadratic equation:

D = (b2+a2-c2)2_4a2b2= (b2+a2-c2- 2OO) (b2+a2-c2+2ab) =
= [(a-b)2-c2) [(a+W-c2].

Since a+1>> c and Ia-bl < c; we have (a+b)2 > c2 and (a-b)2 < c2. Conse­
quently, D < O.

250. By Vieta's formulas (see page 10) we have

~+x2+xa=2, XIX2+X2Xa+X,Xi = I, xlxzX,=-l.

Using these equalities we obtain

YI+Y2+Ya=XIX2+x2Xa+ XaXI= I ,
YIY2+ Y2Y,+YaYI =XIX2Xa (Xl+ X2+Xa)=- 2,

YIl/zYs = (XIX2XS)2 =1.

Consequently, the new equation is
yS _ y2_ 2y _ 1=0.

251. On the basis of Vieta's formulas, we have

Xl+X2+Xa = I,
XIX 2+X2XS+ XaXI =0,

XIX2Xa= 1.

By virtue of these equalities, we write

!/l + Y2+ Ya=2 (Xl+X2 +xs) =2.
Since YI= I-Xl and Y2= I-xI/)' y,= l -xs, we have

YIY2+ YaYa+ YaYI = (1~XI) (l-x2)+(I-x2) (I-xa)+
+(I-XI) (I-XI)=3-2 (Xl+X, +XS) +XI X2+X2Xa +XIXS = I,
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and, finally,
YIYzys=(I-xl ) (l-xz) (I-xs)=-I.

The new equation, therefore, has the form
yS_2yZ+y+ I =0.

252. Let
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Xl =p-d, Xz=p, xs=p+d..

Then Xl +xz+xs=3p. On the other hand, by Vieta's formulas, we have xl +
+X2+xS =-a whence we find 3p=-a and, hence,

a
Xt=P=-"3 '

Substituting this root into the equation we obtain

(-;r+a ( - ; r+b ( - ;) +c=O,

which yields
2 1

c=-27 as+"3 ab.

253. Let Xl > 0, Xz > 0 and Xs > 0 be the roots of the given equation. Fol­
lowing the hint, we consider the expression

(Xl +Xt-xs) (xz+xs-Xt) (XS +XI-XZ)' (I)

For the triangle with line segments of the lengths Xl ' Xz, Xs as sides to exist,
it is necessary and sufficient as was proved in the solution of Problem 106 that
the condition

(2)
be fulfilled .

To obtain the condition required in the problem let us express the left
member of (2) in terms of p, q and r. For this purpose we make use of the
relations

XI+XZ+XS=-P, XIXZ+XIXS+XZXs=q,
xlxZx-a =-r

connecting the roots and coefficients of the equation . Condition (2) is now writ ­
ten in the form

(-p- 2xs) (-p-2x1)(-p-2xz) > 0;

whence it follows that

_ps_2pz (Xl +xz+xs)-4p (XIXZ+x1Xs+xzXS) - 8XIX ZXS > 0

and, hence,
pS-4pq+8r > O.

254. Let Xo be a common root of the equations. Substituting Xo into both
equations and subtracting one equation from the other we find

x _ qt-ql ¥= 0
0 - PI-PZ .

Let XZ+ax+b be the quotient obtained by dividing the trinomial x3+P.X+ql
by X- Xo' Then

xs+PIX+ql = (x-xo) (xz+ax+b).
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Equating the coefficients in x2 and the constant terms in this identity we find

a= xo and b=-'l..! ,"whence it follows that the other two roots of the first
xo '

equation are determin ed by the formula

, / 2 4ql
-Xo± V Xo +-/ ll _ Xo

2.a - 2

and of the second ' equation by the formula

Y 2 4q2
-Xo ± Xo + -

(2 ) X o
x2,a = 2

255. It can easily be verified that for A. = 0 the equations have no roots in
common. Let Xo bea common root of the equations for some A. i= O. Then we
can write

A.x~- X~-X.o-(A.+ 1)= 0, } (I )

A.X~-Xo -O,, + 1)=0.

Multipl ying the second equali ty by Xo and subtrac ting it from the first we find

A.+1xo= -A.- ' (2}

Thus, if there is a common root, then it is connected with A. by formula (2) :

It can now be readily verified that the Iractlcn~ inIact sati sfies both equa­
tions (it is obviously sufficient to establish this fact only for the second equa­
tion). Thus, both equations (I) have a common root for all A. i= 0, the root
being determined by formula (2).

. 256. First Solution . Let Xl' x2 and Xs be the roots of the polynomial P (x).
According to Vieta 's theorem, we have

Xl +XI +x-a ""' 0, X1X2 +XlXs + X2XS =>; p,

whence it readily follows that

x~+x:+x:+ 2p.=0.
Since Xl . x2 and Xa are real and different from zero (because q f: 0), we have
x~ + x:+x~ > 0 and, hence, p < O.

Second solution. It is apparent that among the three roots of the polynom ial
P (x ) there are two unequal ones. Indeed, if otherwise, we must have P (x) ==
= (x-xoIS which ·is obviously not the case. ... .

Now let Xl and x2 be two unequal roots of t he polynomial, and let Xl < X2 .

Suppose the contrary, that is p~ O. Then xf < xg and PXl~ pXz, Then it Iol­
lows that

P(XI) =:=X~+PX1+q < x~ + pxz + q·= O .

because P (x t ) = 0. We arrive at a conclusion that P (Xl) < 0 which contrad icts
the fael tha t Xl is a root of P (x). Consequently, p < O.

257. Let Xl' X 2 and Xa be the roots ' of the given equat ion. By virtue of
Vleta'sformulas. vwe .haye

XlX 2 +XlXa+ X 2xs =0,

xlxaxa=b > O.

. ( I)

(2)
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(1)

(2)
(3)
(4)

(5)
Now weobtain

Let us first suppose that all the three roots are real. Then from . condition (2)
it follows that at least one of them is positive. If in this case we su ppose that
two roots are positive, then formula (2) implies that the third root is also po-

-sit ive, which contradicts condition (1) . Thus, if all the roots are real, the prob­
lem has been solved .

Let now Xl be a nonreal root of the equation, then, as is known, the equa ­
tion also has the conjugate comple x root X2 = XI' Since in this case X1X 2 =XIXI > 0,
we conclude from equality (2) that

b
X8=~-- > 0.

XIXI
The assertion has thus been completely proved.

258. Let ct, ~ and '\'1 be the root s of the first equation and ct, ~ and '\'2 the
roots of the second . By virtue of Vleta's formulas, we have

ct-H +11 =-a,
ct~'\'l=-18,

ct+~+1'2=O,

ct~'\'2 =-12.

from equations (I) and (3) and

1'1 3 (6)
1'2=2"

from equations (2) and (4). Solving (5) and (6) as simultaneous equations we
find

'\'1= -3a, '\'2= -2a. (7)

Thus ; if for some a and b the equations have two common roots, their third
roots are determined by formula (7). Substituting '\'1 = -3a into the first equa-
tion and '\'2= -2a into the second we obtain .

-18a3 + 18=0
and

-8a3 - 2ab+ 12=0.

Solving these equations we see that there can be only Cine pair of real values .
satisfying the condition of the problem, namely .

a= I, b=2. (8)

and

Substituting these values Into the equations we readily find

X3+X2+ I8=(x+3) (x2-2x+6)

x3+2x+ 12 = (x+2) (x2-2x+6).
Consequently, for the above values of a and b the equations have in fact two
common roots . These roots are determ ined by the formula

xI.2=-I ±¥-5.

259. Let us denote the left-hand side of th e equality by A. We have

AS = 20+ 14 ¥"2+ 3V (20+ 14 ¥ 2)ZV20 -': I4¥ 2+

+3V20+I4Y 2 V(20-14Y 2)2+20-14Y2=

. =40+3V400-2 X J42 A=40+6A.
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Thus, the left-hand side of the equality to be proved satisfies the cubic equation

x3-6x-40=0. (I )

It can be easily checked that equation (I) is satisfied by x =4. Dividing the
left-hand side of equation (I) by x-4 we get the equation for finding the other
two roots

xll+4x+ 10=0.

This equation has nonreal roots because its discriminant is negative: D= -24 < O.
Thus, equation (I) has only one real root x=4, and since A is a priori a real
number, we have A = 4 which is what we set out to prove.

2fO. As is easily seen, the expression in question vanishes if any two of the
numbers a. band c are equal. Then, by Bezout's theorem, it is divisible by
each ,of the differences

(b-c), (c-a) and (a-b).

Therefore it seems n.rtural to suppose that the given expression is the product
of these factors. Indeed, we have

aZ (c-b) +bz (a-c)+cz (b-a) =azc-azb+bza-bzc+czb-cza=
=a2(c-b)-a (c2-b2)+bc (c-b)= (c-b) [a2-ac-ab+bc] =

= (c-b) [a (a-c)-b (a-c)] = (c-b) (b-a) (c.,-a) (I)

and thus the assumption turns out to be true. Since a, band c are pairwise
different, the assertion has been proved.

2&1. Note that for x = -y the given expression turns into zero. Consequ­
entiy, by Bezout's theorem, it is divisible by x+y. To perform the division
let us represent x+y+z in the form of a sum of two summands: (x+y) and z,
Cubing the sum, we get

[(x+ y)+ z]3_x3_y3_Z3=
= (x+ y)3+3 (x+ y)2z+3 (x+ y) Z2 _ x3_ y3=

=3 (x+ y) [Z2+ Z (x+ y)+xy).

The quadratic trinomial with respect to z in the square brackets on the right­
hand side is readily factorized because its roots are obviously -x and -y.
Hence, we obtain

(x+ y+Z)3_X3_y3_Z3=3 (x+ y) (z+x) (z+ y).

26~. Multiplying both members of the given equality by abc (a+b+c) we
transform it to the form

(ab+bc+ac) (a+b+c)-abc=O.

Removing the brackets we get

a2b+ 2abc+ aac+ abZ+bzc+ bc2+ ac2 = o.
The left member of this equality is readily factorized:

~~+~+ab~+ij+ac~+~+bc~+~=
=(b+c) (az+ab+ ac+bc) = (b+c) (a+b) (a+c).

Since the last product is equal to zero, we conclude that at least one of the
factors is equal to zero which implies the desired assertion.

263. Let a and ~ be the roots of the quadratic trinomial x2 +px+ q. II the
binomial x4_1 is divisible by this trinomial, then a and ~ are the roots of
the binomial as well. It is easily seen, that the converse is also true: if a and ~

are the roots of the binomial xC-I, then it is divisible by xa+px+q*.

* If, in this argument, a=~, the number a must be a multiple root of the
dividend as well.
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(I)

(I)

(4)

The binomial x4 - 1 has the root s I , -I, i and -i and therefore we can
write the factorization

(x4 -1) = (x- I){x + I ) (x-i) (x+ i).

What was said above implies that the trinomial s we are int erest ed in may
only be products of two of the factors on th e right-hand side of (1).

Forming all possible permutations we find C: = 6 trinomials:

(x-I) (x+ 1)=x2-I,
(x-I) (x-i)=x2-(1 +i)x+i,
(x-I) (x +i) =x2-(l-i) x -i,
(x+ I) (x-i) =x2+(I-i) x-i,
(x+ l)(x +i) =x'3+(1 +i) x+i,
(x-i) (x+i) =x2 -t- I.

These obviously are all the sought-for trinomials.

264. Representing the given polynomial in the form xn-I-ax (xn- 2 _ 1)
we divide it by the difference (x-I) using the formula

xk+1_1
x-I I+x+ .. .+xk

•

Performing the division we see that the quotient is the pol ynomial

xn- 1+xn- 2+ . . . + x+ I-ax (xn- s+xn-4+ . . . +x+ I).

For the latter polynomial to be divisible by x-I, it is necessary and sufficient
that (according to Bezout's theorem) the following equality be fulfilled :

n-a(n-2)=O.

Therefore, the polynomial given in the problem is divisible by (x-l)2 for any
n

natural n > 2 and a=--2'n-
265. The conditions of the problem imply that

p(a) =A, }
p(b)=B,

p (e) = C.

Dividing the polynomial p (x) by (x-a) (x-b) (x-c) we represent It in the
form

pW=~-~~-~~-~qW+rW· 00
It is obvious that r (x) is a polynomial of degree not higher than the second.
Writing it in the form

rW=~+~+~ ~

we substitute, in succession . the values x = a, X= b and x = e into identity (2).
By virtue cf equality (I), we arrive at the follow ing system of equations for
defining the coefficients I, m and n of polynomial (3):

Ia2+ma+n =A, )
Ib2+mb+n =8,

le2 +mc+n =C.

* Formula (I) can be easily verified by division but It should be noted
that it simply coincides with the formula for the sum of k terms of a geometric
progression with common ratio x.
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Solving this system we find
(A -B) (b-e)-(B-C) (a-b)

1= --o'-----'(":-a';"'. ·...,-tJ ,....,) ('t7-b--..:..c)"{,..-.a---'-c)'----'-

m= (A-B) !bl-.c;!)--,(B-C) (aZ-o')
. (a-b) (b-e) (e-a) •

. a1(Bc-Cb)+a {Cb1 -Bc2)+A (Be2- Cb2)
n= (a-b) (6-e) (e-a)

Note. For x= a, x = b and x =c .the sought-for polynomial r (x) takes on the
values A, Band C, respectively. It can easily be verified that the polynomial
(of degree not higher than the second) given below is one possessing this pro­
perty:

(5)

-System (4)ha-vlng only one solution. there exists only one polynomial possessing
the above property. Consequently. :r (x) coincides with polynomial (5). ..

266. The formula is obviously true for n = I. Let us suppose that it is true
for a certain n and prove that then it is true for n+ I as welt. Denoting the
sum standing on the left-hand side of the formula to be proved by Sn. we can
~~ .

S -S +(n+l)(n+2) (n+I)(n+2)(n+3)
n+l - n 2 6

_ (n+ I) [(n+1)+IJ {(n+1)+21
- 6

Thus, it follQws by jnduction that the formula is valid for any natural n.
267. Let Sn be the sum on the left-hand side of the formula . For n = I both

sides of the formula coincide. Let us show that if tbe formula holds for some n,
then it is also true for n+1. We have

Sn+1=Sn+(n+ 1)2=n(n+ I) (2n+ l)+(n+ 1)2=
6 .

(n+ I) (2n2+7n+6) (n+ I) [2n (n+2H3(n+2))
6 6

_ (n+ I) «n+I)+ IJ[2 (n+ 1)+ II .
- 6 .

Consequently, the formula holds for any natural n.
268. The Validity of the assertion is readily established for n= I. Suppose

that the formula be true for some n;;. I. Let Sn be the sum on the left-hand
side of the formula. We have

n(n+3) + . I . .
4 (n+ l)(n+2) (1l+'l).(n+2:)(n-j-3) .

(n+ I) (n2+5n+4)

4(n+ l)(n+2) (n+3)
. (n+ U(n.+ 1)+31
=4 [(n+ 1)+:11 (n;+.1) +:lJ .

Hence, the ·formula is true for any nat~ral n.

. 1

Sn+l =811+ (n+ -I) (n+2) (n +3)

It follows that

n3+6n2+9n+4

Sn+l = 4 (n+ I) (n+2) (n+3)
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269. The formula is obviously true for n == I. Suppose that it i~ true for
some n~ I, i , e.

(cos cp+i Sin rp)n= cos Tllp+i sin flip. (I)

To prove that the formula holds for n+ 1 let us multiply both members of r l)
by cos cp + i sin cp. According to the rule for multiplying complex numbers we
obtain .

(cos cp+i sin Ip)n+l = (cos nlp+i sin mp) (cos Ip+i sin rp) =
= (cos ncp cos cp-sin nip sIn Ip)+i (cosrnp sin <p+ sin nip cos <p) =

=C05 (n+ 1) q>+1 sin (n+ I) <p o

Consequently, the formula is . true for any natural n.
270. Apparently, a+b= 1 and ab=-l. Using this, we can write

an+1_abn+a"b-bn+l an+ 1 _ bn+1 an-1_bn -1
an=an(a+b)=yS . ys ys

that is an = an+l-an - l which implies

an+1=On+ an-l'

It follows that if for some n the numbers a/l- 1 and an are positive integers,
then an+! is also a positive integer. Consequently, by induction, anH' an+3
etc. are also positive integers. But we have a1 = I and a2 = I, and hence all an
are positive integers for n > 2.

271. For n = I the inequality is true . Let us suppose that it is true for
some n, Multiplying both members by I+ a;,+1 > 0 we find

(l +al) (1+a2) ... (I + an) (1 +an+l);;:' (I +al +a2+ ...+an) (I +a~+I) =
== I +a1+a2+ ' " +an+an+l+alan+1 +a2an+l + ... + anon+ 1•

We have 0lan+l +1I 2an+ 1+...+anan+ J > 0 and therefore the inequality is true
for 11 + 1 as well.

272. Let us first of all verify that the formula holds for n= I. Indeed,
for n= I it takes the form

(a+bh = C~ (a)o (bh + ct (ah (b)o. (1)

If !1OW we use the definition for the generalized nth power of a number, it
becomes evident that both members of formula (1) are equal to a+b and,
consequently, the equality is in fac! true .

Now suppose that the formula is true for some n and prove that it is then
true for 1l+ I as well. The definition of the generalized nth power implies that

(a+b)n+l =(a+b)n (a+b-n)= [C~ (a)o (b)n+ c: (alt (b)n-l + ...
..• +c~ (a)k (b)n-k+ .. . +C~ (al n (b)o] (a +b-n).

Removing the square brackets, we transform each of the n+ I summands accord­
ing to the formula

d .(O)k (b)n-k (a+b-n)=C~(a)k (b)n-k [(a-k)+(b -n+k») =
= d (a)k (a-k) (b)n-k+C~(ah (b)ll-k (b- n+ k) =

k . . k
= Cn (a)Hdb)n-k+Cn (a)k (b)n-Hl (k =O,I, . . . , n).

This results in

(a+b)n+l =C~ (alt (b)n+ C~ (a)o (b)n+l + cA (a)g (b)n-l +

. +C~ (alt (b)n+'" +C~ (a)/c't-l (b)/I_/l+

+d (a)k (b)n-Hl+' " +C~ (a)n+! (b)o+C~ (a)n (b)I'

7 -323
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Collecting like terms, we obtain

(a+b)O+l = C~ (a)o (b)n+1+(C~+ C~) (ali (b)n+

+(C~ +C~) (ah (b)n-l + ...+ (C~ + C~+l ) (a)k+l (b)n-k-+- . . . +
+ (C~ -l +C~) (a)n (bh -t C~ (a)n+db)o '

Furthermore. using then th e fact that

C~ = C~+1 = I. C~= c~tI = I,

I I
!

and the ident it y

t _ aVI + 002
0--

2--
2 .

VJ + V2

Now usin g formula (3) we find th e least distance bet­
ween the t rains:

/6

5
4

FIG. 4

o

r
9

which is easi ly ver ified. we obtain

(a+ b)n+l = C~+1 (a lo (bln + 1 +C~+l (a)db)n +

+ C~+1 (a)z (b)n-J + ...+C~t~ (a)k+1 (b)n -k+ '"

...+C~+1 (a)n (b)1 +c~t~ (a)n+l (b)f)'

Hence. we have proved that if th e given formula is tru e for some n, then it is
true for n+ I as well. But it hold s for n= I. and consequently. we conclude. by
induction. th at it hold s for all natural n,

273. Let, (t) be the distance between th e trains at the moment t. Then

,2 (1)= (a- v1t )2+(b - u2t )2= (v~+ vi) t2- 2 (aul + bv2) t +a2+b2.

Note that if , 2 (t) attains its least va lue for t = to. then, (t) also attains the
least value for t = to. the converse also being true . Th e problem is thus redu ced

to finding the least value of the quadratic trinomial,2 (f) .
Accordi ng to formula (4), page 43. the leas t value

of ,2 (t) (and . hence, of r (t » is attained at the mo­
ment

'(fo)=' / 4(a2+b
2

) (vr +vi) -4(avl +bu2 ) 2 =
V 4 (u~ + v~)

Iau2- bv1 1

1/ vr +vi
274. At the moment t the car is at a distance of

40t km from the point A. arid th e motorcycle at a

dist ance of 3; t2 + 9 km from th at point. Consequently,

the distance between th em is equ al to the a bsolute
value of t he expression 16/2 + 9-40t . Denoting thi s

.dist ance by y (t), we can plot the graph of the
quadratic trinomial y (t) (See F ig. 4) . The graph is a parabola intersecting the

t-axis at th e points t, = ~ and t2 = 2 ~. Th e graph clearly shows that if

0.,;;;; t,.;;;; 2. the greatest in its absolute valu e ordinate y corresponds to the vertex
of th e parabola . The latter lies on the axis oi symmetry which intersects the
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{-axis at the point

to=tl+t2=~.
2 4

(1)

(2)
1

2 Vab'

x x
Y= ax!+b ~ 2x VCib

Let us put logz x = z, then 0~ z~ 6. The problem
the greatest value of the variable

y=zz (6-z)2.

It is .sufflcient to find the greatest value of z (6-z) for 0 ~ z~ 6 because
the greater a positive number, the greater its square . The quadratic trinomial
z(6-z)=- (z-3)z+9 attains its greatest value for z =3. Thus. the sought-for
greatest value is attained for z = 3 and is equal to 81.

. 276. First solution. It is obviously sufficient to consider only positive values
of x, According to the well-known inequality (3), page 20, we have

axz+b ,r-:-:::;;. «rz:
-2-"-=;;; r ax2b= x r abo

Consequently, for all , x > O.

Thus, the distance attains its greatest value in an hour and a quarter after the
start of the motion and is equal to 16 krn.

275. Denote the expression in question by y and transform it in the follo ­
wing way:

Y= log~x+ 121og~ X (Iog z 8 -logz x) = log~ x (Iog~ x-12 logz x+36) =

= log~ x (6 - Jog% X)2.

is thus reduced to finding

Relation (I) turns into an equality when ax2 =b, and consequen tly for

xo=V ~ we have

I
Yo= 2 VCib .

By virtue of (2), this is just the greatest value of the function.
Second solution. Solving the equation

(3)

x
Y= ax2 + b (4)

for x we obtain

x

Formula (5) implies that the
real x. Hence

J ± VI-4aby2

2ay

inequality l-4ab!l2~O must

(5)

be fulfilled for all

I
!I~2Vab'

Function (4) attains the value Yo= ,~_ for a real
2 r ab

we find that xo= -V: ). and therefore, by virtue

greatest.

7*

(6)

value of x = Xo (from (5)

of (6). th is va Iue is the
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(1)

(2)

277. Performing some simple transformations we get

x
2+ I 2 [ 2 ]x+l =x-l + X+T=~2+ x+l+x+ 1 •

By virtue of inequality ' (3), page 20, we have

2 , /---n2~'- ~

x+l+x+I~2 V (X+I)(x+I)=2 Y 2 ,

and the sign of equality in (1) only appears if

I+X=X~I' t. .e. for xo= Y 2 - l.

Thus, for all xo?;: 0 we have

x2 +l ­
~~-2+2Y2,x+1

and the sign of equality in the latter formula takes place for

x=Y2-1.
278. Let us take a number scale and mark on it the points A, B, C and D

corresponding to the numbers a, b. c arid d. Let M denote a point with variable
abscissa x (Fig. 5). There can be the following five cases here:

H A 8 c,
c

FlO . 5

(I) If x~a, then we have

cp(x)=MA +MB+ MC+MD=AB+2MB+2BC+CD,

which clearly shows that cp (x) attains the least value when the point M coin­
cides with the point A and that this value is equal to

3AB+2BC+CD.
(2) If a.;;;.x ';;;;; b, then

cp(x) = AM+M8+MC +MD=A8+2M8+2BC+CD.

In this case the least value is att ained by the function cp (x) when the pelnt M
coincides with the point B, this value being equal to

AB+2BC+CD.

(3) if b«; x ';;;'c, then for these values of x the function cp (x) Is constant and
is equal to

AB+2BC+CD.

(4) If c,;;;;; x < d, then the least value of the function cp (x) is allained at the
point x=C, and it is alia equal to .

AB+2BC+CD.

(5) If x~ d, then the lea.t value of the function 'Cp (x) I, equal to
AB +2BC+3CD.
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Comparing the results thus obtained we see that the least value of the func-
tion fjJ (x) is equal to AB+2BC+CD, that is to . ,

b-a+2~-~+d-c=d+c-b-~

This value the function cp (x) takes on provided
be;;;;;x.;;;;;,c.

279. let r be the modulus and cp the argument of the complex number
z (r;:;" 0, 0,,;;;; fjJ <;._2~). Then z~r (cos cp+ i sin cp) .and the given equation takes
the form ' -

r2 (cos 2fjJ+i sin 2fjJ)+r =O.

It follows that either r=O and Z;:;Zl=O or Jcos2lp+l+irsin2fjJ=0, and,
consequently,

280. Let us represent z in the formz=x+iy Then the equation I; :/=1
takes the form

sin 2q>=O, }

r cos 2Cj2..+1=0.
, n Sn

The first equation is satisfied by the values <p=0, 2' n, 2' and since by

virtue of the second equation we have cos 2<p < 0, only the values cp = ~ and

,cp=,S; must betaken. In both cases we fihdfrom the second 'equati on the;value

r = I, which yields two more solutions:

I (
rt +. . 7t) . I ( sn+ . . sn) .Z2= cos 2 IS10 2 =1, %3= cOS 2 IS1l1 2 =-:-1.

,.,.

(X-4)2+ y2 = (X-B)2 +y2.

It follows that x = 6 and. hence, Z = 6+ ly. Substitute this value into the equa­

tion 1:=~~ 1= ; . Then after simplification the equation takes the form

This yields

25 ± Y625--:4 X 136 25 ± Y625-544 25 ±9---
Yl,'= " , 2 "" 2 ~2-'

i. e. !II = 17 and Y2=8.
, Answer: %1'=6+171; %11 =6+8/.

281. For brevity, put I t i =z: The product

(I + z) (I +%2) ( 1+ Z2
2)

• • • (I +zzn)

has the same form as the product in Problem 230. Let us denote this product
by P.

Proceeding as in Problem 230, we find

l_z2n+l
P= ,

l-z
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Now we must substitute 1t i
for z into the above formula. We have

1
I-z

(I)

Furthermore, we lind

.n+l (l+i)Zn+l [(I+i)Z]Zn (i )2nl-z2 = 1- -- =1- - - =1- ~2 2 2

Note that for n;;. 2 we have i 2n = (i 4 )2
n

-
2 = I. Hence, by virtue of (I), for

n;;.2 we have l_z2n+I = I _ --\;- and P =(1+i) (1-_1_)· .
22 22n

For n = 1 we obtain

1_ Z2
n +1 = I _ ( ~ ) 2 = ~ .

Answer:

P =(I +i)~ .

282. As is known, the addition and subtraction of complex numbers can be
performed geometrically according to the well-known parallelogram law. Therefore

the modulus of a difference of two com­
plex numbers 1z'-z"1 is equal to the
distance between the corresponding points
of the complex a-plane. Consequently, the
condition Iz-25i I..;;;; 15 is satisfied by
the points of the complex plane lying
inside and on the circumference of tl,e
circle of radius 15 with centre at the
point %0= 25i (Fig. 6). As is seen from
the figure, the number with the least argu­
ment is represented by the point z\ which
is the point of tangency 01 the tangent
line drawn from the point 0 to that
circle . From the right triangle OZ\%o we
find Xl = 12 and Yl = 16. The sought-for
number is ZI = 12+ 16i.

-----ot==::=7------· 283. Let us prove that for a complex
z, number a+bi to be representable in the

form
FIG. 6 I-ix

a+bi=1 + ix

it is necessary and sufficient that la+bij=1 and a+bi ;i: -I.
Necessity. Let equality (I) be fulfilled. Then

II-ix\ _
I a+bil . II + ix 1 - I ,

since ll-ix 1=11 + ix I= VI +x2
• Furthermore,

I -ix
I +ix ;6- 1,

because, if otherwise, we have l-ix=-l-ix, i.e. 2 =0.

(I)
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Sufficiency . l et l a+bil =1 and a+bi;i:-1. Put arg(a+bi)=a where
-n < a < zt. Note that a:i= rt by virtue of the condition a+bi f= -I. Now
we have

a+bi "" Ia+bi I (cos a+i sin a )= cos a+ i sin a.
But

a a
1- tan 2 T . 2 tan '2

cos a sm ex = ----
1+ tan2 ~ I + tan 2~

2 2

Substituting these expressions into the right-hand side of formula (2) we get

(I +itan!fr J+itan% I-ix

a+bi= ( ) () I + ix '
I+itan%- I - itan ~ I-itan ~

ex
where x=- tanTo

284. Let z =r(coslp+isinlp). Then

Iz2+ II = Y(r2cos 2rp+ 1)2+(r2sin 2lp)2= Yr C+2r2 cos 2lp+ I,

Iz++1= I Z2: I \ I,

and

(2)

,C+ r2 (2 cos 2lp-I)+ 1=0.

Put r2 = t , The modulus Iz I takes on the greatest val ue when t attains its
greatest value . We have

t - 1-2 cos 2lp .± Y(1-2 cos 2lp)2_4
- 2 '

Since we are interested in the greatest value of t; we take the plus sign In front
of the radical. It is readily seen that the greatest value of t is attained W!\~

cos2lp =-I. i.e. for lp=;+k3t. This greatest

3+Y5value is equal to 2 . Hence. the greatest

value of I z I is equal to .. /3+ ys = 1+ ys-,V 2 2
A~:::--~-'1&-~-+-~--"-'

285. The angle between two neighbouring rays is

equal to 2:11. Let d1 , d2, '" be the distances from
n

A and the feet of the perpendiculars which are
dropped. in succession. on the rays intersecting
at the point A (Fig. 7). We obviously have

dk=d (cos ~r (k = I, 2, .. . ).

The length of the k·th perpendicular is

211: 211:( 2rt)A:-lLII=dll _ 1 sin -=d 5in- cos - •
n n n
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. 2lt
SIO-

L= d n . d cot .::..
2n n

I-cos -n
th e length L also increases and approaches infinity as n

the total length of. the polygonal line consisting of m segments Is equal to

dsin 2: [I +cos~+(cos 2:)2+...+(cos 2:r-1] .
The lengt h L of the Whole pol ygonal line which sweeps out an infin ite number
of circuits is obtained when m is made to tend to infinity and is expressed as

the sum of term s of th e geometric progression with common ratio q = cos 2;
I f t . 2lt(Iq < I) and rst erm d 510 n:

When n is Increased
tends to infinity .

286. First solution. Let labcde be the desired number (where the letters a,
b, c, d and e denote the digits in the corresponding decimal pla ces). Obviously ,
e=7, since labcde x3=abcde I. After 7 has been multiplied by 3, the digit 2 is
carrled i.to .the . next (to t he left) decimal place and therefore the product d x3
has 5 in the unit 's place.

Hence, d=5. We thus have la/lc57x3=abc57J. By a similar argument, we
find that c= 8, b=2 and , finally , a =4 . Thesought·for number Is 142857.

$ocond solution. Let again I abcde be the number in question. Put abcde '=;e,
then the number is equal to 10&+;c. By the hypothesis, we have

(10&+ x) s= IO.t+ I.
lind hence x=42 857. Consequently, the required number Is 142857.

281. P being divisibleby sty'we can write

" •• ~ < • ' . •• p ~ IOOa+ IOb+c=37k,
lnQ.¥_ '1...../ . , ., 1t th b id , . t that
~ff'Het. rs an integ er . : .t : en . ecomes eVI. en Hd '

,, =100b+ 10c+a= IOp-999a =370k~37 x27a.

~ ue tly, q is ~lso .divisible b~ 37. .
• SI Jar reasoning IS also applicable to the number r.

\ ) ' . . . . ' . '

2 e ve A =n3+(n+ 1)3+(n+2)3.;=3n3+9n2+ 15n+9. It Is obvi-

~
u ·~t~ show that B .=3n 3+15n=3fL(n2 + 5) is divis ibl e by 9. If

n= Lt>..fh-:~ integer, -thenBls divi sible by 9. For n=3k+1 we have
.a.:.±.§..~.]R-+6 ·a for n=3k+2 we have n2+5=9k2+ 12k+9. In both
cases nZ'+TlS .divisible by 3; Hence, '8i$. divisible by 9 iii all cases. ;

~~~: 'Fi;;;'-solul~on . The sum S" can berepresented .In the following form:

YnS·+3(n2+2fl+ I)-n =(n-l)n(n+ll+3(n+I)2. > '. -'.

The firs0ummand is divisible . by 3 because His the prodtlctof three eonse­
cu t i~intege rs , one of them necessarily being a multiple of three. Hence, S"
is also divisible by 3. .

Second 'Solution. We shall prove the assertion by Inductlon. For n = I tbe
number SI = 12 is divisible by 3.

Suppose that for some n the sum S" is divisible by 3. .We then have.

5" +1 = (n + k)S+3 (n+ 1)2+5 (n+ 1)+3 =S,,+3 (n2+3n+3).

Consequently, Sn +1 1s al\o :div'i~ibje by 3. , . '."
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290. At the ' base of the pyramid the balls ate put In ~e form of an equ i­
lateral triangle. Let the side of this 'triangle "contain n; balls. Then. at the

base of the pyramid there are n*.(Ji--e-.l.):+(n";";Il¥~~ . .!+ ~ + 2 + I= n (11,2+
1)

balls. The second layer of the pyramid contains (11,-1) + .(11, - 2)+ ...+ 3 +
(11,-1) 11, (n ~2) (11,-1)

+ 2+ 1= 2 balls . The third layer contains . 2 balls and

so on. The topmost layer contains onl y one ball. The tota l number of balls in
the pyramid is equal to 120. Hence,

120 _ 11, (11, + 1)+ (11, - 1) 11,+(11,-2)(11,-1)+ + 3 X4+2 X3+I X2
- 2 2 2 . ~ . 2 2 . .2'·

'The .right-hand side of the equality is equa l to 11, (11, + IJ (11, +2) (see Problem 266.

page 192); hence, for defining 11, we get the equation ,.

11, (11,+ I) (11,+2)=720 . (I)

This equation has an obvious solution 11,=8. To find the other solutions we
transpose 720 to the left-hand side and divide the polynomial thus obtain ed
by 11,-8. The quotient Is equal to 11,2 + lin+90. Since the roots of. this latter
polynomial are nonreal, equation (I) has no other integral solutions except

11, = 8: Thus, the base layer consists of It (nt 1) 36 balls. .

291. The number of filled boxes being equal to m, we conclude that the
number of the inserted boxes is equal to mk . It follows that the total number
of the boxes (including the first box) is equal. to mk+ I. Hence, the riurriber
of empty boxes is equal to mk+l-m=m(k-I)+I. . .



GEOMETRY
A. PLANE GEOMETRY

1. Computation Problems

292. Draw the bisector of the anqle A (see Fig . 8). It intersects the side BC
at a point D and divides it into parts proport ional to band c. Note then that

B

~A c 8

FIG. 8

to. ACD is similar to {}. ABC since they have a common angle C, and the angle
CAD is equal to the angle B. Hence, .

AC BC . b a
CD= AC ' I. e. ab/(b+c) b'

Consequently.

a = Yll~ +bc .

293. Let AD be the bisector of the right angle A in b. ABC, and DE 1. AC
(Fig. 9). Since

L DAE = ~, we have AE=DE =<:: ;2
where x= AD is the sought -for length. We obviously have

Hence,

ED CE
AB= CA' i. e.

x- be y2" .
b + c

294. In the triangle ABC (Fig. 10) the medians AD and BE Intersect at
a point 0, AC =b and BC =a. Let us find AB=c.

Let OD=x and OE =y. Taking advantage of the property of medians we
find from the triangle s AOB , BOD and AOE that

b2

4x2 + y2= T ' 4x2+ 4y2= C2, 4x2+ 16y2= a2•
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Eli minaling x and y we obta in

203

aZ - b~
c2 = - -5-

The conditions for existence of a triangle with sides a. band c take the
form

5 (a+b)2 > a2+b2 • 5 (a-b)2 < a2+bz.

The first inequal ity is obviously fulfill ed for any a and b, and the second
one is transformed into the following relation :

a2_ ~ ab+ b2 < O.

Solving th is inequalit y with respect to : we finally obtain

1 a
2" < b < 2.

A~---;--~------,.., A L- +-_, __->$

FIG . 11

295. Let LACD =L DCE= LECB =aandC£=x.CD=y(Fig. 11). For
the area of the triangle ABC we can write the follow ing three express ions:

SACD+ SDCB= ~ by sin a+ ~ ay sin 2a.

SAce+SeCB'= ~ bx sin 2a ++ ax sin a

an d

S"CV+SVCE+ SeCB= ~ lJy sin a++xy sin a+ ~ ax sin a.

Equating the left members of these equalities and taking into con sideration
the condit ion of the prob lem we arr ive at a system of three equations of the
form

2a cos a = x+a ~ •
y

2b cos a = y + b JL. •
x

x m
- = -
y

Solv ing the system we obta in
(n2_m2 ) ab

x = "':n--:-:(b-m-~a-n"")

n

(n2 _m2 ) ab
y = m(bm-an)



PROBLEMS IN ELEMBNiARY MATHEMATICS

296. Let S be the area of the given triangle ABC (Fig . 12),and put ~~=x.

Then the area of f:::. ADE is equal to x2S, and that of f:::. ABE to xS . By the
hypothesis, we get the equation

x=

depending

I

FIG. 12

A -=,......--_....c

FIG. 13

2~, Let S be the area of the given triangle ABC. The constructed triangles
with areas SI' S2 and S3 are sim ilar to f:::. ABC (Fig. 13). Therefore, their areas
are in the ratio of the squares of the corresponding sides, whence

IS; AD I~ EC .. ; S3 DE,V s = AC • 1 s = AC • V S =:4C'
AddlngTh ese equalitiestermwise we find:

S=(VS;+ YS2 + Y5;)2.
29B. Denote by x the third side of the triangle which is equal to the alti­

tude drawn toil. Using two expressions for the area of the given triangle, we
get the equation

~ x2 = Vb+~+X • C +~~b • x.-:-~-c ,b+~-X •

Solving it, we find:
1 . ' .

x2= 5 (b2 + C2 ± 2 Y3b2C2 _bl _C~). (I)

The necessary condition for solvahility of the problem is

3b2c2 ~ b' + c'. (2)

If it is fulfilled, then both values of x2 in (I) are positive. It can easily be
verified that if (2) is fulfilled, the inequalities b+c > x~lb-cl are also ful­
fill ed, the sign of equality appearing only in the case when x=o. The latter
takes place if in (1) we take a minus in front of the radical for b=c. Hence,
jf b=c, the problem has a unique solution, namely

2
x=YS b.
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(3)

For b ;0: c
respect to

ttle triangle exists only if inequality (2) is fulfilled. Solving it with

1., we find that it is equivalent to the two inequalitiesC """ " "

2 II I+Y5
jF~~~ -

1+ 5 c 2

A

Consequently . for b /; c there exist two tri angles if both inequalities (3) art
fulfilled with sign -< , and only one triangle if at leasl one of the relations (3)
turns in an equality .

8

FIG. 14 FIG. 15

(1 )

(2)

299, First suppose that ~ ABC is acute (Fig . 14). Then

SABC-SA,B,C, = SB,AC,+SC,BA,+ SA,CB,.
We have

SB,AC, = ~ AB l · ACl sin A = ~ AB cos A . AC cos A sin A =

=; AB ·AC sin A cos2 A =SABCCOS 2 A

and. similarly,
SC,SA,=SABC C052 B, SA,CB,=SABCCOS2 C.

Substituting these expressions into (I), after some simple transformations we
obtain

SA,R,C, I • A • B o C--"-"= -cos' -cos' -cos· .
SABC

If A ABC is obtuse (Fig . 15), then, instead of (I), we have

SABC+SA,B,C,~ SB,ACt+SC,BAt +SA,CB,

and, accordingly, instead of (2),

SA,R,C,
-S--=cos2 A +cos2 B+ cos2 C-I. (3)

ABC

Finally, if b. ABC is right, then SA,BtC,=0 which, as is readily seen. also
follows from formulas (2) or (3) .

300. (I) Let BO and CO be the bisectors of the int erior angles of f::,. ABC
(Fig. 16). As is readily seen, the triangles BOM and CON are isosceles . Hence,
MN =BM+CN.

(2) The relationship MN ~ BM + CN also holds in the case of the bisectors
of exterior angles.
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(3) If one of the bisectors divides an interior angle and the other an exte­
rior angle (Fig. 17), then from the interior triangles BMO and CNO we find
that MN =,=CN-BM when CN > BM , and MN=BM-CN when CN < BM.
Thus. in this case

MN =I CN -BM I.
The points M and N coincide only in the case (3) if t:::. ABC is isosceles

(AB = AG).
B

FIG . 17

3Ql. Draw through the point P three straight lines parallel to the sides of
the triangle (Fig. 18). The three triangles thus formed (th ey are shaded in the
figure) are also equilateral, and the sum of their sides is equal to the side AB = a

B

=-----',c

FIG. 18

8

J)

FIG. 19

of the triangle ABC. Consequently, the sum of their altitudes is equal to the
altitude of t:::. ABC and hence

PD+PE+PF=a V 32 .

The sum BD+CE + AF is equal to the sum of the sides of the shaded
triangl es added to the sum of the halves of these sides and thus,

3
BD+CE+AF="2 a.

Consequently,
PD+PE+PF
BD+(;l;'+Afo

302. Let 0 be the point of intersection of the medians in t:::. ABC (Fig. 19).
On the extension of the median BE Jay off ED = OE. By the property of me-
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dlans the sides of ~ COO are ; the corresponding sides of the triangle formed

by the medians . Denoting the area of the lat ter triangle by S1> we have

9
Sl=4" SCDO'

On the other hand, ~ CDO is made up of two, and ~ ABC of six triangles
J

whose areas are equal to that of ~ CEO. Therefore, SCDO = 3"SABC' Consequ-

5, 3
ently, -S--'=-4 .

ABC

303. Let ABC be the given triangle (Fig . 20). The area of ~ COB is equal

to }ar, and the area of ~ COA to {-br _ Adding these quantities and expres­

sing the area of ~ ABC by Heron's formula , we obtain

2
r = a+b Y p (p-a) (P-b) (p-c),

where p= ~ (a+b+c).

c

FIG . 20 F IG. 21

304. Let R be the radius of the circumscribed circle and r the radius of the
inscribed one. Then (Fig. 21) AB =2R, and also

a ~
AB =rcot"2+ r coI 2 '

Hence

whence
a 11

cot "2 cot 2=6,



I I
ex. = 2 arc tan 2"' ~ = 2 arc tan "'3 .

ConscqutnUy. cot* and cot .~ are equal to the roots of the quadratic equation

x2-5z+6_0.
Finally we obtain
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305. Let us denote by a and b the sides of the given rectangle and by q> the
angle between the sides of the circumscribed and the given rectangles (Fig. 22).
Then the sides of the circumscribed rectangle are equal to

a cos q>+b sin q> and a sin q>+b cos q>.

By the hypothesis, we have

(a cos <p +b sin <p) (a sin <p + b cos q» = m.2,

whence we find
. 2 (m2- ab)

Sin 2q>= a!+b!

The condition for solvability of the problem is of the form 0..; sin 2q> ... I
which is equivalent to the following two inequalities:

Vab~m-=;;; ~;:-~ .
. r 2

306. If L AED= L DEC (Fig. 23), then also L CDE= L DEC which im­
plies CE =CD. Consequently, E is the point of intersection of the side AB with

FIG. 22 FIG. 23

the circle of radius CD with centre at C. The problem is solvable if AB~ BC,
and it has two solutions when AB> BC, and only one when AB=BC. (The
point E] in Fig. 23 corresponds to the second solution).

307. Consider one of the nonparallel sides. It is seen Irorn the opposite vertex

lying on the lower base at an angle %(Fig. 24), and the midline is equal to

the line segment joining this vertex to the foot of the altitude drawn from the

opposite vertex, i. e. to h cot ~ . Hence, the area of the trapezoid is

S= h2 cot ; •

(
!
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lie on its308. The midpoint-s

midline MN (Fig. 25).

of the diagonals E and F of the trapezoid
a

But ME =FN=T' and consequently

b+a b-a
EF=-z--a=-z- .

309. The parallelogram is made up of eight triangles of area equal to that
of the triangle AOE. The figure (an octagon) obtained by the construct ion is made

FIG. 24

~o
FIG. 25

up of eight triangle. whose areas are equal to that of A POQ (Fig. 26).· Since

OP=~ OA (by the property of the medians in t:.. DAE), and OQ=+ OC, we

have
I

SPOQ =ti SAOE'

I
Hence, the sought-for ratio is equal to 6"'

PIG. 26 FIG . 27

310. It is obvious that KLMN is a parallelogram (Fig. 27), and KL= : AQ .

COnsequently,

311. To the two given chord. of length 2a and 2b there correspond central
angles 2~ and 2~ where

I a . R b
s n ~ = R . sm 1'.= If .
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An arc equal to 2 (a ± ~) is subtended by the chord 2c where

c=Rlsin(a±~>I =1 ~ yR2_b2± ~ YR2_aZ/.

312. The sought-for area is equal to the sum of the areas of two sectors with
central angles 2a and 2~ (Fig. 28) minus twice the area of the triangle with
sides R, r , d: .

FIG. 28

. - .,1"

FIG. 29

For determining the angles a and ~ we have two equations

R sin a =r sin ~

and
R cos a +r cos ~ = d.

Solving them we find :
d~ +Rl-r2

cosa= · 2Rd

dl + r2- R2
cos ~ = 2rd •

......

Hence,
d2 + R2_ r2 dZ+ r2_ R2S= R2arc cos · 2Rd +r2 arc cos-~-

-Rd Yl_(d2+2~:-r2r

313. Let K be the point of tangency of two circles having radii rand rlo
and P be the foot of the perpendicular dropped from the centre O2 of the third
circle on 00 1 (Fig. 29). Putting KP = x, we can write

AB =2 YR2_ X2 . (1)

The quantit y x is determined from the equation
(R + r)2_ (r + x )2= (R +r1) 2_(rt - x)2

and is equal to r -+r1R. Substituting this value in (J) we obtain
r r1

,

~
I
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314. Let 0 1 and O2 be, respectively, th e centres of the circles of radii Rand
r ann Os be the centre of the third circle. Denote by x the radius of the third
circle and by P the point of tangency of thi s circle and the diameter 0 102
(see Fig . 30). Applying the Pythagorean th eorem to the tr iangles 020SP a nn
010SP we obtain the equality

0 20; =:'0sP2 + (0 201+V010;-OSP~ y.
Substituting the values 0 20S=r +x, 0sP =x, 0 ZOI= R - r and 010 s=R-x

into this equality we obtain an equation with x as unknown:

(r+x)2 = x2+ (R - r+ V(R-X)2_X2) l.

Solving this equation we lind
R-r

x =4Rr tR +r)2 '

~ ..------T----~Qz

FIG. 30 FIG. 31

315. Let 01' 0 2 and 0 3 be the centres of th e three equ al circles and ° be
the centre of the circle of radius r (Fig. 31). Let us denote by SO,020" th e area
of /:). 01020S and by SA0

28
th e are a of the sector AOzB. Then the sought -for

area is equal to

S =+ (S o,o2o, - 3SA028 - :lTr ?,) .

If R is the common radius of the three c ircles. then

whence we obtain

V3 ,r-)
R = V r =(3+2 r 3 r.

2- 3
Then we lind

and
I n ( «r _.)

SA02B=fjnR2=2 7+4 r 3 r3
•

Finally, using formula (I ) we obta in

·S ~ [12 +7V3- C63+2 va)nJ r2
•

(I)
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316. Let OjJD.L 0,°2 (see rig. 32). We have

OOi"",OlO~ +O,02_20,O ·O,D-020i+ OO~-200z "D02' (\)
where O,Os=a+t, 020s ""'b+', O,O=(a+b)-a""/J and OO.:=(tl+b) -b=a.
Putt ing O,D=x we rewrite the second equality (I) In the for"m . •

(a+r)2 + b!- 2bx = (b+f)2 + a2~2a (a+b-x) ,

whence We find
a-b

x =a+~r.
a+1i

The first equality (I) now takes the form of an equatlon ill one unknown tr

(a+b-,)2 =(a +r)1+b1~2b (a+:~~r).

Solving Ihis equation we finally obtain

ab(a+ b)
r = a~ +ab + b! .

317. Let us denote by a and b the distances between the given point A an b
the given straight lines /1 and (2, respectively. and by x and !I the lengths of the leg s

FlO. 32 FIG. 33 Flu. 34

of the sought-tor triangle (Fig. 33). Noting that ~=sin <'p, !..=cos «p we obtain
x y

two equations
a2 b2 1
xJ + y~ = 1 and 2"xy =k2

•.

Transforming these equations we arrive at the system

xy = 2k2
, }

b2 x2 +a2y2 = 4k~ .

Solving it, we receive

x=: IYkJ+ab ± Yk2 -ab 1.

y=~1 Yk2+~b =f Yk2-abl·
a

The problem is solvable for k2~ ab, and has two solutions for k2 > ab and one
solution for k2 = ab.

318. Joining the centres of the circles We obtain a P..91ygon ~imilar to the
given one. The centre of the polygon thus constructed coincides with the centre
of the given one, and its sides are respectively parallel ta the sides of the giv¢n
polygon (Fig. 34). ..
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Let, be the sommon radius of the circles under consideration. Then the side
of the newly constructed polygon is equal to 2" lind \15 area is

a =n,2cot~ .
n

Furthermore, let ~ = 3t (n - 2) be the int erior angle of the polygon. For the de­
n

sired area S of the st ar-shaped figure we obtain the expression

Q

c

FIG. 35

It is obvious (see Fig. 34) that

.!!- -,=, tan .::.
2 n '

FIG . 36

whence we obtain r -~ ( . a n). and, consequently ,
2 I + tan n

ncot '::' -(n-2)'::'
a 2 n 2

S = - - '-t-". -~-~-=-

4 (I+ tan ~r
319. From Fig. 35 we have

LCGF=+(FA+AC) and LCDB={- (FA +BC).

The figure DEGF is an inscribed quadrilateral if and only if L cGf'= L CDB,
i.e. if AC =BC.

320. Let 0 be the vertex of the acute angle a., and Ok the centre of the kth
circle (Fig. 36). Then

,,, =OO,,sin~. 'k+1 =(OO"-'k~'k+dsin~
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and

Hence,
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a.l-sin 2rk+l= _
rll I . a.'+sm 2

l. e. the radii of the circles form a geometric progression with common ratio

I-sin~
2

I
. a.

+ sln 2
321. Let the least angle between the reflected rays and the plane P be equal

to a. (Fig . 37). Such an angle is formed by the ray passing through the edge C
of the mirror after one reflection from the point B. By the hypothesis, we have

I
: '

D

I
It

(I)

FIG. 37

CF II DA, and hence, L OCB= L OBC= a.. From the reflection cOJldition at the
point B it follows that L OBF= a . Therefore, for the triangle 'OBF we have

L BOF=2a., L OFB= 180°-20.-0. = 180°-30.. ,

Let us denc t.. by h the distance between the mirror lind the plane, and by r
the radius ;' D of the illuminated circle. Since the radius of the mirror is equal
to I, we have

It
r- I =tan a.. .

Applying the law of sines to the triangle OBF we find

OF = sin u. •
sin 30.

By similarity of the triangles CBF and DBA, their altitudes are proportional
to the sides, and thus

AD h + sin 20.
FC =-sin 2a •

that. is
r

I+~ina.
sm 30.

h+sin 2a
sin 20. • (2)
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Solving together (I) and (2) as simultaneous equations we find

2 cos 2ct
, 2.~os 2ct-1 .

Substituting the given value ct ==c 15c inlo lhe latter formula we obtain

y:f 3+ya,
Y3 -1 2

Furthermore, we have

215

sin 2ct
tan ct=j + cos 2ct

I
2" 2- y"3,

and therefore relation (I) yields

h=i (I + y"3) (2- ya)= y~-I .

322. We must consider all the different possible cases depending on the

value 01 the ratio!.....
a

FIG . 38 FIG. 39

(I) Let !.-~ Y2. The circles do not intersect the square and S =a2 •a •

(2) Let v: .,;;;; :< Y2". As is obvious, in this caseS =a2:...-8"cr where o

is the area of the shaded curvilinear triangl e (Fig. 38). We have

cr=..!.-a .r2x_-!....,trn2 r 2 T'

where «p=arcsin; . To find x we nole that

x Y2+ y,2_a2=a
which implies

a- yr:r=az
x= Y2 .
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Hence,
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I ( ,r--) I a- yrr=aza="2 a a-r r~-a1- -T,larcsin ry:.! •

. I r YS
(3) Let yi .< a < -2-. Here 8 = Sa where a is the area of the shaded

curvilinear triangle (Fig . 39). We have

I. 1 a
~=2r'q>-2 Y2 x,

where

Noting that

q> = ar
. X

SIl1 -.
r

we find

Consequent! y,

x

I . . y~-a a(Y4,.C(j'L.:- a)
a= - r l arc sm • .r-- 8

t 2 r l! ,

r I
(4) Let -os;;;; .rn . The required area is equal to zero.

a r 2

B C

~A J)

FIG. 40

323. .We have (see Fig. 40)

5=51 +82+83 + 5,.
Furthermore,

3 3 8 1 .40
8 2 = 8.= OC'

whence 5 38. = 5 152 , But we obviously have

53+81=8. +51,

which implies 8 3 = 5. and S3=8.= Y8I Sz.
Hence . from (I) we obta in

$ =51+ $2 + 2 YS\8 2 = (Y S\+ YS Z)2.

(1)
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Anal ogously, we find

324. Let us denote by a. b, c and d the lengths of the sides and by m and n
the lengths of the diagonals or the quadrUateraJ (Pig, 41). By the Jawor cosines
'we have

and
n2 = bi +tf!. +2bc cos lp.

which yield

(be+ad) n2 = (a2+d2) bc+(b2 + e2 ) ad = (ab+cd) (ae+bd).
Hence,

2 _ ad +be ( +bd)
m -ab +ed ac .

Multipl ying these equalities we obtain Ptolemy's th eorem:

mn =ac+bd.

2. Construction Problems

, 325. Let 0 1 and O2 be the centres or the given circles. Draw the straight
line DlA, and another straight line parallel to alA passing through the centre
O2 of the second circle. This line intersects the second circle at points M andN

FIG . 41 FIG. 42

I

(Fig. 42). The straight line MA intersects the second circle at a roint PI' The
straight line 02Pj intersects 0IA at a 'point Cl . The similarity 0 the triangles
~102Pl and AClf!l implies ' ,

, ~, , .. ' .. " '.. CIA =ClPl·
Hence, the circl e of rad ius CIA with centre at Clis the required one . A secorrd
solution is obtained with the aid . of the point N in just the same way as the
first solution with, the aid of the point M . If one of the straight lines M A or NA
is tangent to the s econd circle, then only one solution remains while the second
solution yields t~is tangent line (which can be interpreted as a circle With
centre lying at infinity) . The latter case takes place if and only if the point A
coincides with the point 6ftaugency of one or the four common tangents to the
given circles.

. : 326., Let 0 . be the centre 01 the !:l iven ctrcl e. and ABlhe giv en line (Ftg. 43):
the problem IS solved by analogy wlfh the preceding One. In th e general case
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it has two solutions . There are three singular cases here: (I) The given line
intersect s. the circle, and the given point A coincides with one of the points of
intersection . Then there are no solutions. (2) The given line is tangent to the
circle. arid the point A does not coincide with the point of tangency. In this
case there is one solution. (3) The given line is tangent to the circle. and the
point A coincides with the point of tangency. In this case there is an infinitude
of solutlons.

FIG . 43 FIG. 44

327. Through the centre 0 of the given circle draw a straight line perpen­
dicular to the given line I and intersecting the circle at points M and N
(Fig-. 44). The straight line MA intersects 1 at a point Pl' CI is the point of
intersection of the perpendicular erected to I at the point PI with the straight
line OA. The similarity of the triangles AOM and ACIPI implie s that CIA = CIP I.
Consequently. the circle of radius CIA with centre at CI is the required one.
Another solution is obtained with the aid of the point N in just the same way
as the first solution with the aid of the point M . If the straight line I does
not pass through one of the points A, M and N , and the point A does not
coincide with M or N, the problem always has two solutions.

Suppose that A does not coincide with M or N. If I passes through M or N,
the problem has one solution (the second circle coincides with the given one).
But if I passes through A, the problem has no solutions.

Let A coincide with M; if I does. not pass through M or N, the problem
has one soluti on (the second degenerates into a straight line coinciding with l).
If I passes through N the given circle is the solution, and if I passes through M,
the problem has an infinite number of solutions.

328. On the given hypotenuse AB = c as on diameter construct a circle with
centre at the point 0 (Fig . 45). Draw OE 1. AB and lay of( OF=h on OE. The
straight line parallel to AB and passing through F intersects the circle at the

sought-for point C. The problem is solvable if h <. ; . The lengths of the legs a

and b are found from the system of equations

a2+b2
= C

2
, }

ab eshc,

Solving this system we obtain

a= ~ (Yc2+2hc+ Yc2-2hc), b=+ (yc2+2hc- Yc2-2h;),

329. Let us take the line segment AB, and on its extension Jay off a seg­
ment AE = AD in the direction from A to B (Fig. 46). Construct 6. BCE on BE
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as base with sides BC and EC=CD. On AC as base construct b. ACD with
sides AD and CD. The quadrilateral ABCD is the required one because it has
the given sides and L. DAC= L. CAE (the triangles ACD and ACE are cong­
ruent by construction].

A~-+--+---48

FIG. 45 FIG. 46

330. Let H, Sand M be, respectively. the points of intersection of the
altitude, bisector and median with the circumscribed circle K whose centre is
at the point 0 (Fig . 47). Draw the straight line SO, and through H another
straight line parallel to SO whose second point of intersection with K is the
point A. Draw the straight line AM intersecting SO at a point P. Through the
point P draw a straight line perpendicular to SO which intersects the circle at
points Band C. The triangle ABC is the required one, since AH..L BC.
lJS = SC and BP = PC. The problem is solvable if and only if H. Sand M do
not lie in a straight line, the tangent line to K at the point H is not parallel
to SO and the points Hand M lie on opposite sides from the straight line, SO
'but not on a diameter of the circle K.

a

.4"-----,:+----~c

FIG. 47 FIG. 48

331. A. Exterior tangency. From the point a of intersection of the bisectors
of the interior angles of the triangle ABC drop the perpendiculars OM, ON
and OP on the sides of the triangle (Fig. 48). Then AP = AN, BP = BM and
CM =CN. Consequently, the circles of radii AP, BM and CN with centres at
A, Band C are tangent to one another at the points P, M, N.

B. Interior tangency. From the point 0 of intersection of the bisector of
angle C and bisectors of the exterior angles A and B draw the perpendiculars
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OM, ON and OP to the sides of the triangle ADC or to their extensions
(Fig. 49). Then

AP =AN. BP=BM, : CM =CN.

Consequently, the circles of radii AP. BM and CN with centres at A; Band C
are tangent to one another at the points P, M . N . .

Taking the bisectors of the interior angle A and exterior angles Band C,
or the interior angle B and exterior angles A' and C. we obtain two more
solutions.

FIG. 49 FIG. ~O

"
332. The solution is based on the following property; if the altitudes hA

and hfl of the inscribed triangle ABC intersect the circle at points AL and Bl ,
then the vertex C bisects the arc ALBL (Fig'. 50). This is implied by the equa-

Htyof L. AIAC and L. ~IBC , each of which is equal to ~ -I.. ACB.

Construction. Through' A draw a straight line in the given direction to
intersect the circle at a point AL• Let 81 be the point of intersect ion 01 the
alti tude hR and the circle. Find the midpoint C of the arc AIBI and draw AC.
Then draw BIB J AC. The tl iangle ABC is the sou ght -lor . ,

Taking lhe miapoint C' of the second of the two arcs ALB!>. 'we obtain ano-
ther solution, namely the triangle A B'C'. "

c ~

FIG. 51

333. Join the midpoint E of the base AB ' to the vertex C and find the
point Q of intersect ion of the straight lines EC and AD (Fig. 51). The str aight
line PQM N parallel to AB is the required one. Indeed,

PQ AS
QM = £8 =1,

which results in PQ = QM. furthermore.

' M N PQ
CD-CO'
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whence MN = PQ , A second solution is obt ained. with .the aid of the midpoint
Ii' 9f the base CO like the first solution wit h the aid of E.

334. Let B be the given verte x and E. F the given points (Fig. 52). SuP­
pose that the square A8CD has beel,1 . constructed. The vertex D must I ie on
the circle constructed on Ef as on diameter. Let 8Dintersect this circle at a
point K. Then T!f< =KF since I... ADB = I... sOC.

Construction. On Ef as on diameter construct a circle and at it s centre
erect a perpendicular to EF to intersect the circle at points K and K' . Join B
to K and extend B[\ to intersect the circle at a point D. Draw the straig ht
lines DE and DF and through the point B the straight lines BA and BC per­
pendicular to them.- ABeD is the required square. Using the point K' we
obtlliti another solutlon. The problem always has two solutions except the case
when the point B lies On the circle with diameter EF. In this latt er case the
problem has no solutions if the point B does not coincide with one of the
points K and K'

FIG. 52 FIG. 53

33~. _First solution. Draw AD II MB to intersect the extension of Be at a
polnt D (Fig. 53). On the line -segrnent CD find a point N such that

CD .
CN=k.

r The st r~~ht line MN is the desired on e since the area S ..HJAI is equa l ~Q
th~ -·..area SbRM lind hence SAHC=SDM C, and by construction we have
SDMC ... /fSNMc,

Second solution is obtained by using a point N1 such that

CD
N1U = k.

This yields

Taking into consideration the possibility of an analogous construction based
on the vertex C (instead of A). we can easily verify that for k '=/- 2 the problem
always has two solutions and for k=2 only one.

336. To make the construction it is sufficient to determine the alti tude
h = KL of the rectangle.
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FIG. 54

~et KLM N be the required rectangle, and KN lie on AC (Fig. 54). If the
vert~x 8 is made to move in a straight line parallel to the base AC while the
altitude h remains unchanged, the lengths of the base and of the diagonals of
the 'rect angle also remain unchanged (because LM and AC are in the ratio of
BH -h to BH). Consequently, for determining h the given triangle ABC can be
replaced by any other triangle having the same base AC and the same alti­

'11 tude BH. It is most convenient to take a triangle
8 :-'. ' with right base angle. Hence, we perform the Iol-

l, //: lowing construction. Through 8 draw a straight
" " I line parallel to AC, and through C a straight

L / 1 :. line perpendicular to AC. Using a compass
" ':', I I with opening equal to the length d of the given

d ,~ i diagonal, layoff on the hypotenuse AB. a
" I. line segment ALL from the vertex of the right

~--+;-----f;---~-~ angle C. Through the point Ll draw a straight
A line parallel to AC; the points Land M at which

it intersects the sides AB and BC are the ver­
tices of the required rectangle . Depending on

whether the altitude of the triangle ABlC drawn from C is less than, equal to
or greater than the given value of d, the problem has two, one or no solutions.

337. Inscribe the given circle in the given angle. Layoff on the sides of the
angle line segments AC = 8D of length equal to that of the given side of the triangle
from the points of tangency A and B in the direction from the vertex S (Fig. 55).

Inscribe in the given angle another circle so that it is tangent to the sides
of the angle at points C and D. Draw a common tangent EF to the constructed
circles. We shall prove that !J. SEF thus obtained is the required triangle. For

FIG. 55 FIG. 56

this purpose it is sufficient to prove that AC = FE. It is easily seen that the
perimeter of the triangle SEF is equal to 2SC. On the other hand, it is obviously
equal to 2 (SA +EL +LF). Thus, we have

SC=SA +EL+LF, SA +AC=SA+EF, i. e. AC=EF.

which is what we set out to prove.
It is clear, that the problem has two solutions if the circles do not intersect,

and only one if they are tangent. The problem has no solution if the circles
intersect. Let a be the given angle, rand R the radii of the circles and a the
given side of the triangle. The distance between the centres of the circles is

equal to _a_. For the problem to be solvable it is necessary that
a

cos 2'

R+r~_a_.
a

cos 2'
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But we have
ex

R =r +a t an 2
and, consequently, there mu st be

ex a
2r+a tan2~ --ex- '

cos 2"
th at is

223

1- si n '::'
2r 2
a~ a

cosT

338. Describe a circle with centre a t the point B tangent to the straight
lin e CD (Fig. 56). From th e point A (if A and B lie on different sides from CD)
or from the point A' whi ch is the reflecti on of A through CD (if A an d B are
on one side of CD) draw the t angent lin e AK or A' K to the constructed circle.
The point M of intersection of AK (or A'K) a nd CD is the sough t-for point.
Indeed, we have

L. AMC= L. KMD=2 L. BMD.

3. Proof Problems
339. Let BO be a median in the tri angle ABC . Construct the par all elogram

ABCD (Fig. 57). From the triangle BCD we have 2BO < 8C +CD, and since
CD= AB, we can write

BO < AB +BC
2

8

If -, 0 \ , e
' .... \ I

" \ I

< , " /-, \ I

< , \ /
.... \ I

'-v
D

FIG. 57

8

A'<-----'--~!-----~

FIG. 58

From 6. AOB and 6. BOC we have

BO+ AC > AB
2

and

AC
BO+ 2 > BC.
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Add ing together these inequali ties we obtain

BO AB+8C AC
> 2 2 .

340. Let D be the point of intersect ion of t he a ltitudes (the orthocentre),
Q be the centre of the circumscri bed circle, E an d f the midpoin ts of the sides BC
and AC (Fig . 58). The triangles ADB and EOF are similar beca use L ABD =
= L OFE and L BAD = L OEF (as ang les with parallel sides). Hence,

OE EF I
A15 = AB=2"

. 341. See the solu tion of Problem 301.

342. Let a, b and e be the lengt hs of t he sides of the tr iangle opposite the
ane1es A, 8 and C, respectively. We shall prove that the leug th ,t:.t of ~he bisector
of the angle A Is expr essed by the formula

A
2bc COs 2'

lA = b+c

A
2 COs 2"
I I'
7+7

(1)

(2)

Ind eed, the area of the tri angle ABe is

SABC=~. be sin A = ~ cLA sin 1+; blA sin : •

wh ich results in formula ( I ). Similarly, for the bisector LB of the angle B we
obtain the formula

B
2 cos 2

Ln I I'

a-+c
. A n B n

Let a > b; then L A> t. B, and since we have 0 < 2 < 2 and 0 < 2' < "2

this implies cos : < cos -; . Th us, the numerator of fract ion (I) is less than

that of fr llct i~n (2). Furthermore , the denom inator -r++ of fraction (I ) is

, . I I I I
greater than the denominat or - +- of fraction (2) because T > - . Consequently,a e y a
LA < lB'

343. Let L CPQ =a. and L PQC=~ (Fig. 59). 13y the law of slnes we have

RB BP
sin a. sin(a. +~)'

AQ
sin (a.+ ~)

AR
sin fI .

Multipl ying these equali ties termwi se we obtain

RB .PC ·QA = PB :QC · R A.
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344. Let L.AKB<=a, t. AFB=ll ijIl6 {. ACB=1' (Pi~. 60). We havea,';" '~ •

, I " I
indsince tan~=2"" tan 'I' ="3 we canwrite

..!...+..!...
2 3

tan (~+'I')= ' I ' I I.
1- 2 ' 3

n , ' n n n
t follows th at ~+'I' =4 and d.+~+'1'=4+4=2'

B

A

.",.. FiG. 59

Q

8~, I

" ~

A~C

FlO , 69

345. We shall use the converse of the Pythagorean theorem: if the sum of
he squares of two sides of a triangle is equal to the square of th e third side
bis trialJ,gle j~ right.

In our case the relationship

(a+ bf+b2 <;;= (j; + h)2

5 fulfilled because it is e quiva len t t9 jh~ .o~ y io'<ls eq1,l;aHty ab=oh. ...
346. First solution. Draw A~ $0 that t. EAC=20° and BD..L AE ~Fig. 61).

iince b. CAE is similar to b. ABC, we have " "

C~ a
--a=/i

., ,,2 ~2
vhich yields CE ='0' and Be= b-b '

On the other hand, L BA0 = 60° andjherelore

BD=Yl b.'AD=; .
• " .,., . , iJ

~l:It AE*a .and ~ceE.o="Z:~a. It foUaws th<lt

BE - .. /( ..b 2)2+ 3b2- JI '2"'":" " T'

", a2 y( be" '), i , '3 2b--= --a +- b ,t> ' 2 ' ,, 4

1-323
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. Squaring both members and simplifying the obtained equality, we lind that
this rel ation ship is equivalent fo the one to be proved.

Second solution. We have a=2b sin 10°, and therefore the relationship to be
proved is equivalent to

that is
sin 30°=3 sin 10°-4 sins 10°.

The latter equality holds by virtue of the general formula

sin 3cx.=3 sin cx.- 4.sin 3 a:.

8

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

---];

FIG. 61

8

AL-~---+,----~

FIG. 62

347. In any triangle, the greater angle is opposite the greater side . There­
fore, if

AC < 2BM,

in D. ABC (Fig . 62) which is equivalent to the two inequalities

AM < BM, MC< BM ,
then

L ABM < L BAM, L MBC < L BCM.

Adding these inequalities we obtain

L ABC < L BAM+ L BCM=1fI-L ABC,

. :t
whence 2 L ABC <:t or L ABC < 2'

The cases A C~ 2B Mare consldered analogously.

348. First solution. Let QQ' II AC and N be the point of intersection of AQ'
and QC (Fig. 63). The angles whose values are implied by the conditions of
the problem are indicated in the figure by continuous arcs.

Let us show that
QP..L AQ' . (I)

Indeed, we have NC=AC; but AC=PC since ACP is an isosceles triangle.
Therefore, NC=PC and, consequently, NCP is also an isosceles triangle and
hence

L CNP= L NPC = 80°.
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Now it readily follows that L Q'NP= 180°_60°_80°=40°, and since L NQ'P =
= 40°, the triangles QQ'P and QNP are congruent which implies (I) . Now it
is clear that L Q'PQ=50° and, consequently, L QPA = 180°_50°_50°=80°.

Second solution (see Fig . 64). It is easily seen that the angle P is equal to
80° if and only if ~ A BP is similar to ~ PCQ (the angl es whose values are
directly implied by the conditions of the problem ere indicated in the figure

8

FIG. 63

8

FIG. 64

by continuous arcs). Let us prove that these triangles are in fact similar. The
angles ABP and PCQ being equal, it is sufficient to establish the relation

AB PB
CQ=CP' (1)

Put A8=1; then from the isosceles triangle CQ8 we find

I
CQ= 2 cos 20°'

On the other hand, since PC= AC, we have

PC=2l sin 10°, and, besides, BP=1-2l sin 10°,

Substituting these expressions into (I) we get the equivalent equality

4sin 10°cos200=1-2sin 10°. (2)

The validity of (2) is readily revealed by noting that

sin 100eos 200 sin (IOO+200)tsln (10°_20°) i--+ sin 10°.

8*
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34~. Let. 4 A8Gbe given (Fig. 65). Lay olf AO=t 011 the~lcl~!iQ1't 'Of
the side AC. From the eI:julllHy (I)==bI+bc it f<lHow§ lllllt '-: ; .

a .o+ c
"t=a'

which mean s that the triangles CAB and c13D are similar, a-id L. A = L CBb.
Furthermore, L B = L BDA = L DBA. Consequently. LA = L B+ L DBA =
=2L B.

~
J) CAb C

FIG. 65

350. Let OC be a med ian in D. OAB l . Let a point D lie on the extension
of OC so that OC= CD (see Fig . 66). We shall show that D. AOD= D. OAtB.
Indeed, AO = OAt by construction. Furthermore, sin~ AGBtD is ..a p~rallelogram,
we have AD=OBt=OB. Lastly, L OAD =L AtOY~ause the sides of these
angles are mutually perp&dicular: AO 1. OAt andOB1 .l OB by construction,
and AD II OBt. Consequently , D. AOD=D. OAlB, lind two sides of one of them
are respectively perpendicular to two sides of the Other. Therefore their third
sides are a lso perpendicular, i. e. OD1. AtB.

A

FIG. 66 FIG. 67

351. Let ABC be an acute triangle, and AD, BE and CF be its altitudes
which intersect at a point 0 (Fig. 67). Each of the quadrtlaterals BDOF, CB0D.
and AFOE is ipscr ibed in .a circle . According to the theorem on the product of
a secant of a cftCllfby -itsouter portion. we have

'A D. AQ==s AB.· AF = AC · AEi ' BE ·8 0 =< BC · BD"""BA·BF,
CF·CO=CA ·CE=CB ·CD.

- . ~ .
Adding together these equa lities we obtain

2 (AD ·AO+BE·BO+CF·CO)=AB.AF+ 8C·BD+CA-CE+ AC· AE +
+BA.BF+CB .CD=AB(Af+BF)+13C(BD+CD)+CA (CE+AE)=

- =(AB)2+(BC)2+(CA)2,
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which is what we set out to prove. In the case 01 an obtuse triangle the product
corresponding to the obtuse angle shoul d be taken with the minus sign.

352. By the hypothesis, b-a = c-b, i. e. 0+ c= 2b. To compute the product
Rr let us use the formulas expressing the area S of a triangle in terms 01 the

radii of its circumscribed or inscribed circle and its side. As is known, S={-bC

sin A, and according to the law of sines we have sin A = 2~ which implies

S - abc
- 4R'

a+b+cOn the other hand, S = rp, where p = --2- . Equating both expressions we

obtain
abe

rR=-.
4p

Under the conditions 01 the problem we have

a+b+c 3
p= 2 2 b.

(I)

Substituting this value in (I) we obtain

6rR=ac.

353. Let z be the length of .the bisector, and m and n the lengths 01' the
line segments into which the base of the triangle is divided by the bisector

J)

FIG. 68

Al--.-----~---"C

FIG. 69

(Fig. 68). By the law 01 cosines we have

a~=z~+m2-2mzcos ct

and
b2 = Z2+ n2+ 2nz cos ct.

Multiplying the first equality by n and the second one by m, and adding them,
we obtain

na2+mb'J -= (m+n) (Z2 +mn). (1)
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Consequently,

By virtue of the relation .!!... =!!.-, we have
m n

mb na
na2+rnb2=na-+mb -=ah(m+n).n m

Substituting this expression into (1) we obtain the required equation ab=z2+mn.
If a = band m = n, the equality thus proved expresses the Pythagorean

theorem: a2 = z2+ m2•

354. By the hypothesis, BD = EC (Fig. 69). If M is the point of intersection
of BC and DE, then for the triangles BDM and ECM we obtain

BD DM EC ME
sin lp= sin B' sin lp= sin C'

whence it follows that

But in 6. ABC we have
sin B AC
sinC=AB"

DM AC
ME= AB'

355. Let BD, BE and BF be, respectively, an altitude, bisector and median
in 6. ABC . Suppose that AB < BC. Then

LA> L C, L CBD > L Al,3D,
which implies

L CBD > ~ (L ABD+L CBD)= ~ L B,

i. e. L CBD > L CBE. Consequently, the bisector BE passes inside L CBD,
and the point E lies between D and C.

AE AB
Furthermore, we have EC= BC < 1 and AE < EC whence

AE < t(AE+EC) = ; AC,

i, e. AE < AF. Hence, the point F lies between E and C. Thus, the point E
lies between D and F which is what we set out to prove.

366. Consider a triangle ABC. Let BD be a bisector, BM a median and BN
the straight line which is the reflection of BM through BD (Fig. 70). If SABN
and 5MBC are the areas of the corresponding triangles, then

2S ABN = xhB=nc sin L ABN
and

2SM BC= xt Y hB=ma sin L MBC,

where hB is the altitude dropped from the vertex B onto AC. Since L ABN =
= L MBC, this implies

x+y nc
X=--"-.

2 ma
(1)
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Simil arly,
2SNBc =yhn=na sin L NBC

and

2SABM= xt
y

hB=mc sin L ABM.

Since L NBC = L ABM, it follows that

x+y na
y=-2-' me'

Dividing (1) by (2) termwise we obtain the required proportion

231

(2)

X c2

y=a2 '

357. The straight lines AP, BQ and CR divide the triangle ABC into six
triangles: b. AOR, b. ROB, b. BOP, 6. POC, b. COQ and b. QOA (Fig. 71) .

A
6

FIG. 70 FIG. 71

Applying the law of sines to them we obtain

AR AO AO AQ
sin q> = sin y , sin ~ = sin 1jJ ,

BO BR BP BO
sin y = sin (q>+1jJ) , sin 1jJ = sin ai'

CQ CO CO CP
sin (q>+'I» sin fS' sin a = sin q>.

Multiplying all these equalities termwise we lind

AR ·BP ·CQ =BR ·AQ ·CP.

358. Let K and 0 be, respectively, the centres of the circumscribed and
inscribed circles of the triangle ABC, and D the midpoint of the arc AC (see
Fig. 72). Each of the angles OAD and AOD is equal to half the sum of the
vertex angles at A and B of the triangle ABC. It follows that OD= AD .

By the theorem on chords intersecting inside a circle, we have

MO ·ON=BO ·OD.

Furthermore, if OE 1.. AB and FD is a diameter, the triangles BOE and FDA
are similar and therefore BO:OE=FD :AD which implies BO.AD=OE-FD,
i, e. BO·OD=OE ·FD because AD=OD. Hence,

MO·ON=OE ·FD.
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Substituting MO=R+I. ON=R-l. OE=r and FD=2R in tile above
equality we arrive at the requtred result

RZ-lz=2Rr.
359. First solution. Let ABC be the givel1 {riangle. KI the inscribed circle

of radius rand Kz the circumscribed circle of radius R. Let us con struct an
auxili ary triangle AIBICI so that its sides are parallel to the sides of f::,. ABC
and pass through its vertices (Fig. 73' . Draw tangent lines to the circle Kz
paralIel to the sides of 6. AIBICI• a,pplying the following rule: the tangent line
AzBz parallel to the side AIB I is tangent to Kz at a point belonging to the
same arc A'B on which the vertex C lies and so on. The segments of these
tangents form a trian,gle A.~~.

8

FIG. 72 FIG. 73

Then, 6. AlBIC! lies inside ~ AzBzCz• and the two triangles are similar.
Therefore the radios R' of the inscribed circle of ~ AIBICI is not greater than
the radius R of the inscribed circle Kz of 6. A2BzCz• i. e. R'';;;;;; R. On the other
hand. the radii of the inscribed circles of the similar triangles AIBICl and AOC
are in the ratio of the corresponding sides of these triangles. i. e. AA;· ~·2.
Thus, R' = 2r. Comparing this equality with the inequality R'.;;;; R we finally
obtain

2ro:;;;;R .

Second solution Let, .and R be the radii of the inscribed and circumscribed

circles. S be the area (If the giv.en triangle and p=a+~+c' where a. band c

are the sides. Then

2Rsin A s.lnBsinC
R ~sjn A + sin B+ s.ipC) •

But

.' A . B+ I C 2 i A+B A-B+2· A+B A+B
SIO + Sin S n = '6:11-2- cos -r SI11-2- cos -~-=

. A+B A B ABC
= 4sIfi -2- cos 2 cos 2=4 COS "2 cos 2 COS "2 •

r 4.A.f3 .C
"R= slOT sm 2 sIOT'
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The problem is thus reduced to proving the inequality

. A I 8 . C I
Inn-'2Ii n '2 sm 2'" ";;"8

233

(see Problem 644).
Third solution . From the formula [2 =R2-2Rr proved in the foregoing

problem it follows that R2-2Rr~0 whence we obtain R~2t.

360. Let a and b be the lengths of the legs and c the leflgth of th e hypote­
nuse. Comparing two expressions for the area of a triangle, we get

I 1
S=2' (a+b+c) r=2'hc,

which implies

(I)

(I)

Since a+b > c we have
r c
h < c+ c=0.5.

Furthermore, by virtue of the relationshipc2 = a2 +b2 , the Inequality a2 +b2~2ab

is equivalent to the inequality 2c2~(a+b)2. i.e . a+b .,;;;; c¥2. Therefore,

r c I ,r-
7i~c¥2+c=¥2+1=r2-1 > 0.4.

361. Let A, 8 and C be the angles of an acute triangle , and a, band c be
the sides opposite them. Put P=a+b+c. The required relationship follows
from the equalities

and

~+~~+~+~~+~+~~=PR 00
because, adding them together. We obtain

ka +kb+ke = r +R.

Equality (I) holds because its left and right members are equal to the doubl ed
area of the triangle. To prove (2) let us note that

ka=RcosA , kb=Rcos8, ke =RcosC, (3)
and that

b cos C+c cos 8 = a,
c cos A +a cos C = b.

a cos 8 + b cos A = c.

whence , by termwise addition, we obtain the equality '

(b-t..c) cos A + (c+ a) cos 8 -t-(a+b) cos C = P.

Multiplying th e latter relation by R and making use of (3) we obt ain the result
coinciding with (2).

362. Let A282 , 8 2CZ and C2A~ be the midlines in D. A8C and A 3 , 8 s and Cs
the midpoints of the segments AA 1• 881, CC1 (Pig . 74). The points A 3 , 8 s. and
Ct are on the midlines of A ABC but not at their end points because, if other-
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wise, at least one of the points AI ' BI and CI coincid es with a vertex of D. ABC.
Since any straight line not pass-ing through the vert ices of the triangle A zB zCz
does not intersect all its sides simu ltaneously, the points As, B3 and Cs are not
in a straight line.

8

FIG. 74

6

FIG. 75

363. If hi is the altitude of D. DON, hR the altitude of D. ABC, and SAnC
and SABC are the areas of th e corresponding triangles, then (see Fig. 75) we
have

and , simi lar ly,
SAaR BE ScaR CN
SABC = BC ' SABC =CA .

Adding together these equali ties we ob tain

AF +BE+CN SAOC+SBOC +SAOB SABC =I
AB BC CA SABC SABC'

364. (I) Consider t he inscr-ibed circle K' of the square. Let its rad ius be r',
Draw the tan gent lines A 'B ' II AB and B 'C ' IIBC to the circle K' (Fig. 76).

8 ~

FIG . 76 FIG. 77

It Is clear that D. A'B'C' lies inside D. ABC, and therefore A 'C ' < AC. Since
, A'C'

the tr iangles A 'B'C' and ABC are similar. we have 7= AC < I which imp-

lies x =2,' < 2,.
(2) Consider the circumscribed circle W of the square. Let its radius be r" ,

Draw the tan gent lines A"B" II AB, B"C" !lBC and A"C" II AC to the circle K"
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(Fig. n) . As is clear, 6. ABC lies inside 6. A"B"C", and therefore A"C" > AC.
" A"C"

. Since 6. A"B"C" is similar to ABC we have 7= AC > I, whence It follows

that

x= 'Vir" > 'V2r.
365. Let the point M be the point of intersection of the altitudes AA I ,

BB I and CCI in 6. ABC, P be the centre of the circumscribed circle of radius
R, C2 , Az and B 2 the midpoints of the sides AB, BC and AC, OM=OP,
ONl.AC and As, Ba and Cs the midpoints of AM, BM and CM (Fig. 78). Let

B

'-"~~+------::::s...t:

FIG,78 FIG. 79

us prove that the point 0 is equidistant from Ai, B, and C, where i = I, 2, 3.
Since ON is the midline of the trapezoid MBIB 2P, we have OBI = OB2 • From
the similarity of the triangles AMB and PAaB2 we conclude that BM = 2PB2 ,

and therefore B aM =PB2 • From the parallelogram MBaPBa we have 08a= OB 2 •

But for OBa as midline of the triangle PMB we have

1 R
OBa= 2' BP=2

and, hence,
R

OBa=OB2=OBl =2'

We then prove in [ust the same way that
R

OAI =OAa=OAa=OCI =OCa=OCa= 2 '

366, In 6. ABC let AA j , BBI and CC I be the altitudes whose point of in­
tersection is 0, ClM II BINlBC, AlP II c,Q..LAC and BlR II AlS.lAB (Fig. 79).

(I) Let us prove that SM II AC. The triangles BAlA and BClC are similar
as right triangles with a common acute angle ABC. Therefore,

BA I BA
BC

l
=BC'

Hence, 6. AIBC~ is similar to 6. ABC and L BAlCl = L BAC. In 6. AIBC)
the line segments AIS and ClM are altitudes. Therefore , repeating the above
argument we can assert that L BSM = L BAICI· Consequently, L BSM = L BAC
and SM II AC. We then similarly prove that PN II AB and RQ II BC.

(2) To prove that the vertices of the hexagon MNPQRS lie in a circle it is
sufficient to show that any four consecutive vertices of the hexagon are in a
circle. This foIJows from the fact that through three points not in a straight
line it is possible to draw only one circle. The sets of four consecutive vertices
of the hexagon can be classified into the foIJowing two types: those in which
the intermediate points are on different sides of 6. ABC (i.e. RSMN, MNPQ
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and PQR8) and those in which the intermediate 'points are on one side of fJ. ABC
(l.e. NPQR, QRSM and SMNP).

Consider the quadruples RSMN and NPQR(which belong to different types).
From the obvious proportion

8CI 80 8A I
8R = lii3;= 8N

it follows that NR 11 A~CI' Therefore.

t. MNR= t. BAICi = L. BliC=;BSM,

which means that t. MNR+t. MSR=1t and, consequently, the points R. S.
M and N lie in one circle. Furthermore, t. PNR+ t. PQR=;=1t-(t. PNC +
+ t. BNR) + n - t. AQR=2n~(t.ABC+ t. BAC+ t. ACB)=n, whence it
lollows that the points N, P, Q and R also lie in a circle. The proof for the
rest of the quadruples is carried out in a similar way.

367. Let AI' 13 1 and C\ be the points of tangency of the inscribed circle
and the sides of fJ. ABC, and D the centre of the inscribed circle (Fig. 80).
The segments of the tangent lines drawn from one point to a circle being equal,
we have

CAI=CBI, ' BA1=8CI • A8 1=ACI·
Furthermore,

Consequentl y,

AC+BC=CAI +AIB+CBI+BIA-BID+AID+BCI + ACI_2r+2R,

where rand Rare the radii of the inscribed and circumscribed circles.
c

Lfh ·~A C B A bE F C
I

FIG. 80 FIG . 81

368. Let in fJ. ABC the angle ABC be right, BD be the altitude , BE the
bisector and BF the median (Fig. 81). Since BF=;=FC. we have t. CBf=-: t. ACB.
But

1t
t. ABD=2- t. BAD= c ACB.

Hence, t. ABD = t. CBP and t. DBE = t. ABE - t. ABD = t. CBE - t. CBP=
= t. FBE, which is what we set out to prove.

369. The symmetry of ABC and AIBIC I about the centre 0 of the inscribed
circle implies that the corresponding points of fJ. ABC and fJ. AIBICl lie on a
straight line passing through 0 and are equidistant from this point (Pig. 82).
In particular. OC=;=.OClt 08<=081 and BCBICI is a parallelogram; .henee,
BC=BICI. Analogously. AC=AIC\> AB=AIBI and /::" ABC=/::" AIBICI • Con­
sidering the parallelograms ABAIBI. BDBID!> ACAJCI and ECEIC\ we conclude
that AD= A\DI, AE = AIEl' and, since t. A = t. Ai> we see that fJ. ADE=
= fJ.A1DJE I · Similarly, fJ.BJEKI = fJ. BEIK and fJ.DCIK = fJ.D\CK I'

Let us denote by S the area of fJ. ABC, by $1 the area of fJ. AJ)E, by S,
the area of fJ.DCIK, by S8 the area offJ.KBEI.PutA,8;=c.8C=a and AC=b,
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and let hA' h!l a.. nd he ~e the l!ltit\J~ drawft from Hje ' vertices If, B and C;,
resPe9!ive!y. Then we have

ahA Mn ehe
S =pr=T=~F=T '

Let AM '(AN ) be the altitude in /::;. ADE (in /::;. ABC). Then

8 _ DE·AM
1- 2

The similarity of the triangles ABC and ADE implies that

"'E_ a(hA-2')
'-' . - h

A
•

Hence,

Analogously,

(
2pr )2a £1-2,

2hA

, 2 (p-C)2 ,2 (p-b)2
52 S ,Sa 5 .

Using Heron 's formula we obtain

5
28 25252_ , 12 (p_a)4 (p-b)4 (p -C)~ S2 Si

I 2 3 - 5 6 ,12 fii= ,16 .

AI

FIG . 82

If

FIG. 83

3'10. From Fig. 83 we see that

MA 2r=M02+ A02~2MO·AOcos a;

(I)

(I)

MC2=M02+ C02+ 2MO, CO C06 0; .

We have AO= CO, and therefore adding these equ alities we get

MA2+MC2=2M02+2A02.

MB2 + MD2=2M02+2B02.
Consequently, the difference

(MA2+ MC~)...-(MB2+MD2)=2 (A02-BOZ)

is independent of the position of point M.
371. Let 0 be the point of intersection of the straight lines AA1 and CCI

(see Fig . 84). The problem reduces to proving that

L AOB+ L. AOBI = 1809 •

Similarly,
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(J

FIG. 85

1f---""t-~----:::i~,C

8,

FIG. 84

Note that b. C1BC= b. ABA I because CIB = AB, BC =BAI and L CIBC=60o+
+ L. ABC = L. ABAI· Therefore L. OCIB= L. OAB, and OACIB is an inscribed
quadrilateral of a circle. Hence , t... AOB = 120°. We then analogously show that
BOC= 120°. But this implies that t... AOC = 120°, and it follows that AOCB I
is an inscribed quadrilateral of a circle. Hence it follows that L. AOBI = t... ACB I =
= 60°. Therefore equality (I) holds.

AI

and

372. From Fig. 85 we have

t... PBR= L. ABC

PB BR
AB= BC'

Therefore b. PBR is similar to b. ABC and, analogously, b. QRC is similar
to b. ABC. Hence we obtain

t... APR= t... APB- t... BPR = t... APB- t... BAC ,
and thus,

t... APR+L. PAQ=t... APB+2 L. PAB=n,

that is PR II AQ . We similarly prove that QR II AP.

373. Let hB, he and hD be respectively, t he distances from th e vertices B
C and D of the parallelogram to the straight line AO (Fig. 86). Then the fol­

lowing property takes place: the greatest of the
three distances is eq ual to the sum of 'the other
two. For instance, if AO intersects the side BC
(as in Fig. 86), then, drawing BE II AO and
CEJ..AO we conclude, by the congruence of
the triangles BEC and AD'D, that

hD=hn+he·
Analogously, if AO intersects the side CD, then
hB=hc +hD and if AO does not intersect the
sides BC and CD, then he =hB+hD' From this
property , for the case shown in Fig. 86, we

FIG. 86 immediately receive the equality of the areas of
the triangles:

SAoe=SAoD-SAOB'
Generally, it is obvious, that we can write the formula

SAoc=ISAoD ± SAOBI,
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where the plus sign is taken if the points Band D lie on one side of AO and
the minus sign if these points are on opposite sides of the line.

The same argument can be repeated for the straight line CO which leads to
the formula .

SAOC= I SCOD ± SCOB I.
where the rule of choosing the sign is obtained from the above by replacing the
straight fine AO by CO.

N

~----7----""b

FIG. 87

aA E I' J)

FIG. 88

Consequently,

FIG. 90

374. Extend the sides AB and CD of the trapezoid ABCD to obtain the
triangle AMB and join M with the midpoint F of the base AD (Fig. 87). Then

ME =BC MF=AD
2 • 2 •

EF=AD-BC.
2

375. Let ABCD be the given trapezoid with bases AD and BC and let BEl.AD
CFl.AD (Fig. 88). We have

AC2-AFZ =CD2-FD2,
BD2_ED2 = AB2- AE2.

Adding these equalities we get

AC2+BD2= AB2+CD2 +AF2-FD2+ED2-AE2=
= AB2+CD2+ AD (AF-FD+ ED-AE) =

= AB~+CJ)2+AD·2EF=AB2+CD2+2AD ·BC.

376. Let ABCD be the given trapezoid with parallel sides AD and BC, E
being the midpoint of BC and F the midpoint of AD. Denote by a the point

A~b L_'_-_-_----~-~---~--C---~----"'~-~--~~:::::~~t
I' A

FIG. 89

of intersection of the diagonals (Fig. 89). The triangles AOF and CaE are si­
milar (this is implied by the similarity of the triangles AOD and COB). There­
fore L. AOF = L. CaE, i.e. EOF is a straight line.

377. Let ABCD be the given quadrilateral , M and N being the midpoints
of the sides AB and CD, respectively (see Fig. 90). Turn the quadrilateral
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AMND through 1800 in its plane about the verwx N. Tftetl the "ert~x D
coincides with C and the vertices M and A occupy th. positions M' and A',
respectively. Furthermore, the points M, Nand M' lie in 3 straight Ji~ lind,
besides , M'A ' II MB and M'A'=MB. Therefore MBA'M' is a par~lI.elogr&.R'I,

and A'B =M'M=2MN. By tM hypothesis we have BC+AD=2MN, and
therefore BC+CA'=A'B. Consequently, the point C lies on the line segment
,A'B because, if otherwise, BC+CA' >A'B in the b:.. BeA'. It roClows t!tst
BC II MN II AD, i.e. ABCD is a trapezoid.

378. Let us express the area of a quadrilateral in terms of the diagonals
and the angle between them . .Let 0 be the point of intersection of the diago­
nals of a quadrilateral ABCD shown in Fig. 91, and L. ~OA = cx.. Then

S ABeD= SJt~)R+SCOD+ SAOD+S80C =

=..!.. AO·OB.sln cx.+..!.. OC·OiJ ·sin cx.+-!..eo.oc.e« cx.+-!.. AO·OD·sincx.=2., . 2 2 2 .

=; BD·AC·sin cx..

This formula irt,1plies validity Of the assertion to be proved.

8

A

FIG . 91

D

' , /.-.

FIG. 92

379. Let M be an Interior point of a convex polygon, and AB its side
whose distance from M is the least. We shan prove that the foot P of the
perpendicular drawn from M to As lies on AB but not on iii extension.
(Fig. 92). Indeed, if P lies on the; extension of AB, theil MP intersects a side'
I of the polygon at a point Q. and, since the polygon is convex, MQ < MP.
But tne .disttlnce./jM from M tol is less than M'Q. and. conseql:leU'11y, less
than MP which contradicts the choice of the side All .

380. ' Let AAt,BBtt CCi and DDI be the bisectors of the interior adgles of
a parallelogram ABCl), and let P,QRS be the quadrilateral formed by their
intersection (Fig. 93Y; Obviously, BBlll DDI and AA~ II CCI' Furtherrnore,

1 . h i" I
L APB =1t-(L BAP+ L. ABP)=1t -"2 (L BAD+ L ABC)=1t -2'1t =2'1t,

wltich ~alls that PQRS is II: rectangle. The trlangleS BABt and CDCi ar"
isosceles because the bisectors of their vertex angles i1r~ perpendicular to their
bases. Therefore BP =PB1 and DlR==RD. and Mrtoe PRnA·D. Thus, PRDB)
is a parallelogram , and we have

PI? == BID ==AD~ AB 1 => AD= AB.
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H..-----,

S8LLet 01' 02. Os and-0. be the ~~nttes at the squsres con"truc'ted on the
~des of Ii perallelogram ABeD (Fig. 94). We have f:!. Or BOt. ~ fj. OsCOz since
. n n
0IB=OSC, BOS =C02 and L 0I B03 = L. MBN+2"= L. DCB+"2= L. 0sCOs·

Hence, 0 102 = 0sOs and L 0 10sOs =
= L 010SB + L BOsC ~ L 0S02C =

n= LBOsC=T '

FIG. 93 f'IG. 94

We .similarly prove that 0sOs=OaO.==O{OI and
n

L 0sOsO.= L 01l0•0r= L 0.01 02=Z'

Consequently, 01020S04 is a square.
382, Let AP, BQ. CR and OS be the bisectors of the interior angles of the

quadrllateral ABGD (Fig.. 95). Let A, B, C and D be the magnitudes of these
angles . then c

I 1/ A,S, D=n ....- A~- D
c: 2 2'

I 1L BQC=n-2"B-2G.

FIG. 95 FIG. 96

Addi~g together these equalities we obtain
. I ( ' . C ' D' 1L ASD+ L BQG=21t- Z ' A+B+ . + )=2n-Z2n=il:.

Hence, the points P, Q ; Rand S lie irj II circle .
383. Let A and B be tM f:!olnts (jf tangency, M an arbitrary point of the

circle, and MN ..L AB, MD.l AC, MEl. Be (see Fig. 96). Let us rrove that



the triangles DMN and N ME are similar. To this end we note that about the
quadrilaterals ADMN and NMEB it is possible to circumscribe circles because

1t 1t
L. MN A+ L. ADM =2"+2"=n
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and
n 1t

L. MEB+ L. BNM=2"+2"=n.

Therefore, L. MND= L. MAD and L. MEN = L. MBN. But L. MAD =
= L. MBN, because each of these angles is measured by half the arc AM.
Thus, L. MND= L. MEN. We similarly establish the equality L. NDM = L. ENM.

The similarity of the triangles DMN and N ME Implies the required rela­
tionship

384. Let ABC be an inscribed triangle 01 a circle. Denote by D an arbitrary
point of the circle, and by L, M and N the feet of the perpendiculars
(Fig. 97) . Join the point M to N and the point N to L. We shall prove that
the angles ANM and LNC are equal.

First note that

(2)L. LNC= L. LDC.

L. ANM=L. ADM, (I)

because about the quadrilateral MAND it is possible to circumscribe a circle.
By the same reason,

On the other hand, we have

FIG. 98
p

FIG. 97

L. ADC= L. MDL. (3)
Indeed, L. ADC+L. B= 1800 because the sum of these angles can be thought
of as an angle inscribed in the circle subtended by the whole circumference of
the circle. At the same time L. MDL+ L. B = 1800 because about the quadrile­
teral MBLD it is possible to circumscribe 'a circle. Consequently, equality (3)
holds true. As is clear Irom the figure, in this case we have

L. LDC=L. ADM,

and then (I) and (2) imply the validity of the required equality L ANM = L LNC.
B

385. Let us prove that every two of the three line segments 0IA I, 02A2 and
0 sAs shown in Fig. 98 intersect at their midpoints. This will imply that all
the three line segments intersect in one point. For example, we shall prove
that the line segments 0IA I and 02A2 are bisected by the point B of their
intersection. Since the circles are equal, we conclude that 02AIOSO and
0lAzOsO are rhombuses. It follows that the line segments OzAI , OOs and 0lA z
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are parallel and equal. Therefore, O\AaAIOa is a parallelogram and its diago ­
nals 0IAI and 0aA2 are bisected at the point of intersection.

386. Let 0 be the centre of the smaller circle (Fig. 99). Then AI( IIoe
since AI( 1.BK, and oe ..LBI(. Furthermore, OA =Oe. Hence,

1.KAC = 1. ACO = 1. CAO.

'----2q---~

Af"----;!--l---=-i'

FIG. 99 FIG. 100

Consequen tI v.

387. As is clear from Fig. 100,

R-r R
-r-=(j"'

which is equivalent to the equality

I I I
,=R"+a-'

388. There are three possible cases here. They are shown in Fig. 101,
Tt

a, b and c. In the first case the fixed tangents are par all el, L COD = ex +~ = 2"
and therefore CE ,ED=OE2, i.e. AC ·BD=r2 where r is radius of the circl e.
In the second and third cases, using the notation indicated in the figure, we

find that ex+ ~ ± y=; , i.e. a. ± y= ~ -~, whence it follows that t::. AOC is

similar to t::. BDO and therefore

AC ·BD = AQI1 = r2 •

389. Let M be the point of intersection of mutually perpendicular chords
AB and CD (Fig. 102). Draw AK II CD, then BK is a diameter, AI( < CD and

BK 2=AB2+AI(2 < AB2+CD2.

Furthermore, KD= AC and hence

I(B 2= BD2+KD2= BM 2+ DM 2+ AM2+CM2.

390. Let AC =CD=DB (Fig. 103). Draw 0,£ 1. AB . Then OE is an altitu­
de and oe is a median in t::. AOD. The bisector of 1. AOD lying between the
median and altitude (see Problem 355), we have

1.AOe < 1. COD.
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aQI. l:,et AB Q# a diameter of a circle and E the point of intersection of
its chords AD and F¥J .(Fig . 104). We have

Ae ·AD=A£2+ AE ·EJ)= AC2+EC2+ AE .ED.

FlO. 101

By the property of Intersecting chords, we can write

AE ·ED=BE ·EC.

FIG. 102 F.IG.I03

Therefore
AE ·AD = AC2+ EC2+BE ·EC= AC2 + EC·BC= AC2+(BC-BE) BC=

=AO+BC2_BE.BC
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and thus, finally,
AS, AD+ sz. 8C = A82•

'392. Let A and B be the gtven points. 0 be the centre of the given circle.
R its radius and r the common radius of the inscribed circles with centres at

A

FIG. 105

0\ and O2 (Fig. 105). Then
R OA OB
,=O\A =02B'

Taking the proportion derived from the above by inversion and addi'lion we
obtain

OA OB
001 =002 '

Consequently. O\OZ II AB.
393. Let r 1 and rz be the radii of the semicircles inscribed in a given se­

micircle of radius R shown in Fig. 106. Since R =r\+rz. the shaded area is
expressed as

1 I 2 1 , 2 I [ 2 2]S=2 nR2-"2~'1""""2 n, ) ="2n ('1 +'2)2_'1-'2 =n'I'2-'

But

and. consequently,

FIG. 106 FIG. 107

394. If the straight line JOining tile points A end B (Fig. (07) does not
intersect the given circle, then the tangent Jines r1C and BD can be drawn so
tha-t the point M of their intersection lies on the line segments AC and BD.
In 6. AMB we have

AM+BM> AB > IAM-8M I.
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and, since

we obtain
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AC> AM, BD> BM, MC=MD,

AC+BD > AB > lAC-BDl.

If the straight line AB does intersect the circle, then there are two possible
cases, namely: (a) the chord cut off by the circle on the straight line AB lies
on th e lin e segmeot AB; (b) the chord is not on AB.

In the case (a) shown in Fig. 108 we have
AB > AE+BF > AC+BD,

because the hypotenuses AE and BF in the right triangles AEC and BFD are
greater than the legs AC and BD.

A

FIG. 108 FIG. 109

A

In the case (b) the line segment AB lies inside the angle CAC' (F ig . 109).
Draw through B a circle concentric with the giv en one. Let it in tersect AC
and AC' at points E and E' . Then EC = BD and AE > AB. Hence,

AB < AE==AC-EC =AC-BD.

395. Let us introduce t he following notation (see Fig. liD):

L PCM = L. QCN=a.. L.NML = L. NKL=y, L LCP= L QCK= ~ ,

QC= x, PC =y, AC=CB =a.

FIG. no
By the theorem on intersecting chords of a circle. we have

NQ · QK = A Q. QB = a2 _ x2•

Applying the law of sines to the tri angles NQC and QCK we get
N = x sin a. K _ x sin ~

Q sin (a. +~+y)' Q - si n y •
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Hence,
N . K- x2sine.t·sin~

Q Q -sinl'sin(e.t+~+l')

which results in
2_ a2sinl'sin(e.t+~+1')

x -sine.tsin~+sin'Ysin(e.t+~+y)'

We similarly find
2_ a2sinysin(e.t+~+'Y)

. y -sine.tsin~+sinl'sin(e.t +~+l')·
Thus, x=y.

396. Let B1 , B2 , Bs and B4 be the midpoints of the arcs A1A 2 • A2A s•
AsA 4 and A4A1 (Fig. Ill) . Let e.ti be the central angle corresponding to the
arc AlB; (i = I, 2, 3, 4). Denote by lp the angle formed by the line segments
B1Bs and B2B4 • Then

But we have

n
and therefore cp = '2 .

+----------.,1;

c

B

FIG. 113

A

II

397. Consider a closed polygonal line without self-intersection and take two
points A and B on it in such a way that the perimeter is divided in to two
equal parts. Let 0 be the midpoint of the line segment AB. Draw a circle of

radius ~ with centre at 0 where p is the perimeter of the whole polygonal line.

If

~,
A .... \ "

<, " ,,''v -, \ ,
......... \ '

......., .... \ ,,"
' ....'

/J

FIG. 112

We shall prove that this circle is a required one. Indeed, if otherwise, then
there exists a point M belonging to the polygonal line and lying outside this
circle. The length of the portion of the polygonal line containing the point M

is not less than AM + BM and hence, AM + BM~ ~ . But at the same time

AM + 8M~ 2MO. Indeed, from the parallelogram AMBD (Fig. 112) we have

DM=2MO < BM+BD=AM+BM.

Since MO > ~ , it follows from the inequ ality AM + 8M ~ 2MO that AM +

+ BM > ~ . Thus we arrive at a contradiction.

398. Throu gh the vertex A of a given b. ABC draw a straight line AD parall el
to one of th e giv en st raight lines x and y and not int ersecting the triangle .
Drop the perpendiculars BP and CQ to AD from the points Band C (Fig . 113).
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Suppose that the distances from the vertices of the triangle ABC to the straight
lines x and yare expressed by integers. TheI1 the length s of the line segments
AP, AQ, BP and CQ are also expressed by integers, It follows that

BP CQ
tan L BAP=AJ5 and tan L CAQ= AQ

are rational numbers, and, hence, the number.
BP CQ

tan L BAC = tan L BAP-tan CAQ AJ5 -A"Q
1+tan L BAP tan CAQ= I~ BP CQ

APAQ

is alsorational . therefore, it is IIfl\XlSSlble t~at t. BAC= 66" because tan tW:: y:f
is an irrational' rtlirt1!'1er . CotlsettuetltlYI ABC isn6t an elfLtllifteral triangle. .

. ,3m). Let ~l1e str afght lili ~S A,IB. ana AS! intersect at a polrtt 0 , and OD I AB
(FIg. 114). Since t:. ABA! IS similar to t:. DBO, and t:.IJA81 tll!5. DAD; we
have

which yields

OD ( J. + -!- ) = AD + BD 1
a b AB •

Hence, the distance

OD=.3!!.­
a+b

is independent of the positions of the points A and B (provided tire distances
a and b remain unchanged).

A

FlO . 114 FIG. 115

400. If K is the point of tangency of the line segment MN with the circle
(Fig.. 115), then BM = MK and KN =NC and consequently

MN=BM+CN. (I)

But MN < AM +AN. Therefore

2MN < BM+AM+CN+AN=AB+AC.

whence it follows that

MN < AP;,-1 C .

. On the. other hand; MN > AN and MN > AM because MN is the hypotenuse
In the triangle AMN. Therelore, 2MN> AN+AM and, by virtue of (I),
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3MN> AN+NC+AM +MB =AB+AC. Hence,

MN AB+AC> 3 .

401. Let,A.&C be tbe given triangle (see F ig. 116). AJfJ=BC, SO II AC and
a be t he centre of a circl e tangent to AC. Denote by D and E the points oi
int ersect ion of thi s circle wi th AB and Bt; . Exten d A B to intersect th e ci rcle
a second t ime at a point F. Let us prove that FE .l BO. Note that L. OBF =
= L. aBE, sin ce these angles are equal to the 'base angles A and C in th e
triangle ABC. Furthermore, BF =BE. Indeed , if BF > BE, then laying off on
BF th e line segment BE' = BE we obtain the congruent triangles aBE and
aBE', and OE' =OE which is impossible bec~se tbe p.~ int E' lies imide the

,B

FIG. 116 FIG. 11 7

circle of radius OI!. 1t Is simi lilrty ?Joved that t he inequa lity BF < BE is also
impossible. Hence, ,80 is th e bisector of the vertex ang le in the isosceles triangl e
FBE and therefore it IS th e altitude to its base which implies 'that FE .l BO.

TttereJor., L OfE""7 i. ABC is jn4i~a~t {lf th i positwn ~f tb~ ~t a
en the 'Stra~ht line 80. Consequently, the magnlhJde of the arc DE su:b1ending
the inscribed angle DFE (whose measure is h,ljlj the arc DE) remains consta nt
as the circle rolls upon AC. - ,

402. Using the notation introduced in the .scdu:Ucln of Problem 324 we fin~

2= ab+cd ( +bd)
n bc+ad ac ,

'f t ='2+'3'
Indeed , lay ing off DM='2 we obtain fHt equ ilateral triangle BMD and henc e
it follows that 4 A.BD= t. CBM wh!ch impl ies t hat c: ABD.= D. CBM, and
AO='3- NCJW, IIp:plylflg {h~ law 1)(..COS1IMS ~ 8 BMC we obtairr ':

a2 = r~+1';--:- 2rt'lIjl(l$I.40°,,;,':+r; + rz'a"

Oh'itllnJ these inequalittes termwise we get

n ab+ cd
- ;:" /ii=bI;+ad .

403. Let ABC be an equi latera l trjang;l~ with side a . Denote by '10 ' 2and ' J
the distances frqJn a point M on the elreurnscrfbed cir cle to the vertices of t he
triangle (Fig. 117). Note first that for ttte position of the point M indicated in
Fig. 117 we h~ye . _ _",__._ .
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Consequently ,

r~ +ri+r;= ('2 + r3)2+,: + r: = 2 (ri+ ,;+ '2(3) =2az.

404. Let the side AB of a quadrilateral ABCD intersect a circle, and the
sides BC. CD and DA be tangent to it at points E. F and G (Fig. LI8). Since
CE =CF and DF=DG. the inequality

AB+CD > BC+DA

is equivalent to the inequality

cB

a

AE> BE+AG,

which was proved in Problem 394.

1J C

FIG. LI8 FIG . 119

AD+CB < DC+BA

405. Let the side AD of a quadrilateral ABCD not intersect a circle, and
the sides BC, CD and BA be tangent to it at points F, E. G (Fig. 119). The
inequality

is equivalent to the inequality

AD < DE+AG.

which was proved in Problem 394.

406. Let R be the radius of the given semicircles. If '10 '2... .. r n are the
radii of the inscribed circles and d1 • dz, ...• dn, are their diameters (Fig. 120).

Cl&J:J
II It

FIG. 120

(1)

then it is clear that the sum d1 +d2+ ... +dn tends to R when n increases
unlimitedly. i, e.
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Besides, we have

and

(R+ T2)2= R2+(R-d1 - T2)2.

R
Let dn= n (n+ I)' Let us prove that

R
2T2 =d2=2X3'

We have
(2)

FIG. 121
BA

But

d1 +dz+'" +dn=R (I ~2+2~3+'" + n (n~ I») =

(
I I I I I) . n

=R 1-2'+2'-a+"'+!i"-n+1 =R n+1,

Substituting this expression into (2) we find

R
dn +1 = 2Tn+.l=(n+ 1) (n+2) ,

Putting R= I in equality (I) we get

1 I I
IX2+2 X3+'''+n(n+l) +... =1.

407, Let 0 be the centre of the billiards. Denote by B the first point of
reflection and by C the second point of reflection . Let us prove that if
L. ABC ;6 0, then t::. ABC is isosceles (Fig. 121). Indeed, t::. BOC is isosceles
and, hence. L. OBC= L. OCB. According to the
law of reflection, the angle of incidence is equal to
the angle of reflection and therefore L. OBC = L. OBA
and L. OCB= L. OCA. Consequently, L. ABC=
= L. ACB. It follows that the centre 0 lies on the
altitude AD drawn to the side BC. The position of
the point B to which the ball should be directed
so that it passes through the point A after it has
been reflected at Band C, can be specified by the
magnitude of the angle L. BOD=a. We have

OD=R cos a. BD= R sin a,

BD BD

2 ( 1t ) - cos 2a'cos T-a

Since BO is the bisector of the angle B in t::. ABD, it follows that
BD OD
BA=OA'

This Implies

~<:os 2a = R cos a
a •
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whence we obtain the equation

cost a+~cosa ..... -}= O.

Finding cos a from this equation we obtain

cosa=-~+V(~r+; .
The second root is discarded since, by virtue of the inequality ~ :> tz, it gives
a value of cos a less than -1.

If now we suppose that L. _ABC=.0, then a second solution of the problem
appears in which the points Band C are the two extremities of the diameter
passing through the point A.

408. Let S be the vertex of the given angle a. Al the first point of reflection
of the ray. SB l the side of the angle on which the point Al lies, and SBo its
other side. We shall denote the consecutive points of reflection of the ray from
the sides of the angle by A2 ; Ali, . . .• tile path of the ray inside the angle
being the polygonal line AA1A2A s '" (Fig . 122).

l

FIG. 122

Let us construct. in syccession, the ~ngle8 8iS8.., 8 2S8$• . . . • equal to the
angle a = L. BoS8 l setting them off In the direction of rotatlon froth SBII to
S81 · Layoff the tine segment SA~=sAm, m=2. g, 4, .. ~ (Hie points A~ and
A~ are coincfdent) on the side SSm' We shall prove that the points A~I A;, .. .
tie on a straight line 1. To this end, it is sufncient to provethat every three
consecutive points Arli. A;"+1 and A~+I! (here We put m==O, 1,2•... ) are in a
straight line. For this purpose, we note that /};A;"SA;"+1 = fA AmSA/IJ+l' which
implies

L A;"A;"+ IS = L AmAm+lS,

Analogously, D. A;"+lSA~H =b. Am+lSAmH and, consequently,

L. SA;"+lA;"H"=' L SA riI+lA I7I H
But, according to the law of reflection, the angle of incid ence is equal to the
angle of reflection, and hence

L SAm +1 A171+2 = L AmAm+1B.
Therefore.

L AmAm+1 S+ L SA;"+lA;"H= L AmAI7I ~1S+ L AmAm+t B=1t.
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We see that the path of the ray, that is the polygonal line AAl Ai . . . , Is
thus developed on the straight line I. Since this straight line can intersect
only a finite number of sides S8m; we conclude that the number 01 reflections
of the rllY is finite.

It is clear that If SBn is the last of the sides Intersected by i, then na < ~
and (11+ I) ex~~ . Thus; the number of refieettons is equal to an integer n such
that the inequalities

n < ~ <;;n+l

are satisfied.
To find out the conditions for the ray returning to the point A after it has

been reflected several times let us construct a sequence 01 points Cl , Cz.. ' "
so that the point C1 is the reflection of the point A through SB 1 , the point
92 is the reflection of the point C1 through SBi , etc. (general ly, the point em
Is the reai!ctlah of the point Cm- 1 thtough S8,;,,). It Is clear that the condition
that the tlly again passes through the point A i-s equiva lent to the condition
that the straight Jit:l~t pasSes through one of the lloihts Cm(m = I, 2, . . .).
'.. To loUt/ulafe this eOndHiatl analytically, !(!t us introduce the angle
y= L AS.8o and cOtlsld~r tlie lollowlng two possible cases:

(a) if Ck is the point through which the straight line 1 passes, then k is an
even number; .

(b) the point Clecorresponds to an odd number k.
. In the case (a) (which is shown in ~ig. 122 for k=6) We have L ASCIe ==
i!!:: kd. . ~ ABCk IS isosceles and therefore

On the other hand. L SACk is equal to y+tt-~, and t6M~qu~l'ltly

which yields
2~ -2'\' -1t

k= •a

In the case (b) we have

L ASCk=(k+ I) a-2v
and, as above, we come to the relationship

whence

(I)

(2)

Reversing the argument we can easily show that if one of the relationships
(I) or (2).is fulfilled for an intecer k• .the strai'ght line I passes through the
paint. Ct.. Consequently, the ray P/f!)S~ thrOugh the point A once again if and
only If one of the numbers (I) or (~) III lin even intefer.
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4. Loci of Points

p

N

409. The required locus of points consists of two circular arcs : the arc BE
with centre at the midpoint C of the arc AB of the given circle and the arc BF
with centre at the midpoint of th e second arc AB of the circle, EAF being the

tan gent line to the given circle at the point A (Fig.
F 123).

Proof . Let N be a point of the sought-for locus
f) obtained with the aid of a point M on the lower arc

AB. By the construction , the triangle NMB is isosce­
les, and thus

I I
L. BNA='2 L. BMA='2 L. BCA.

Consequently, the point N lies on the circle with
centre at C passing through the points A and B. Fur­
thermore, the point N must be inside L. BAE, i.e, it

FIG. 123 lies on the arc BE of the circle with centre at the
point C. Conversely, if N lies on this arc. then

L. BNA=~ L. BCA = ; . L. BMA,

whence it follows that L.BNA=L.NBM and t::,.NMB is isosceles. Hence, the
point N is obtained by the above construction. When the point M is on the
upper arc AB, the proof is carried out in an analogous way.

410. The desired locus of points consists of two straight lines land k sym­
metric with respect to the perpendicular BB' to the given parallel lines drawn
through the point O. The straight line 1 passes through the point C perpendi­
cularly to OC, and B'C = OB (Fig. 124).

8

FIG. 124

Proof. Let M and N be two points constructed with the aid of a secant AA'.
We sha ll only carry out the proof for the point M (for N it is quite analogous).
Let MP 1.. B'C then the angles OAB and A'MP are equal as angles with per­
pendicular sides. Therefore, the right triangles OAB and A'MP with equal
hypotenuses OA and A'M are congruent. Hence, A'P=OB=B'C. It follows
that if E is the midpoint of OM, then the points M, A', C and 0 lie in
a circle with centre at E and, consequently, MC 1.. OC, l.e. the point M lies
on the straight line l, Conversely, if M is a point on the straight 1and the angle M A'0
is right, then A'P=B'C=OB which implies the congruence of the triangles
OAB and A'MP, and , finally, the equality OA=A'M. Consequently. the
point M is obtained by the above construction. .
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411. In the case of intersecting straight lines th e required locus of points
consists of four line seg ments forming a rect angle ABCD whose two vertices
are on the given straight lines land m and the other two vertices are at the
given distance a from them (Fig. 125).

Proof . Let M be a point such lhatMKl.I , MLJ_mandMK +ML =a
where a is the length of the given line segment. Through M draw a stra ight
line AB so that OA = OB and M N II OB. Let l
AP 1. OB and Q be the point of intersection of~A
AP and MN . The equalit y AN =M N shows Ii
that MK = AQ and, hence. Q If

a
AP=AQ+QP=MK +ML=a. 0

Consequently. the point A is a verte x of L
the above rectangle. The same is true for the c B trI

point B. and hence the point M lies on a side FIG. 125
of this rectangle. Conversely, if M lies on a
side of this rectangle. then reversing the argument we see that

MK+ML=AP=a.

If the given straight lines I and m are parallel and the distance between
them is equal to h. then the desired locus of points ex ists only jf a~ hand
is a pair of straight Iines parallel to the given ones for a > h or the whole
strip contained between I and m for a=h.

412. In the case of intersecting straight lines the required locus consists of
eight half-lines which are the extensions of the sides of the rectangle ABCD
indicated In the solution of Problem 411 (Fig. 126). The proof is then analo­
gous to the one given there.

H the given lines I and m are parallel and the distance between them is
equal to h. then the sought-for locus exists only if a~ h and is a pair of
straight lines parallel to the given ones for a < h or the port ion of the plane
which is the exterior of the strip containe d between I and m for a =h.

FIG. 126 FIG . 127

(I)

P and Q to the straight

413. If the line segment AB lies on I. and CD on m, then the desired locus
of points consists of four line segments forming a parallelogram PQRS in
which I and m are the diagonals and th e positions of the vert ices P and Q is
determined by the relation

hp CD = a2 , hQAB = a2,

where hp and hQ are the distances from the points
lines tit and I (Fig. 127).

Proof. Note that for fixed I and m the required locus of points is completely
specified by the lengths of the given line segments AB and CD and the con­
stant a and is independent of the position of these line seg ments on the straight
lines I and m. Indeed. if this position is varied. the areas of the triangles AMB
and CMD remain constant. Therefore it is sufficient to consider the particular
case when the line segments AB and CD have a common endpoint coincident
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with the point of intersection of the straight lines I and m, In this case the
segments AB and CD are tWQ sides of a triangle whose third side lies in one
of the Iour angles formed by the t ntel'secti ng lines land m. For example, in
Fig. 127 the endpoints A and C are made to coincide, BD being the third side.

Let M be a point Qf the required locus lying inside the angle BAD. Then
the area of 6. BMD is equal to .

SBMD = ISAMB+SCMp-SABD I= Ia2 - SARD I·
It follows that the distance between the point M and the straight line BI)

is independent of its position on the straight line PQ ll BD. For the points P:
and Q relationships (I) are fulfilled. '

Conversely, let M be a point on the straight line PQ with the points P
and Q constructed according to (I). From the relation

AP SAPD a2
" ;" CQ SCQfJ 02

AB=SABD = SABD' C15 = SCDIJ= SABIJ

it follows that

i.e . PQ HBD. Therefore

SAM8+SCMD = SASD+ S8MD~ SABD+SBPD;;: SAPD =!' (I~.

CoIl3eq.uent~y, the p.oitlt M belongs to tbe required locus. The other sides
of the parallelogram PQRS are obtained analogously by making tile other end­
points of the Hne s~ments coincide. namely QR Is obtained when B coineides
with C, RS when B coincides with D and SP when A coincides with D.

4H. The required IQcUS is a circle which Is the
reflection of the giv.en circle K through thegiv~
chord AB (Fig. 128). ,

Proof. Construct a chord AD 1- AB in the circle K.
Let 6. ABC be inscr ibed in K. and M be the point of
intersection of its altitudes (i.e. its orthocentre). As
Is eastly seen, AMCD tsa parallelogram because DA
and 9M are parallel as perpendiculars to AB, and DC
and AM are parallel as perpendiculars to PC (DC1- Be
because BD is a dtameter In K) . Therefore, -lfte. point
M lies on the circle K' obtained from K by shifting
the latter by the distance AD in the direction of the
chord DA. It is clear that K' is the reflection of K
through AB. Conversely, let M be a . point on K',
and MC1- AB. Since MC= AD, the figure AMCD
Is a ear.HeIQgftOlill. ~nd theretare AM UDC. -But
IX 18C l>~lI~eAPCD is j~crwed in .K and the
aqgteBAD isrlght. Therefore AM jPC. and Mis the .

FIG. 128 point of intersection of the altrr~e:s in A ABC. '
Consequently, .M belongs to the required locus.

415. Let 0 be the centre and R the radius of the given circle (Fi~, 129), .
The required locus of points Is a straight line I perpendicular to tte strai~ht ·
line OA and intersecting it at a point B such that . ."

. R2
OB=OA"(l) .

PrO()f. Through the point M draw a str:a~ght llne l1. OAto intersect the
straight Hoe tOAat the point B. Let C be tbe poln! of in tersectien of .the liM c
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OB OM
OC =OA '

segment PM and the chord KL. The similarity of the triangles OAC and OMB
implies that

whence

OB
_ OM .OC
- OA (2)

By the construction, KC is an altitude in the right triangle OKM, and hence

OM·OC=R2.

Substituting this expression in (2) we obtain the equality (I).
Conversely, let M be a point on the straight line l perpendicular to OA and

such that OB is determined by equality (I). Draw the tangent line MK and
I

l

FIG. 129 FIG. 130

KC-l OM. Let KC intersect the straight line OA at a point A'. Then, repeating the
first part of the proof, we conclude that DB is determined by formula (I)
with OA replaced by OA' . Hence, OA'=OA , that is the point A' coincides
with A, and this means that the point M belongs to the sought-for locus.

416. Let
AM P
BM =q > I.

Draw the bisectors MP and MQ of the two adjacent angles with vertex M
and sides MA and MB (Fig. 130). Then, by the property of bisectors, we have

AP p AQ pBP=q and BQ=q (I)

It follows that the position of the points P and Q is independent of the posi­

tion of the point M. Besides, L. PM Q= ~ and therefore the point M lies on

the circle K with diameter PQ. Conversely, let the points P and Q be con­
structed according to (I), and K be a circle with diameter PQ, If a point M
lies on this circle, then L. PM Q= ; . Through the point B draw RS II AM. then

AM AQ p AM AP p
BR = BQ =q' 7fS= BP=q' (2)

whence BR = BS and hence BM is a median in 6. RMS. Since L. RMS is
{ight, we have l;IM~BR, and, by virtue of (2),

AM p
BM=q

Therefore, the point M belongs to the locus in question.

Q -323
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To express the diameter PQ in terms of the length a of the line segment AB
we find from the relations

PB = AB -AP=a-J!.. PB
q

and

BQ = AQ-AB=J!.. BQ-a
q

the expressions

and , hence,

PB =a-
q
- and

p+q BQ=a-
q
- .p-q

PQ=~.
!!..._!L
q p

If p=q, the required locus is obviously the perpendicular to the line seg­
ment AB drawn through its midpoint.

417. The sought-lor locus of points is the perpendicular to the line seg­
ment AB drawn through its midpoint E with the point E deleted.

Proof. The triangle ADB is isosceles since L CAD= L CBD because these
angles are subtended on equal arcs CD of two congruent circles (Fig. 131). There­
fore, the point D Hes on the perpendicular to the line segment AB drawn
through its midpoint E, and vice versa, if we take an arbitrary point D on
this perpendicular which does not coincide with the point E, then the circles
passing through the points A, C and D and through B. C and D are congruent.
Indeed, for Instance, th is can be deduced from the equalities

R-~-~-R
1-2sin~-2sin~- ~,

where ~ = L BAD and ~ = L CBD.

FIG. 131 FIG. 132

/,

418. The required locus of points is the straight lin e drawn through two
different positions of the last vertex.

Proof. Let, for example, A\B\C\D1E\ and AzBzCzDzEz be two different con­
figurations of the deformed polygon, the vertices A, B, C and D sliding,
respectively, along straight lines lA, IR, tc and ID (Fig. 132). Consider the
straight line I passing through the positions E\ and E~ of the last vertex. Let
now the vertex on the line IA occupy the position A, and on ID the correspon­
ding position D. The side parallel to AzEz intersects I at a point E', and the
s ide parallel to DzEz at a point e .
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By the construction, we have
E'E2 AA 2 BB 2 CC2 DD2 E"E2

E2El = A2A l = B2Bl = CZCl = D2Dl = E2El '

which shows that

FIG. 134

. ,,

'l-----¥~"'i'_---~.A

JJ

r
FIG. 133

i.e. the points E' and E" coincide. This means that the last vert ex Eli es on
the line l at the point E' coincident with E".

The converse is obvious because the configuration of the deformed polygon
can be reconstructed beginning with any point E on l ,

419. The required locus is a circle passing through the endpoints of the
chord AB and a point M) obtained by the indicated construction.

Proof. Let us introduce the necessary notation. There is one and only one posi­
tion CIDI of the chord CD parall el to AB and such that on the given circle K

H it is possible to choose a direction v of
____-,'--..... describing K such that when the chord

,8: CD moves in this direction starting
_--~-- from the position C1DI the endpoints of

- --- I the chords AB and Cl) coincide, in sue­
cession, at the points A, B, Cl and Dl
(such a direction v may only become
indeterminate when AC and BD are paral-

lei). Let us denote by a the arc AB of the given circle K to which the points
Cl and D l belong, and by ~ the other arc AB. Let y be the arc CID I which
does not contain the points A and B. Furthermore, let Ml be the point of
intersection of the straight lines AC) and BDl ' The point M) lies inside K.
Consider the circumscribed circle KI of 6 ABM I (Fig. 133). We shall prove
that for any position of the chord CD other than CIDI the point of intersec­
tion of AC and BD remains on Kl .

As long as both points C and D lie on the arc a, the point M is inside K,
and then

I
L. AMB=2(~+Y) ' (I)

But if at least one of these points is on the arc B, the point M lies outside ~,

and then

(2)

In the former case M lies on the arc AMIB of the circle Xl because according
to (I). the angle AMB is independent of the position of CD, and, hence. is
equal to L. AMIB. In the latter case, since the sum of the right. hand memo

bers of (I) and (2) is equal to ~ (a+ ~)=i- .2n=n, tne point M is on the

arc AB of the circle Kl lying outside K.

9*
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(3)

It is obvious that th e conv erse is also true, i.e. any point M of the circle
K1 can be obta ined by the above construction for an appropriate choic e of the
position 01 the chord CD.

420. Let us design at e the given circle by 0 and the given straight line by L
(Fig. 134). Denote by M the second point of intersection of PQ arid O. Take
any circle 0 1 passing through the points P and Q and intersecting the circle
o for the second time at a point R and the straignt line L at a point S. Let
N be the second point of intersection of the line RS with the circle O.

We shall prove that MN II L. To this end, let us take advantage of the
following well-known theorem proved iii plane geometry: given a circle and
a point A, then for any straight line passing through A and intersecting this
circl e at points AI and A2 the product of the line segments AA 1 and AA z is
a constant independent of the choice of the straight line. ···'

Denote by A the point of the intersection of the straight lines PQ and RS.
We nrst apply the above theorem to the circle O. the point A and the straight
lin es AP and AR . Since AP intersects the circle 0 for the second time at the
point M, and AR at the point N , we have

AM·AP =AN·AR. (I)

Now we appl y this theorem to the circle 0 1 , the point A and the same
straight lines. Since AP intersects 0 1 lor the second time at the point Q, and
AR at the point S, we can write

AQ ·Ap =AS·AR. (2)

From (I) and (2) we derive the equality

AM AQ
AN = AS'

Equality (3), by virtue of the conver se of the theorem on proportionality of
line segments cut off by parallel straight lines on the sides of an angle, implies
th at MN II QS which is what we set out to prove.

Thus, for any circle of the type O. the point N can be specified as the
second point of Intersection of the straigtt line passing through M and parallel,
to L with the circl e O. This construction uniquely determines the point N
ir respect ive of the choice of th e circle 0t" Consequently, all the possible straight
l ines RS obtained for various circles 0 1 int ersect the circle 0 at the point N.

The singular cases in which (1) and (2) do not imply (3), nam ely. when the
points Rand P or Q and S coincide, or when PQ II RS, may be considered as
limit ing cases. For these cases the validity of the above argument can be
established on the basis of th e continuity properties.

5. The Greatest and Least Values

421. If A is the vertex of the. right angle in D. ABC ; and C and B lie on
the given parallel lines II and 12 (Fig. 135), then

AB=",~ , AC=_b_.
Sin lp cos lp

Hence, the area of .the triangle ABC is equal to
I ab

SABe =-2 AB .AC=-·-2-·
Sin <p

:It
It follows that SABe attains the least value (equal to 00) for <P=T'
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422. If Rand r are the radii of the circumscribed and inscri bed circles
(Fig. 136), then

-..:;<---_-T- l,

FIG. 135 FIG . 136

( 11) .. 11cos a -4 -cos "4
we obtain

II

0,

..... ...... , ...... .
........

c

'j,

FIG. 137

R 1

r yz cos (a - T)- 1 •

The ratio ~ attains the least value when cos (a - ~ ) = I. l.e. when a = ~

because we consider the interval 0 < a < 11
2

. In this case .!i.= -.r=I:---
r r 2 -I

=¥2+1.
423. Let a right ·t r iangle with vertex C and legs at and bt be cut off from

a rectangle ABeD with sides a and b. Consider the pentagon ABEFD thus
obtained (Fig. 137). It is clear, that one of the /I
vertices (say ell of the sought-for rectangle
ABtCtDl must lie on the line segment EF. The 81-......::.~:=::::===;~

problem is thus reduced to finding the position t
of this vertex. (J r

To find the point CI extend the sides AB
and AD of the rectangle to intersect the exten ­
sion of the line segment EF. This results in a
triangle AMN. Let A~_~~-"''---.M

AM =m, AN =rl

and
lJICt = AD l =X.

The similarity of the triangles AMN and D1CtN implies that

G'1DI fl.-X
---;n=-",-'
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whence we find
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m
C1D1 = - (n - x ).

n
Hence, for the area S of the rectangle AB1C1D1 which tS equal to AD1,C1D1
we get the expression

s =~(n-x)x.
n

Transforming this expression to the form

S = ~ [~Z - (~ -xYJ I (I)

we conclude that the greatest value of S is attained when ~ -X= O. i.e, for

x .=~ . Let Co be the position of the vertex C1 corresponding to x= ~ .

Noting that expression (I) for S decreases when I~ -xIincreases, i.e. when

the point C1 moves from the point Co to the vertex M or F, we find that
there are three possible cases here, namely:

(I) The point Co lies on the line segment EF; then the vertex C1 of the
required rectangle coincides with Co'

(2) The point Co lies on the line segment ME; then C1 must coincide with E.
(3) The point Co lies on the line segment FN; then C1 must coincide with F.
We now must establish a criterion for distinguishing between these cases

with the aid of the magnitudes of the quantities a, aI, band b1 given in the
formulation of the problem.

Let us first find the quantity n. The similarity of the triangles ECF and
NDF implies that

n-b b1--=-
a -a1 "t

(2)

whence we find

Now note that

b
b,

n= +-(a-al)'al

the point Co is within the line segment EF if the inequalities

b-b1 < x < b
are fulfilled.

Substituting x= ~ with the known value of n into the above we obtain

b-b1 < ~ + ::1 (a-"t) < b.

The latter inequalities are readily transformed to the form
a b

-1<---<1. (3)
a1 b1

If the inequality -I < ~--bb is violated, the point Co falls on the line seg-
al 1

ment ME, and if the inequality ~--bb < I does not hold, Co falls on FN.
a1 1

Thus. we arrive at the following final results: if for given a, b, al and b1
both inequalities (3) are fulfilled. then the vertex C1 of the rectangle of the
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greatest area lies within the line segmen t EF, and the side x of this rectangle
is computed by th e formula

Q

FIG. 139FIG. 138

Q

if the left inequality in (3) does not hold true, the vertex CI coincides with
the point E, and if the right inequality is not fulfilled, then CI coincides with F.

424. Draw a circle passing through the points A and B and tangent to the
other side of the angle (Fig. 138). The point of tangency is then the required
point, since for any point C' on that side the angle AC'B is measured by half
the difference between the arcs AB and AIB l • wherea s L ACB is measured by
half the arc AB.

Furthermore, we have (0C)2= OB·OA . Consequently, the prob lem is reduced
to the well-known construction of the geometric mean of the lengths of two
given line segments (OA and OB).

c'

425. Consider the following three possible configurations of the line segment
A8 and the straight line l ,

(a) AB III. For any point M of the straight line I we have I AM -BM 1~ 0,
and there exists a point M o for which I AMo~8Mo 1=0. This point is the
foot of the perpendicular dropped from the midpoint of AB onto l, There is no
point M for which the quantity I AM - 8M I attains the greatest value. This
is implied by the inequality I AM-BM 10;;;;; A8 in which the sign of equality
only appears when A, 8 and M lie in a straight line .

(b) A8JJ Since IAM-8MI~A8, the quantity IAM-BMI for the
point of intersection of the straight lines I and A8 takes on th e greatest value
equal to the length of AB. There is no point M for which the quantity
I AM-8M I attains the least value.

(c) The straight line AB is neither parallel nor perpendicular to l. It is
clear that I AM -BM , attains the least value if M is the point of intersec­
tion of I and the perpendicular to the lin e segment AB erected at its midpoint.
The greatest value is attained by I AM - BM 1 when the point M is the point
of intersection of AB with I .

426. Let MN be a position of the secant, AP IION and AQ II OM (Fig. 139)
Let us introduce the foJlowing notation :

x=the area of b. APM,
y=the area of b. AQN,
C1= the area of b. APQ,
s = the area of b. OMN,
a=AM,
b=AN.

We have:
S=2C1+X+II'
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It is clear that

Consequently,
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S=a (2+!:+.!:-) = 4<1+ (J (q_b)2
b a ab

The least value 8 =4<1 is attained for a=b which is what we set out to
prove.

427. Let a+ Q= q (Fig. 140). By the law of cosines . we have

c2 = a2+ b2 - 2ab cos lp = a2+ (q-a)-2-2a (q -a) cos lp=
=q2+2a2 (1+cos cp)-2aq (1+ cos lp)=

· I - cos lp ( q) ~
= q2 . 2 +2 (l + ~osq» (1-2 .

Since q and lp remain unchang ed, the least value c is attained for a= ~ =

a+b . f b=-2-' i.e. or a= .

FIG . 140 FIG. 141

428. Fir~t solution . Consider D. ABC with base AC and designate by a, b and c
the lengths of the sides opposite the angles A, Band C, respectively: put
a+b+c,=,=p. .

From the relat ions
a c b

sin A = sin (A +B) . sin B ·

we find

b+~sin(A+ ~).
slOT

Since b > 0 and sin f > O. the quantity p attains the greatest value when

A + ~ = ~ . In th is case A = C and /::;, ABC is isesceles.

Second solution. On the given line segment AB as chord construct a segment
of a circle so that the chord AB subtends an angle of the given magnihlde lp
inscribed in that circle (Fig. 141). Consider the isosceles triangle ADB and
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a scalene triangle ACB inscribed in the segment of the circle. Draw the circle
of radius AD =DB with centre at the point D. extend AC to intersect this
circle at a point M and join M to D and B. We obtain

AD+DB=AD+DM > AM=AC+CM.

But in 6 BCM we have

L CBM = L ACB- L. CMB= L CMB.

because the angle ACB is equal to the angle ADB and is measured by the arc AB ,
and LAMB is measured by half the arc AB. Hence, CM=CB and AD +DB >
> AC+CB.

429. Let us designate the radii of the circumscribed circles of the triangles
ACD and BCD by R 1 and R z• respectively. Put L. ADC=lp. AC=b and BC=a
(Fig. 142). Then we have

b
2R1 = -.­

SIO q>

and

2R = a
2 sin (n-q»

a
sin q>

and hence ~~ = : . The radii R1 and Rz attain the least values when q>= ~ ;

in this case D is the foot of the altitude CD.

FIG. 142 FIG. 143

430. Each of the cut-off circles must be tangent to two sides of 6 ABC
(see Fig. 143). Furthermore. the circles must be tangent to each other. Indeed ,
if otherwise. the radi us can be increased. Therefore, the centres of the circles
lie on two bisectors of interior angles. for example, OA and CO wh ere 0 is th e
centre of the inscribed circle of 6 ABC . If r is the radius of the inscribed circle
of 6 ABC and p the radius of the cut-off circles. then from l5.. AGC we have

whence we find

..e..=__b_=l_~
r b+2r b+ 2r'

This formula shows that p assumes the greatest value when the longest side is
taken as b.
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B. SOLID GEOMETRY

I. Computation Problems

431. Let a be the side of the base, d the length of the diagonals of the
lateral faces of the prism and 1 the lateral edge (Fig. 144). We have

v= a
2 va I.

4

From t:. A1BC1 we obtain that {- a= d s in ~ . Therefore,

1= Yd2~a2=~ , 1 1- 4 sin2~
2

. a; V 2
5Jn 2

and, consequently,

a3 Y'3 V a;V 1-4 sin 2 -2 •
8

. a;
sJn 2

It follows that

.. sf 8Vsin~

a= V ";-a-12 s;n 2 %-

432. Let H be the alt it ude of th e pyramid, and a the length of the side of
the base.

8

FIG . 144

$

FIG . 145

(I)H
h
a

The similarity of the triangl es OMS and ABS (Eig. 145) implies that

,/...!- H2_h2
V 4
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Analogously, from the triangles OKS and CBS we obtain

.r 1
b V 4; Hz - bZ

a H
2"

Dividing equality (I) by (2) termwise we obtain

HZ-4hz h
HZ-4b~ = b Y2 ·

(2)

whence

H= 2bh
Y2bz-h2 •

Substituting this expression into (I) we easily find

8b2hZa2 - __
- hz- b2 •

FIG. 146

~II~C
I
I
I
I
I
I
I
I
J

h
H=---

I-cos ~
n

R
But from t::. ADB we have r=--, and the­

n
cos-

n

Finally, for the volume V we receive the expression

V = 16 bShS

3 (hZ-b'l) Y2bz- h2 .

433. Let H be the alt it ude of the pyramid, x the slant height, R the radius
of the inscribed circle of the base, r the radius of the circumscribed circl e of the
base and a the side of the base. From the sirnll a-
rity of thetrianglesCA1B1 and CAB (Fig. 146)we get

H-h R
""""7f=,'

whence

refore

Furthermore, for the area of the base and for the volume we have the formulas

S
I • . 2n

base=n "2'- Sin n
and therefore

,2= 6V
Hn sin 2:rt

n
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Substituting in the latter relation the above expression for H, we find

, = .. f 6V (I - cos -; ) •

V nhsin 2n
n

Since X=YR2+H2 and i=rsin ~ . the lateral surface area is equal to

and, finally,

" n y6V( I -cos 1-) ["3V( I-COS~) h2 ]

Slat=nsm- 2· . +( )" .. n n n n '
nhsin- nhtan- I-cos- '

n n n

434. Let M and N be the midpoints of the edges ES and pS (Fig , 147).
It is easily seen that AMNC is a trapezoid because MN II ED .and ED" AC.
It is also obvious that

s

A

B

FIG. 147

s

c·~----------=~

FIG " 148

Using formula (I) for the square of a medi an of a triangle derived in the
solution of Problem 310, we find

Yb2 +2q~
CN = 2 •

Fur therrnore,
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because L. ABK =~ . If KLis the line segment joining the midpoints of the

bases of the trapezoid ACN M, then

KL= vb2~2q2_(qSin~~-fr=

= .. I"b-z-+- Q-q-2-_-
q
-
z

-:(-Y-==S=-+-I--I-:)"""'2= -V46z+ 3q2

V 4 4 4 4

( we have used here the equality sin ~=~+ I) . Thus, the sought -lor area is

Ssec= ; (MN+AG)KL= lq6 (2+ yS) YW+3q2.

435. Let E and F be the midpoints of the lateral edges of the regular tri­
angular pyramid SABG shown in Fig. 148, and D the midpoint of the line seg­
ment EF. Since the cutting plane is perpendicul ar to the face GSA, the angl e SDB
is right. Extend SD to intersect the straight line AC at a point M and con sider
the triangle MBS . It is obvious that the point D bisects the line segment SM.
Besides, BD 1.MS and therefore MBS is an isosceles triangle in which SB = MB.
Let the side of the base of the pyramid be equal to a. Then

ay3"
SB=MB=-···-z-·

The slant height is given by the expression

SM = YSCz_CM2=a V2 .
Z

T ne-efoie,
3a2 Y2

Slat= 4 •

and since the ar ea of the base is

"azy:r
Sbase= 4 '

we have

SSla ~ =Y6.
base

436. Let a be the length of the side of the square which is the base of th e
prism , I the length of the lateral edge of the prism and d the diagon al of the
lateral face (Fig. 149). Let Ssee denote the area of th e sect ion. It is easily seen
that the total surf ace area of the prism is equal to 4 (S-Ssec); th erefore it is
sufficient to determ ine Sue' We have

S I dZ • . ' ,r- a
see = '2 Sin a. a=d r 2sin"2

and

I =Yd2 - a2=d y 'I-2sin2 ~=dVcosa.
Furthermore,
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a2 la (Sin a a .r- a r--)8=8sec+Z+22=d2 -2-+sin22+r 2sin2"V cos a ,

and consequently

d2= 28 •

sin a+2 sin 2 ~ + 2 Y2 sin ~ y cos a

Thus, we receive
S _ 8 sin a

sec- a - a
sin a+ 2 sin 22+2 y 2 sin "2 Ycos a

Finally, after some simplifications we find that the total surface area of the
prism is

a .r-­
sin 2+ I' 2 cos a

cos ~ +sin ~ + Y2 cosa .
S total=4 (S-Ssec)=4S-----------

I I
I I

I I

iI/ I
I I

I I

/ /)..
r /' _

I " --
I.,,~~--"" A

s

FIG. 149 FIG. 150

437. By the well -known lemma by means of which the law of sines is de­
duced, the side of the base of the pyramid is equal to a= 2r sin a . For the
lateral edge (see Fig . 150) we have

a I IX
1= 2 -.- a.- = 2r cos 2 .

srn 2
There fore, the alti tude of the pyram id is

h =Vl2- (a ~ 3 Y=2r -V cos2 ; _ Sin; a,

and, hence, the volume of the pyramid is

V=~h a
2y S ~ r3sin2a·j 3cos2~-sin2a

3 4 3 V 2 .

438. Let ABC'O' be the indicated section of the given pyramid OABCO.
Draw an auxil iary plane OPN through the vertex of the pyramid and the mid­
poin ts of its edges AB and CD (F ig. 151).
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It is readily seen that the plane OPN is perpend icular to AB and CD, and
the line segments OP and ON are equal.

Applying the law of sines to the triangle OPM we find
OM sin a
OP = sin 3a'

Since D'C'II DC, we have

D'C'=DCOM=a ~ina.
ON SIn 3a

Now applying the law of sines to the triangle PMN we obtain

PM sin 2a.
PN sin (n:-3a.)'

PM =a s~n2a..
SIn 3a

Thus we obtain the required area of the section ABC'D':

S=..!...(AB + D'C')PM =.l (a+a ~in a) as~n 2a=a2 sin 'l<?acosa.
225m 3a sin 3a sm 2 3a.

FIG . 151

c

FIG. 152

439. We shall use the notation indicated in Fig. 152. Consider one eighth
01 the garret OSBMN which consists of two pyramids. One of these pyramids
with the base SBM and vertex 0 has the volume

1 a2h
Vl="3S0 ,SSBM="48'

The volume of the other pyramid with the base BMN and vertex 0 is
a2h

V2=24" ' Thus, the volume V of the garret is given by the formula

a2h
V=8(Vl +V2 )= T '
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440. Let 8M and . CM be the perpendiculars dropped from the vertices
8 and C of the base (see Fig. 153) onto . the lateral edge SA. The angle 8MC
formed by them is the required one. Designate it by ~. Obviously, we have

. ~ BK
sin 2 =BM'

Let a he the side of the base of the pyramid. Then

SK=a Y3
6cosa

and

SB=V(:c~3ar+(~ r==6C:~ClY3(1+3cos2a).

From the isosceles triangle ASB we easily find its altitude BM:

Thus, by virtue of (I), we obtain

. ~ Y I +3 C052 a
Sin 2"= 2

and, hence,

. YI +3cosza
~ = 2 arc Sin --2--- .

(1)

8

FIG. 153

s

8

FIG. 154

a

441. Draw a plane through the edge SA and the point N which is the foot
of the perpendicular AN to the line segments BC (Fig. 154). Let NM be the
altitude 01 the triangle ASN . The line segment NM is perpendicular to AS and
BC and is obviously equal to d. Let a denote the side of the base of the py­
ramid. Then

SA = a
a'

2sin"2
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and the alt itude of th e pyr am id is

SO=YSA2~A02= a ,/9- 12sinzCX2'
6

. a V
S10 2

Sinee AN·SO = AS ·d, we have

6d
a = .

y'3 V9- 12 si n2 ~

F IG. 155

bcp a cp
OF='ttan z" OE=2" tan 2"'

and thu s we obta in the equat ion a tan a =
= b t an 2a whose sol ution is

~/a=2b*
tana= V-a- .

F ur t hermore, we obta in

Sut

Finally, we obtain

V =J... a 2 y'3 50= '. . d
3

3 4 3 ( 3-4 sin 2 ~ ) sin ~

442. Let AD = a and BC=b (Fig . 155) . Dra w the line segment EF joining
the mid po in ts of the bases of the trapezoid . It is obvious t hat the d ihedral
angl e with edge AD is less than the dihedral •
angle with edge BC. Let L.SEO =a; then S
L. SFO=:=2a. We have

SO=OF ·tan 2a=OE ·tan a.

a cp y a -a2bSO=OE. tan a=- tan -
2 2

and

Sbase= atb
(OE+OF)= ( atbrta n ~ •

F in all y, th e vol ume of the pyramid is

v= {a~b)2 tanZ ~ Ya{a- 2b).

443. Let SL..L AB, 51( .1 AC and SM be the perpendicu lar to the plane P
(PI g. 150). By th e hypothes is, SA = 25 em, SL = 7 em and 51( = 20 em. Appl ying
the Pythagorean theorem , we easil y find th at AI( = 15 em and A L = 24 em.
Extend the line segment KM to intersect the side AB at a point Q . It is
readily seen that L. AQK =30', and henee AQ =30 em. Therefore, LQ = 6 em,
and

LM =6tan300= 2 y3' em.

• Th is result shows that for a 0;;;2b the problem has no solution.



From the right triangle SML we now find that

8M = V 72-(2 Va )2= V37 em.

444. Let S be the vertex of the pyramid. SO the altitude and BN = NC
(Fig. 157). Designate the side of the base of the pyramid by a. Let us lntro-

s
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I

A

s

FIG. 156

c A

FIG. 157

duce the auxiliary parameter ~~ =").. .. The similarity of the triangles implies

that

EF= aI.., V3KM=a-2- 1.. ·

From ~ MKO we obtain

OM - KM --!!!:..- Va
- cos ~ - 2cos ~ •

The section area is equal to

I I va").. va
2"(AD+ EF)OM ="2 (2a+Aa) -2- cos ~ a= 4 cos ~ A. (A.+2) a'.

The area of the base, as the area of a regular hexagon with side a, is equal to
a2 Va6'--4-' Thus, the sought-lor ratio of the areas is equal to

I
6
---"R ")" (")" + 2). (2)

cos t'

cos ~

SOsin (~+cp)'

-, +- tan ~ cot <p •

sirr(~-~ )
SM=SO sin(~+cp)

Since SO= S'Y' sin cp, we can write

A.= SM cos ~ sin cp
SN sin (~ +q»

Consequent\.y, the problem is now reduced to finding A.. For this purpose,
put L. SNO=cp. Then, by the law of sines, we obtain from D. SaM the
expression
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Finally, we proceed to find cot «p. To this end, note that

a a a y3"
SN=2" cot 2' ON=-2-'

so« YSN2_0N2=.!!.. .. /c-o-t-2_-a-_-a
2 V 2

and, hence,

ON
cotcp= SO =-r====-V3

Vcot" ~-3

Substituting this value into formula (3l, we obtain

.. /cot2 ~-3
A= V 2

Vco12 ~ -3+ y3"tan ~

s

FIG. 158

445.From a point S other than the vertex C of the tr ihedral angle (see
Fig. 158) and lying on the edge of the trihedral angle which is not a s ide of
the face angle a, drop the perpendiculars SB
and SD onto the sides of this face angle .
Also draw the perpendicular SA to the cor­
responding face. Denote the sought-for ang-
les by ~I and VI. that is

L. SCB =VI. L. SCD=~I'
Let then L. ABC=a' and L. ACD=a". J)

Putting CA =a. we fmd from the right
triangles CBA, SBA and SBC the expression

SB a sin a'
tan Yt- sec V tan a',- CB a cos y cos a'

We similarly obtain
tan ~l = sec ~ tan a".

The problem is thus reduced to flnding tan a' and tan a". We have a'+a"=a.
Computing the line segment SA by two different methods, we find

SA = a sin a' tan y
and

SA =a sin a" tan ~.

It follows that sin a' = sin: a" tan ~ cot V and, hence,

sin a' = sin (a- a') ttan~ =(sin a cos a' - cos a ·sin a') tan ~ cot y,
an V

Dividing both members of the last equality by cos a', we get

t ' sin a tan ~ ·cot y
an a = 1 A'+ cos a tan ,p cot y

Interchanging ~ and y we flnd

t
• sin a tan y.cot ~

ana =1 A'+cos a tan y cot B
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We thus finally obtain

tan _ sin ct tan ~ esc l'
1'1 - I+ cos ct tan ~ cot y

and
tan ~1 sin ct tan y esc ~

2+ cos ct tan y cot ~ ,

446, The sum of the interior angles in the regular polygon being equal to 1UI,

the number of its sides is equal to n+2. Let PQ be the altitude of the pyramid

o

A

FIG. 159 FIG. 160

(Fig. 159). Consider a lateral face of the ~yramid, say 6. QAB, and its projection
onto the base, i. e. 6. PAB . The conditions of the problem imply that

Sl::,.PAB 1

Sl::,.QAB /i'
The areas of the given triangles being in the ratio of their altitudes dropped
onto the common base AB, for the cosine of the dihedral angle with edge AB
we have

PR I
cos q>= QR =/i'

whence it follows that the apothem of the base of the pyramid is equal to
I

d = h cot q> = h -='"""=...
Ykz-l

We then find the side of the base:

a= 2h tan~,
Yk2 - 1 n+2

Since the area of the base is determined by the formula

I
8="2- (n+2) ad,

we see that the volume of the pyramid is

I I (n+2)h3 n
V=S-Sh=T k2_1 · tan n+2 .
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I a I 2 _ a 3

2 XY X2" X2"a -6'

447. The solid in question is an octahedron whose vertices are the centres
of symmetry of the faces of the cube (Fig. 160). The volume of the octahedron
is twice the volume of the regular quadrangular pyramid EABCD with altitude

~ , the area of the base ABCD being equal to ~ (12. Hence, the required YO ­

lume is equal to

448. It is obvious that the section is the isosceles trapezoid ABCD (see
Fig. 161). Let P be the midpoint of the side EF of the base of the pyramid .
Consider !J.SPR containing the altitude SO of the pyramid. The line segment
KO is apparently the altitude of the trapezoid ABCD. Sinc e KO II SR, we have

KO={ h where' h is the slant height of the pyramid . It is also obvious that

AB= 2a where a is the length of the side of the base of the pyramid. We also
I I

have DC="2 EF = '2 a and therefore,

Str= ~ .(2a+f) . ~.=5;h=~ ({- ah)

and, hence, the sought-for ratio is equal to f.
S

[

·A

FIG. 161

449. Let AtBCID be the given tetrahedron. ABCDAtBIC1D1 the parall elepiped
obtained by the indicated construction (see Fig. 162). It is readily seen tha] the
edges of the tetrahedron are the diagonals of the lat eral faces of the parallel e­
piped. The tetrahedron can be obtained by cutting off and removing from the
parallelepiped the four congruent pyramids ABOA I• BOCCI' AtBICIB and

A1D1C1D. TlW volume of each pyramid being equa l to ~ of the volume of

the parallelepiped, the ratio of the volume of the parallelepiped to that of the
tetrahedron is equal to

~_ Vp

Vt - V _.1. V
. p 6 p

3.
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450. One can easily see that the vertices of the tetrahedrons not lying em
the faces of the pyramid are the vertices of a square. To determine the length
of the side of the square, draw, through the vertex S of the pyramid and one
of those vertices, say A, of the tetrahedrons, a plane perpendicular to the base
of the quadrangular pyramid (Fig. 163). This plane also passes through the
foot 0 of the alt itude of the pyramid. the foot Q of the altitude of the tetra­
hedron and the midpoint M of the edge KL. Drop the perpendicular AB onto
the base of the pyramid and consider the quadrilateral SOBA . Its s ide OB
is half the diagonal of the above square and is to be determ ined . However,
it is easy to reveal that SOBA is a rectangle. Indeed , putting L. OMS=ct and
L. ASM =~, we find

OM
cos ct = MS

and

ya
-3-

ya
QS -3- a

cos ~= SA = a

Therefore SA and OB are parallel and, hence,

OB =SA=a.

Thus, the sought-for distance is equal to a Y2.

ya
3

c--.- .....",;A

FIG. 163 FIG. 164

451. Suppose that the cutting plane passes through a point of the diagonal
HP of the given cube (Fig . 164). Let us first consider the section s which inter­
sect the diagonal at points belonging to the line segment OP. Take the plane
section QRS passing through three vertices of the cube . It obv iously is one of
the indicated sections. This section is an equilateral triangle with side a Y2.
We can easily compute the distance from the centre of the cube to the chosen

section which turns out to be equal to ar3 . It is obvious, that for

aya
~;;;;:'--6- the sections are equilateral triangles. The sides of these triangles



SOLUTION S AND ANSWER S. SO L ID GE OMET R Y 279

being in the ratio of their distances from the point P, we can write

MN OP-x

QR = OP _ a Y3 .
6

Now, taking into account that QR = a y 2 and OP= a ~3 , we find

3 «r « , r-
MN=2 r 2 a-X r 6. (1)

But if a ~3 > x~ 0, then the section is a hexagon of th e typ e ABCDEF.

The sid es AB, FE and CD of the hexagon are, r espectt vel y, par allel to the
sides QR, QS and RS of the equilateral tri angle QRS. Therefore, when ex ten­
ded, these sides intersect and form angles of 60°. Furtherm ore, tak ing in to
account that AF II CD and so on, we arrive at a conclusion that each angl e of
the hexagon is equal to 120°. It is also readily seen that AB = CD= EF and
BC = DE = AF (it should be noted that the .sides of the hexagon cut off isosceles
triangles from the faces of the cube).

s

FIG. 165 FIG . 166

To find the lengths of the sides of the hexagon let us extend its sid e AB
to intersect the extension of the edges PQ and PR at points M1 and N 1 . It is
apparent that the length of the line- segment M INI can be computed by for­
mula (I). Knowing MINI' we find the li ne segment BN I :

( Y 2 ) ,r - a ,r- ,r-
BN I = - 2-MINI-a r 2= "2 r 2-x r 6.

It follows th at

(2)

The side BC can be determ ined in a simi la r way bu t it is clear that BC = BN I ,

and, henc e,

(3)

Note , that the section obtai ned by th e cutt ing plane 1t passing through the
point 0 is a regular hexagon (consider formulas (2) and (3) for x =0). The ver­
tices of thi s hexagon are at the midp oints of the edges of the cube (Fig. 165).
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It is obvious that if one of the two parts into which the cube is cut by the
plane n is turned about the diagonal OP through an angle 60°, the hexagon
goes into itself, and we thus obtain two polyhedrons symmetric with respect to
the plane n. Consequently, the section intersecting the diagonal at a point of
the line segment HO whose distance from the point 0 is x can be obtained
from one of the sections that have been already considered by turning through 60°.

452. The projection is a regular hexagon with side a rtf .To verify this

assertion it is convenient to consider the projections of all the plane sections of
the cube investigated in Problem 451 (see Fig . 164). All these sections, when
projected, do not change their sizes, and thus we obtain the figure shown in
Fig. 166.

Knowing that the side of the triangle ~QS is equal to a Y2, we find from
the triangle GOS the relation

GS . Y 3 _ a Y2
2 - 2 '

which yields GS= a ~6 . The side of the regular hexagon AIBICIDIEIFt

(see Fig. 165) being equal to a ~2 ,the sought-for ratio of the areas is equal to

F[G.167

A~------Yl

( a ~6 ) \ ( ar2r= : .

453. Let AEFD be the isosceles trapezoid obtained in the section, and G
and H be the midpoints of its bases (see Fig. 167). Drop the perpendicular HK

from the point H onto the base of pyramid.
S. Since H is the midpoint of SN, we have

h a 3a
c HK=T' KN=T and GK=T" (1)

Now we shall determine the lengths of the
line segments QO and QS . We have

QO GO
HK = GK'

and therefore, taking into account (l), we obtain

h a 4 h
QO=Z'Z' 3a=S"

It follows that

QS=~h and GQ=-V(~r+(~r" (2)

Draw the perpendicular SM from the point S to GH. Then the similarity of
the triangles SM Q -and GOQ implies that

SM GO
QS = GQ '

and, consequently, the sought-for distance is

SM=QS. GO = 2ah
. GQ Y9a2+ 4h2 •
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454. The solid in question is made up of two pyramids with common base
KM N (Fig. 168). We can easily find the altitude OR of the lower pyramid by
dropping the perpendicular PDfrom the midpoint P of the side KN on to the
base of the pyramid. The point D bisects the line segment QL. Taking advan­
tage of this fact, we obtain , from t:,.APD, the relation

PD DA 5
RQ = QA ="4'

4
whence we find RQ=r; PD and, hence ,

OR =-.!.- PD=-.!.- .-.!.-a .. /2_ aV]
5 5 2 V"3 - 30 •

Here we have taken advantage of the fact that in a regular tetrahedron

with edge a the altitude is equal to a y ~ .The required volume is V= a
3
~2 .

s

C'

FIG. 168
B

FIG. 169

455. Let AMKN be the quadrilateral obtained in the section, and Q be the
point of intersection of its diagonals (see Fig. 169). Considering t:,. SAC, we
readily note. that Q lies in the point of intersection of the medians of th is
triangle. Therefore,

2
and, hence, MN = 3" b. Furthermore. from the right triangle SAC we find

1 J
AK=2"SC=2" Yq2+ a2.

I b ,r--
Since AK 1-MN, we have Ssec=2" AK · MN=6 r q2+a2.

456. Let NQN1Q 1 and ' LML1M1 be the parallel sections of the prism
(Fig. 170). a the length of the diagonal AC of the base and H the length of
ihe line segment KK 1• Then the area of the first sect ion is

S= ~ (a+ ~ )= ; Ha,
The area of the other section is

I . Is' =2" PT (A ZC2+LM)+ 2" PIT (A .C2+L1MIl·
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But we have

which is obviously implied by the similarity of the corresponding triangles.
Therefore we obtain

and, hence,

S'= .!.! S12 .

Q

c

B

H

A

Note. This problem can also be wived in a simple way if we take into
consideration the formula

Spr=S cos cp, (I)

where S is the area of. a polygon in a plane P, Spr is the area of the projection
of this polygon on a plane Q and «p the angle between the planes P and Q.

According to formula (I), the areas
of the parallel sections in the problem
are in the ratio of the areas of their
projections. Therefore, 'the problem is re­
duced to finding the areas of two pia­
ne ligures shown in Fig. 171, namely

FIG. ~70 FIG. 171

Li~MLA and NiQicQNA (the primed letters denote the projections
corresponding points onto the base of the prism).

457. Consider the pyramid KAEF shown in Fig. 172 which is one
polyhedrons. We suppose that

AE AF 1
EJf= FC ='2'

of the

of the

Therefore,

and, hence,

(1)
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Now, let K M and SN be the altitudes of the pyramids KAEF and SABC. As
is seen,

KM AK 2
SN = AS =3"

2
Therefore, K M =3 SN and, taking into account (I), we obtain

2
VKAEF = 27 VSABC'

The sought-for ratio is equal to :5 .

A

B

FIG. 172

c

A

FIG. 173

c

458. Let the face of area So be the base ABC of the given pyramid ABCD,
DO the altitude of the pyramid, and DA I , DB I and DC] the altitudes of the
lateral faces (Fig. 173).

The line segments OCt. OAl and OBI being, respectively, the projections
of DCI , DA t and DB I onto the base ABC, we have OCt..L AB, OAl..L BC and
OBI 1. AC, and therefore t. DCIO, t. DAIO and L. DBtO are the plane angles
of the corresponding dihedral angles and, by the hypothesis, are equal. It follows
that the triangles DOC\> DOAt and DOB I are congruent. To facilitate the corn­
putation, let us introduce the following notation:

DO=H, DCl=DAt=DBl=h,
OC I =OAl =OBI =r,

St +S2+ S3=S,

It is obvious that r is the radius of the inscribed circle of f::, ABC. The
volume of the pyramid ABCD is

I
V=3SoH. (I)

From the right triangle DOC] we obtain

AC=2~2 "BC=2S1

h '
AB _~S.'l

-h'

H=Vh~'r2. ~

Thus, the problem is reduced to finding h'and r. From the formulas 81= ; BCh;

I J
S2="2 ACh and S3="2 ABh we find the expressions for the sides of the trio

angle ABC:
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Hence. we have

Furthermore,
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5 253 . S -253p-AB=---
h h h

p-BC=5-
h25

1 • P _ AC = 5 - 2$2
h '

(3)

and . henc e by Heron's formula . we obtain

S2 _ ( AB) ( BC) ( AC) _ S 5-I251 5-252 5-25,3
0 - p p- p- . p- ' -71' --h- , --h- , h =

. S (5-281 ) (8-252) (5--253')= . h4

Consequently.

V5 (5-251)(5-252)(5 -258)
h - . . -

- YSo '

The radius r of the inscribed circle is found from the formula expressing the

area 50 of the triangle ABC in terms of this radius and P=-}(AB+BC+AC):

5
50 = pr= 7l r,

whi ch yields
50r=hS'

Substituting this value into formula (2) we obtain

H= -Vh2_h2~~= ~ V52_S~.

Now substituting the value of h determined by formula (3) into the expres­
sion of H and then the result thus obta ined into formula (I), ' we finally receive

V- ..!.- V5 (sa -S~ V(5-2S1)(S-252)(5-25s)
- 3 0 oJ 53 .

459. Cut the cube into two congruent parts by the plane perpendicular to
the ax is of revolution and turn the polyhedron thus obtained through 900

• The
resulting geometric configuration is shown in Fig, 174.

The common portion is made up of the rectangular rar~llelepil>e(l
ABCDD1A1B1C1 and the regular pyramid 5ABCD. The altitude 0 the paralle­
lepiped is found from /::,.BB1T :

a Y2 a
h·=B1T = - 2- - "2 '

The altitude of the pyramid is

H - aV2 -h=~
- 2 2 '
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The area of the common base is equal to a2 •

. Thus, the sought-for volume of the common portion is

that is

s

285

FIG. 174 FIG. 175

460. Let $ be the vertex of the cone , SO=h the altitude of the cone,
ASB the triangle obtained in the section, C the midpoint of the chord AB

and AO=r (Fig. 175). Noting that L. AOC= ~ • we find

. a p
h=·CO tan a=2' tan a cot 2" a

r=---.
2 sin ~

Therefore the volume of the cone is

P
I ndJ tan a cos 2"

V=- nr2h=-- ----;,..---
3 24. 3 P

sin 2"

461. Let a be the required angle, I the length of the generator of the cy­
linder , 11 the slant height of the cone, r the radius of th e common base of
the cone and cylinder (Fig. 176). By the hypothesis, we have

2nr (r+l) 7
nr(r+ld 4"

and
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Consequentl y,

l+..!..r 7
1+11 ="8' or

r

I +cot 0:
1-l-csc 0:

7
8 •

and, hence,
sin 0:+8 cos 0:-7=0.

Solving this equation we fin.d

. 3
Sin 0:="5'

. 3
0:= arc Sin 5' .

FIG. 176

462. Let ' 0: be the sought-for angle, R the radius of the base of the cone
and r the radius of the base of the cylinder (Fig. 177). We have

2Jtr2+2nrR ( r) r 3
nR2 2 1+ R R="2'

R-r r
But ~=tano: and, hence, R=I-tano:. Thus we obtain the following

equation with respect to tan 0::

4 tan 2 0:-12 tan 0:+5=0,

Solving it , we find

and, hence,But it is easil y seen that

5 I
tan 0:=2 or tan 0:=2 .

R-r 1
tan o:=~ < I, therefore tan 0:=2 '

I
0:= arc tan "2.

463. Let I be the slant height of the cone and R the radius of its base,
x the length of the edge of the prism, r the radius of the circle circumscribed
about the base of the prism (Fig. 178). Consider the triangle formed by the
altitude of the cone, an element of the cone passing through a vertex of the
prism and the projection of that element onto the base of the cone. We have

I sin 0: R
I sin a-x r
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21sin a. sin ~
n

and R = I cos a., we obtain
x

2sin~
n

Since r=----

x= ------
2 sin ~+ tan a.

n

Consequently. the total surface area of the prism Is

/ . . 1t \ 2
, 21 sin a. sm - "\ I

I 11: \ n ( 11:)S="2nx2cotn+nx2=n . 11: } 1+2"cot n·
2 sm-+tan a. "" n /

k
FJ.G. 178 FIG. 1'79

464. Consider the isosceles trapezoid AB 1C1D which is the projection of the
given trapezoid ABCD onto the plane perpendicular to the axis of the cylinder
shown in Fig. 179. The projected trapezoid is circumscribed about a circle, and,
hence, "

a+b
ABI = AK+KB 1 = AM+BINI=-2-'

From the right trian~le APB1 we obtain

(a+b)2 (a-b)2-2- = -2- +h2 sin 2 a..

I.t follows that
. ¥ab d . ¥absrn a.=-h- an a.=arc sm -h-'

465. Let R be the radius of the sphere, and a, band c be, respectively. the
legs and the hypotenuse of the triangle ABC which is the base of the prism
(Fig. 180). We have

h h a h
a=cos a. ' b= sin a.' c=sin a. cos a. sin a.

The radius R is obviously equal to the radius of the inscribed circle of b. ABC.
Therefore,

R=2S,6ABC
a-+-=:b"""'+""c-

ab h
I + sine + cose •
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and, hence, the volume of theprisrn is

8c

t

~
11

a
. h

8~A
c

2h3

V= 8 A A Be 2R . 2· (I ; .w sm c:t . +sm a+cosa)

466. The volume of the pyramid is equal to the sum of the volumes of the
pyramids which are obtained by joining the centre of the inscribed sphere 0
to the vert ices of the pyramid. The D
altitude of each constituent pyramid is
equal to the radius r of the sphere ins­
cribed in the given pyramid. If 8 is the

FIG . 180 FlG. 181

area of the base of the pyramid and SI the lateral area, the volume of the
pyramid will be

IV=S (8}+8) r. ('I)

On the other hand, we have
I

V=ghS,

and thus we obtain the Iollowing formula Ior ,:

h8
'=81+8 .

From the conditions of the problem it follows that

nq.2 n
S=-cot-'-

4 n.'
na , j--a-2­

SI=2" V b2
- T

(2)

and

4 sin 2 ~
n

I

/1

a V 4b2 - a2 csc2 .:;;

2 ( aT tan -i.Y4bz_a2 ) •4 ( na
2

cot ~+na 1// b2_:=:.)
\4 n 2 ~ 4

r

Substituting these expr essions into (2) we find

na2 cot.!!. ... / b2_ _ ~a_z _
n V 4sin2~

n
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467. Let us denote by r the radius of the inscribed sphere and by a th e
leng th of th e line segment OE (F ig. 181). Then

r=a tan a ,

where a is half the sought-for angle (see Fig . 181). Henc e, the volume of t he
sphere is

Sin ce DO= a tan 2a and AB= 2 Y S a, the volume of the pyram id is

s

s

a

ca)

FIG. 182

A

and

2
tan 2 a (l-tan2 a)=g'

2 1 2 2
It follows that (tanah=S and (tanah =3"'

Taking into consideration that a is an acute angle,
we find

I Y3 ,r -
Vpyr =3" DO - 4- AB2= r 3 a3 t an 2a.

By the hypot hesis, we have

Vpyr 27 y3"
V$ph=~'

Expressing tan 2a in terms of tan a we get the
equation

and

a= 2b tan '::'= 2r co t ':='2 tan'::'.n n
The area of the base is

S ab . z t n t2 a
base = n 2" --= nr an nco 2 '

. , /"2
az=arclan V 3 '

468. Let a be the side and b th e apot hem of
the regular n-gon which is the base of the pyra­
mid, and H be the altitude of the pyramid . Then
(see Fig , 182, a and b) we ha ve

a
b=r cot 2"

ex. .
Furthermore, H = b tan a= r tan a cot 2 ' and hence th e voturne of the pyra -

mid is
1 c;c rt

Vpyr =3" nr3cots 2 tan ex. tan Ii

10-323
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Since th e volum e of the sphere is VSPh = + nr3 • we can wri te

VSp h 4n 3 a rt
- - = - tan -cotacot- .
Vpy r n 2 n

469. Let a be the side of the base 01 the pyramid , b the apoth em of the
base, R the radius of the circum scrib ed circle of the base, h t he alt itude of

S

~h (
r C

b

( Q) ( h ) A [

FIG. 183 FIG. 184

the pyramid , , th e radius of the sphere inscribed in the pyramid. y the slant
height of the pyramid (see Fig . 183, a and b) Then

a=2R sin~ b=R cos ~n . n

and , besides,

y=R+ . / R2- ~2 =R (I +cos ~) and h= V y2 - b 2 =
-----
1+ 2 cos~ .

n

From the equation -h ' =.£...(see Fig. 183, b), we find
-r y

hb R cos ~ ]l't + 2 cos ~
r= y+ b= 1+ 2 cos'::

n

Hence, the sought. lor ratio is equal to

+h • } nab n sin ~ ( I + 2 cos ~r
~ nr 3 4n cos ''~
3 n

470. Let a be the side of the base of the given pyramid SABeD, h the
altitude of the pyramid, , the radi us of the sphere circumscribed about the pyra·
mid (Fig . 184). Then



and
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J

J= (~~)3.
If SE is the diameter of the circumscribed sphere, then from the right triangle
SBE we lind

( V-)2Y =h(2r-h).

a
However, from the triangle FOIS we have 2=hcot c, and therefore, elimi-

nating a, we receive

h= 2;-
2cot2a+ll+2coFa

471. Taking advantage of the equality 01 the dihedral angles we can readily
show, as in Problem 458, that the perpendicular dropped from the vertex onto
the base is projected in the centre of symmetry of the rhombus. It is also
obvious that the centre of the inscribed sphere lies on that perpendicular.

s,

s,
FIG. 185 . FIG 186

Let a be the side of the rhombus, 2h the altitude 01 the rhombus, and H
the altitude of the pyramid {Fig. 185}. Then the area of the base is S=a2 sin a,

and thus, since a=..;!!:.-., we obtain
sin a

4h2
S=-.-.

Sin ct

But h= R cot ~ (see the section passing through the altitude of the pyramid

and the altitude of the rhombus shown in Fig. 185). It is also clear that

2 cos- ~
H=R+-!i-=R 2

cos ¢ cos 1\1

10·
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We finally obtain the volume of the prism:

COS 4 ..!
V =~ R3 2

3 sin a. cos 'V sin2t
472. Draw a plane through the verti ces 8 1 and 8 2 of the pyramids and the

midpoint A of a side of the base (Fig. 136) . The radius of the semicircle in­
scribed in the triangle A818 z so that its diameter lies on 8182 is obviously equal
to the radius of the inscribed sphere. Let 0 be the centr e of the semicircle.
Denote by b the alt itude in the trian gle A818z dropped onto the side 8 18z. Since b
is the apothem of the regular n-gon, we have

a 1t
b= Zcot n '

Computi ng the area 8 of the triangle ASISz by means of the two methods in­
dicated below we can find the radius of the sphere R. Indeed, on one hand, we
have

and. on the other hand,

S= ~ S , A+ i S2A = i ( Yh 2 + b2 + VH2+b2
) .

This results in the final formula

I n
"2 a (H + h) cot n

R = I a2 n - ... I a2 n .V h2+T cotZn + Y H2+ T cot2n

473. Let hI and hz be the altitudes of the pyramids, and r the radius of the
circle circumscribed about the base. (Fig . 187). Then we have

a . n
Z=rsln n ,

From the right tr iangle S IASz whose vertices are the vertices of the given
pyramids and one of the vertices of the base we find

a2

h,hz= r2 = - -- .
4 sinz~

n

But

and, hence,

hz=R-, / ~z _ _ a_J__ .
V 4 sinz~

n
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The problem is solvable If R~ _. _a_.
. 2sln ~

n

8

FIG. 188
$2

FIG. 187

474. It can easily be proved that the midpoint of the line segment joining
the centres of the bases of the prism is the centre of the inscribed and circum­
scribed spheres. The radius of the circle inscribed in the base is equal to the
radius of the inscribed sphere. Let, be the radius of the inscribed sphere and R

s,

t he radius of the circumscribed sphere. Consider the right triangle whose verti­
ces are one of the vertices of the base, the centre of the base and the centre

of the spheres. We have R2=,2+,: where '1=-'-. It follows that
1t

cos­
n

R=n/I+__l _ .
V cos~"::'

n

3

R3 1 2'-=(1+-),3 n'
cos 2 -

n

The ratio of the volume of the circumscribed sphere to that of the inscribed
sphere is

475. The radii of the circumscribed and inscribed spheres are equal to the
segments of the altitude of the tetrahedron into which it is divided by the corn­
1110n centre of these spheres. It can easily be revealed that the ratio of these
segments is 3: I. Indeed, from the similar triangles BQO and BPK (Fig. 188)
we have

R BK
r=PK'

But
BK BK
PK= QK =3,

lind since the surface areas of the spheres are in the ratio of the squares of their
radii the sought-for ratio is equal to 9,

10· -323
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476. The volumes of the regular tetrahedrons are in the ratio of the cubes
of the radii of their inscribed spheres. The sphere inscribed in the larger tetra­
hedron being at the same time the circumscribed sphere of the smaller tetrahe­
dron. the ratio of those radii of the inscribed sphere is equal to 3 :1 (see the
solution of Problem 475). Hence. the sought-for ratio of the volumes is equal
to 33 =27.

477. Suppose that the problem is solvable . Draw a plane A1B.C1 (see FIg. 189, a)
tangent to the smaller sphere and parallel to the base ABC of the given
tetrahedron. The tetrahedron SAl B1C1 is circumscribed about the sphere
of radius r. It is easy to show that its height is SQl = 4r (see Problem 475).

s

Ai::.-.---__...J

(al

FIG. 189

Let the length of the edge of the tetrahedron SABC be equal to x. Then
V3 YBthe line segment AQ is equal toy. and the altitude SQ is equal to x -3-'

x V6Furthermore (see Fig. 189, b), we have QO= -3--3r. and Irom the right

triangle AQO it follows that

(X~3Y+(x ~fi-3rr=R~.

Solving the quadr atic equation we find

X1•2=T yfi ± YR~-3r2.

Here we must only take the root with the plus sign. because SA is in any case
greater than 3r . and 3r > , YB. It is obvious that the problem is solvable if
R~ Y3r " " . "

478. Let A1BJC]DI EI F. be the regular hexagon in the section of the cube by
the cutting plane. The problem is "reduced to determining the radius of the in­
scribed sphere of the regular hexagonal pyramid SA,BJCJDJEJFJ (Fig. 190).

The side of the base of the pyramid is equal to a ~2. and the altitude to

a ~3 . Since the radius of the sphere inscribed in 8 regular pyramid is three
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times the volume of th e pyramid divided by its total area (see formula (I) in
the solution of Problem 466), we find

r_ a (3- Va)
4

. 2 (3+ V"3)3
Hence, the required ratio is equal to

9n

FIG. 190 FIG . 191

479. Let 0 be the centre of the sphere, and AS, BS and CS the given chords.
As is obvious, the triangle ABC is equilateral (Fig. 191). It is also easily seen
that the extension of the perpendicular SOl .to the plane ABC passes through
the centre 0 of the sphere because the point O. is the centre of the circle cir ­
cumscribed about t::. ABC .

Now let us denote the sought-for length 01 the chords by d. From the trian­
gle SAB we find

AB=2dsin %'
and, hence ,

Va 2 .r- . ct
0 IA = AB-3- = "3 " 3 d Sill "2'

Computing the area of the isosceles triangle SOA in two different wa ys , we get

1 2 - a. I ~ j----cF
"2 R "3 V3d sill 7 = T d V R2_ 4 ,

when ce we find

d 2R ~ j I 4 . ., a.
= V -"3 Sill " "2 '

480. The radius of the inscribed sphere , is found by the formula (cl. for­
mula (I) in the solution of Probl em 466)

3V
r=S '

where V is the volume of the py-ramid, and S its total area . We sha ll first find
the volume of the pyramid. To this end, note that the right tri angl es BS C and

10"
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I

8SA. (Fig. 1.92) are congruent since they have equal hypotenuses and a common
leg. Due to this, the right triangle ASC is isosceles. Since .

AS=CS= Va2~b2,
we have

I . I (a2_ b2)
V="3 BS .S6, ASO="3 b'--2-

S

.4

F1G.192

It is also clear that

and

and. hence,

,r-Y2
AD= r a2 - b2 - -. 2

BD= YAB2_AD2= ~2 ya2+b2,

S I .r~b4
6, ABC ="2 r a - .

Now substituting the necessary expressions into the above formula of r and sim­
plifying the result we finally obtain

b Ya2_b2

r= ---....:-----=
Ya2+b2+2b+ Va2 - b2

481. Let rand R be the radtt of the inscribed and the circumscribed spheres.
s

(C)

s

ca)

s

rOJ '

FIG. 193

We shall first consider Hie triangle SFE whose side SF is the altitude of
the pyramid, the side SE being the slant height of the pyramid (Fig . 193, a).
Let 0 be the centre of the inscribed sphere. In the triangles SFE and OFE
(Fig. 193,b) we have

.FE=., cot ;
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and

SF=, cot ~ tan <p.

Furthermore, it is obvious, that

DF =EF · Y2=rcot i- Y2 .

297

From Fig. 193. c showing the section passing through the axis of the pyramid
and its lateral edge we easily find

DO;= OjF2+DF2,
that is

It follows that

R
SF2+DF2

2SF
(I)

We have R=3" and therefore, substituting the above -expression for SF and
DF, we obtain the following equation for <p:

,2 coP ~ tan2 <Jl +,2 cot2 ~ • 2
3,= 2 2

2, cot ~ tan <p

Simp1ifying this equation we write

6 tan ~ tan <p = 2+ tan2 <po

Now put tan ~ =Z. Noting that tan <p= I ~ZZ2 t we arrive at the equation

7z~-6z2+1=0
from which we find

, .. /3 ± Y2
Zj.2=± V 7 .

But z > 0,. and hence only the two following answers are possible:

tan~= ... / 3+Y 2
2 V 7

and

tan <Jl2= ... /3- Y 2 .
2 V 7

482. We have the tot al of six lunes (according to the number of the edges)
and four triangles (Fig. 194). Let us denote the area of each triangle by SI' and
the area of each June by S2' We then have '

4S1 +6S2=4nR2. (I)

Let So be the sum of the areas of a triangle and the three adjacent lunes. So
is the area of a spherical segment cut off by the plane of the corresponding face
of the tetrahedron. This area is equal to 2nRh where h is the altitude of the



298 PROBLEMS IN ELEMENTARY MATHEMATICS

segment. Since the altitude 01 the tetrahedron is divided by the centre 01 the
sphere in the ratio 3 : I (see Problem 475), we have

H=R+iR= ~ R,

which y ields

Furthermore, we have

(2)

Solving the sys te m consisting 01 equ ations (I) and (2) with respect to the un­
knowns 51 and 52' we ob tain .

5 2 R,2 5 2 R2
1 =3"11: . 2=911: ·

483. Let R be the radius 01 the base 01 the cone , ~ the angl e between the
ax is of lhe cone and its element, and r the radius of the inscri bed sphere . The
axia l sed ion 01 the cone shown in Fig. 195 is an isosceles triangle ABC. The

B

F IG. 194
A

FIG. 195

radius of the inscribed circle of this triangle is equal to the radius, of the
sphere inscribed in lhe cone . Let 0 be the centre of th e sphere. and t.. OCA=~ .

Then it is obvious that tan ~ = ; . But, by the hypothesis,

4n,2_ (!...-)2_i.
11:R2 -4 R - 3 .

r. I It 1t
It follows that R = VI ' and , hence , ~ ="6 ' Besides , we have ~+2~ = T'

and therelore ~= ~ . Consequen tly, the sought-for angle is eq ual to 2~ = ; .

484. Let r be the radius of the hemisphere, R the rad ius of the base of the
cone, [ the sl ant height of the cone, and ~ the angle between the axis of the
cone and its eleme n t. .

By lhe hypo thes is, we hav e

nR (1+ Rl 18
2n,2 =5 ' (I)



SOLUTIONS AND AN SW ERS. SOLID GEOMETRY 299

. Let us int roduce the angle a into this equality . For this purpose, consider
the isosceles D. ABC (F ig. 196) obtained in the axial sect ion of the cone. From
D. ABC we find

R=l sin a, , =R cos a=l sin a cos a.

Substituting these expressions in the left-hand side of ( I) , we get

I I+sin a 18
2"sin a cos- a "5.

We have cos" a = 1- sin2 a and therefore. cancelling out I + sin a, we receive

36sin2 a - 36 sin a +5 = O,
which gives us

Hence, the sought-for vertex angle of the axial sect ion of the cone is equa l

to 2 arc sin ~ , that is to 2 arc sin ~ .

8

FIG. 196 FIG . 197

485. Let h be the altitude of the cone. , the radius of the base, [ the slant height of
the cone, a the angle between the alt itude of the cone and its element (Fig . 197).

By the hypothesis. we have 11'[ = kn.,2 which yields 1= kr and, hence sin a = -} .

From the right trian gle ABS we get

Vk2 - 1
r = 2R cos a sin a = 2R k2

and
k2-1

h= 2R cos a cos a = 2R~ .

The sought-for volume of the cone is

V=..!... lIr2h=~ lIR s ( k
2_ 1)2

3 3 kS '

486. Let R be the radius 01 the sphere, h the altitude 01 the cone and ,
the radius of the base 01 the 'cone. The rat io of .t,he volume of the cone to that
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of the sph ere is equ al to

r2h q ( r )2
X= 4R3=T R .

Fr om the tr iangle SB A (F ig . 198) we have r2 = h (2R - h). It follo ws tha t

~: =; (2-~ ) =q(2-q)

and , conseq uently ,
q2

x = T (2- q).

Obviously, the probl em is only so lvable if 0 < q < 2.

FIG . 198 FIG. 199

487. Let R be the radius of the sphere, Ssphere and Vsphere the area and
the volume of the sphere, S con e and V con e the total area and volume of the
cone , h th e altitude of the cone an d r the radius of the base of th e cone
(Fi g. 199). Then .

4
Vsphe re 3 1tR3

4R 3
V

cone
- -I- - = f2ii

3 n r2h

and

S s ph ere 4nR 2
Scone = :rtr (l+r)

However, let us note that

/ h-R h-=--=--1r R R
and, consequently,

Th us, we obt ain
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Note. The same result can be obtained in a simpler way by using the follo­
wing

(I)

where Scone Is the total area of a cone. and R the radius of its Inscrib ed
sphere. Formula (I) is readily obta ined as the limiting case of the correspond ing
formula for a pyramid (see the solution of Problem 466). To obtain the result
we take the obvious formula

I
Vsph ere =3" Ssphere · R. (2)

and then, dividing (2) by (I). obtain

Vsphere Ssph ere 1
V cone = Scon e =(1'

t·')

(4)

(3 )

8

FIG. 200

(I)

(2)

488. Let S be the tota l surface area of the frustum, Sl the area of the sphere,
r l and r the radii of the upper and lower base of the frustum , respectively,
and / the slant height. Furthermore, let CMDL c
be the trapezoid in the axia l section of the r---':::=--r-,,==""---;
frustum. 0 the centre of the inscribed sphere.
AB ..L LD and OF ..L.tID (Fig . 200). We have

S 1l;/(r+rl)+1lr~+nr2
~ 4nR2 m.

It is obvious that AM=MFandBD=FD
because 0 is the centre of the circle inscribed
in the trapezoid and therefore

/=r+r1"

Taking advantage of this equality, we obtain
from equality (I) the relation

/2+ rr+ r2 = 4mR2.

It then iollows from the tr iangle MED that

12=(r-r l )z+ 4R2.

Eliminat ing / Irom equalities (2) ann (4) we find
rr , = R2.

With the aid of this equali ty, eliminati ng / Irom (2) and (3) , we obtai n

r2+rr=R2(2m-I). \6 )

Solving the system of two equations (5) and (6), we lind

r= ~ (V2m+ 1+ V2m-3)

and

rl = ~ (V2m+ 1- Y2m-3).

Thus. for m < ~ the problem has no solution; for m= ~ the frustum of the

cone turns into a cylinder.
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A

489. There are two possible cases here, namely: (1) the vertex of the cone
and the sphere lie on different sides of the tangent plane and (2) the vertex of
the cone and the sphere lie on one side of the tangent plane.

Consider the first case. Draw a plane through the axis of the cone and its
element BC mentioned in the statement of the problem (Fig. 201). The section
of the cone by this plane is a triangl e ABC and the section at the sphere is
a circle with centre at O. Furthermore, this plane intersects the plane perpen­

B

,..
FIG. 202

dicular to BC along a straight line ME, M being the point of tangency. Draw
BD.l AC and OF.l BC. Let BD=h, OD=OF =r and CD=R The figure
OMEF is obviously a square, and therefore

h=r+ YrZ+(d+r)Z.
Furthermore,

R r hr .
Jl=d+r ' R = d+r '

Thus, in the first case the volume of the cone is

1 1 h3r2 nr2(r+ Y r3+ (d+ r)2)3
V =3"nR

Zh=3"n(d+r)2=
3 (d+r)2

In the second case the problem is solved analogously. The volume of the
cone turns out to be equal to

nrz (r+ Y rz+(d-r)Z)3

3 (d-r)2

490. Consider the axial section ABC of the cone shown in Fig. 202. Let BF
be the altitude in the triangle ABC, Nand M the JOints of tangency of the
circle inscribed in the triangle ABC with the sides B and BC, 0 the centre
of the circle, E the point of intersection of the smaller arc MN and 'the line
segment BF and D the point of intersection of the line segments MN and BF.
Put DM = r, DE=H and BD=h. The desired volume is

I 1
V =aw2h-anHZ (3R-H).

But

COS Z'::'
ex. ex. ex. 2

h = r cot "2= R cos "2 cot "2 = R ----:-a
sl02
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H=R-Rsin~ .

Co,,,,''''IIY,V ~+oR' [co.s
4!_(1- sin ~ ) 2 ( 2+ sin ~ )] .

Sin 2

49\. Denote the radii of the spheres by r and r1 and consider the sect ions
of the spheres by a. plane passing through their centres 0 and 0 , (see Fig. 203).
Let AA 1 =2a, KS=R and AS=x. Then
A1S=2a~x. The total area of the lens is
equal to

2xarl + (2a-x) 2ar = S. (1)

From the triangle OKS we have

r2= R2+[r-(2a-x)J2,

that is
R2-2r (2a-xJ+(2a-x)2=0. (2)

Analogously, from the triangle 0IKS we have

r~= R2+ (r1-x)2,

that is

FIG. :;'03

(3)
From (2) and (3~ we find

r = R2+(2a-xJ2 R2+x2
2 (2a-,-x) '1 =~ (4)

Substituting these expressions in equality (I), we get the equation
n (R2+ X2) +n IR2+ (2a-x)2) =S.

which can be rewritten in the form
S

x2-2ax+R2+ 2a2-
2n

= 0.

Solving the equation we receive

x=a+ V2~ -R2_ a2 . (5)

Substituting this value of x in formulas (4) and simplifying the result we obtain

S .. ;S
4n -a V 2n - R2_ a2

,=---;=;;====-
a- .. /'~ -R2-a2V 2n

~+a";~ -R2-a2
4n V 2n

'1 =---;=======--
a+ .. ; ~ - R2_a2

V 2n

The choice of the minus sign in front of the radical in (5) is equivalent to
interchanging the letters' and rl which designate the radii.
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hI 'R'= -slna.

whence

F IG. 204

492, Let VI and Vz be, respectively, the volumes of the smaller and larger
spherical segments into which the sphere Is divided by the plane passing through
the line of tangency of the sphere and the cone. Denote by R the radius of the

s sphere; by h the altitude of the smaller segment,
by H the altitude of the cone, and by r the radius
of its base (Fig. 204), Then

I 4.1t
VI ="3llh2(3R-h), VZ="3llR3-3 h2(3R-h).

The problem is reduced to finding the ratio; .

Denoting the an gle between the axis of the cone
and its elemen t by a, we find from b. PKO that

R-h .
-y=slna,

Furthermore, by the hypothesis, we have

I »n
3'llr I r2H

k=-4--=4'W'
-llR3
3

Let us now express rand H in terms of R and Ct. We have

H =-!5-+R = R. I -t: sin a
,

sin .CI: Sin a

I+sinar= H :Ian a+ R· . .
cos a

Hence,
k=..!- . (I + sinCl:)3 I (I + sin a)2

4 sina(l-sin2a) 4 sinaU-sina)'

Subst ituting sin a= 1- ; into this relation we get the following equation for

h
7=z;

k=~ (2-Z)2
. 4 (I-z)z .

Simplifying the equat ion we receive

Z2 (4k+ 1)-4 (k+ I) z+4 =0

and then, solving it, we obt ain

2(k+J)±2V~
Z1,2= 4k+ J ... • (I)

Finally we find

v, z; .(3- z1.2 )

V2 = 4-z:.2(3- Zl .2)
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r=R

The problem has two solutions for k > 2 becau se both roots of the quadra tic
equation can then be taken.

493. bWe shall find radius r of each of the eight inscribed sph eres by consi­
dering the triangle AOC (shown in Fig. 205, a) in the plane passin g through
the centres of these spheres and the centre 0 of the sphere S . We have

AB r . 11:

AO=R_r=SIn B'
It follows that

. nslnB
. n Isln1f+

Draw the plane section through the centre 0 of the sphere S, the centre 0 1 of
the sphere SI and the centres of the two spheres of radius r shown in Fig. 205, b,

ra)

FIG. 205

which Iie on a diameter of the sphere O. From the right triangle AOO] we find

AO~=A02+00t
that is

It follows that

R
R .-, r

p= 'R+ r '
which results in

I Rp=R · = .
2 sin-i'+l V2- yf+1

494. The inscribed spheres being congruent . their centres are equidistant
from the centre 0 of the sphere S. Consequently, the centre of symmetry of
the cube indicated in the problem coincides with the centre 0 of the sphere S
(Fig. 206). Let x be the sought-for radius of the spheres. It is readily seen that
the edge of the cube is ' then AB=2x. and half the diagonal of the cube is
AO=CO-CA=R-x. On the other hand. we have
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and therefore we get the equation R-x=x Jf3. whence we find

R
x=Y3 +1 '

495. Let, be the radius of the base of each of the two inscribed cones whose
common portion consists of two congruent frustums of the cones. Let 'I and,2

s

FIG. 206

A

11

FIG. 207

be, respectively, the radii of the upper and lower bases of each frustum, and H
its altitude. The sought-lor ratio of the volumes is equal to

H('~+'I'z+'~)
q= 2Rs

The similarity of the triangles AQZ. AOS and APe (Fig. 207) implies

'I R-,-H 'z R
r;=-R- and -;:=7l '

Besides, H= h- R and

,= YR2- H2= Y2Rh-h2.

Therefore. the two foregoing equalities enable us to express '1 and '2 in terms
of Rand h;

2R-h
'l='z-R-'

h
By the hypothesis, we have u:" and consequently

{
z(2R-h)2 22R-h 2}

(h- Rl ' f R2 +'t -R-+'2

q = 2R3

=+ (k-I) (i -I) (k2-5k+ 7).

496. Let the radii of the circular sections with areas SI and S2 be equal
to R1 and Rz, respectively, and the distances from the centre of the sphere to
these sections be equal to I, and 12 (11 < 12 ) , Let R be the radius of the sphere.



1= 51-52
2nd .

SOLUTIONS AND ANSWERS. SOLID GEOMETRY

r the radius of the section in question and 1 the distance between
and the centre of the sphere Then we have (see Fig. 208).

12 - / 1 =d

and 1~+R~=/~+R~=R2. From these two equations we lind

1
2
+/

1
= R~-R~

d
and, hence,

1 +1
_51-52

2 1 - ---;;r-'

From equations (I) and (2) we obtain

I = 51-52 + !!.-
2 2nd 2 •

307

this sect ion

(I)

(2)

Therefore, the sought-for area is

5=nr2=n (R2-/2)=n(R~+1~-/2)= ~ (51 +5 2++nd2 ) ,

497. Let us denote the sought-for radius of the base of the cone by r. Con­
sider the section passing through the centre of one of the spheres and the ax is
of the cone (Fig. 209). Note that the distance between the centres of two con-

FIG 208 FIG. 209

(I)

gruent spheres tangent to one another is equal to 2R. It can readily be proved
that the centre A of the base of the cone is equidistant from all the three
points of tangency of the spheres with the plane P. Based on this fact, we find

AD= 2~3 R.

It is evident that L. SBA = L. CO,D = 2~ and, consequently,

2~= ~ -Cl.

Taking the tangents of the angles on both sides 01 this equality, we obtain

2 tan ~ I
l-tan2~ tan c '
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From Fig. 209 we see thattan~=(2~3 R-r) :R ann tana=r:qR. If

now we put ~ =x, equality (I) leads to the following equation for x:

3(q-2) x2 - 4Y 3 (q-I) x+q =O.

Y3 Y3For q=2 we obtain from this equation x=~, and, hence, r=-6-R. If

q :;r!: 2, then

FIG. 211FIG . 210

2Y3(q-l) =fY9q2~18q+12
xt •2 = 3(q-2) "

Since 0 < x < 2~3 , the above formula should be taken with the minus sign.

It can easily be shown that for q > 2 the root with the plus sign is greater
2Y3

than -3- and corresponds to a cone externally tangent to the spheres; for

q < 2 this root is negative.

498. The centres 01 the first lour spheres lie at the vertices of a regular
tetrahedron , since the distance between the centres of any two congruent spheres
tangent to one another is equal to 2R. It is easy to show that the centres of

B

(2)

(I )

the vertex of the tetrahedron

the fifth and sixth spheres coincide with the centre of gravity .of the tetrahedron
(Fig . 210). Let r be the radius of the fifth (larger) sphere, and p the radius of
the sixth sphere. As is obvious .

r = p+ 2R.
Since the distance from the cen tre of gravity and

in question is equal to Y; R. we obtain

V6p+R=-2- R.

Hence, p=R (Y2
6 -I), and from formula (1) we find r=R(r; +1).

Thus the sought- for ratio of the volumes is

Va (p)a (Y6_2)3 (.r-)3 .r-
V&= r = Y6+2 = 5-2y 6 = 485- 198 y 6.
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499. Let A, Band C be th e centres of th e spheres of radius R and AI' BJ
and C1 th e projecti ons of th ese centres onto the pl ane. Denote by 0 the cen t re
of th e fourt h sphere whose rad ius r is to be found (F ig. 211). Jo inin g the cent­
res of all the spheres we obv iously obta in a regu lar triangular pyr am id OABC
in which AB=BC =AC=2R, AO=BO=CO=R +r and OQ=R-r. The li ne
segme nt AQ is t he rad ius of t he cir cum scribed cir cle of f::" ABC an d t herefore

Appl ying th e Py thagorea n th eorem to the triangl e AQO we find th at

Solving th is equation , we obtain r = ~ .

500. Let A, B, C and D be the centres of th e larger spheres. Consi der th e
project ions of all the spheres ont o the plane contain ing A, B, C and D (F ig. 212).
The centres of the smaller spheres are
equidista nt from t he cent res of the cor­
respond ing larger spheres and th erefore
they are projected into the cen tres of
gravity 0 1 and O2 of the equila te ral tr io
angles ABC and BCD. Besides, the radii
of th e smaller sph eres are equa l, by
the hypothes is. and therefore th e line
segment join ing their centres is parallel
to the plane under consideration and
is bisected by the point of tan gency of
th e spheres. Therefore , the projection of
th at point is on the line segment BC.
lt follows that the smaller spheres are FIG. 212
project ed into circles inscr ibed in
th e triangles ABC and BCD. Therefore, the radius of the sm aller spheres
is equa l to

wh ich y ields !l= Y3 .
r

2. Proof Problems

ABY3
r=

6
2RY3
- 6-

501. Let E and F be th e midpoints of the bases of the trapezoid ABCD in
the axi al section of the cone shown in Fig , 213. Th rough the midpoint 0 of the
lin e segment EF draw th e straight Jines OM I CD, ON 1-EF and CP I AD.
For brev ity, let us introduce th e following nofation ; CD=l, EF=h, O'lJ=x,
EC=r, DF=R and L. MON = L. PCD=a.
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For the assertion to be proved it is sufficient to show that x= ; . By the

hypothesis, we have nl(R+r)=nI3, and, consequently, R+r=l. However,
from the triangles OMN and CPD we obtain

R+r
x=-2-cosa and h=lcosa,

and , hence, x= ~ which is what we set out to prove. •

502. Consider the trapezoid ABCD in the axial section of the cone shown
in Fig . 213. Let E and F be the midpoints of its bases, and 0 the midpoint
of EF. We also construct OM 1. CD, ON ..L EF and CP 1. AD, and L. MON =
= L PCD=a.
BEe To solve the problem it is sufficient to

prove that OM = OE. Let us introduce the
notation EC=r, DF=R, OM=x and

h
OE=Z'

Then we have

R+r
x=ON cos a =-2- cos a.

For the triangle CPD we can write

h=CDcosa= V(R-r)2+CPZcos a

FIG. 213 But, by the hypothesis, Cpz=4Rr and
therefore

h = ¥(:-:R=---r=-Z)--'+-4-:-:R=-r cos a=(R+r) cos a.

Thus, x= ~ which is what we set out to prove.

503. Let SD be the altitude of a regular tetrahedron SABC, 0 the midpoint
01 the altitude and E the midpoint 01 the line segmen t BC whose length is
designated by a (Fig. 214).

We have

DE= aY3 .
fi '

SD = VSE2- DE2= aV6 ;
3

OD= aV6
6 '

whence

OE = VOD2+DEl= ~.

Consequently, OE=BE=EC and , hence, L. BOC=90°.

504. Let a be the side of the base of the given pyramid SABCD, a the
plane angle 01 the dihedral angle with edge BC and H the length of the alti-

• From the above equality R+r=l it follows that 2R+2r=l+l. This
means that the sums 01 the opposite sides of the considered quadrilateral are
equal. This is sufficient for ' the possibility of inscribing a circle in the quadri­
lateral. But here we do not take advantage of this fact.
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tude SO of the pyram id (Fig, 215), Then we have

311

a 0:
r=2 tan 2'

Besides, accordi ng to formula (I) in the solution of Problem 481 we can write

H2+( a~2r
R= 2H

Consequentl y,
R-!!.. tan2 0:+ 2

- 4 tan 0: '

and , hence,
R
-::;::
r

Putting tan ~=x we obtain
'2

tan 2 0:+ 2
0:

2 tan 0: tan '2

R l+x4

r 2x2 (l -x2) '

lntrodueting the notat ion x2 = t we reduce the problem to provin g the inequality

1 +/2 ,r-
21 (l-t) ~ 1+ r 2

or 0 < t < J.
s

B

FIG. 214 FIG. 215

c

Multiplying both members of the inequality by the denominator and opening
the brackets we obtain the quadratic inequality

(2Y2+3) 12-2 (Y2+ I) t+ 1~O.

Computing the discrim inant of the tr inomial. we find out that it is equal to
zero. Consequently, the trinomial reta ins its sign for all values of I. The value
of the trinomial lor 1= 0 being positive. the inequality has thus been proved.
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505. The pyramids ASBC and OSBC have a common base SBC (Fig . 216),
and therefore their volumes are In the ratio of their altitudes dropped onto
that common base. Since OA' II AS, the ratio of the altitudes of the pyramids
ASBC and OSBC drawn to the base SBC is equal to the ratio of SA to OA',
Hence, the ratio of the volumes is

VOSBC OA'
VASBC = SA '

Analogously,
V()SCA DC' VOSAB OB'
VASBC = SC' VASBC = SB'

Adding together these equalities, we obtain

OA' OB' OC'
SA+SB+SC=1.

506. Let P be the plane of the triangle ABC, PI the plane of the triangle
AIB,C 1 and / the line of intersection of P and PI (Fig . 217). Denote by QAB
the plane passing through A, Band O. The straight line AIB I is in the plane

S

A
FlO. 216 FlO. 217

T".

QAB. The straight lines AIBI and AB art! nonparallel and, hence, they inter­
sect at a point TAB' This point lies in the planes P and PI and thus on the
line f. We similarly prove that the straight llnes BC and BICI intersect at a
point T Be lying on l, and the straight lines AC and AICI at a point T AC also
belonging to I.

507. Let 0) be the centre of gravity of the lace ASC of a triangular pyramid
SABC (see Fig. 218) and BOI one of the line segments considered in the prob­
lem. Take another face, for instance BSC. We shall designate its centre of
gravi ty by O2 and prove that the line segment A0 2 intersects the line segment
BOI • the point of intersection 0 of these segments dividing the line segment '
BO. into the parts DOl and 0lB which are in the ratio I: 3. Indeed, if M \ and
M2 are the midpoints of the line segments AC and BC, then it is obvious that
AS !I M 1M2; it is also clear that 0102 11MI M 2 , since the points 0 1 and 02
divide , respectively, the line segments MIS and M2S in one and the same ratio.
Therefore, AB 11°102 and the figure AB0201 is a trapezoid. Consequently. its
diagonals BOl and A0 2 intersect. Let us denote the point of intersection of the
diagonals by O. We have

M1M. I 0 10. 2
.-:-;;w-=2" M1M. =3'
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Multiplying these equalities termwise, we get 0~~2=+. But the similarity of

th Ir i I AOB d 000' I' 0 10 0 102 l 'h have I f te nang es an 1 2 Imp res OB = AB' us, we ave m ac

010 1
OB=3"'

If now we take the centre of gravity of another face and construct the corres­
ponding line segment, then, by virtue of the above, it also intersects the line
segment B0 1 , the point of intersection dividing this segment in the ratio 1:3.
Hence, this point coincides with the point O. Consequently, al l the line seg­
ments in question intersect at the point O. It is also evident that the point 0
divides each of them in the ratio 1:3 which is what we set out to prove.

s

A

FIG,218

Q

FIG. 219

508. We shall precede the proof with an auxiliary argument. Let PP I and
QQ I be two skew lines and points A, 8 and C lie on QQ1. the point 8 being
between the points A and C. Also let AI. 8 1 and CI be the feet of the perpendi­
culars dropped from the points A, 8, Canto PP I . Denote. respectively, by
hA, he and he the distances from the points A, 8 and C to the straight line
PP t . We shall prove that he is less than at least one of the distances hA
or he.

To this end, project the configuration shown in Fig, 219 onto a plane n
perpendicular to the straight line PP t . Then the straight line PP I is projected
into a point 0, and the line segments AA1 , BB I and CCI , when projected, do not
change their size because they all are parallel to the plane n. The point 8' is
then between the points A' and C'. Now taking the triangle A'OC', we can
assert that the inclined line 08' is shorter than one of the inclined lines OA I

or OC', Indeed, dropp-ing from the point 0 the perpendicular to A'C' (which
is not shown in Fig. 219), we see that the point 8' is closer to the foot of that
perpendicular than one of the other two points A' and C' . It follows that hB
is shorter than hA or he·

Let now ABCD be an arbitrary triangular pyramid, and EFG a triangular
section such that at least one of its vertices. say F, is not a vertex of the py­
ramid. Let us prove that the area of the triangle EFG is then less than the
area of one of the triangles AEG or DEG (Fig . 220) .

In fact, all the three triangles have a common side EG, an J, as has been
proved, the distance from F to the straight line EG is less than the distance
from A or D and this Iine. If S{). EFG < S{). AFG' then the assertion has been
proved. If S{). EFG < S{). DEG and, for instance, the point E is not a vertex of
the pyramid, then we apply the above argument to !::. D£G and compare its

11-323
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area with the areas of the triangles DGA and BDG. If necessary, again apply­
ing the same argument to the tr iangle BDO we prove the assertion of the
problem. It is clear from this solution that if a section of the pyramid does
not coincide with its face, then the area of the section is strictl y less than the
area of one of the faces.

II

FIG. 220

s

c

FIG . 221

509. Instead of comparing the sums of the face angles at the vertices Sand
S' we shall compare the sums of the base angles of the lateral faces of both
pyramids adjacent to each of the three vertices of their common base. We shall
prove thai for the outer pyramid every slim of this kind is greater than the
corresponding sum for the inner pyramid.

For instance, we shall prove below that

L. ACS+ L. SCB > L. ACS'+L S'CB (I)
(see Fig. 221).

From (I) and analogous inequalities for the vertices A and B we obtain the
solution of the problem. Indeed, adding together these three inequalities we
find out that the sum ~ of all the six base angles of the lateral faces of the
outer pyramid is greater than the corresponding sum ~' for the inner pyramid,
that is we have the inequal ity

(2)

But the quantities we are interested in are, respectively. equal to the diLYeren·
ces 180°·3- ~=540o_~ and 180°·3-~' =5400-~', and, consequently,
they satisfy the opposite inequality. Thus, to solve the problem, we must only
prove inequality (I).

Extend the plane ACS' to intersect the outer pyramid . Considering the trio
hedral angle CS'S~B, we conclude that

L. S'CS"+ L. S~CB > L S'CB.

Adding L. ACS' to both members of this inequality we obtain

L. ACS" + L. S"CB > L. ACS'+ L. S'CB.

But for the trihedral angle CASS' we have

L. ACS+L. SCS~ > L ACSH.

(3)

(4)

(5)



Based on (5). we substitute the larger quantity LACS + L SCS" for LACS"
in inequality (4) and thus obtain

L ACS+(L SCS" + L S"CB) > L ACS'+ L S'CB.
i.e . inequality (I).

510. Let 01 ' 02. Os and 0 4 be the centres of the given spheres and Pl k the
plane tangent to the spheres with centres OJ and Ok (i < k) . Thu s, we con sider
the six planes Pa. P1S, Pta. P14 , P24 and PS4'

Let us first prove that the planes P12. PIS and P23 have a common straight
line. Indeed. each of the planes is perpendicular to the plane 01020S because
it is perpendicular to the centre line of the corresponding spheres. this centre
line lying in that plane.

Besides. it is evident that the planes under consideration (Fig. 222) pass
through the point Q4 of intersection of th e bisectors of I:::. 01020S' Thus. the
planes PI S' P13 and P~3 in fact Intersect along a straight line which, as we
have incidentally proved. is perpendicular to the plane of the centres 01020a
and [lasses thr ough the centre of the inscribed circle of the triangle 01020S'
Let us designate this line by L,.
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0,

FIG. 222 FIG. 223

We similarly prove that the planes p zs• P~4 and Pa, have a common straight
line L I which is perpendicular to the plane 01 the triangle 0 20a04 and passes
through the centre of its inscribed circle and so on. Therefore we arrive at the
following auxiliary problem (Fig. 223): a circle is inscribed in each face of the
triangular pyramid 01020S0" and the perpendicular is drawn through its centre
to this face . It is necessary to prove that all four perpendiculars LJ • L2 • La and
L, have a point in common provided that the points of tangency of every two
circles with the corres ponding edge of the pyramid coincide.

This fact is almost apparent. Let ° be the point of intersection of the
straight lines L1 and L4 ; the latter intersect because they are in the plane P23
and are not parallel. Let us now prove that the straight lines La and L2 also
pass through the point 0 . Indeed, the point ° lies on the li ne of intersection
of the planes P 12 and PZ4 because the straight line L, belongs to the plane Pa.
and the line L1 to the plane Pu · But the line of intersection of P 12 and P24
is the st raight line L 3 , and hence the latter passes through the point 0. We
analogously prove that the straight line L2 passes through the point 0.

11·
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c

511. If we are given three points A, Band C not lying in a straight line,
then these points are the centres of three pairwise tangent spheres. Indeed. if P is

D the point of intersection of the bisectors of the
interior angles in /:). ABC, and Plo P2 and P3
are the feet of the perp endiculars dropped
from P to th e corresponding sides AB , BC
and CA, then

API =AP3 , BPI=BP2 , CP2 = CP3 ,

and the spheres with the centres A, Band
C whose radii are respectively equal to

~=A~, ~=B~, ~=C~

are pairwise tangent to one another.
Let ABCD be the given pyramid (Fig. 224).

Consider the three spheres of radii 'A. 'a
and rc with. centres at A, Band C which
are pairwise tangent to one another. Let us
denote the points at which the spheres inte-

s rsect th e edges AD, BD and CD by AI, B1
FIG. 224 and CI' We sh all prove that AID=BID=

=C,D.
By the hypothes is indicated in the problem, we have

AD+ 8C = BD+ AC.

we deduce

Similarly, using the equality

BD+ AC ,=CD+ AB,

By the above construction , we can write

AD ='A+AID, BC='R+'C.
BD='R+BID, AC ='A+'C'

Sub st i·tuting the last four expressions in the foregoing equality we obtain
AID=BID.

FIG. 225

BID~=C1D.

Consequently, the sphere with centre D and radius 'v'=AJD=BID=CID Is
tangent to each of the first three spheres and, hence, the four constructed sphe­
res are pairwise tangent to one another.

512. Let us denote by 'I, '2 and '3 the radii of the spheres. We shall sup­
pose that '1;;:"'2;;;' '3' Draw a tangent plane to the first two spheres. In addi­

tion , through the cen tres of these spheres draw
a plane perpendicular to this tangent plane. and
consider the circle of radius r tangent to the
two great circles in the .sect ion and to their
common tangent line (Fig. 225). It is obvious
that the third sphere can be tangent to the first
two spheres and to their common tangent plane
if it is "not too small", namely, if '3~"
We have (see Fig. 225)

VOIO~-OIC2 = AO+OB,
that is

V ('I +'2)2_('1-'2)2 = Y (" +')2-('1-,)2 +Y('2 +,)2_('2-,)2:
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From thi s equation we find

r = '1'2
(Y'J+Y'Z)2

Consequently , the radii of the spheres must satisfy the relation
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'3 ~ ) .(Y'l +Y'22

513. Let n be the number of lateral faces of the pyramid in questi on. Join
an arbitrary point 0 lying in the plane of the base to all the vert ices. We
thus obtain n triangular pyramids with common vertex at the point 0 It is
obvious that the volume V of the given pyramid is equal to the sum of the
volumes of the small er trian gular pyramids . We have

I
V=;rS{rI +'Z+ ' " + ' n) '

where 'I' '2' .. . , 'n are the distances from the point 0 to the lateral faces of
the pyramid, and S is the area of its lat eral face.

Hence, the quantity '1+'2+" '+'n=~ is a constant independent of the

position of the point 0 in the plane of the base which is what we set out to
prove.

514. Consider the configuration shown in Fig. 226 where we see two shaded
planes and the triangle ADE in the plane P passing through the vertices A,
D, H and E of the given parall elepiped. The plane P intersects the plane of
f::, BCD along the strai ght line KD which passes through the point K of
intersection of the diagonals of the parall elogram A BEC. Consequently, the line

.l..,...- --...H

FIG ,226 FIG . 227

segment KD is a median of b. AED. As is obvious, AO is also a median of
b. AED. Therefore, S is the point of intersection of the medians of b. AED.
and, hence, we arrive at the required result :

2 i
AS=3 AO=3 AH.

515. Let us draw the plane indicated in the problem through the vertices
B, D and F (Fig. 227) and a plane parallel to it through the vertices C. E
and G. These planes give in the sect ions two congruent equilateral triangles.
Let a be the length of the sides of these triangles. If now we draw a plane
parallel to the above planes through the midpoint of one of the six edges jo-in­
ing the vertices of the two triangles, for example. through the midpoint N of
the edge BC. then the section of the parallelepiped by this plane is a hexagon
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MNPQRS whose all sides are obviously equal to ; . Furthermore, note that

MN II DF a nd N P II BD. Therefore, MN P and BDF are supplementary angles
and, consequently , L.. MNP = 120°. We similarl y prove that the other angles
of the hexagon are also equal to 120°.

516. Let SABC be the given tetrahedron, P and Q the midpoints of the
opposite edg es AC and SB. Consider a section MPNQ of the tetrahedron con-

FIG . 228

/

FIG. 229

taining the line segment PQ (Fig. 228). Let us take the plane section SPB
which obviously divides the tetrahedron inlo two parts of the sam e volume.
The solution of the problem reduces to proving that the volumes of the pyra­
mids SPQN and MPQB are equal.

Drop the perpendiculars from the points M and N onto the plane SPB.
and designate their feet by K and L, respectively. The triangles PQB and SPQ

s are of the same area, and therefore to solve
the problem it is sufficient to show that
LN =MK. We shall prove this equality
establishing th e relation

MO=NO. (I)
For this purpose, let us consider a pair of
parallel planes containing the skew lines SC
and AB (Fig. 229). The line segment PQ
joining the midpoints of the segments AC
and SB, we see that PQ is in th e plane

A parallel to the given planes and equidistant
from them. Therefore, the line segments PQ
and MN intersect, the point of intersection
bisecting MN .

517. Let SABC be the given pyramid
(Fig . 230). Draw the altitude SP from the
vertex S to Ihe face ABCand also the alti­
tudes SD, SE and SF from the same vertex
to the bases AC, AB and Be of the other

three faces . It is readily seen thai the triangles SPD, SPE and SPF are equal
because L. SDP = L. SEP = L. SFP (d. Problem 458).

Then we draw through the edges AB, BC and AC the planes bisecting the
corresponding dihedral angles. These planes intersect at a point 0 equidistant
Irom al1 four faces of th e pyramid . Therefore , 0 is the centre 01 th e inscribed
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sphere of the pyramid. It is evident th at in the case under considerat ion the
point 0 is on the alti tude SP of the pyramid because. as has been shown,
the above tri angles are congruent. Repeating this argument we esta blish that
all the altit udes of the pyramid intersect at the point O. Based on th is fact ,
we can assert that. for instance. t he tr iangles APS and SP£ lie in one plane,
and , consequently, the line segments AP and P£ are in a straight line . The­
retorcv .in ~ A BC, the stra ight line A£ is a bisector of the angle A and. si ­
mult aneously. the alti tude drawn to BC. Analogously. the other bisectors of
b. ABC are its alt itudes. Hence, ABC is an equila teral trian gle. Repeatin g this
argument we esta blish that all the laces of the pyramid are equilatera l triang­
les which is what we set out to prove.

518. Let the line segment A B be in a plane Q (see Fig. 231) and the line
segment CD in a plane P, these planes being parallel. Through the point A
draw a stra ight line parall el to CD, and lay off the line segment AA I = CD.
Construct a parallelogram ABB[A [ on the sides AB and AAI . Make an ana lo­
gous construct ion in the plane P. Joi ning A with C, B wit h CI , Al with D
and BI with DI we obtain a parallelepiped ABB\/l IDCCIDI. Considering the
face ACB as the base of the pyramid DACB, we see that the volum e of the

pyramid is equal to ~ of the volume of the parall elepiped. However, the vo­

lume of the larallelePIPed is retained when A 8 and CD are translated in their
planes P an Q because the area of the base AB8 1A I and the alt itude (which
is the distance between the planes P and Q) remain unchanged. Therefore the
volume of the pyram id is also retained.

B

FIG. 231 FIG . 232

519. Let P and Q be the points of intersect ion of a given l ine with the
faces CBA and DBA of a given dihedra l angle (Fig. 232). Draw through the
edge AB the plane ABE bisect ing the dihedral angle and then through the
point 0 at which the straight line PQ intersects ABE draw the plane CIBIDI
perpendicular to the edge AB. Furthermore, let OM.l BIDI, ON .1 81Cl> and
SR be the projection of PQ onto the plane DIBIC I so that QS .l BID J and
PR.l BICI . If the points P and Q are equidistant from the edge, i.e.

BIR=BIS, (1)

th en 8 lRS is an isosceles triangle, SO=RO and, hence, QO=PO, i. e. the line
segments QO and PO are congruent as inclined lines with equal projections .
Also taking into account that , by the construction, we have

MO =NO. (2)
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It follows that

(3)

we conclude that 6. OMQ and 6 ONP are right and congruent.

/.. MQO=/.. NPO.
Thus, we have proved that condition (I) implies (3).
Conversely, let it be given that cond ition (3) expressing the equali ty of the

angles is fulfilled. Then, by virtue of (2) the triangles QMO and PNO are
congruent. It follows that QO = PO, and, hence, SO=OR which implies (I).

520. Join the point B with C and A with D (Fig. 233). Through the point
A draw a straight line parallel to MN to intersect the line passing through 8
and N at a point K. Note that AK=2MN, since MN is a midline in the

t

c
FIG. 234

A"------_\(~A . .........

FIG. 233

triangle ABK. Furthermore, we have 6. Bl\'C= 6. KN D because BN = NK.
CN=ND and /.. BNC =L. KND. Therefore, DI( =BC. From the triangle ADK
it follows that

DK+AD> AK=2MN .

(2)/.. CED < L. CEB+ /.. BED,

(It is essential here that the point D is not in the straight line AK because.
if otherwise , we must put the sign ~). Thus, we obtain the required result:

BC+AD> 2MN.
521. Let A, B, C and D be arbitrary points lying on the edges of a tet­

rahedral angle with vertex E (Fig . 234) . We shall prove, for instance, that

/.. CED < /.. CEA+ /.. AEB+ /.. BED. (I)

Draw the plane CEB. By the property of the face angles of a trihedral
angle, we have

and, by the same reason.

L. CEB < t.. CEA+ t.. AEB. (3)

Inequalities (2) and (3) imply (I) and the desired inequality has thus been
proved.

It. Is evident that the above argument also holds true when the tetrahedral
angle is not convex, i.e. When the edge ED is on the other side of the plane CEB.

. 522. Suppose that we are given a convex tetrahedral angle with vertex S
(Fig. 235). The extensions of the planes BSC and ASD intersect along a straight
line It and the extensions of the planes ASB and DSC intersect along a straight
line 12 , Obviously, the straight lines 11 and 12 do not coincide because, if
otherwise, the extended faces pass through one straight line. Let P be the
pl ane containing the straight lines /1 and /2' Taking advantage of the conve-,
xity of the tetrahedral angle. we tan easily show that the plane P and the
given angle have only one point in common. namely the point of intersection S.
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Therefore, the whole angle lies on one side of the plane P (this fact is, howe­
ver, almost obvious). Now let us show that every plane parallel to the plane P

, and intersecting the angle yields a parallelogram in the section.
Indeed, by the above, a plane of this type intersects all the edges 01 the

tetrahedral angle . Denoting the points corresponding to intersection by A' , B',
C' and D' we see that A'D'1i B'C' because each of these line segments is paral­
lel to [1' Analogously, we have A'B' II D'C '.

Hence, we obtain the required result : the quadrilateral A'B'C'D' is a paral­
lelogram.

8

FIG. 235

A

p

c

8

FIG,236

AD=BC.

523. Consider the configuration in Fig . 236. Let DL and CM be the altitu­
des of two triangles ADB and ACB drawn to their common base AB. The
triangles are of the same area, and therefore DL=CM. Furthermore, let KN
be the common perpendicular to the skew lines AB and DC,

Draw through the lin e segment KN a plane P perpendicular to the edge AB,
and project the quadrilateral LMCD onto the plane P (Fig. 237) . Th e seg­
ments DL and CM being projected without changing their lengths (because they
are parallel to the plane P), and the projection of the line segment. LM be ing

J)

:~N
: ~CI
, \ I

N L--_________ \:
--------~C

FIG, 237

the point K, we obtain in the plane P the isosceles triangle KDtCI . By the
construction, we have KN I DC and , consequently, KN 1- DIC t . Therefore KN
is a-n altitude in /::;. KD1C: Consequently, N is the midpoint 01 the segmen t
DIC I and thus of the segment DC as well.

We see that, under the assumptions of the problem. the common perpendi­
cular K N to the two skew lines AB and DC bisects the edges AB and DC.

As is readily seen Irom Fig. 237, LK=KM because DD1=CC1. Therefore
(see Fig. 236), AL = BM, and the congruence 01 the right triangles ALD and
BMC implies that
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We analogously prove that AC = 80 and A8 = DC. Consequently, all the
faces are congruent as tr iangles with three equal corresponding sides.

3. Loci of Points

524. Let P be one of the planes passing through a given point A, and M
the projection of another given point B on the plane P. Let C be the midpoint
of the line segment AB (Fig. 238) .

The triangle ABM being right, we have CM ={ AB. Thus , all the points

M which can be thus constructed are at the same distance ~ A8 from the po­

int C and, consequently, are on the sphere of radius +AB with centre at the

point C . Besides. it is apparent that every point of this sphere coincides with
one of the project ions of the point B. The required locus is thus a sphere of
diameter A B .

8

FIG. 238 FIG. 239

525. Let 0 be the centre of the given sphere. Draw thr ough the given
straig ht line 1 a plane P intersecting the sphere in a circle with centre at
a point M (Fig, 239) . As is known, OM I P . Then draw through the point 0
a plane PI perpendicular to the stra igh t l ine I. Denote the point of intersec­
tion of the plane PI and line 1 by C. The planes PI and P being mutually
perpendicular, the line segment OM is in the plane Pl ' Now consider the right
triangle OMC. The point C is independent of the choice of the cutti ng plane P,
and the hypotenuse OC of the r ight triangle OMC is invariable. If 0 is the

midpoin t of OC, then MD = °2
C . Consequently, if 1 and the sphere have no

points in common. the sought -for locus is a portion of the circumference of

a circle of radius 0; contained inside the sphere (this arc lies in the plane

PI and passes thro ugh the centr e of the sphere). If 1 is tangent to the sphere,

then the sought-for locus is a circle of radius ~ where R is the rad ius of the

sphere. Finall y, if I intersects t he sphere at two points , the locus of point s M
. . 1 f di OC
IS a eire e 0 ,ra IUS 2'

526. The required locus is a surface of revolut ion obt a ined by rotati ng an
arc of a circle or an entire circle about its diameter OC (see the solution of
the preceding problem).
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r ­
527. We shall prove that the required locus is a sphere of rad ius R 12

6

. and that the centre of this sphere co incides wit h the centre of the given sphere.
Let M be an arbitrary point of the requi red locus; the lin e segm en ts MA ,

MB and MC (see F ig. 240) being the segments of the tan gent lin es drawn to
the given sphere from a common point, th eir
lengths are equal . Therefore , t he right triangles

. AMC, CMB and AM B are congruen t. Hence.
ABC is an equilateral triangle. As is obv iously
seen. the lin e segment OM intersects b. ABC
at its centre of grav ity 0 1 , Let AM = a. th en

AC=a Vi" and AOI =Q V6 Substituting3 .
the se values in the equality

OM .AOI =OA-AM

(here we take advantage of the fact th at OAM
is a r ight triangle, lind express its are a in two FIG. 240
different ways) we obta in

V'6OM.a-
3-

=Ra.

It follows that

V TI"
OM =-2- R.

Thus, the point M Iies on the above-mentioned sphere. Rotating the given
sphere, together with the tangents AM , CM and BM, about the centre O. we
see that every point of the sphere belongs to the locus of poi nts in question .

528. Let A be a given point in space, B the point of intersection of straight
l ines lying in a fixed plane, an d C the foot of the perpendicular dropped from
A on the pla ne .

A

I~/
FIG . 241 FIG. 242

Furthermore, take an arbit rary stra ight line passing through the point B
and draw the perpendicular AD to it (Fig. 241). Then , according to the well ­
known theorem, CD.l BD.

Consequently , the point D lies in the sphere whose diameter is the li ne
segment BC. It can easil y be proved that, conversely, any point of the indi ­
cated circl e is the foot of the perpendicular dr awn from the point A to a stra ight
line belong ing to the family in question . Therefore , the sought-for locus is the
circle in the given plane constructed on the line segment BC as diameter.
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529. There are two possible cases here which are considered below.
(I) The str aight line AB is not parall el to the plane P. Designate the cor­

responding point of intersection of AB and P by D (Fig . 242). Let M be the
point of tangency of the plane with one of spheres belonging to the family in
question. Draw the plane through the str aight lines AB and DM . It intersects
the sphere along a circle tangent to the strai ght line DM at the point M .
By th~ well-known property of a tangent and a secant ?rawn from one point
to a circle, we have DB·DA=DM2. Consequently, the line segment DM has
the constant length YDB.DA independent of the choice of the sphe re, and ,
hence, all the points M lie in the circle of radius r = Y DB ·DA with centre at
the point D. Let us denote this circle by C. Let now. conversel y, M be a point
of the circle C. We shall prove tha t it belongs to the locus or-p-oints under
consideration.

Draw an auxiliary circle through the point A. Band M and denote its
centr e by 0 1 (Fig. 243). According to the construction we have DB ·DA=DM2,
and therefore the stra ight line DM is tangent to this circle. Hence, 0IM .l DM.
Now erect at the point M the perpendicular to the plane P, and at the point
0 1 the perpendicular to the plane of the auxiliary circle. The two perpendi ­
culars lie in a plane perpendicul ar to DM at the point M and are not parall el
to each other because, if other wise, the point 0 1, and the poin ts A and B as
well , are in the plane P. Therefore, these perpendiculars intersect at a point O.
It is obvious that OA = OB= OM because the projections 0IA, OIB , and 0IM
of these line segments are equal as radii of one circle. Therefore, the sphere
with centre at the point 0 and radius OM is tangent to the plane P and passes
through the points A and B. Thus, conversely, any point of the circle C be­
longs to the locus. Hence, the sought-for locus of points is the circle C.

(2) If the str aight line AB is parallel to the plane , the required locus is
a strai ght line which lies in the plane P, is perpendicular to the projection
of the line segment AB on the plane P and bisects this projection .

s

FIG. 243 FIG. 244

530. Case (a ). Let D be the midpoint of the line segment AB (F ig. 244),
C the movable verte x, Q the centre of grav ity of f:::,. ABC and Q' the centre
of gravity of f:::,. ASB . Since the point Q divides the Iinc segment DC in the
ratio I :2 , the locus of these points is obv iously a ray parallel to the edge SE
and passing through the point Q' which is the centre of grav ity of f:::,. ASB.

Case (b) . If the point B is also moved along the edge SO, then the centres
of gravit y Q' of the triangles ASS are in the ray paralle l to the edge SO and
passing through the point Q" which divides the line segment AS into the parts
AQ" and Q"S which are in the rati o 2: I. The rays considered in the case (a) ,
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whi ch correspon d to eve ry fixed pos it ion of the poi nt B , cove r t he wh ole sec tio n
of th e trihedral angle by the plane passing through the poin t Q" and par al lel

. to the edges sa and SE.

4. The Greatest and Least Values

a

FIG. 245

E

531. Without loss of generality , we may assume that the cutt ing pla ne
intersects the edge CE of the cube shown in Fi g. 245. It is ev ident that in th e
section we always obtain a parallelogram
AMBN. Th e are a S of the par allel ogram can
be found by th e formu la

S=AB·MK,

where MK is th e perp end icul ar drawn from
th e point M of th e edge CE to th e di agon al
AB . Thu s, the area S is th e least whe n the
length of the line segme nt MK attain s its
minim al va lue. But, a mong the lin e seg ments
joi n ing the poin ts of two skew lin es CE and
AB, the nerpend icular common to these lines
has the leas t length. It is rea d ily see n that
the common perp end icular to the indi cated
straight l ines is the lin e segm ent M'O join ing
the midpoints of th e edge CE and of the dia ­
gon al AB. Indeed . AM ' B is an isosceles tr i­
angle, and therefore M'O-l AB . Since COE is also an isosce les triangle, we have
M 'O 1.CEo Thus, the section bisecting the edge CE has th e least ar ea S =

. - aY2 a2]/6
= a y 3 ' - -2-= 2 . Th is pro blem can also be sol ved by appl yin g

the follow ing theorem : the squa re 01 th e area of a pl ane pol ygon is equa l to
th e sum of th e squares of t he areas of it s projecti ons on thr ee mutu all y per­
pendicular planes. The th eor em is eas ily proved on the basis of the formula by

c

FIG. 246 FIG 247

which the area of the projecti on of a pl ane pol ygon on a pl ane is equa l to the
area of the polygon multiplied by t he cos ine of th e angle between th e planes
(see formula (I) in th e solution of Pr obl em 456) .

Consi deri ng this th eorem proved, let us denote the length of the line seg­
menl CM by x (see Fi g. 245) . T he pro jections of the par all elogram we are
interested in on the planes ACD, ECDB an d BDN are shown in Fig. 246,
a , b, c. Th e areas of the proj ecti ons are respecti vel y equa l to a2, ax and u2-ax,
and , by virtue of the above theorem . S2 =(Q2) 2 + ( ax)2 +(a2 _ ax)2 ~~ 2a2 (x2 _
- ax+ Q2). Rewrit ing th e quadrati c trinomi al x'z-ax + a'z in the form
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the preceding formula that the

when the product (AD-x) x is

(x-ir+: a2, we find (d. (I), page 43) that 52 lakes on its least value

for x= ; , and the minimum area is 5m in = y 2a2 fa2 = a
2 ;6..

532. Consider the configuration shown in Fig . 247. The quadrilateral MNKL
In the section of the pyramid ABCD is a parallelogram because LK II CD and
MN II CD. Hence, LK IIMN and, analogously. LM II KN. II L. LKN=a, then
the area of the parallelogram is equal to .

S=KN·KL sin a .

The angle LKN being equal to that between the skew Jines AB and CD, its
sine is a constant quantity for all the parallel sections under consideration.
Thus, the section area only depends on the product magnitude of the KJV ·KL.
Let us denote the length of the line segment AK by x. Then, by the simila-
rity of the triangles, we have .

KN AD-x KL x
AB AD CD =AD'

Let us multiply these equalities:

AB·CD
KN ·KL ADz (AD-x)x.

S· AB ·CD . t t it f II fince . ADz IS cons an ,1 0 ows rom

product KN ·KL attains its greatest value
maximal.

Regarding this product as the quadratic: trinomial - x2 + ADx and repre-

senting it in the form - (x- A~r+( ,~Dr'we see that its greatest value

is attained for x = A~ (d. (I), page 43).
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TRIGONOMETRY

1. Transforming Expressions Containing
Trigonometric Functions

533. Applying the formula

a3+b3 = (a+ b) (a2-ab +bZ).c-=(a+b) [(a+b)2-3abl.

we obtain

sin" x+ cos! x= (s102x+ cos"x) l(sin2x+ cos?x)2-3 sin 2 x cos-xl =

= 1-3 sin>x cos- x = 1- ~ sin 22x.

534, Denote the left member of the identity by S and, according to formu­
la (14), page 73, substitute the sum cos(a+~)+cos(a-~) for the product
2 cos a cos p. Then S can be written in the form

s= cos- a-cos (a +~) cos (a-~).

Again applying formula (14), we find
I

cos (a+~) cos (a-M ="2 (cos.2a+ cos 2~) .

If now we substitute 1+ c~s 2a ior 'Cos2 a, then we obtain the required result

S= I-cos 2~ sin2~.
2

535. From the formula
tan(a+~)= tana "Hall~

I -tan a· tan ~

it follows that
tan a+tan ~=tan (a+~) [I-tan a tan ~l,

whence
tan a+tan ~-tan (d,+~)=-tana tan ~ tan (a +~) .

Putting a=x and ~ =2x in the last relation we obtain the requir ed formula.
536. We have

(It ) (It ) Y3-tanx Y3+tanxtan xtan -3 -x tan -3 +x =tanx,r ',r
1+ r 3 tan x 1- r 3 tan x

tan x (3- tan 2 x)
1-3tan2x

On the other hand. applying the formula for the tangent of a sum of two angles
repeatedly, we easily find that

t 3 _ tanx(3-lan2x)

an x - 1-3tan2x .

Comparing (1) with (2) we get the required result.
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Note. Formula (2) can also be deduced from formulas (7) and (8) on page 73.

537. Applying the formulas for the sum and difference of sines, we represent
the left member of the identit y in the following form :

2 sin a+~ cos a-~ -2 cos (1'+a+ ~ ) sin a+ ~ =
2 2 2 2

=2 sinat~· [cosa--;~-cos(1'+at~)].

Then, using the formula for the difference of cosines, we see that the left
member of th e identity coincides with the right one.

538. Using the identity of Problem 537. we obt ain

sin a +sin ~ + sin 1'=4 sin at ~ sin ~~ Ysin Y;a=4cos ~ cos Tcos ~ ,

because

539. Using the identity indi cat ed in Problem 537, we obtain

sin 2na+ sin 21l~ + sin 2n1' = 4 sin n (a+~) ' sin n (~+ 1'). sin n (,,+ a): (I)

Furthermore, we have

sin n (a+ ~)= sin n (n-,,) = (_I)n+l sin ny.

Transforming anal ogously two other factor s on the right-hand side of (I), we
get the requ ired resul t.

540. To prove the assertion , we multipl y both sides of th e equality
cos (a+~) =O by 2 sin ~ and apply formul a (15) on page 73.

541. The permi ssibl e values of the arguments are determined by the condition
cos a cos (a+ It) :j:. O. Note that the equality

tan (a+~)= 2 t an 0: (1)

to be proved involves the arguments a+ ~ and a . Therefore, it is natural to
introduce the same arguments into the original equality. We have

~ = (a+~)-o:, 20:+ ~=(o:+ ~)+o:.

Subst ituting th ese expressions of ~ and 20:+ ~ into the original equality

3siri~=sin(20:+~) (2)

and using th e formul as for the sines of a sum and difference of angles, we trans-
form (2) to the following form: .

sin (o: +~) cos 0;= 2 cos (a: +~) sin 0:. (3)

Dividing both members of (3) by cos a -cos (a +~) we obtain (I ).

542. All va lues of a and ~ are permissibl e here except th ose for which
COS ( o:+ ~)= O and cos~=A . Noting that sina =sin(a+p-p), let us rewrite
the original equali t y in the form

sin (a+~) cos P-cos (0:+ P) sin P = A sin (0:+ ~). (I)

Dividing both members of ( I) by cos (o: +~) :j:. 0, we obt ain tan (o:+~) X
X cos ~ - s in ~ = A tan (0:+ ~). Expr essing tan (o: +~) from the latter relation we
ar rive at the requ ired equ ality.



543. It is readily seen th at , by virtue of the condit ions of the problem ,
we have sin a cos ex cos ~ i= 0 because, if oth erw ise, we have 1m 1.0;;; In I, There­
fore. the equality to be proved makes sense. We repr esent th is equality in the
form

whence
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tan a+ tan ~ = m+n tan Ct,
I-tan a tanB m-n

m+n
tan(a+~)=--{an IX.m-n

329

(I)

(2)

(3)

Feplace in (2) the tangents of th e angles Ct and IX + ~ by the ratios of the
corresponding sines and cosines, reduce the fractions to a common denomin at or
and discard i t. We then obt ain

m [cos a sin (a+ ~)-sin a cos (a+ ~)J-

-n [sin a cos (a+ f}) + cos ex s in (a +~)] = 0, (3)

that is
m sin ~-n sin (2a+~) =0. (4)

Thus , the proof is redu ced to establ ishing rel ati on (4). Since relation (4) is
fulfilled by t he hypothesis of the problem , we conclude th at (3j holds true
which implies the validity of (2).

But (2) implies (I) , and (I), in its turn , implies the requ ired rel ation

1+tan ~
tana I-tanatan~

m+n m-n

544. Consider the identity

cos (x+ y+ z) = cos (x + y) cos z-sin (x + y) sin z =
= cos x cos y cos z-cos z sin x sin y-cos y sin x sin z - cos x sin y sin z.

By the hypothesis of the problem, we ha ve cos x cos y cos z 1'= O. and the refore
this identity impl ies

cos (x+ y+ z)=cos x cos y cos z ( I - ta n x tan y-tan y tan z - tan z tan x) .

545. First solut ion. By the hypoth esis, we have

O<a <1t, O <~<1t, O<y <1t and ex + ~+ y =1t. (I )

Therefore, f.rom (I) we conclude that

tan (~+Y)=tan ( 1t_~)=_I_. (2)
2 2 2 t a

an 2

On the other hand , by the formu la for the tangent of a sum of two angles.
we can write

~ Y

( ~ + ") tan 2+ tan '2
tan -2- = ~ .

I~ tan - ta n..Y.
2 2

Equating the right-hand members of equa lities (2) an d (3), reducing the
fract ions to a common denominator and discarding the latter we obtain the
required equali ty.
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Second solution . From the formula

{
ex + f} + Y) ex f} y ( ex ~cos = cos - cos - cos - 1- tan - tan --

2 2 2 2 2 2

f} Y Y ex)- tan 2 tan 2-tan 2 tan '2

proved in the preceding problem we immediately find that

ex f} ~ 'I 'I ex
1- tan 2 tan 2- tan 2 tan 2- tan 2 tan 2= 0,

because
ex+f}+y n

2 2'
546. The meaning of the expression considered in the problem indicates that

cos x cos y cos z t= O. Therefore, from the formula obtained in Problem 544 we find
1tcos 2 k

tan x tanu+- tan Utan z+ tan z tan x= 1- cos(x +U+ z)
cos x cos y cos z cos x cos yeas z

If k is odd, then the investigated expression is equal to unity and is inde­
pendent of x, y and z. For even values of k it depends on x, y and z,

547. First solution . Note first that tan f} tan 'I i= I because. if otherwise , we
have tan f}+ tan '1=0 which contradicts the equality tan f} tan '1= I. Therefore,
from the conditions of the problem it fol1ows that

tan rx=- tan f}+ tan 'I tan (f} +y) = tan (-fl-y),
I-tan f} tan 'I

whence we find rx=Im-f}-y. i. e. ex+f}+y=kn.
Second solution. In Problem 544 we obtained a formula for the cosine of a

sum of three angles. We can analogously derive the formula

sin (rx+ ~ + y) = CO:5 ex cos ~ cos y (tan ex + tan ~ + tan y- tan ex tan f} tan y)

assuming that cos rx cos f} cos Y i:- O. From this formula we find that under the
conditions of the problem we have

sin (ex+f}+y) =O. i, e. ex+~ +y=kn.

548. Denote the given sum by S. Transform the first two terms in the follo­
wing way:

. cos2 2x sin22x cos42"-5in 42x

cot22x-tan2 2-x = - .- ,- - - - = . .'5m2 2x cos2 2x sm2 2x cos- 2x
cos2 2x - sint 2x 4 cos 4x

I sin24x'
- sin" 4x
4

Hence,
4 cos 4x. 4 cos 4x .

S = - . -"-4- (I - 2 sin 4x cos 4x) =-. -"-4- (I - 510 :8x).
Sill - X sin- x

Since 1-sin 8x = 2 sin2 ( T-- 4X), we flnally obtain

8 cos 4x sin2 ( T-4X )

s= sin24x .
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549. Denote the expression under consideration by S . Let us transform the
first two summands according to formula (16), page 73, replace the product
cos e cos B by a sum using formula (14),page73,and. finaJlysubstitute l-cos 2 y
for si~2 y. We then obtain

s = - }(COS 2a+ cos 2~)-cos~ Y+ [cos (a + ~)+ cos (a-~)J cos y.

Transforming the sum cos 2a+cos 2~ into a product and opening the square
brackets we receive

S = - cos (a+~) cos (a-~)-cos2y+cos (a+~) cos y+ cos (a-~) cos y.

Grouping the terms, we find that

S=-lcos (a-~)-cosyHcos (a+B>-cos y].

Hence,
, a-~ ..-l-'\, . y-a+~ .. a+~+,\-' . a -H-Y

S = 4 sin 2 SIn--2-- SIn 2 SIn 2 .

550 . The expression in question can be transformed in the following way
(see tJ3), page 73):

Thus,

1-4 sin 10° sin 70°
2 sin 10°

J-2 (cos 60°-cos 80")
2 sin 10°

2 cos 80°
2 cos 80'"

2 sin 10 °
2 sin 70°= I.

551. By virtue of formula (12) given on page 73,
the identit y is equal to

2
, 1( , 3n

SIll TO SIll 10'

the left-hand member of

(I)

1( 3n! Multiplying and dividing (I) by 2eos 10 cos 10' and applying the formula for

sin :la, we obtain

2 · n . 3n
SIll TO SIll 10

. n . an
SIll-Sln­

5 5
.. n 31t

2 cos TO cos 10
Put

and

n '(1C.J J'l) , 3ncos TO=SIll '2 TTO = Sl n 5""

3n . ( n 3n\ .1C
cos lO=sln 2-10) =SIll S '

Hence, the left-hand side of the identity is equal to ~,

552. Multiplying and dividing the left member of the identity by 2 sin ; and

making use of the formulas expressing products of trigonometric functions in
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terms of sums, we find

2n 4n 6n
COST+cOST+cOST=

2 2n . rt +2 4n. n +2 6n. ncos - sm - cos - sm - cos - Sin -
7 7 7 7 7 7

2
. n

Sin?

. 3n . n + . Sn . 3n+ . . 5n
sm?-sln? SInT-SInT sinn-sin]

. n
2sm?

I
It follows that the sum under consideration is equal to - 2 '

553. Applying formula (16) to all the terms of the sum S, and then (17),
page 73, we find that

3 I (n 3n 5n t« )
5='2-2' cos 8 +-COS 8+cOS8+cOS8 +

I (n 3n 5n t« )
+8 cosT+cosT+cosT+cosT .

The sums in the brackets are equal to zero because

=t 7n 3n 5n
cos 8=-cOS8' cos 8=-cOS 8

and
n 3n

cos '4=-cos T'
5n 7n

cos T = --cos T'

3
Consequently.. S=Z'

554, If in the identi ty

tan a tan (60°-a) tan (60°+a) = tan 3a

we put a= 20° (see Problem 536), then we immediately obtain

tan 20° tan 40° tan 80° = V3.

(I)

(2)

There is another solution in which formula (I) is not used. Let us transform
separately the produc ts of s i; cs and cosines. To this end, we apply formulas
(13) and (15), page 73. and get

sin 20° sin 40° sin 80°=+ (cos 20°- cos 60°) sin 80° =

=~ (Sin 100°+sin 60° I )
2 2 2' sin 80° .

Noting that sin 100°= sin 80°, we write

sin 20° sin 40° sin 80° = V
8

3 • (3)
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Furthermore , we have

20~ 400 800 2 sin 20° cos 20° cos 40° cos 80°
cos cos cos = . . 2 sin 200

sin 40° cos 40° cos 80° sin 80° cos 80° sin 160°
2 sin 20° 4 sin 20° 8 sin 20°

Thus,
I

cos 20° cos 40° cos 80° = If'

Relations (3) and (4) imply (2).

2. Trigonometric Equations and Systems of Equations

555. The equation can be writ ten as

4 sin x cos x (sin'' x- cos" x)= I,
that is

-2 sin 2xcos 2x=-sin 4x= 1.

sin 20°
8 sin 20°

333

I
8 '

(4)

n n
Answer: x=-S+k. 2" (k=O, ±l, ±2, ... ).

556. The equation makes no sense for x= ~ +kll and for x=- ~ +kn. For

all the other values of x it is equivalent to the equation

cos x-sin x
I +sin 2x.

cos x+ sin x

After simple transform ations we obtain

sin x(3+sin 2x+cos 2x)=0.

It is obvious that the equation sin 2x+cos 2x+ 3= 0 has no solut ion, and the ­
refore, the original equation is reduced to the equation sin x = O.

Answer : x = kn .

557. The equation can be written in the following form :

(sin x+cos x)2+(sin x+ cos x)+ (cos 2 x-sh2 x) =0,
that is

(sin x+cos x) (I +2 cos x)=O.

Equating each of the expressions in the brackets to zero, we find the roots.
n 2n

Answer : Xl = - T+ kn, Xz= ± T+2kn.

558. Rewrite the given equation in the following form:

sin x+ I-cos 2x = cos x- cos 3x+ sin 2x.
After some simple transformations we obtain

sin x+2 sin 2 x =2 sin 2x·sin x +sin 2x
and, hence,

sin x (I +2 sin x) (1 - 2 cos x ) = 0.

n n
Answer : x1=kn, xZ=6(-I)k+l+kn, x3=±3'+2kn.
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559. Rewrite the equation in the form

( .!.... sin 2x ..L y 3 cos 2X) 2_...!.. cos (2X-~) -~=O ­
2 ' 2 4 ti 4 '

that is

4 cos- ( 2x - ~ ) - cos ( 2x - ~ ) - 5 = O. (I)

Solving quadrat ic equation (I). we find

( :t ) 711 +cos \ 2x -1f =-1, x =T2 kn,

S
The other root of equation (I) is equ al to 'T and must be discarded since

[cos Ct I~ I.

560. Divi-ding both sides of th e equat ion by 2, we redu ce it to the form

sin 17 x+sin (sx + ~ )= 0,

whence we obtain

2 sin ( l IX+ ~) cos ( 6X - ~) =0.

11 k: 11 (2k+I ) 11
Xl =- 66+rr' X2=3fi+ 12 - .

561. The given equation make s no sense when cos X'= 0; therefore we can
suppose that cos X :f: O. Noting that the right-hand member of the equation is
equ al to 3 sin X cos x +3 cos" x , and dividing both members by cos- x, we obtain

tan 2 x(tan x+1)=3 (tan x+ I),
that is

(tan! x-3) (ta n x+ 1)=0.

n 1t 11
Answer : xI= -T+kJ1 , x2 =3+kn, xS= --3+kIt.

562. Using the formul a for the sum 01 cubes 01 two members we tran sform
the left-h and side of the equation in the following way:

(sin x + cos x)(l - sin x cos x)= ( I - { sin2x ) (sin x+ cos x).

Hence, the orl gln al equation takes the form

(1- ; sin2x ) (sin x+cos x - I)= O.

The expression in the first brackets is different from zero for a ll x. Ther efore
it is sufficient to consider the equ ation sin x + cos x-I = O. The latter is redu­
ced to the form
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Answer;

563. Using the well-known trigonometric formulas, write the equation in the
following way:

csc2 x-sec2 x-cot2 x-tan2 x-cos2 x-sin2 :t = -3. (I)

Since csc2x=l+cot2x and sec2x=l+tan2x, the above equation is reduced to
the form tan 2 x = I.

Answer: x= ~ +k ~ .
564. Using the identity

• 4 x + 4 X (. 2 X+ 2 X)2 2' z x ) x I I ., 2sm 3 ·cos 3= sin 3 cos 3 - sin' 3 C9S:' 3= -2" sin> 3 x,

we transform the equation to the form sin? 2;= ~ .
31l±1 .

Answer; x=-2-n(II=0, ±I. ±2, ... ).
565. Using the identity obtained in the solution of the preceding problem.

we obtain the equation
sin 2 2x+ sin 2x-1 = 0.

Solving it, we get

. YS-I
sm 2x= 2 '

I . YS-l kn
x =(-I)k.2 arc sm 2 rT'

566. Let us rewrite the given equation in the form

(I +k) cos x cos (2x-et) = cos (x- a) -+k cos 2x cos (x-a). (1.)

We have
1

cos x cos (2x-a)=:r[cos (3X-et) + cos (x-a»)

and
I

cos (x-a) cos 2x=2" [cos (3x - a )+<:os (x+a)),

and therefore equat ion (I) turns into

k {cos (x-a)-cos (x+a)] =cos (x-a)-cos (3x -a),
that is

k sin x sin a = sin (2X-et) sin x.

Equation (2) is equivalent to the following two equations:
(a) sinx =O; x=ln

and
(b) sin (2x-a) =k sin a.

Thus,

(2)

et , )! . (k ' t- 11x="2,(-1 n''2arcsm stn «) - '211.

For the last expression to make sense, k and et must satisfy the condition

Ik sin a I<; I.
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56.7. Since the numbers a, b, c and d are consecutive terms of ' anar ithrnetic
progression, we can put b=a+r, c=a+2r, d=a+3r where r is the common
difference 01 the progression. Using the formula

sin 0; sin ~ =+ [cost« - ~)-cos (0;+ ~)l,

we repre sent the equation in the form

cos (2a+r) x- cos (2a+ 5r) x = 0

or
sin (2a+ 3r) x-sin 2rx=O,

whence
kn

Xl =2a+ s- :
These formulas make sense because

2a+3r=b+c >° and r i: 0.
56B. Write the equation in the following form :

/: x )Sln-

cos 2 .!.. -sin2 ":'=21 __2__ 1
2 2 \ x

'.cos"2 I

After some simple transformations it is reduced to the equation

(cos ; - sin ; ) (3 cos2 ~ +2 sin 2 ~ +sin ; cos ;) = ,0.

The equation 3cos2 ; +2 sin 2 ~ +sin ~ cos ; = 0 is equivalent to the equation

2 tan 2 ~ +tan ~ +3=0 and has no real solutions.

Answer: x: ~ +2kJt.

569. First solution . The equation becomes senseless for x=kn. For all the
other values of x it is equivalent to the equation

cos x -sin x=2 sin 2x·sin x. (I)

Replacing the product standing on the right-hand side of (I) by the correspond­
ing sum according to formula (13), page 73, we obtain

cos x-sin x = cos x-cos 3x. sin x= cos 3x,

whence sinx=sin (~ -3X) , Consequently,

2 sin (2X-T) cos (X -T)=0.

rr kn 3n
Answer: Xl =8+2' x2=T+ kn. (2)

Second solution. Applying formula (20), page 74, and putting tan x=t, we
get the equation
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Factoring the left member, we obtain

(1+1) (t+ 1- V2) (t +1 + V"2)=O,
whence

337

(tanxh =-I, (tanx)z=V2-1, (tanx)a=-I-V2.

3n:
Answer: Xl =T+kn; Xz= arc tan (V2-1) +ktt,

xs=-arc tan (I + V2) +k1t.

Note. The above expessions of Xz and X3 can be written in the form of one
formula (2) .

570. Applying formula (14) , page 73, to the left-hand side of the equation ,
we obtain

cos (2x-~) + cos ~ = cos ~ ,

whence
cos (2x-~)=O.

Consequently, x= ± ~ +kn +~ and tan X= tan ( ~ ± T) "
571. The original equation can be written in the form

sin a+ [sin (2cp+a)-sin (2cp-a») = sin (cp+a)-sin (!p -a),

or, after some simple transformations, in the form

sin a+2 sin a cos 2cp =2 sin c-cos e.

Assuming sin a i= 0 (otherwise cos ljl becomes indeterminate), we obtain

1+2cos 2!p-2 cos cp= O. 4 cos - !p-2cos !p-I =0,

I ± VS
cos cp' 4 •

The angle cp being in the third quadrant, we have cos qi < O. Hence,
I-VS

cos cp= 4 .

572 A I · th f I z I + cos 2cp ' t th tion l t f. pp ywg e ormu a cos cp 2 ' WTl e e equa IOn i n heorm

cos 2 (a+ x)+cos 2 (a-x) = 2a-2
or

cos 2a cos2x = a-I,
whence

a-I
cos 2x=cos 2a •

On the other hand ,

t '± " II + cos 2x
co x = J! I-cos 2x '

and therefore from (I) we find

t ± Y a- I +cos 2a
co x = •

l-a+co~2a

(I)
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V7-2 .r
because --3- < r 2-

Formula (I) shows that the problem only makes sense if cos 2a. ;to 0 and

Icos 2a.1~ Ia-I I·

573. Using formulas (18) and (19), page 74. we reduce the given relat ion

sin a+ cos a. = ~7 to the form

(2+ V"7) tan 2 %-4 tan f - (2- Y7)=O.

Solving thi s equation with respect to tan ~ . we obtain

(tan ~)1=2+~7 V7-2
and

( a) V7-2
tan "2 2=--3-'

a.
Let us verify whet her the above values of tan "2 sa t isfy the conditions of the '

problem.

Since 0 < ~ < ~ we have the condition

a n .r-
0< tan "2 < tan "8= r 2-1.

The value (tan ~ ) 2 y~-2 satisfies this condition

- I. The root 'V7-2 should be discarded since

'V7-2 >Y2-1.
574. Putting sin x- cos x = I and using the identity (sin x - cos X)2= I ­

- 2 sin x cos x, we rewrite the original equation in the form

t 2 + 12t-13 =0.

This equation has the roots t l= -l~ and 12=1. But t =sinx-cosx=

= Y2 sin (x- ~) , and thus, I t 1..-;;; V2. Consequently, the root II = - 13 must

be discarded. Therefore, the orig in al equation is redu ced to the equ at ion

sin (x- ~ )= ;2 .
3t

Answer: x l =3t+2kJt, X2="2+ 2kJt·

575. Tran sform the given equ ation to the form

2 cos 2i (2+sin x) + sin x = O.

Using the formula 2 cos- ~ =1 + cos x and opening the brackets , we obtain

2+2(sin x+cos x) +sin x ·cos x =O. (I)



SOLUTIONS AND ANSWERS. TRIGONOMETRY 339

This equation is of the same type as in Problem 574. By the substitution
sin x+ cos x= t equation (I) is reduced to the quadratic equation / 1 -i- 4/ +3=0
whose roots are t 1 = - 1 and t 2 = - 3. Sin ce Isinx-i-cosxl ~ Y2. the original
equation can on ly be satisfied by the roots of the equation

sin x+ cos x '=-I. (2)

Solving equation (2), we obtain

and
x2 = (2k+ I)n.

Here x2 should be discarded because sin X2=O. lind therefore the original equa­
tion makes no sense for x = X2 '

n
Answer: x=- Z+2kn.

576. The given equation only makes sense for x ;r': kn. For these va I ues of
x it can be rewritten in the form

cos" x+ cos 2 x= sins x+ sin 2 x,

Transferring all terms to the left-hand side of the equation and factoring it
we get

(cos x-sin x) (s :n2 x+ cos" x+ sin x cos x+ sin x +cos x) = 0.

There are two possible cases here which are considered below.
(a) sin x-cos x=O, then

(I)

(b) sin 2x+cos2x+sinxcosx+sinx+cosx=O. (2)
Equation (2) is analogous to the one considered in Problem 574 and has the
solutions

and

n
xZ =- '2+ 2kn (3)

xs= (2k + I)n. (4)

But the values of x determined by formula (4) are not roots of the original
equations. since the original equation is only considered for xi:- kn. Consequ ­
ently, the equation has the roots defined by formulas (I) and (3).

577. Rewrite the equation in the form

2 (Sin3X _ sin 2X) =sin2x (Sin 2x • sin 3x +1).
cos 3x cos 2x cos 2x cos 2x cos 3x

Reducing the fractions to a common denominator and discarding it, we obtain
the equation

2 (sin 3x cos 2x-cos 3x sin 2x) cos 2x = sin 2x (sin 2x sin 3x + cos 2x cos 3x).

But the expression in the brackets on the left-hand side is equal to sin x, and
the one on the right-band side is equal to cos x. Therefore, we arrive at the
equation

2 sin x (cos 2x-cos2x)=-2 sins x=O,
whence x = kn,
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578. The given equation can be rewritten in the form

3 (COS 2x _ cos 3X) = sin 2x+cos 2x
sin2x sin3x cos 2x sin2x

or
3sin x

sin 2x sin 3x sin 2x cos 2x'

Note that this equation has sense if the condition

sin 2x ¥ 0, sin 3x ¥ 0, cos 2x ¥ 0

holds. For the values of x satisfying this condit ion we have

3 sin x cos 2x : ,sin 3x.

Transforming the last equation we obtain

sin x (3-4 sin 2 x-3 cos 2x)=0

and thus arrive at the equation

2 sin 3 x=O,

which is equivalent to the equation sin x=O. Hence, due to the above note, the
original equation has no solutions.

579. Rewrite the equation in the form

6(tan x+cot 3x)=tan 2x+cot 3x

and transform it in the following way:

6 (Sin x +c~s 3X) = sin 2x+c~s 3x
cos x sin 3x cos 2x sm 3x

or
6 cos 2x cos x .

cos x sin 3x cos 2x sin 3x'

6 cos" 2x= cos2 x;

12 cos- 2x-cos 2x-1 =0.

Solving the last equation, we find

1 ± 7
cos2x=U-'

whence
1 I I

(I) cos2x=3' x=±2arccos3+kTC;

(2) cos2x=-i, x =± ~ arccos ( -i)+kTt.

In the above solution we have multiplied both members of the equation by
the product cosxcos2xsin3x. But it is evident that for neither of tile values
of x found above this product vanishes . Consequently, all these values of x are
the roots of the original equation.

580. Reducing the fractions on the right-hand side of the equation to a
common denominator and applying the formula

a&-b&=(a-b) (a4+a3b+a2b 2+ab3 +&4),
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we get

sin x cos x (sin x-cos x) (sins x+ 5in3 x cos x+ sin 2 x cos- x+
-I-sin x (OS3 x+cos4 x) = sin x- cos x.

It follows that either
sin.x-c-cos x=O (1 )

or

sin xcos x (sin! x+sin 3 x cos x+sin x cos! x+cos4 x+sin2 x cos? x)-l =0. (2)

Now, taking advantage of the relations

sin" x+cos" x=(sin2 x+cos2 x)2-2 sin 2 x cos- x,
and

(3)

2 cosx
-S!iiX'

sin" xcos x+cos3 x sin x=sin x cos x,

we transform equation (2) to the form

y3_Y2_Y+ I =0,

where y=sin x cos x. Factoring the left member of this equation we obtain

(y_l)2 (y+ 1)=0.

If y= I, i.e. sin xcos x= I, then sin 2x=2 which is impossible, and if
y=-I, then sin2x=-2 which is also impossible.

Thus, . equation (2) has no roots. Consequently, the roots of the original

equation coincide with the roots of equation (1), i.e. x = ~ +nn.

581. The right-hand side of the equation is not determined for x=kn and

x= ~ + mst, because for x= 2Ln the funclion cot; is not defined, for x =

= (2L + 1) n the function tan ; is not defined and for x = ; +nut the denomi­

nator of the right member vanishes. For x of. An we have

sln 2 ..:: - C052 -=--
X x 2 2

tan --cot -=-------,
2 2 . x X

SIn TcosT

Hence, for xi: kn and x of. ~ + 1M (where k and m are arbitrary integers)

the right member of the equation is equal to -2 sin x cos x,

The left member of the equation has no sense for x = ~ +kn and x= ~ +

n+1'2 (l = 0, ± I, ±2, ... ), and for all the other values of x it is equal

to -tan x because

tan (x-:) tan (x+ ~) =tan (x- ~) cot [~ - (x+T)]=

=-tan (x-:) cot (x-T) =-1.

Thus, if x of. kn, x of. -i+mn and x of. : +1 ~ , then the original equation

is reduced to the form
tan x = 2 sin x cos x,
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This equation has the roots
1t 1t

x= kn and x=T+IT'

It 101 lows that the original equation has no roots.

582. Multiplying the right member of the equation by s;nz t+ cosz x= I we
reduce it to the form

(I-a) sin2 x-sin x cos x-(1l+2) cos- x=O. \1)

First let us assume that a f: I. Then from (I) it follows that cos x f: 0,
since otherwise we have sin x= cos X= 0 which is impossible. Dividing both
members of (I) by cos? x and putting tan x = t we get the equation

(I-a)(2-f -(a+2)=O. (2)

Equation (I) is solvable if and only H the roots of equation (2) are real, Le. if
its discriminant is non-negative:

D=-4az-4a+9~O. (3)

Solving inequal ity (3) we find

yW+ I VIO-1 (4)
- 2 C;;a".;;;; 2 •

Let t,. and f 2 be the roots of equation (2). Then the corresponding solutions of
equat ion (I) have the form

Xl = arctan /1+kn, X 2 = arc tan t2 -t ktt.

Now let us consider the case a= I.
In this case equation (I) is written In the form

cos x (sin x+3cos x)=O

and has the following solutions:

Xl = i + ktt, X2 = -arc tan 3 + kn,

583. Applying the formulas

. 4 (I-COS2X)2 2 l+cos2x
sm x = 2 • cos x = 2

and putting cos 2x=/ we rewrite the given equation in the form

tZ-6t+4az- 3= O. (I)

The original equation has solutions for a given value of a if and only if, for
this value of a, the roots t 1 and t z of the equation (I) are real and at least
one of these roots does not exceed unity in its absolute value.

Solving equation (I), we find

/1=3-2 Y3-~, tz= 3+ 2 V 3- a2 •

Hence, the roots 01 equation (I) are real if

Ia IE;;; Y3. (2)

If condition (2) is fulfilled, then f z > I and, therefore, this root can be discar­
ded. Thus, the problem is reduced to finding the values of a satisfying condi­
tlon (2), for which 1/1 I,;;;;; I, l.e,

-1"';;;;3-2Y3-w'-;;L (3)
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whence
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-40<;;; -2 Y3-a2 ..;;;; - 2,

343

2 ~ Y 3-a2~ I.

Since the inequality 2~ Y 3-a2 is fulfilled for
inequaliti es (4) is reduced to the inequality

Y3-all~l.
whence we find

(4)

Ia I..;;;; y"3, the system of

. 32 . nx
SIn 31 nx= SIn 3T

lal ~Y2.

Thus, the original equat ion is solva ble if Ia I.;;;;; y z. and its solutions are

1 --
x = :i:: Tarccos (3-2 Y 3-a2 ) + kn .

584. Let us transform the given equation by multipl ying its both memb ers

by 32 sin ~; . Applying several times the formula sin acos a=+ sin2a,

we get

or
. nx 33

SIn T cos i32 nx = O. (I)

Hence, we find the roots .
31

xl =2n, xZ = 33 (2n + l ) (n =O, ±I, ±2, . .. ).

In the above solution of the problem we multiplied both sides of the given

equation by the factor 32 sin ~; which can turn into zero. Therefore , equa tion (I)

can have extraneou s roots . A value of x is an extraneous root if and onl y jf it
satisfies the equation

. nx 0
SIn 31= (2)

but does not satisfy the original equation .
The roots of equation (2) are given by the formula

x =3lk (k =O , ±I , ±2, .. . ), (3)

and, as is readily seen, they do not satisfy the original equation. Tt.er efore,
from the roots of equation (I) found above we should exclude all those of
form (3). For the roots expressed by Xl this leads to the equality 2n ~= 31k
which is only possible for an even k , i.e. for k =2l and n =31l (/ =0, ± I ,
±2, . . . ). For the roots expressed by Xz we ana logously obt ain the equali ty

~ (2n + 1)=3Ik or 2n+ I = 33k, which is only possible for an odd k, i.e. for

k =2l+1 and n =33l + 16(1=0, ± I , ± 2, . .. )
Thus, the roots of the original equation are

Xl = 2n, where n i= 31l, 1
31 (2 + I ) h . 331+ 16 I =(l, ± I , ± 2, ... .

X 2= 33 n , w ere n 'F • J
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585. Rewrite the equation in the form

~ cos 7x+ ~3 sin 7x= ~3 cos 5x+ ~ sin 5x

or

.n 7 n· 7·n 5 n' 5Sin "6 cos x+ cos "6Sin X= Sin 3 cos x+ cos 3 Sin x,

i .e .

sin (~ +7X) = sin ( ~ +5X).
But sin c ee sin f if and only if either (l -~=2kn or a+~=(2m+l)n
(k. m =O . ±I, ±2, . . . ) . Hence ,

or

Thus, the roots of the equation are

X= ~2 (12k+ I), }
n (k, m=O. ± I, ±2... . ).

x=24 (4m+ I)

586. The left member of the equation being equal to

2-(7+ sin 2x) (sin 2 x--sin 4 x)= 2-(7+sin 2x) sin 2 x -cos- x=

. = 2-(7+ sin 2x) ~ sin 2 2x.

we can put t = sin 2x and rewrite the equation in the form

P+7t2 - 8 = O. (I)

It is readily seen that equation (I) has the root t1 = I. The other two roots are
found from the equation

(2)

(I)

Solving this equation we find

t=-4+2 Y2 and t=-4-2 V2.
These roots should be discarded because they are greater than unity in their
absolute values. Consequently. the roots of the original equation coincide with
the roots of the equation sin 2x= 1.

Tt
Answer : x=T+kn.

587. We may suppose that a2+b2 of- 0, since otherwise the equation attains
the form c=O, and it is impossible to find sin x and cos x. As is known , if
a2 +b2 of- 0, then there exists an angle cpo 0,,;;;; cp < 2n, such that

. a b
sm cp= ,COS cP= ,r .

Va2 +b2 r a2 +b2
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Dividing the given equation termwise by ya2 + b2 and usiNg 0) we obtain the
equivalent equation

sin (x+lp) = y c • (2)
a2 + b2

We a1wayshave I sin {x + lp)I~ I. and. hence, this equatlon is solvable if
and only if lei";;;; Ya2 + b2 , i.e. e2,.;;;;a2 + b2 • This is the condition fur s.olvabi-
Iity of the problem. Furthermore, we find . .

¥a2 + b2_e2

. CGs (x+~) = ± ¥I - si n2 (x + q» = ± V ; (3). . ~+~

Noting that
sin x = sin (x+ q>-lp) = sin (x+ q» cos lp-cos (x+cp):sin 'P

and
cos x=cos'~,+<p-~)=C05 (x+lp) cos q>+sin (x+<p) sin <p,

and substituting expressions (I), (2) and ~3) into the right-hand ,side .we finally
obtain the following two solutions: . .

. be-a y ~2+ b2_ ca
(a) sin X= a2+!J2 ;

ac+b Y a2+!J2-&

cos x= a2 + .b2

and

. be+a Y1Z2 +p'_C'
(b) smx=:, a2 + b2 '

ac-b ¥a2+b2_e2

cosx = at+tl~ .

588. Noting that (b cos x+a) (b sin x+ a) t= 0 (otherwise the equation has no
sense). we discard the denominators and get

all, sin2 x+(a2+b2 ) sin x+ab=ab cos2 x+(ci2+!J2) cos xi-aQ"

whence
(si+-!J2)(~in x-cos x)-ab~~x-~2x) = .0.

Therefore, th~ original equation is reduced to the following two equationsr

1°. sin x = cos x, whence x = ~ +kn.
and

al+b'
2°.sfnx+cosx=ar·

But the latter equation has no solutions because

a2+b2

l£ibT~2.

whereas

lsinx+cos x l= ¥21 sin x -y\ +cosx· y\ ;1= V Z"fsin (x+:) I~ ¥2.

12-323
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~
Answer: x= 4+kn',

589. Using the Identity

(
I + COS 2X ) 3 I

cos" x = 2 ="8 (I-f-3 cos 2x+3 co52 2x +cos3 2x)

and the formula
cos 6x=4 cos! 2x-3 cos 2x

(see (8) page 73),

we reduce the equation to the [arm

4 cos> 2x+5 cos 2x+ 1=0. (I)
From (I) we find

(cos 2X)1 =-1,
I

(cos 2xh = - ";p

Answer : Xl = ( k+~ ) ~;

X2= ± } arc cos ( - ~ ) + klt.

590. Applying the formulas

sin2a=l-c;s2a and cos2a=2cos2a-1

we rewrite the equation in the form

(1- cos 2X)3+ 3 cos2x+ 2 (2 co52 2x-I)+ 1= 0,
or

7 cos 2 2x-cos3 2x=0,
whence

11 11
cos 2x=O, x=T+k2"

591. From the formulas for sin 3x and cos 3x we find

3 cos3x+3cosx
cos X= 4 •

• 3 3 sin x-sin ax
sm x= 4 •

Hence, the equation can be rewritten in the form

cos 3x (cos ax + 3 cos x) + sin 3x (3 sin x- sin 3x) = 0
or

3 (cos 3xcos x+ sin 3x sin x)+:cos2 3x-sln2 3x=O,
that is

3cos 2x+cos 6x=O. (I)

. " cos6x+3cos2x"
But, since we have cos 32x= 4 ' • equation (I) takes the' form

4 cos3 2x=O,
whence

cos 2x=O,



:rt 1(

2x=-+k-'4 2 '
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592. Using ·the identity (sin 2x +cos2x)2=1 we get

sin~x+cos~x ,=I- ~ sin 22x,

whence

sin8x+cos8x= (I-{ sin22X) 2- ~ sinI2x=~~.

l-sin2 2X+ir sin~ 2X=;~ , sin' 2x-8 sin 22x+ 1
4
5=0.

Solving this biquadratic equation we find

sin 22x=4 ± ~ " sin22x=+,

whence
2k+1

x=-a-·- It .

3'47

1- cos 2x d I + cos 2x
593. Replacing sin 2 x and cos 2x, respectively, by 2 an 2 '

we rewrite the equation in the form

( I - COS 2X) ~+ ( I + COS 2X ) ~ =~ ~2
2 2 16 cos x

or
(I-cos 2X)6 + (I + cos2x)~ = 58 cost 2x.

Putting cos 2x= y, after some simple transformations we obtain the following
biquadratic equ ation with respect to y :

24y~-10y2-1 = 0.

This equation has only two real roots: Yl,2 = ± ~2 . Hence, cos 2x = ± ~2,
It

whence x=g(2k+l) where k=O, ±I, ±2, '" .

594. Using the identity obtained in Problem 261 we rewrite the original
equation in the form

(sin x+sin 2x) (sin 2x+ sin 3x) (s in x + sin 3x) = 0.

Factoring the sums of sines into products, we arrive at the equation

. 3x . 2 . 5x 2 X 0
Sin 2" Sin X Sin 2' cos x cos 2" = .

Equating each factor to zero we get the solutions

2n 2n 2n
(I) x=TIt; (2) x=TIt; (3) x=-t:rt:

(4) x=
2n4i l

1t; (5) X ~(2n6+1):rt,

where nt, nlo, ns, n 4 and n6 are arbitrary integers.
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Noting that the solutions (4) and (5) are contained in (2). we finally obtain
the following formulas for the solutions:

2n 2n 2n
(1) X=Tn; (2) x=-t n; (3) x=-'tn.

where n i • n z and 113 are arbitrary integers ..

595. Firs! solution , For n = 1 the equation turns into ' an identity. If n > I.
then, by virtue of the giv en equat ion , we derive from the identity

I =(sin2x+tos~x)n=sI1l2n x+C~ sin 2(n-I) XCOS2 x+ ... +
+C~-I sin 2x co52(n:-I) X+ COS2n X

the equation

C~ ~in.2In.-I! xcos2x+ ...+C~-I sin2xco~2In:-l)x= O.

All the summands being non-negat ive. we conclude that either sin 2x =0
n '

or cos2 x = 0 and x=2k.

Second solution. As is obvious, the equation is satisfied if x takes on the '

values .which are integer multiples of i-. i.e . if x = ~ k (k- integer). Let us show
thaC the"equation' .. .. . .

sin2nx+cos2nx=1

has no other roots. Let Xo i: k·i; then sin 2Xo < 1 andcos2 Xo < 1 whence it

follows that for n > I we have sin 2n Xo < sin 2Xo and cos 2n Xo < cos" Xo and,
hence.

sin 2n Xo+ cos2n Xo < sin 2Xo + cos2 x q = I.

The prool' is thu5 completed.

3rt x n 3x (31t x )
596. Put TO r s:» then 10+2'=n-3 TO -'2 =1t-3y. and the equa-

tion-takes the form
sin3y = 2 sin y.

With the aid of formula (7). page 73, the last equation can be transformed to
the form

sin y (4 sin 2y-I)=O.

Equaflon j l) has the follow ing solutions:

(1)

YI =kn.

Retuming to the argument X=~-2y we finally obtain the solutions of the ori­

ginal equation:

597. Since Icos a I'~ 1 and sin a ;:;i.-I, we have

Icos4x-cos.2xl<;2and sin3x+5;-;"4.
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rhus the left member of the equation does not exceed 4, the right member being
not less than 4. Consequently, we have Icos 4x-cos 2x 1=+2 (and then either
cos 4x=-1 and cos 2x = I , or cos 4x= 1 and cos 2x=-I) and sin 3x=-1.
Let us consider all the possible cases. .

(a) cos 4x=-I, x = ( ; +{)n;

cos 2x= I, x=nk;
n 2n

sin 3x=-I, x=-lf+Tl;

and, hence, in this case there are no common roots,
n:n

(b) cos 4x= I, x=T;

cos 2x=-I,

sin3x=-I,

Thus, in this case the common roots are

x= (2m+ ~) n, m=O, ± I, ±2,

598. Let us transform the equation to the form

1 . + 1 IY2 sm x yz cosx=2sinxcosx

or

that is

sin ( x+ ~ ) sin 2x= I.

We have Isin ct I.,;;; I, and therefore ( I) holds if either

sin(X+:)=-1 and sin2x =-I.

or

(1)

sin(x+~)=1 and sin2x=1.

But the first two equations have no roots in common while the second two equa­

tions have the common roots x= : +2kn. Consequently the roots of the given

equation are x= : +2kn.

599. Dividing the given equatlon termwise by 2 and noting that ~ =cos';

Y3" ·n t Ient eouatiand -2-= sm 3"' we ge the equiva en equation

sin ( x+ ~ ) sin 4x= I.
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This equation is satisfied only if sin (x+ ~) = ±I and sin 4x= ±I, whence

x=- ~ ± ; +2nn and x= ~ ( ± ; +2nm) ,
where nand m are integers. Equating both values and cancelling out n we
obtain the equality

Multiplying by 24 we recieve

12m- 48n= -8 ± 9.

For any integers m and n, the left member is an even integer, and the right
member an odd integer equal to I or -17. Thus, the last equation has no
integral solutions m and n, and hence the assertion of the problem is proved.

600. First solution. The given problem is equivalent to the following problem:
what values can the function ]..=secx+cscx assume if the argument x varies

within the range 0 < x < ~ ?

Consider the function

>..z=(secx+cscX)2=_I_+ . 2 +_._1_=
cost x Sin X cos X Sln2X

I 2 4 4
sin2 x cos ~ x+sin x cos x sin2 2x+ sin 2x •

Now putting sin 2x= z we can write
').,2Z2_4z-4=O,

7T
Z

FIG . 248

V
I
I
I
I
I
I
I
I
I

o

As x increases from zero to ~ , each summand on the right -hand side varies

in the following way: it first decreases from + 00 to 4 (for 0 < x E;;; ~ ) 0' then

). increases from 4 to +00 (for :.;;;;x < ;); for x= ~
both summands simultaneously attain their least values

n
and hence, for x=T the sum takes on the least value as

well. and ]..2 = 8. Therefore, if 0 < x < ~, then]..2?: 8,

and since sec x and esc x are positive in the first quadrant,
we have]..?: 2 Y2. The graph of the function ')., (x) is
shown in Fig. 248.

Second solution. Note that we must confine ourselves
to considering only the positive values of ')., because for

.r 0 < x < ~ the functions sec x and esc x are positive.

Transforming the equation to the form
sinx+ cos x=t., sin x cos x,

we then square both members and obtain
1+ 2 sin x cos x =;"2 sin 2 x cos2 x,
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(I)

(2)

By the. hypothes is, we hav e 0 < x < ~ , and therefore z=sin 2x> O. Thus,

in equali ty (I) we must take the plus s ign. i. e.

2+ v4+4D"
z = '),}-

If now we take the values of ').. sa tis fying the inequality

2+ v4'+'W I
')..2 .;;;; ,

then the equation

. 2 2+V~
Sin x= ')..2

will have a solution x such that 0 < x < ~ . Obviously, this solution will also

satisfy the original equation. But if inequality (2) Is not satisfied, the requi red
solution does not exist. We see that the problem is reduced to solving inequality
(2). Gettlnii'rid of the denominator, we readily find 1.~ 2 V2.

601. From the given system we immediatel y obtain

x+y =/at, x-y=/lI.
It follows that

k +l . k-l
x=-2- lI, y=-2-;t·

By the condition of the problem, we have 0";;k+I<;;2 and 0<.k-I<.2.
These inequalit ies are sa tisfied by the follow ing live pairs of values of k and I:

(1) k=O,
(3) k= I,
(5) k=2,

1=0;
1=-1;
1=0.

(2) k= I ,
(4) k= I,

1=0;
1=1;

' 11 . ;t
Answer: Xl=O. Yl=O: x2 ='2' Y2="2;

xs=O. Ys=n;
xc=n, Yc =O;
X6 = n, Y6 = n.

602. Transform the system to the form

sin 2x=l+sinxslny, } (1)
cos 2 X = I + cos x cos y.

Adding together the equations of system (I) and subtracting the first equ at ion
from the second we obtain the sys tem

cos2x-cos(x+y)=O, } (2)
1+cos (X-y)=O. .
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The first equation of system (2) can be rewritten as

cos 2x-cos(x+ y)=2 sin (ax;,) sin (y-x)=O.

" If sin (x-g)=O, then X"'-Y = 1m. But from the sec~d tqwltiQnof system
(2) we find

cos (x-g)=-'I, x-y=(2n+l)n.

Consequently, in this case we havean infinitu{je 'of solutions: x-y=(2n+I);t.

If sin ext y
) =0, then 3x+y=2kn. But x-y=(2n+ l)n, and, hence,

, 2k+2n+ I 21l·-6n-3
X= 4 11, Y 4 n.

603. Squaring both equations, adding them termwise and using the identity

sine x+cos";c = 1-~ sin 2 2x
4

(see Problem 533), we get: s;n2 2x= I. If sin 2x= I, then either x= : +2kn

or x = ~+ (2k+I);t. In the first ,case, from the original system we find sin 11 =

= cos y = ;2"and in the second case we have sin y = cos V= - ;2 .the
case sin 2x = -I is treated in a similar way.

;t 11 ' /Answer: x1=4+2kn, 111=4+2 11;

;t 11
X2= 4+ (2k+ l):t, 112 = 1i'"'+(2J+ I) w,

31t 31t
~=4+2/ll't, <Jh-T+.2m;

3 ' 3 '
x.=Tll+(2k+ 1)11, Y.=-:r1t+(21+ I)n.

604. The first equation can be written In tire form

sin (x+ W I,
cos z cos ,II

whence, by virtue of the second equation, we obtain

sin (x+ 11)= cos x cos 11= V; .
Hence, either

or
1t

x+Y---.r+(2k+I)1t.

The second equation of the original system can be transformed to the form

CO$(x+",J+(lOS{~-u9= Y2.

(I)

(2)



(4)

(3)
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It follows that

cos (x-y) = y'2-cos (X+y).

If (1) holds, then cos (,\;+y)= Y22 , and from (3) we lind

l!2 n
cos (x-y) = - 2- , x-g= ± T+ 21n .

y2 3Y2
If (2) holds, then CQS (x+1J)=--2- and cos (x-1I}=-2- which Is

impossible.
Thus we have the system of equations

n
x+Y=T+ 2/m,

for finding x and y. According to. the choice of the sign in the second equation
of system (4), we obtain the sohttions

rt=R~ +fk+l}ll. 1It=;(11-1)n.

and

Xz = (k+ I) n,

605. Dividing terrnwise the first equation by the second one we get

3
cos x cos y = 4 Y2 . (I )

Adding th is equation to the first one and subtracting the first equation from ( I),
we obta in the following system equivalent to the original one: '.'

} '\
CQs (x-y.)= Y2 ' j
cos (x+y)= 2~.

It fotlOws that

x-g= ± ~ +2kn. }
(2)

x+ y= ±arc cos 2 ~~ +2/n.

According to the choice of the signs in the equations (2) we get the following
solutions:

. I I n
a) Xl =(k+l)n+'2arccos 2 Y2 +'8'

Yl = (l":"'k)n+-farccos 2 V2-; ;
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I I n
b) x2=(k+l)n+"2an:cos 2 V"2 -'8'

I I n
y~=(l~k) n+"2arccos 2 V'2 +'8;

I I n
c) x3 ;=,(k+l)n-"2arccos2VZ+'8'

Ya=(I-k) n-+arc;;os 2 ~Z - ~ ;

I I n
d) x4=(k+l)n-Tarccos2 yz-S'

II n
Y4=(I-,-k)n-Tarccos 2 yz +8'

606. Transform the second equation to the form '

I . ' . .
"2 [cos (x+y)+cos (x-y)J=a.

But, since x+y = <p, we have cos (x- y) = 2a- cos <po Thus we obtain the system
of equations .

x+ y=rp. }
x-Y = ± arc cos (2a-cos rp)+ kn.

Answer:

x= ~ ±-}are-cos (2a- cos rp)+kn,

y= ~ 1= {- arc cos (2a-cos lp)-kn,

where a and lp must satisfy the relation 12a- cos lp I.,;;; I.

607. The left member of the first equation of the system not exceeding unity,
the system is solvable only for a=O. Putting a=O 'we obtain the system '

sinx -cos2Y=l,} (1)
cos x-sln 2y=0.

From the second equation of system (I) it follows that either cos x=O or

sin 2y=0. If cos x= 0, then for Xl = ~ +2mn we find. from t he first equation

the expression YI = nn, and for x2 = - ~ + 2kn we get Y2 = ( I +-}) n. The ca­

se sin2y=0 gives no new solutions. Thus, the system of equations is solvable
only for a= .0 and . has the following solutions:

Yl =1lJt

and
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V- I

a Y2 =Ai

608. Note that cos y cannot be equal to zero. Indeed, if cos y =0. then
n .

Y=2'+k:t and

cos (x-2y)=cos (x-n)= - cos x=O.
sin (x- 2y) == sin (x-n) = - sin x = O.

But sin x and cos x cannot vanish simultaneously because sin 2 x+cos2 x= I.
EVidentl¥. we must have af:.O since otherwise cos (x-2y)= sin (x-2y)=0.

Dividing termwise the second equation by the first one (as follows from the
above note, the division is permissible), we obtain:

n
tan (x-2y)= I. x-2Y=T+k:t. (I)

Let us consider the following two possible cases:
(a) k is even. In this case

I
cos (x-2y) = V2 =acos3 U. cos y =

y = ± arc cos 'A +2mn.

Substituting this value of y Into (I) we get
n

x=±2 arccos 'A+(4m+k)n+T'

(b) k is odd. Then cos (x-2y)=- ;2 =acos 3y.

y = ± arc cos (- 'A) + Zmsc.
From (I) we find

n ·
x== ± 2 arc cos(- 'A)+(4m +k)n +T'

The system is solvable for a > ;2 .
609. Squaring the given relations, we obtain

sln2x+2sinxsiny+sin2y=a2, (I )

cos2x+2cosxcosy+cos2y=b2• (2)

Adding and subtracting the equations (I) and (2) termwise, we find

2+2<:05 (x-y)=a2+b2, (3)
cos 2x+cos2y+2 cos (x+ y) ==b2_a2 • (4)

Equation (4) can be transformed to the form

2 cos (x+ y)(cos (x-y)+ 1)=b2 - a2• f5)
From (3) and (5) we find .....:r.._•.

b2 _ a2

cos (x+y)= a2 + b2 '

610. Using the formula
cos 2x+cos 2y=2 cos(x+y) cos (x-y),

we rewrite the second equation of the system in the form
4 cos (x-y) cos (x+ y)= I +4 cos" (x-y).
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. I
t = cos (x-Y) = - "2 '

The original system can be replaced by the following equivalent system:

4cOSaCOs(x+Y) =1+4coS2a,} (I)

x-y=a.. (2)

Let us compare the left- hand and right-hand sides of equation ('I) , We have

I4 cos a· cos (x + V) I, 4 Icos a I.
On the other hand, from the inequality (I ± 2 cos a)2;;:': 0 it follows tha t

41 cos a Ic;;;; I + 4 cos 2 a,
the sign of equality appearing only in the case 21 cos a I= I. Consequently, the

system of equations (I) and (2) is solvable only if Icos a I=+,
Consider the following two possible cases:

I
(a)cosa=T'

From (I) w~ find that COs (x+u)= I, i.e.

x+ Y= 21m, (3)
Solving system (2), (3) we get

a a
xl=2+ 1m• Yl=kn-T·

I
(b) cosa=-2" '

In th is case we similarly find

(
I ) a .( 1 ) ax2= k+"2 1'1+"2' Y2= k+2" n-2"'

611. This problem is analogous to the preceding one . However, we shall de­
monstrate another method of solution. Applying formula (14), page 73, we rep­
resent the first equation of the system in the form

4 cos- (x-y)+ 4cos (x+!J)~os(x~~+l=0.

Putting cos (x-y)=t and taking advantage of the fact that x+y=a we obtain
the equation .. .

4/2+4Icosa+l=O. (1)

This equation has real roots only if D=16(cos2a-I)~O. i.e . if Icosal=l.
Consider the following two possible cases: cos a =l and CQSot=- 1. Itcos a=;:l.
then (I) implies that

We obtain the system

from which we find
1'1 a 1'1 a

Xl = ± T+ klt + 2"' YI = =f 3-1m +"2'

If cos a =-I, then we get in like manner the expressions
a:t a It

x2 = kn+ 2 ± 6' Y2=T- 1m=fe'
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612. Consider the first equation of the system. By virtue of inequality (i)..

page 20, we have Itan x+-
t

-I-I;:;. 2, the sign of equality taking place only if
. an x

tan x= I or tan x= - I. Since the right member of the first equation sat isfies

the COndition!2 sin (Y+ : )Ioi:;;; 2, the first equation of the system can only be

satisfied in the following cases: .

(a) tan x ee l , ) (b) tanx=- I,}
sin (Y+ ~ )=1, J (I) sin (Y+ ~ )=- J. (2)

System (I) has the solutions

n n
x1=T+/m' Yl=T+2In. (3)

and system (2) the solutions

7t 3n
x2=-4+ mtt , Y2=- 4+2nn. (4)

It can easily be verified that the solutions determined by formulas (3) do
not satisfy the second equation of the original system, and the solutions given
by formulas (4) satisfy the second equation (and, hence, the entire system) only
for odd values of m. Putting m=2k+ 1 in (4), we can write the solutions of
the original system in the form

3
x=4 n+2kn•

3
y=- T 1t+2nn.

"

613. Note that cos x f; 0 and cos y f; 0, since otherwise the third equation
of the system has no sense. Therefore, the first two equations can be transformed
to the form

(a-l)tan2x=l-b, (I)

(b-I) tan 2 y= I-a. (2)

But u f; I, because , if u = I, then from (I) we have b=I, which contradicts the
condition a f; b. Similarly , if b= I, then a= I. Consequently, (I) can be divided
terrnwise by (2). Performing the division we obtain

(
tan X)2 = (~)2.
tany .I - u

We now must verify that 'u :f:. O. Indeed, if a=O. then the second equation
implies that siny :f:. 0, .and the third equation indicates that b=O, i.e.a~b=FQ
which ;is impossible. .

By virtue of this note, the third equation can be rewritten as

(
tan X)2_.!!:
tan y - a2 •

Thus,

b I-b
If -=--, then a=b, which is impossible.

a I-a
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b I-b
If -= --1-' thena+b=2ab.a -a
Answer: a+b= 2ab.
614. By virtue of the first relation, the second one can be rewritten in the

form ' ,
A sin ~ 8 sin ~

cos a = cos ~

or
sin ~ (.4 cos ~ -8 cos a) =0.

The latter relation can be fulfil led either for sin~ =O (and then sina=O,
cos ~ = ± 1 and cos a = ± I) or for A cos ~ - 8 cos a = O. In the latter case we
obtain the system

sin a= A sln B, }
(I)

A cos ~ = 8 cos a.

Squaring each equation and performingsubstitutions according to the formulas ,
sin2 a = 1-cos2 a: and cos?~ = 1-sin2~, we get the following system:

cos2a+A2sin2~=I, } (2)
8 2cos2a+A2 sin2 ~=A2.

It follows that cos2 a and sin2 ~ are uniquely specified if and only if A2(1-82);eO;

in this case
, ;1- A2

cos a = ± J! I _ 82 '
I ,;A2_82

sin ~=± If J! 1-82'

Consider the singular cases when A2(1-82)=O. If A=O, then from (I) we
obtain cos 0:= ± I and 8 = 0; in this case cos a = ± I, sin ~ remaining indeter­
minate. If 8 2 = I, then from (2) we get A2= I, and the given equations do not
in fact involve the parameters A and 8; therefore the problem of expressing
cos a and sin a in terms of A and 8 becomes senseless.

615. From the second equation we conclude that

slnx=s,in (~ -2Y).

and, consequently, either

or
nx=2Y-T+(21+ I)n..

(I)

(2)

Taking the first equation of the given system, we find in case (I) the relation
l-tan2 y

cot2y=tan3yor 2t tanSy.an y

Solving the biquadratic equation we obtain tan y=± ~2. In the secondcase,

expressing x from formula (2) .and substituting it into the equation tan x= tanS y
we see that there are no real solutions. Thus, we have

1 n '
tan y=± Y2 and x=2'-2y+2kJl.
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whence
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1
Yl = arc tan Y2 + nn.

and
1 n I

Y2=- arc tan Y2 +nn, x2="2+ 2kn+ 2 arc tan Y2 -2M,

which can be written as

n I
Xl="2-2 arc tan Y2 + 211lJt,

I
Yl=arc tan Y2 +nn

and
n I

X2="2+ 2 arc tan Y2 +211lJt,

I
Y2=- arc tan Y2 +nn,

where m and n are arbitrary integers.

616. Transforming the left-hand and right-hand sides of the first equation
we obtain

2sinxtY (cosX-;y-cosxtY)=o.

This equation is satisfied in the following cases :

10
• x=-y+2kn(k=O. ±I, ... ).

2°. y=21n, x is an arbitrary number (l=O, ±I, ).

30
• x=2mn, y is an arbitrary number (m=O, ±I, ).

Relations 10 and the second equation I x I+ Iy I= I of the system are only
compatible if k=O; indeed, from 10 we derive the inequality

I x I+IY I;;;;. .'2 Ikin,

which can hold, under the condition /xl+IYI=I, only if k=O.
Now solv ing the system

X=-Ij, I xl +IYI=I,

we find two solutions:

1
xl="2'

I
Yl=-"2 and

In cases 20 and 30
, an analogous argument results in four more pairs of so'

lutions:
xa= I , Ya=O;
X6=O, Y6= I;

x.=- I , Yc=O;

xa=O, x6 = - I.

Thus. the system under consideration has six solutions.

617. Squaring both members of eac h equation of the system and adding to-
gether the resulting equalities we obtain .

sin 2 (y - 3x)+cos- (y-3x) = 4 (sina x + cos! x),
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i.e,
1

stnllx +C05· x=- "
4

Consider the identity

sin 6x cos 6 x= 1- ~ sin2 2x

proved in Problem 533.
Comparing (1) and (2) we find

sin 2 2x= I, sin 2x= ± I,

Multiplying the equations of the given system, we receive

sin (y-3x) cos (y -3x)= 4 sins x COSS x,
i.e.

sin 2 (y-3t)= sin 3 2x.

But sin 2x= ± I, therefore
sin 2(y-3x) = ±I,

n
y-3x=4(2m+l) (m=O, ±I, ±2, ... ).

Hence,

(I)

(2)

3n n
y=T(2n+ 1>+T(2m+ 1).

In solving ' the system we multfpUed both members of the equation by the
expressions 'dependen t on unknowns wh.iclr can lead to extraneous solutions.
Let us verify whether all the pairs of values of x and y found above are solu­
tioos . 'WemUSt: have

sin T(2m+l)=2sin3 ~ (2n+l)

and

Putting
. n (2 + 1) 1 . nm + I TUn:

Sill '4 m = ,r- Sill T ,r~ cos T
. r 2 r 2

and
n (no 1) 1 rem 1 . rem

cosT ..m+ = V2 cos T- V2 sin T'

making a similar substitution in the right member and cancelling out the con­
stant factor. we get

. nm nm ( . nn nn )3
sin T +cOS T= sin 2" + cos "2 •

nm . rem ( nn . nn)8
cos T- sln 2= cos T- sln 2" .
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expressions sm 2 cos 2" an cos 2"" - sin 2" can

0, +1', -I, therefore their cubes take on the same
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For integral n, the

. ollly assume the va Jues
values. TtMlrefore,

. nn nn (. nn nn )3
sm 2 + co' 2 = Sln2 + c05 "2

and

whence we get
.n .n n n

Sin 2" m - Sin 2" n = COS2"n - cos "2 m,

. n . n n rt
-Sin 2"m+ Sin Zn=cos2"n-cos2"m.

Add ition and subtraction of the last relations resu-lt in

. n . n 0
sm"Zm-sm2"n = ,

:It n
cos 2" n - cos 2" m = 0

or

361

(3)

(I)

n :It
sln 4 (m-n) cos "'4 (m+n)=O,

sin; {m-n)sln ~ (m+n )=O.

Since cos-T(m+n) and sin ~ (m+n) cannot vanish simultaneously, the above

system is equivalent to the ' equation sin ~ (m-n)=O. Consequently,

m-n=4k (k=O, ±I, ±2.... ). (4)

Thus, the pairs of values of x and y expressed by formulas

n ~ :It
x="'4 (2n+ I), Y=T (2n+ 1)+"'4 (2m+ I)

are solutions of the system if and only If the integers nand m are connected
by relations (4). Hence;

:It
x=T (2n+ I),

n .
11=4 [3 (2n+ 1)+2(n+4k)+ l]=n [2 (f1+ kH,Il.

But here n+k is an arbitrary integer. Denoting it by p we finally write

:Itx=4 (2n+ I). y=n (2p+ I) (n, p=O. ±I, ±2, . , .).

618. Squaring both members of the first and second equations and leaving
the third one unchanged, we obtain the system . .

(sin x+ sin y)Z = 4a2, }
(cos x+ cos y)Z = 4bz,

tan x tan y=c.
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(2)

(3)

(4)

Let us derive the conditions on the numbers a, band c which guarantee
the existence of at least one solution of system (I). The g.iven system has been
replaced by system (I) which is not equivalent to it, and therefore we have to
show that both systems are solvable when a, b arid c satisfy the same condi­
tions.

If for some a, band c the given system has a solution, then, obviously,
for the same a, band c, system (I) is also solvable. The converse is also true:
if for some a, band c system (I) has a solution, then for the same values of
a, band c the given system is also solvable.

Indeed, let Xl. YI be a solution of system (I); then there are four possible
cases , namely:

(I) sin Xl + sin YI= 2a, cos Xl + cos Yl = 2b;

(2:) sin XI +sin YI = -2a, cos Xl + cos Yl= 2b;
(3) sin Xl + sin YI'= -2a, cos Xl + cos YI = -2b;

(4) sin Xl + sin YI = 2a, cos XI +cos YI = -2b.

If the first case takes place, then Xl' YI is the sol ution of the given system;
In the second case the giwen system has, for instance, the solution -Xl' -YI;
in the third case it has the solution n+xt, n+Yt; in the forth case the solution
is n-x1 • n-YI' Consequently, the given system has at least one solution if and
only if system (I) has at least one solution.

Now let us find out the conditions for solvability of system (I). Adding and
subtracting the first and second equations of system (I), we find:

cos (x-y)=2 (a 2 + b2 )_ I ,

cos 2x+cos 2y+2 cos (x+ y) =4 (b2 - a2)

or
cos (x-y) = 2 (a2 + b2 )- I ,

cos (x+ y) cos (x--y)+cos (x+ y) = 2 (b2 _ a2) ,

whence
cos (x- y) = 2 (a2 +b2)- I.

(a2 + b2).cos (x+ y) = b2-a~.

Thus, we have the system

cos (x-y)=2(a2+b2)- I , }
(a2 + b2) cos (x+y) = b2 _ a2,

tan X tan y=c,

which is equivalent to system (I).
If a2+b2 =0, then the second equation is satisfied for any x and. y. From

the first equation we get x-y =n+2/m (k =O, ±l, ±2, .. . ), the third equa­
tion yields tan (y+n+2kn) tan Y=c, or tan 2 y=c. The last equation has a
solution for any c:;;' O. If a2 + b2 :j= 0, then we have

cos (X-y) = 2 (a2+ b2)- 1, }
b2 _ a2

cos (x + y) == a2+b2 .

This system has a solution if and only if

12 (a2 + b2 ) - I I "';; I .

I~:~~: I~ I.
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Inequality (4) is obviously valid if

a2 + b2 r'= 0,

and (3) is equivalent to the inequality

0< a2 + b2 "';; I.

Let us represent the left member of the third equation of system (I) In the
following way:

1. . 2 [cos(x-y)-cos(x+y)!
tan x tan = 510 X Sin Y = ...-- ~__

y cos x cos v 12 [cos (x-y)+cos (x+y)!
(5)

Now, substituting into (5) the values of cos (x+y) and cos (x-y) found from
(2) we see that a solution of system (2) satisfies the third equation of the ori­
ginal system if

b2 - a2

2(a2+b2)_I_~ (a2+b2)2_b2

c= b2_a2 (a2+b2)2 _ a2 '
__+2(a2+b2)_ 1
a2 + b2

Thus. we have arrived at the following result: the given system has at least
one solution in the following two cases:

(a2 + b2)2 _ b2

(I) 0 < a2+62~ I and c= (a2+b2)2_a2 ;

(2) a=b=Q and c is an arbitrary non-negative number.

arccos(cosx)=x if O~x~n.

3. Inverse Trigonometric Functions

619. The definition of the principal values of
ctions imp!ies that

the inverse trigonometric fun-

To apply this formula we replace, with the aid of the reduction ' formulas,

sin ( - ;) by the cosine of the corresponding angle contained between 0

and n. We write tire equalities

. (n) . n (n+lt) 911:sm r r =~SlO-=r=COS "2 '7 =cosrr

and finally obtain

arc cos [ sin ( - ; )1= arc cos ( cos ~~ ) = ~~ .

620. By analogy with the solution of the foregoing problem, we have

33 ( 3) 3 . (n 3 ) . ( :Jt )cosS-n =cos 6n+S-1t =cosS-n=slO 2-511: =510 -10 .

Hence,

.( 33) . .[.( n)] narc Sin COS"511: = arc Sin Sin .....,. iO = -ro .
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I I I
621. Let arc tan 3=al, arc tan S=az, arc tanT=as

n
Obviously, 0 < ai < 4' i = I, 2, 3, 4. Therefore,

0< a l +aZ+aS+a4 < 11.

To prove the identity it is sufficient to establish that

tan (a l +az+as+a.)= I.

Since tan (al+az)=f, and tan(as+a4)=A, we have

t ( + + + ) tan (al+aZ)+tan(as+a4 ) 1
an al a z as a4 .

1- tan (al + az) tan (as+ a4 )

. 622. Putting arc sin x = a and arc cos x =~, we obtain

x=sina and x=cos~=sln (~ -~).

By the definition of the principal values. we have - ~ "';;a:~ i and 0~ ~-.e;;;1t.

The last inequality implies the inequality

(I)

where t = arc sin x.

ine,qIJalHy

Consequently, the roots of equation (I) are nonreal, and therefore the original

equation has no solutions for' a < ~.

~ 624 . Put arccosx=a and arcsin Yl-x2 = t! .
I 11 11 ,r--: (a) If O"';;x.,.;; I,thenO,.;;;a";;;"2 and 0,.;;;t!";;;2 (because 0,.;;; r l-x2,.;;;1).

Thus, we must only verify that sin a= sin B, But, by virtue of the inequality

o.k;a'''';; ~ , we have in fact sin a=+ Y l-x2• .

~On the other hand, for all y (I y I.;;;; I) we have sin arc sin y = y; in particu­
lar, ~in fi= sin "ar c sin Yl-xz= Y l-x2 • Hence, for 0,.;;;x oe;;; I, the formula
arc cos x=arc sin YI_x2 holds true.

11 1t 11
(b) If -1~.x..;O, then '2E;;;a<;;lI. 0"';;~~2 and "2~':-~~1t.

11 • 1t 1t 1t
Hence, a""'2"-t!, because the angles a and 2-t! lie between -"2 and "2'
and the sines of these angles are equal. Thus the formula is proved.

623. Taking advantage of the relation arc sin x+arc cos x=; (see the solu­

.lion of problem 622) we transform the equation to the form

12ntZ- 61tZt +(I-Ba) nS =0,

For a < ;2 the discriminant of this equation satisfies the

I
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Besides, we have sina=VI-x2 and sin(n-M=sinp=¥I-x2 • and
therefore a=n-p. i, e. for -I".;;; x~O the formula arccosx=1t-arc sin ¥1_x2

.holds true .

625. We shall prove that arc sin (- x) = - arc sin x, Put arc sin (- x) = a;
then - x=sin a and, by the definition of the principal values, we have

(1)

Since sin(-a)=-sina=x and inequality (I) implies the inequality
n n it . h .-2',,;;;;-a,,;;;;2" we can wne -a=arcsmx, w ence a=-arcsmx, Le.

arc sin (- x) =- arc sin x ,
The formula arc cos (- x)=n-arc cos x is proved in a similar way.

626. The definition of the principal values of the inverse trigonometric func­

tions implies that arcsin(sina)=a if -1-..;;;a".;;;;. If -;+2k1t".;;;x,.;;;

,,;;;;'i+2k1t. then -~"';;;X-2k1t,.;;;~ . But then arc sin (sin x) =arc sin [sin (x­

- 2kn)j = x-2k1t.

627. By the hypothesis, we have

a I+x
tan 2"= I-x' (1)

2tan~

Using the formula sin a= 2a ' we obtain, by virtue of (I). the express ion
1 +~~2' _

. l-x2

sin a= 1+x2 '

whence

Since 0 < x < I.

and

. (sln ce) . l-x
2

IIy=arc sm sm c =arcsm 1+ x2'=""
n . I+x n n

we have "4< arc tan I-x < 2" and 2' < a < n. Then

(2)

arc sin [sin (a-n»)=arc sin (- sin a)=-arc sin (sin a)=- y.

But the angle a-n lies within the range of the principal value arc sin x. Hence .

y=arc sin (sin a)=n-a. (3 )

From (2) and (3) we obtain a+p=n.

628. In .the expressions arc sin cos arc sin JC and arc cos sin arc cos x we take
the principal values of the inverse trigonometric functions . Let us consider
cos arc sin x, This is the cosine of an arc whose sine is equal to x, Hence.

cos arc sin X= + VI . x2, where -I <; x..;;; 1.
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(2)

Of course, it is essential here th at -; ,.;;;; arc sin x,.;;;; ~ . Analogously,

sin arc cosx=+ YI- x2 , where -lo;;;;;x~1.

Let y=+ Yl-x2; then O.-;;;;y.-;;l.
Thus, it is necessary to find the relation between arc sin y and arc cos IJ

for 0~ y~ I. These are two complimentary angles (see the solution of Prob­
lem 622). Thus ,

arc sin cos arc sin x + arc cos sin arc cos x = 1-.
4. Trigonometric Inequalities

629. The given inequality is equivalent to the inequality

sin2 x+ sin x - I> O. (I)

Factoring the quadratic trinomial on the left -hand side of ( I), we get

( sin x + 1+ (S ) (sin x_ y~- 1 ) > O.

But 1+2YS > I, and, therefore , sinx+ 1+
2
YS >0. Conseque ntly, the

original irrequality is equivalent to sin x > ~-I and has the following

solut ions : 2kn+<p< x<n~<p+2kn where ip=arcsin Y~I(k=O,
± I: ±2, .. .).

630. The expression under consideration only makes sense for x i= ~ + nn,

For these values of x we multip ly both members of the inequality by cos 2 x

and arr ive at the equivalent inequality (sin 2X)2+ ~ sin 2x-2 > O.

Solving the above quadratic inequality we find that either sin 2x < -3~ y4I
y4I-3 .

or sin 2x > 4 . The former cannot be fulfill ed . Hence,

1 . y4I -3 n 1 . y4T-3
kn+ 2arcsln 4 <x<2-2arcsln 4 +kn.

631. Transf orm ing the product of sines into the sum, we replace the given
inequalit y by the equ ivalent inequ ality

cos 3x > cos Tx or sin 5x sin 2x > O.

But for 0 < x < %we have sin 2x > 0 and , consequently, the cr iglnal ine­

quali ty is equivalent to sin 5x > O.
n 2 n

. Answer: 0 < x < 5" and 5" n < x < 2'
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632. The denominator of the left member of the inequalit y is pos it ive because

Isin x+ cos x I= Iyfsin ( x+T ) I~ Yf. Ther efor e, the given inequality is

equivalent to
• 2 I

sin x > 4 or I sin x I > ~.

:t 5
Answer: 6+kn < x < 61t+klt.

633. Let us write the inequality in the form

(cos x~sin x) (1-(cos x+ sin x)]=

= 2sin~ (sin;-cosi)(CoS X-Sin X»o. (1)

But sin i > 0, since 0 < x < 2lt . Let us cons ider the follow ing two possible

cases when inequality (I) is fulfilled :
Case I.

cos x - sin x > 0, }

. x x 0
510 2 - cos 2 > .

(2)

By the hypothesis , we have 0 < x < 2n. Taking this into accou nt, we find

from (2) that the first inequality is fulfill ed if 0 < x < ~ or fn < x < 2n

and the second if ~ < x < 2ft. Hence, in this case f n < x < 2n .

Case 2.
cos x-sin x < 0, }

. x x 0slO2-cos 2 < '
(3)

Taking into consideration that 0 < x < 21t, we see that system (3) is satisfied
lf 1t rr
1 T < x < 2 '

1t 1t 5
Answer: T< x < 2 and Tn < x < 2n.

x
634. Put tan 2=1. Then the inequalit y takes the form

2/-2 +2/2

I> 2/ + 2- 2t2

or

(I)

Since (2+(+1 >0 for all rea l val ues of t, inequality (I) is equivalent to th e
inequality

1-1
2 > O.t -t-l

(2)
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I-YS I+Y5
The tr inomial 12-1-1 has the roots 2 and --2--. Sol ving (2),

. x I+YS l-¥S x
we find that either tan "2 > 2 or 2 < tan "2 < 1.

Answer: (a) 2kn+2 arc tan I +2V5 < x < n+2kn.

V5-1 1t
(b) 2kn - 2arc·tan 2 < x < 2"+2kn.

635. From the formulas for sin 3x and cos 3x given -on page 73 we find

' 3 cos3x+3 C05-X • a 3sinx-sin 3x
cos x 4 • Sin X = 4 •

Using these formulas. we rewrite the given inequality in the form

(cos 3x+3 cos x) cos 3x-(3 sin x- sin 3x) sin 3x > ~

or

sin 2'3x + cos2<3x+3 (cos 3x cos x-sin 3x sin x) > ~ •

r.e.
I 1t 1t

cos 4x > "2' whence - a+211n < 4x < a+2nn
or

636. The inequality to be proved can be written in the form

cos 2 .!.- sin2 .!.+sin C{J
<p 2 2

cof2" > sin <p ( I)

But sin <p > 0 for 0 < <p < ~ . and the refore . mult iplying both members of ine­

quality (I) by sin <p. we get the equivalent inequality

2 cos2 ; > ccs- i - sin 2 ; +sin <p ,

i. e. I > sin <p. The last inequ ality is fulfilled for 0 < <p < ; , and , hence, the

original inequality is also valid.

637. Putting tanx = t we obtain

2t
tan 2x = I-t!'

t 3 tan x+tan2x 3t-t3

an x= I-tan 2x tan x= 1-3t2·
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TIte ,teft member is not determined .for tile values of x sat.isfyiag t'he relations

/2 = I and i2 = ~ . For all the other values of x the IHt member of the inequ­

ality is equal to /4 +2/2 + I and, hence, assumes positive values.

638. By virtue of the relations

t2 I cos 2x 3 t2 1 3 cos2 x- sin2x
co Je- = 'sin2 x • co x- sin2 x

and
't 3.t t 2 1 cos 3x sin 2x-sin 3x cos 2x .sin IX

co an x- :t: 'sin 3x<:os 2x =- sin 3xoos 2x •

the left member of the ineqUi8tity Clin be rewritten in the form

sin X '('3 cos· x- sin2 x)
sin' oX sift SA:

But

sin 3x= sin (x+ZX)= ;sin IX cos:2x+ cos x sin 2x= sin x (3 cos2 x-sin2 x~,

and, therefore, the given Jnequality Is re-duced to the inequality

__I.__ eo:;;;_I,
sin x

which obviously holds.

639. Using the formula tan (6-W) = It~t:;;-;/:~ and the condition tan 6=

= n tan lp we get
(n-l)2

We now must prove that

(cot lp+ n tan lp)2~ 4n or (I + n tan2 lp)2~4n tan 2 lp.

Thus, we arrive at the inequality

(I-n tan 2 q»2~O,

which obviously holds.

640. The given inequality c8n be t'~itten in the form

I I-sinx 2-sinx
-2+2 . 3 . ~O.

- Sill X - Sill X

Multiplying it by 2 (2-sinx)(3-.sin x) >0 we replace it by the equivalent
inequality sin2x-5sinx+4~'Q, i.e .

{4-sin x)(I-sin x)~O. (1)

From (1) we conclude that the last inequality, and, consequently, the or'lglnal

one, is ful filled for all x, the sign of equality appearing for x= ~ +2kn.

641. Let us first establish that

ISiD x /.<; l·x ·l. -



(1)

because 0 < I - tan2 a. < I. Suppose that

tan nO'. > n tan a.
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Consider the unit circle shown in Fig. 249. Let x be the radian measure of a
positive or negative angle AOM. For any position of the point M we have

AM=lxl·OA=lxl.
IBM 1=1 sin x].

Since IBM I~ AM. we have Isin x I,;;;;; Ix I (the sign of equality appears l.ere

for x = 0). Now we conclude that if 0~ q> ~ ~ • i. e. if 0.;;;; cos !p~ 1 < ; .

then sin cos q> < cos q> . But 0.;;;;; sin q> ~ q> ~ ; and.

therefore. cos q>~ cos sin tp. We finally obtain
cos sin !p~ cos qi > sin cos !p.

The inequality has been proved .

~----=*--'---+---l,A 642. We shall apply the method of complete

induction. Let n=2. then 0 < 0: < ~ . Hence ,

2 tan 0:
tan 20'. = I t 2 > 2 tan 0:.- an et

for
1t

0< a. < 4(n-l)

We shall prove that tan (n+ I) a. > (n+ I) tan a.. if 0 < 0: < :n'
Let us use the formula

t I tan nO'. + tan a.
an(n + )0'.= I-tan a tan net .

(2)

(3)

Since inequality (I) is fulfilled under condition (2), it automatically hol e's
n

for 0 < et < 4ii" ' But we have

0< tan a. < I, (4)

1t
and. since 0 < no: < "4' we obtain

o< tan no: < I.

Now inequalities (4) and (5) imply

0< I-tancdanncx < I.

(5)

(6)

From (6) and (3) it follows that tan (n + I) cx > (n + I) tan 0:. I. e. we have ob­
tained what we set out to prove.

643. Since to a greater angle in the first quadrant there corresponds a greater
value of the tangent, we can write

tancx1 < tan CXj < tan CX n (I)

for i=l. 2• . .. , n. Besides, cos u, > 0 (i=l. 2, ...• n), Therefore, inequalities
(I) can be rewritten in the form

tan CXl cos a.j < sin a.j < tan cxn cos CXj. (2)
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Let us make i in inequalit y (2) assume the values I, 2, . . . , n and add toge­
ther all the inequalities thus obtained. This results in

tan a l (cos a l + . . . + cos a,, ) < sin al + . . . +
+ sin a" < tan a" (cos al + + cos a,,). (3)

Dividing all the members of inequalities (3) by cos ce, + + cos a" (which is
permissible since cos al + . . . + cos a" > 0) we obtain

t sin al + .. . + sin a" t
an a l < < an a".cos al + .. . + cos a"

644. Denote the left-hand side of the inequality by t . Then

1 ( A-B A+B) A+ Bt = 2' cos -2-- cos - 2- cos -2- •

because
. C A+B

510 '2 = cos -2- •

Putting
A+Bcos-

2-=x,

after obvious transformations we obtain

I ( I A-B I A-B)t=-'2 x2 - 2x '2 cos -2-+'4 COS2 _2- +

1 A - B I A-8 1 ( 1 A - B) 3
+8"cos2 - 2-=8" co52 -2--"2 x-2' cos - 2-

Consequently,
1 2 A-B I

t .;;;8' cos - 2-';;; 8' .

645. Transform the left member of the given inequality in the following way:
cos x 1

sin2x(cos x-sin x) sinax(l-tan x)
I

= tan2 x (1-': tan x)
l+tan2 x I

tan x • tan x (1- tan x) .

For brevity. let us put tan x=t. Since 0 < x < ~ , we have

0</<1.

Thus, the problem is reduced to proving the inequality
1+ /2 1
-/-"(1-/»8

(I)

inequality (1), page 20, we have 1~'2 > 2. Fur.

1+/2 1 1
-t-' / (I-i) > 2 ' - 1- = 8

'4

for °< t < I. By virtue of

1 (I )2 1thermore, '(1-/)='4- 2-/ ";;;'4 ' Hence,

which is what we set out to prove.
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5. 'Miscellaneous Problems

646. Put arc tan ~=a, arc tan 152=~ and consider tan (2a-~). Using the

formula for the tangent of the difference of two angles, we get

t an 2a-tan ~
tan (2a-~)= I + tan 2a tan ~ . (1)

1 2 tan a 5
But, since tan a =S we have tan 2a = I-tan2 a 12 ' Substituting tan 2a

and tan ~ into formula (I) we find tan (2a-~)=O, Thus,

sin (2a-~) = sin (2 arc tan ; - arctan ~)=0.
647. Let us prove that tan (a+2~)= I. To compute tan (a+2~) we use the

formula

tan (a+'2~)= tan a+ tan 2~ • (I)
I - tan a tan 2~

We first compute tan 2~ by the formula

tan 2~ = sin 2~ 2 sin ~ cos ~
cos 2~ cos 2~

Now we must find cos ~ and cos 2~ . But cos fl= + Y 1-sin2 ~ = , }
. r 10

(becausep is an angle in th e first quadrant) and cos 2~ = cos 2 ~- sin 2 fl= : .

Hence, tan 213= ~ . Substituting the found value 01 tan 213 into (I) we get

tan(a +2fl)=I,

:rt
Now we can prove that a+2~=4'

. . I sin 13 : I
Since tan a =T' tan ~ = cos fl=3" and, besides, by the condition of the

problem, a and 13 are angles in the first quadrant, we have 0 < a < ~ and
, . 3

o < 13 < ~ . Hence, we find that 0 < a+ 2~ < Tn. But the only angle lying

between 0 and ~ rt whose tangent is equal to I is ~ ' . Thus, a +2~ = ~ :

648. We must have cos x ¥= 0, sin x ¥= 0 and sin x f: -I , and therefore

x ¥~ where k is an integer. For all the values of x other than x=s. y

has sense, and

(
. I )stn z 1+-- .
cos x sm2x(l+cosx)

Y= ~" ---;'(-'1 +--:-1-i-) = cos2 x (1+ sin x)'
cos x - .-

smx
kn

Relation (I) implies that y > 0 because for x f: 2" we have

cos x < I and sin x < \.

(1)
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649. Transforming the product sin a. . sin 2a.· sin 3a. into a sum by formula
(13), page 73. we obtain

sin ce-sln 2a.·sin 3a.={ sin 2a. (cos 2a.- cos 40:)=

1 '4 1 '2 4 1 + 1 ,4 '="4 Sin a. - 2" sin 0:. cos 0:";;;;;"4 2" < "5'
650. We have sin Sx = sin 3x cos 2x+ cos 3x sin 2x, and therefore, using [or,

rnulas (S) to (8). page 73, after s imple computations, we find '

sin Sx =5 sin x-20 sin? x+ 16sin" x . (I) ,

Putting x= 36° in formula (I) we obtain the equ ation 16/& - 20/3 +5/ = 0
for determining sin 36°. This equation has the roots :

11=0. 12 = +V5+t s
Is=-'V s+{S

1 - + .. / 5- yS and t _ ... / 5- ys
4- V 8 5--VB'

among which only 12 and 14 are positive. But sin 3uo ¥- 12 because
5+YS I ._ 1_

8 > '2' and, hence, 12 > y2" . Thus,

sin 360=1 =..!.- .. / 5- ys
4 2 V ' 2

651. Using the ide~tity proved in Problem 533, we getq> (x) = I + 3 ~OS22X ,

whence it follows that the greatest value of q> (x) is equal to I, and the least
I

to 4'
652. Performing simple transformations we obtain

Y= I-cos 2x+2 (I +cos 2x)+3 sin 2x=3+3 sin 2x+cos 2x.
. I

Introducing the auxil iary angle q> = arc tan 3"' we can write

Y=3+YIO( ;10 sin2x+ ;ro COS2X)=3+YlOsin(2X+q».

Hence, the greatest value of y is equ al to 3+ VT6, and the least to 3- YIO .
653. If n is an int eger satisfying the condition of the problem, we have for

all x 'the relation

cos n (x+3n)·sin ~ (x+3n)= cos nx·sin ~ X. (I)
, , . n n

In particular, putting x =O, we conclude from (I) that n must sat isfy the equa­

tion sin J5n =0. This equation is onl y satisfied by the integers which are the
n

divisors of the number IS, i. e.
n= ± I, ±3, ±5, ± 15. (2)

The direct substitution Shows that for each of these values the functi on

cosxx- sin ~ x rs periodic with period 3n. Formula (2) exhausts all the requ l­
n

red values of n, J:' : r.
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654. Since the sum under consideration is equal to zero for x =x!. we have

a! cos (ex! +x!)+ . . . +a" cos (cr." +xI ) = (al cos cr.l + . .. +a" cos a,,) cos XI-

-tal sin cr.l + . . . +a" sin cr.,,) sin Xl =0. (I)

But, by the condition of the problem.

a! cos ex! + .. . -+ an cos cr.n= O. (2)

Besides. sin Xl :t. 0 because Xl :t. kn. From (1) and (2) we get

al sin cr.l + .. . +a" sin all = O. (3)

Let now X be an arbitrary number. Then we have

a l cos (exl +x)+ ... +an cos (an+x)=(al cos a l + ... +an cos exn) cos x-
-tal sin al + . .. +an sin ex,,) sin x=O,

since. by virtue of (2) and (3), the sums in the brackets are equal to zero.

655. Suppose the contrary, i. e. assume that there exists T :t. 0 such that
for all x:;:. 0 we have

cos y X + T = cos yX- (I)

(the condition x:;:. 0 must hold because the radical V x is imaginary for X < 0).
Let us first put X=O in formula (I); then

cos YT = cos 0 = I (2)
and. consequentl y,

which results in the required formula.

The sought-lor
part vf S.

Second solution. Multiplying the left-hand side by 2 sin ~ and applying Ior­

mula (13). page 73, we get

( cos i-cos f x) +(cos ~ x- cos ~ x)+...
(

2n- 1 2n+1) x 2n+I."+ cos - 2- x-cos -2-x = cos 2-cOS - 2- x=

2
. nx . n+1

=;= slOT' slO-2- x,

YT=2kn. (3)

Now we substitute the value x=T into (I). According to (I) and (2) we obvi­
ouslyobtain cos V2T = cos y'T = I. whence

¥2T=2ln.
By the hypothesis, we have T t= O. and therefore. dividing (4) by (3), we

get y2" = ~ where I and k <Ire integers which is impossible.

656. First solution. Let us consider the sum

s= (cos x+ i sin x)+(cos 2x+ i sin 2x)+ ... +(cos nx+ i sin nx).

Applying De Moivre's formula (cos x+i sin x)n = cos nx+i sin nx we compute S
as the sum of a geometric progression. We thus obtain

S- (cos x+i sin x)n+l_(cos x+i sin x)
- cos x-l-r sin x-c-I .

sum sin x+sin 2x+ ... +sin nx is equ al to the imaginary
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657. Denote the required sum by A and add the sum

" n " 2n " nn
stn "4 510 T 510 - 4-

B=-2-+ 22 +.. .+ 2"

mult iplied by i to it. This result s in

A B' 1( n+" 1t )+ 1( 21t+" , 21t )++ 1= 2 cos T 1 sin T 22 cos T 1 srn T

+ ' ,,+21n (COSn ~ +i sin n ~ ) .

Applying De Moivre's formula, we lind

A B' J ( 1t+ ". 1t )+ + 1( 1t -l "" 1t)n+ 1=2 cos 4 1slOT ' " 2n cos 4 T1 sin T =

I I ( 1t +.. 1t)n
I ( n " ' 1t ) - 2ri cos T .1 Sm 4

="2 cos 4+
1

Sill T 1 ( 1t "' 1t)'
1- 2 cos 4+,smT

When deriving the last expression, we have used the formula for the sum
of terms of a geometric progression. The sought-for sum A can be found as the
real part of this expression, Noting that

1t . 1t I
cos T =5104 = Y2 I

we write

I I ( l't t- " . n )n- - cos - ' 1 sm -
A+B' I ( l't +. , l't) 2

n
4 41'=2 cosT 1 Sin4 1 ( n . . n)

1-"2 cos 4+1 SIO 4"

1 1( l't +" . 1I )-- cos n - 1 sln n -
=_1_ _ (1+i) 2n 4 . 4

2 V2 1_ _ 1 1_

2 y 2 2 Y Z

_ (J +i) [(2n-cosnT)-iSinn-i]

-- 2n[(2 Y2 - I)- i ]

(1+i)(2 Y2-I +i)[( n) . , 1tJ
2n [(2 Y2- 1)2+ 1] 2n-cosnT -,smnT =

_ [(2 y2-2)+2n Y 2] [ (2n-COS nT)- i sin n-r]
- 2n (10-4 Y 2 )

Taking the real part, we get

A = (Y2 - 1) ( 2n
- cos n T)+Y2 sin n T

2n (5- 2 Y 2 )
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658. The assertion will be proved if we establish that A=B = O. Let
A2+B2 f:. 0, i. e. at least one of the numbers A, B is other than zero . Then

!(x)= (y A GOS x+ B " sinx) yA2+B2= Y A2+Bll sin (x+lp),
A2+82 y A2+B2

where
. A 8

sin lp= «r • cos lp= A2+Bo'.r AII+BII 1'1'

Let now XI and XII be the two values of the argument indicated in the pro­
blem: then f (xd= f (x2) = 0 and, since Y All +8 11 f:. 0, we have sin (XI +lp) =
= sin (xz+lp)=O. It follows that XI +cp=nut. xz+lp=nll , and, hence,
xl-xz=kll at an integer k. This equality leads to a con'tr<ldiction. heeause,
by the hypothesis, we must have Xl-XII ¢ kn, Consequently, AI+BI=O,
whence A=B=O.
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