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PEEFACE

The present volume is an &,ttempt to carry out the program out-

lined in the preface to Volume I. Unfortunately, Professor Young

was obliged by the pressure of other duties to cease his collabora-

tion at an early stage of the composition of this volume. Much of

the work on the first chapters had already been done when this hap-

pened, but the form of exposition has been changed so much since

then that although Professor Young deserves credit for constructive

work, he cannot fairly be held responsible for mistakes or oversights.

Professor Young has kindly read the proof sheets of this volume,

as have also Professors A. B. Coble and A. A. Bennett. Most of the

drawings were made by Dr. J. W . Alexander. I offer my thanks

to all of these gentlemen and also to Messrs. Ginn and Company,

who have shown their usual courtesy and efficiency while converting

the manuscript into a book.

The second volume has been arranged so that one may pass on

a first reading from the end of Chapter VII, Volume I, to the

beginning of Volume IJ. The later chapters of Volume I may
well be read in connection with the part of Volume II from

Chapter V onward.

I shall pass by the opportimity to discuss any of the pedagogical

questions which have been raised in connection with the first vol-

ume and which may easUy be foreseen for the second. It is to be

expected that there will continue to be a general agreement among

those who have not made the experiment, that an abstract method

of treatment of geometry is unsuited to beginning students.

In this book, however, we are committed to the abstract point

of view. We have in mind two principles for the classification of

any theorem of geometry: (a) the axiomatic basis, or bases, from

which it can be derived, or, in other words, the class of spaces

in which it can be valid; and (6) the group to which it belongs

in a given
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In the first volume we were always, concerned with theorems be-

longing to the projective group, and these theorems were classified

according as they were consequences of the groups of Assumptions

A, E ; A, E, Hj ; A, E, P ; or A, E, P, H^. Among the spaces satis-

fying A, E, P (the properly projective spaces) may be mentioned the

modular spaces, the rational nonmodular space, the real space, and

the complex space. Any one of these may be specified categorically

by adding the proper assumptions to A, E, P. The passage from the

point of view of general projective geometry to that of the particular

spaces is made in the first chapter of this volume.

Having fixed attention on any particular space, we have a set of

groups of transformations to each of which belongs its geometry.

For example, in the complex projective plane we find among others,

(1) the group of all-continuous one-to-one reciprocal transformations

(analysis situs), (2) the group of birational transformations (algebraic

geometry), (3) the projective group, (4) tlie group of non-Euclidean

geometry, (5) a sequence of groups connected with Euclidean geometry

(cf. § 54). The groups (2), (3), (4), and (5) all have g;nalogues in the

other spaces mentioned in the paragraphs above, and consequently

it is desirable to develop the theorems of the corresponding geometries

in such a way that the assumptioiis required for their proofs are

put in evidence in each case. This will be found illustrated in

the chapters on affine and Euclidean geometry.

The two principles of classification, (a) and (h), give rise to a

double sequence of geometries, most of which are of consequence in

present-day mathematics. It is the purpose of this book to give

an elementary account of the foundations and interrelations of the

more important of these geometries (with the notable exception of (2)).

May I venture to suggest the desirability of other books taking

account of this logical structure, but dealing with particular types

of geometric figures ?

The ideal of such books should be not merely to prove every

theorem rigorously but to prove it in such a fashion as to show in

which spaces it is true and to which geometries it belongs. Some
idea of the form which would be assumed by a treatise on conic

sections written in this fashion can be obtained from § 83 below.

Other subjects for which this type of exposition would be feasible

at the present time are quadric surfaces, cubic and quartic curves,
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rational curves, configu»tions, linear line geometry, collineation

groups, vector analysis.

Books of this type could take for granted the foundational and

coordinatiug work of such a book as this one, and thus be free to

use all the different points of view right from the beginning. On the

other hand, a general work Kke this one could be much abbreviated

if there were correspondiag treatises on particular geometric figiires

(for example, conic sections) to which cross references could be made.

OSWALD VEBLEN
Brooelin, Maine

August, 1917
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PROJECTIVE GEOMETRY

CHAPTER I

FOUNDATIONS

1. Plan of the chapter. In the first volume of this book we have

been concerned with general projective geometry, that is to say, with

those theorems which are consequences of Assumptions A, E, P. In

many cases we also made use of Assumption H^, but most of the

theorems which we proved by the aid of this assumption remain true

(though trivial) when this assumption is false. The class of spaces

to which the geometry of Vol. I applies is very large, and the set of

assumptions used is therefore far from categorical.

The main purpose of geometry is, of course, to serve as a theory

of that space in which we envisage ourselves and external nature.

This purpose can be accomplished only partially by a geometry based

on a set of assumptions which is not categorical. We therefore pro-

ceed to add the assumptions which are necessary in order to limit

attention to the geometry of reals, the geometry in which the number

system is the real number system of analysis.

These assumptions are stated in two ways, the one (§ 3) dependent

on the theory of the real number system and the other (§§ 7—13)

independent of it. We also state the assumptions (§§ 5, 14, 15, 16)

necessary for certain other geometries which are of importance

because of their relations to the real geometry and to other branches

of mathematics. At the end of the chapter we give a summary of

the assumptions for the various projective geometries which we are

considering.

2. List of Assumptions A, £, P, and Hg. For the sake of having

all the assumptions before us in the present chapter, we reprint A, E,

P, and Hg. The assumptions serve to determine a class S of elements

called points, and a class of subclasses of S called lines. The phrase

1
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" a point is on a line" or " a line is on a point '' means that the point

belongs to the line (cf. p. 16, Vol. I).

Assumptions of Alignment:

A\. If A and B are distinct points, there is at least one line on

hath A and B.

A2. If A and B are distinct points, there is' not more than one

line on both A and B.

A3. If A, B, C are points

not all on the same line,

and D and E {D ^ E) are

points such that B,C, D are

on a line and C, A, E are

on a line, there is a point

F such that A, B, F are on

a line and also D, E, F are

on a line.

Assumptions of Extension :

E 0. There are at least three points on every line.

E 1. There exists at least one line.

E 2. All points are not on the same line.

E 3. All points are not on the same plane.*

E 3'. If S^ is a three-space,'\ every point is on S^.

Assumption of Pkojectivity :

V. If a projectivity leaves each of three distinct points of a line

invariant, it leaves every point of the line invariant.t

Assumption H^:

Hjj. The diagonal points of a complete quadrangle are noncoUinear.%

As was explained when Assumption P was first introduced, this

assumption does not appear in the complete list of assumptions for

the geometry of reals, but is replaced by certain other assumptions

from which it (as well as H^) can be derived as a theorem. The list

of assumptions for this geometry will consist of Assumptions A, E,

and the new assumptions.

» Cf. § 7, Vol. I.

t Cf . § 9, Vol. I.

t Cf . § 36, Vol. I.

§ Cf . § 18, Vol. I.
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3. Assumption K. The most summary way of completing the list

of assumptions for the geometry of reals is to introduce the following

:

K. A geometric number system (Chap. VI, Vol. I) is isomorphic*

with the real number system of analysis.

Thus a complete list of assumptions for the geometry of reals is

A, E, K
The use of Assumption K implies a previous knowledge of the real number

system.f Its apparent simplicity therefore masks certain real difficulties.

What these difficulties are from a geometric point of view will be found on

reading §§ 7-13, where K is analyzed i,nto independent statements H, C, R.

These sections, however, may be omitted, if desired, on a first reading.

Since a geometric number system ia one one-dimensional form is

isomorphic with any geometric number system in any one-dimensional

form in the same space, it is evident that the principle of duality is

valid for aU theorems deducible from Assumptions A, E, K.

In order that the results of Vol. I be applicable to the geometry

of reals, it must be shown that Assumption P is a logical conse-

quence of Assumptions A, E, K. Since multiplication is commuta-

tive in the real number system, this result would follow directly

from Theorem 7, Chap. VI, Vol. I. The proof there given is, how-

ever, incomplete. It is shown (Theorem 6, loc. cit.) that if P holds,

multiplication is commutative; but it is not there proved that, if

multiplication is commutative, P is satisfied. The needed proof may

be made as follows

:

Theoebm 1. Assumption P is valid in any space satisfying

Assumptions A and E and such that multiplication is commutative

in a geometric number system (Chap. VI, Vol. I).

Proof. It is obvious that the number systems determined by any

two choices of the fundamental points HJff^H^ are isomorphic (cf.

Theorems 1 and 3, Chap. VI, Vol. I), so that we may base our argument

on an arbitrary choice of these points. We are assuming that mvdti-

pKcation is commutative, and are to prove that any projectivity IT

• This term is defined in § 52, Vol. I.

t The real number system is to be thought of either as defined in terms which

rest ultimately on the positive integers (cf . Pierpont, Theory of Functions of Real

Variables, pp. 1-94 j or Fine, College Algebra, pp. 1-70) or by means of a set of

postulates (cf. E. V. Huntington, Transactions of the American Mathematical

Society, Vol. VI (1906), p. 17).
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which leaves three distinct points of a line fixed is the identity. By

definition, 11 is the resultant of a sequence of perspectivities

where [H] denotes the points of the given line. By Theorem 5,-

Chap. Ill, Vol. I, this chain of perspectivities may he replaced by

three perspectivities
o r rr

[H] = [F] = [Q] = [Il{H)].

Moreover, by Theorem 4, Chap. Ill, Vol. I, the pencils [F] and [Q]

may be chosen so that their respective axes pass through two of the

given fixed points of 11. Let us denote these points by IT^ and H^

Fig. 2

respectively and let IT,., be the third fixed point. By another applica-

tion of Theorem 4 the pencils [P] and [Q] may be chosen so that

their common point B is on the line SS,^ (fig. 2).

Now, since Sc is transformed into itself, S, II„, and U must be

coUinear. Since H^ is fixed, T, 11^, and TJ must be cpUinear. Since

M is fixed, S, T, and Hj^ are collinear. IfM is any point of the line

H^ , it is transformed by the perspectivity with <Sf as center to a

point P of the line H^ ; the perspectivity with T as center trans-

forms P to a point Q of the line BH^ ; the perspectivity with U as
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center transforms Q buck to a point //' of the line Ji^H^,. We have

to show that H' = JJ.

Let 11^ be the trace on the line H^H^ of FT; let H^ be the trace

of liT\ and //' is tlie trace of UQ.

The comjjlete quadrangle TBSP determines Q {H^M^^, H^HJH),
and hence (Theorem 3, Chap. VI, Vol. I) in the scale H^H^H^

y X

The complete quadrangle TBQU determines Q {HfiJI^, H^H^'),
and hence in the scale H^H_JI„

Since multiplication is commutative, H=H', which proves the theorem.

The reader will find no difficulty in using the construction above to prove

that the validity of the theorem of Pappus (§ 36, Vol. I) is necessary and

sutBcient for the commutative law of multiplication and for Assumption P.

4. Double points of projectivities. Definition. A projective trans-

formation of a real line into itself is said to be hyperbolic, parabolic,

or elliptic,* according as it has tv70, one, or no double points.

It was proved in § 58, Vol. I, that the determination of the double

points of a projective transformation t

px'„ = ax^ + bx^

px[ = cx^ + dx^

depends on the solution of the equation

(2) p^-{a + d)p + L = 0,

where A = ad — be. This equation has two real roots if and only if

its discriminant , ,
,,2 , »

(a + d) — iA

is positive. Hence we have

If A<0, the transformation (1) is hyperbolic. For an elliptic or

parabolic projectivity A is always positive.

* These terms are derived from the corresponding types of conic sections

(see § 37). In a complex one-dimensional form a somewhat different terminology

is used (cf. §98).

t In this volume we shall generally write homogeneous coordinates in the form

(Xq, Sj), whereas in Vol. I we used {x^, x,).
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In case the projectivity (1) is an involution, a = — (i(§ 54, Vol. I),

and hence — 4 A is the discriminant of (2). Hence

An involution is elliptic or hyperbolic according as A is positive

or negative.

The intimate connection of these theorems with the theory of linear

order is evident on comparison with the first sections of Chap. II.

A deduction of the corresponding theorems from the intuitive concep-

tions of order is to be found in Chap. IV of the Geometria Projet-

tiva of Enriques.

EXERCISE

A projectivity for which A > is a product of two hyperbolic involutions.

A projectivity for which A < is a product of three hyperbolic involutions.

5. Complex geometry. Assumption K provides for the solution

of many problems of construction which could not be solved in

a net of rationality. But even in the real space the fundamental

problem of finding the double points of an involution has no general

solution.

To see this it is only necessary to set up an involution for which

A > 0. Take any involution of which two pairs of conjugate points

AA' and SB' form a harmonic set H (AA', BB'). If 'the scale

ij, ij, H is chosen so that A = P^,A' = R„B = ij, then B' = F^ and

the involution is represented by the bilinear equation (§ 54, VoL I)

xoo' = — 1.

The double points of this involution, if existent, would satisfy the

equation ,_ .

which has no real roots.

An effect of Assumption K is thus to deny the possibility of

solving this problem. If, however, we negate Assumption K and

replace it by properly chosen other assumptions, we are led to a

geometry in which this problem is always soluble, namely, the

geometry of the space in which the geometric number system is

isomorphic with the complex number system of analysis. Although

this geometry does not have the same relation to the space of external

nature as the real geometry, it is extremely important because of its

relation to other branches of mathematics.
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One way of founding IdjLis geometry is to replace Assumption K
by another assumption of an equally summary character, namely,

J. A geometric number system, is isomorphic with the complex num-
her system of analysis.

Since this number system obeys the commutative law of multi-

pKcation, the corresponding geometry satisfies Assumption P, and all

the theorems of Vol. I apply. Thus, a set of postulates for the com-

plex geometry is A, E, J.

The problem of finding the double points of a one-dimensional

projectivity is completely solvable in the complex geometry; for

any such projectivity may be represented by the bilinear equation

(§ 54, Vol. I)
, , _, , , „^^ ' cxx'+dx'—ax — h=(i,

and therefore its double points are given by the roots of

cx^+ {d — a) X — h = Q,

which exist in the complex number system.

The analogous result holds good for an n-dimensional projectivity.

In this case the problem reduces to that of finding the roots of an

algebraic equation of the nth. degree.

6. Imaginary elements adjoined to a real space. In this connection

it is desirable to think of another point of view which we may adopt

toward the complex space. Suppose we are working in a real geometry

on the basis of A, E, K (or of A, E, H, C, E ; see below). It is a

theorem about the real number system* that it is contained in a

number system (the complex number system) all of whose elements

are of the form ai + i where a and & are real and i satisfies the

equation =
i i _ n

Hence it is a theorem about the real space that it is contained in

another space which contains the double points of any given involution.

This may be seen in detail as follows: By the theory of homo-

geneous coordinates the points of a real projective space S are in a

correspondence with the ordered tetrads of real numbers {x^, x^, x^, x^,

except (0, 0, 0, 0), such that to each tetrad corresponds one point, and

to each point a set of tetrads, given by the expression {mx^, mx^,

* This same question is discussed from tlie point of vie'w of a general space and

a general field in Chap. IX, Vol. I.
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mx , mXg) where a;^, x^, x^, x^ are fixed and m takes on all real num-

ber values except zero. By the property of the real number system

mentioned above, the set of all ordered tetrads of real numbers is

contained in the set of all ordered tetrads {z^, z^, z^, z^ v?here

2(,, \, \, 2, are complex numbers.

Let us define a complex point as the class of all ordered tetrads of

complex numbers of the form

(fe„, fej, kz^, kz^

where for a given class z^, z^, z^, 2, are fixed and not all zero and k

takes on all complex values different from zero. Let the set of these

classes satisfying two independent linear equations

be called a complex line. With these conventions it is easy to see

that the set of all complex points and complex lines satisfies the

assumptions A, E, P, and thus the complex points constitute a proper

projective space. Let us call this space S^

The space S^ contains the set of all complex points of the form

(kx^, kx^, kx^, kx^

where x^, x^, x^, x^ are all real. Let us call this subset of complex

points S^ If any set of complex points of S^ which satisfy two equa-

tions of the form (3) with real coefficients be called a " real line," we

have, by reference to the homogeneous coordinate system in S, that

the complex points of S^ are in such a one-to-one correspondence

with the points of S that to every line in S corresponds a " real line
''

in S^, and conversely.

Thus, S^ is a real projective space and is contained in the complex

projective space S^. Obviously S may also be regarded as contained

in a complex projective space S' where S' consists of the points of S

together with the points of S^ which are not m S^, and where each

line of S' consists of the complex points of S' which satisfy two

equations of the form (3) together with the points of S whose coordi-

nates satisfy the same two equations.

Definition. Points of the real space S are called real points, and

points of the extended space S', complex points. Points in S' but not

in S are called imaginary points.
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This discussion of imaginfty elements does not require a detailed

knowledge or study of the complex number system as such. It is, in

fact, a special case of the more general theory in Chap. IX, Vol. I

(cf. particularly § 92), which applies to a general projective space.

It serves in a large variety of cases where it is sufficient to know

merely the existence of the complex space S' containing S and satis-

fying Assumptions A, E, P. It is a logically exact way of stating the

point of view of the geometers who used imaginary points before the

advent of the modern function theory.

There are problems, however, which require a detailed study of the

complex space, and this implies, of course, a study of the complex

number system and such geometrical subjects as the theory of chains

(see §§ 11, 12, below, and later chapters).

There is a very elegant and historically important method of intro-

ducing imaginaries in geometry without the use of coordinates,

namely, that due to von Staudt.* It depends essentially on the

properties of involutions which are developed in Chap. VIII, Vol. I,

and §§ 74-75 of this volume. The reader will find it an excellent

exercise to generalize the Von Staudt theory so as to obtain the result

stated in Proposition K^, Chap. IX, Vol. I.

7. Harmonic sequence. We shall now take up a more searching

study of the assumptions of the geometry of reals. In Chap. IV, Vol. I,

it was proved that every space satisfying Assumptions A, E contains

a net of rationality R^ and that this net is itself a three-space which

satisfies not only Assumptions A and E but also Assumption P

(Theorem 20). To this rational subspace, therefore, apply all the

theorems in Vol. I which do not depend essentially on Assumption H„.

For example, every line of R^ is a linear net of rationality and may

be regarded (with the exception of one point chosen as oo) as a com-

mutative number system all of whose numbers are expressible as

rational combinations of and 1.

Throughout Vol. I we left the character of this net indeterminate.

It micffat contain only a finite number of points or it might contain

an infinite number. We propose now to introduce a new assumption

which will fix definitely the structure of a net of rationality.

* Cf . K. G. C. von Staudt, Beitrage zur Geometrie der Lage, Nurnberg (1856 and

1857). J. Lilvoth, Mathematische Annalen, Vol.VIII (1874), p. 145. Segre, Memorie

della R. Accademia delle soienze di Torino (2), Vol. XXXVIIl (1886).
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Definition. Let H^, H^, H„ be any three distinct points of a line A

;

let S and T be two distinct points collinear with H^ but not on h

;

and let K^ be a point of intersection of SH^ and TH^. Denote the

T

H, H, H,

Fig. 3

points of the line h by [H] and those of the line K^If„ by [X], and

let n be a projectivity defined by perspectivities as follows

:

The set of points

ff..

mfm|[n(^)].

s:., w. -h;., m0> V 2> '
' '< -''i' -"» + !>

such that Il{R^)=iri^i, together with the set

such that ll{II_f_^^S_., is called a harmonic sequence. The point

-H"„ is not in the sequence but is called its limit point.

The projectivity . 11 is evi-

dently parabolic and carries

H^ to H^.,

Theorem 2. The middle one

ofany three consecutive * points

of a harmonic sequence is the

harmonic conjugate of the limit

point of the sequence with re-

gard to the other two.

Proof. By construction we have
Fio. 4

* This term refers to the subscripts in the notation Ej.
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Corollary. All points o^a harmonic sequence belong to the same

net of rationality.

Theorem 3. Two harmonic sequences determined ly H^, H^, Ii„ and

by M^, M^, M„ are projective in any projectivity 11 hy which

Proof. By Theorem 3, Chap. IV, Vol. I, the projectivity 11 transforms

harmonic sets of points into harmonic sets.

8. Assumption H. By reference to fig. 3 it is intuitively evident

to most observers that in any picture which can be drawn representing

points by dots, and lines by marks drawn with the aid of a straight-

edge, no pdint H. which can be accurately marked will ever coincide

with Hj (i #= j). On the other hand, there is nothing in Assumptions

A and E to' prove that i?,. 4= Hj, because. (Introduction, § 2, Vol. I)

these assumptions are all satisfied by the miniature spaces discussed

in § 72, Chap. VII, Vol. I, and if the number of points on a line is

finite, the sequence must surely repeat itself. Thus we are led to

make a further assumption.

Assumption H.* If any harmonic sequence exists, not every one

contains only a finite number of points.

The existence of a harmonic sequence determined by any three

points follows directly from Assuinptions A and E. That any two

sequences are projective follows from Theorem 3. Hence Assumption

H gives at once

Theorem 4. Any three distinct colUnear points H^, H^, H„ deter-

mine a harmonic sequence containing an infinite number ofpoints and

having H and li^ as consecutive points and H„ as the limit point.

Theorem 5. The principle of duality is valid for all theorems

deducible from Assumption's A, E, H.

Proof. This prinbiple has been proved in Chap. I, Vol. I, for aU

theorems deducible from A and E. If 7?^, rj^, rj„ are any three planes

on a line Z,'let a line I' meet them in ff^, B^, H^ respectively. The

projection by I of the harmonic sequence determined on V by H^, H^,

H„ is the space dual of a harmonic sequence of points. Since the

* Cf. Gino Fano, Giornale di Matematiche, Vol. XXX (1892), p. 106. Obviously

Assumption Hj (Vol. I, p. 46) is a consequence of H. Hence, after introducing

Assumption H, we have that a net of rationality satisfies not only A, K, P but also

Hj, and thus every theorem in Vol. I can be applied to a net of rationality.
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sequence of points is infinite, so is the sequence of planes. Hence the

space dual of Assumption H is true. The principle of duality iu a

plane or a bundle follows as in § 11, Chap. I, Vol. I.

By reference to the definition of addition in Chap. VI, Vol. I, it is

evident on the basis of Assumptions A and E alone that the trans-

formation x' =x + a is a parabolic projectivity. Denoting it by a, it

is clear that if there is any integer n such that a" is the identity,

then «"*''" = a", A; and m being any integer.". Hence, if a has a finite

period, there is only a finite number of points in a harmonic sequence,

contrary to Assumption H. Hence

Theoeem 6. A parabolic projectivity never has a finite period. In

other words, if of three points determining a harmonic sequence the

limit point is taken as cx) in a scale and two consecutive points as

and 1, then the sequence consists of

1
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The first of these corollaries enables us to obtaiu the following

simple result with regard to the construction of any point in a net of

rationality. Let H^ be the harmonic conjugate of H^ with regard to

n

11^ and H_^. The sequence

••. ^-j, H-:j^, H_^, H^, H^, H^, H^, ...

is projective (fig. 5) with

-^-3' -^-2. -^-i; -^o> -^1> H.^> ^3> •••

and tjierefore must be harmonic. The points H^, H^, If„ determine

a harmonic sequence "

• • , -H^s, If 2, H_i, H^, Hi, H2, Ss, •.
n n n n n n

By Cor. 1, any point of the net of rationality is contained in a

sequence of the last variety for some value of n.

9. Order in a net of rationality. Definition. If ^ and jB are points

of R(7/|jffjir„) different from IT^, A is said to precede £ with respect

to the scale H^, H^, H„ if and only if the nonhomogeneous coordi-

nate (cf. § 53, Yol. I) of A is less than the nonhomogeneous coordinate

of B. If A precedes B, B is said to follow A.

From the corresponding properties of the rational numbers there

foUow at once the fundamental propositions : With respect to the

scale H^, H^, H^, (1) if A precedes B, B does not precede A; (2) if .4

precedes B and B precedes C, then A precedes C; (3) if A and B are

distinct points of R {H^II^H„), then eitherA precedes BotB precedes A.
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The use of the properties of numbers in the argument above and in

analogous cases does not imply that our treatment of geometry is dependent

on analytical foundations. Every theorem which vre employ here is a logical

consequence of the assumptions A, E, H alone.

The argument which is involved in the present case may be sta;fced as

follows : The coordinates relative to a scale jy„, H-^, H„ of the pointy

••) H-2! H_^, Hq, H^, H^, •
of a harmonic sequence, when combined according to the rules for addition

and multiplication given in Chap. VI, Vol. I, satisfy the conditions which are

known to characterize the system of positive and negative integers (including

zero). From these conditions (the axioms of the system of positive and nega-

tive integers) follow theorems which state the order relations among these

integers, and also theorems .which state the order relations among the rational

numbers, the latter being defined in terms of the integers. But by Theorem 6,

Cor. 1, the rational numbers are the coordinates of points in R{H^H^H„).
Hence the points of R {rl^H-^H^) satisfy the conditions given above.

It would of course be entirely feasible to make the discussion of order in a

net of rationality without the use of coordinates.

*10. Cuts in a net of rationality. Definition. Two subsets, [A]

and [-K\ of a, net of rationality R{H^H^HJ) constitute a cut {A, B)

with nsped to the scale H^, H^, H„ if and only if they satisfy the

following conditions : (1) Every point of the net except H,, is in [^]

or [E]
; (2) with respect to the scale H^, H^, H„ every point of [A] pre-

cedes every point of [B']. If there is a point in [A] or in [B] such

that every point of {A] distinct from precedes it and every point of

\E] distinct from follows it, the cut is said to be closed and to have

as its cut-point; otherwise the cut is said to be open. The class

[A'\ is said to be the lower si^de and [5] to be the upper side of the cut.

With respect to the scale H^, H^, IT„ any point 0(0 ^H„) of a net

R{II^H^H„) determines two sets of points [A'\ and [B] such that every

A precedes or is identical with and precedes every B. These sets

of points are therefore a closed cut having as cut-point. Not every

cut, however, is closed, for consider the set [A}, including all points

whose coordinates in a system of nonhomogeneous coordinates hav-

ing jr„ as the point oo are negative or, if positive, such that their

squares are less than 2 ; and the set [5], including all points whose

» An asterisk at the left of a section number indicates that the section may be
omitted on a first reading. We have marked in this manner most of the sections
which are not essential to an understanding of the discussion of metric geometry
in Chaps. Ill and IV.
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coordinates are positive ancjgtiave their squares greater than 2. Since

no rational number can satisfy the equation

this equation is not satisfied by the coordinates of any point in the

net. The sets [A] and [B] constitute an open cut.

Definition. With respect to the scale IT^, H^, H^, an open cut

precedes all the points of its upper side and is preceded by all points

of its lower side. A closed cut precedes all the points which its cut-

point precedes and is preceded by all points by which its cut-point is

preceded. A cut (A, B) precedes a cut (C, B) if and only if there is a

point B preceding a point C.

Theorem 7. (1) If a cut {A, B) precedes a cut (C, B), then (C, D)

does not precede {A, B).

(2) If a cut {A, B) is not the same as the cut (C, J)), then either

{A, B) precedes (C, B) or (,C, D) precedes {A, B), or both cuts are closed

and have the same cut-point.

(3) If a cut {A, B) precedes a cut (C, D) and (C, D) precedes a cut

{E, F), then {A, B) precedes {E, F).

Proof. These propositions are direct consequences of the definition

above and of the corresponding properties of the relation of precedence

between points.

Definition. With respect to the scale H^, H^, H„, a cut (A^, A^ is

said to be between two cuts {B^, B^ and (C^, C^ in case {B^, B^ pre-

cedes {A^, A^ and {A^, A^ precedes (Cj, C^ or in case {C^, C^ precedes

{A^, A^ and {A^, A^ precedes {B^, B^. If any one of these cuts is

closed, it may be replaced by its corresponding cut-point in this defi-

nition. (Thus, for example, any open cut is between any point of its

upper side and any point of its lower side.)

An open cut (^A, B) is said to be algebraic if there exists im equation,

a^iX" + aji" -1 + 1- a„ = 0, ,

with integral coeificients, and two points A^, B„, such that the coordinates' of

all points of [^] between A„ and £„ make the left-hand member of this

equation greater than zero and all points of [£] between A „ and -B, make it

less than zero.* If it is assumed that this equation has a root between A„ and

Bg, this is equivalent to assuming that there exists a point corresponding to

the cut (A, B) on the line A„Bg but not in the given net.

• It is perhaps needless to remark that not every algebraic equation with integral

coefficients can be associated in this way with a cut. For example, x" + 1 = 0.
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For the purposes of geometric constructions it would be sufficient to assume

the existence of cut-points for all algebraic open cuts (see Chap. IX, Vol. I).

For many purposes, indeed, it would be desirable to make the assumption

referred to on p. 97, Chap. IV, Vol. If and which we here put down for refer-

ence as Assumption Q.

Assumption Q. There is not more than one net of rationality on a line.

But it is customary in analysis to assume the existence of an irrational

number corresponding to every open out in the system of rationals^ and it is

convenient in geometry to have a one-to-one correspondence between the points

of a line and the system of real numbers. Hence we make the assumption

which follows in the next section.

It must not be supposed that in the assumption which follows we are

introducing new points in any respect different from those already considered.

What we are doing is to postulate that a space is n class of points having

certain additional properties. The assumption limits the type of space which

we consider ; it does not extend the class of points. In this respect our pro-

cedure is not parallel to the genetic method of developing the theory of

irrational numbers.

EXERCISE

The points of R {H^H^H^'), together with the open cuts with respect to the

scale Hg, H-^, i/„, constitute a set [A'] of things having the following property

:

If \_S'] and [T'\ are any two subclasses of [A] including all X's and such that

every S precedes every T, then there is either an ^ or a T which precedes all

other T's and is preceded by all other 5's.

* 11. Assumption of continuity. We shall denote the cut-point of a

closed cut {M, N) by I^^ ^y In the following assumption it is not stated

,

whether the cuts (A^, A^, (B^, B^, and (2)^, D^ are open or closed. If

one of them is closed, therefore, the corresponding one of the symbols

^Ai,A^' ^Bi,B^> and -^^1,2)2) must be understood in the sense just defined.

Assumption C. If every net of rationality contains an infinity of

points, then on one line I in one net R{H^H^H„) there is associated

with every open cut {A, B), with respect to the scale H^, H^, 7/„, a point

^A,B) which is on I and such that thefollowing conditions are satisfied:

(1) If two open cuts {A, B) and (C, D) are distinct, the points

^A,B) ^'"'^
-?(7,2)) *^^ distinct;

(2) If {A^, A^ and {B^,B^ are any two cuts and (C^, C^ any open

cut betvjeen two points A and B of R {H^H^H„), and if 1 is a projec-

tivity such that Tin An\-TT t> t>

then T(^p^_p^,) is a point associated with some cut (D^, D^) between

(A,, a;) and (B^, B^.
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Definition. The set of allipoints of R{H^H^H„), together with all

points associated with cuts ia R{H^H^H„), with respect to the scale

H^, H^, H„, is called the clmin C{H^H^H^). The points of R {H^H^H^)

are called rational, and any other point of the chain is called irrational

with respect to R {HJI^H^). A point associated with a cut which fol-

lows H^ is called positive, and one associated with a cut which precedes

H^ is called negative.

Theorem 8. The point J^^^sv associated, hy Assumption C, with an

open cut (A, B) of R {H^HJI^), is not a point of R [H^H^HJ).

P)-oof. The associated point could not be H^, because there are

projectivities of R{H^H^J-I^) which leave H^ invariant and change

the given cut into different cuts, and therefore, by Assumption C,

change the associated point. Now suppose a point D, distinct from

J?'„ but in R {H^H^H^), to be associated with some open cut. Since

the given cut is open, there must be a point A between D and the

cut. If 5 is a point on the opposite side of the cut from D, A and B
both precede or both follow B with respect to the scale H^, H^, H„.

The transformation which changes every point of I into its harmonic

conjugate with regard to H^ and D has, when regarded as a trans-

formation of the points of R{H^H^H^) with respect to the scale

H^, H^, H„, the equation

x'=1d— X,

where d is the coordinate of D. It therefore transforms rational points

which follow D into rational points which precede it, and vice versa.

Hence A and B are transformed into two points, A! and B', which

precede -D if ^ and B follow D, or which follow D \i A and B pre-

cede D. By Assumption C (2), the point D which is associated with

an open cut between A and B is transformed into a point Z>' associated

with a cut between A! and B'. By Assumption C (1), Z)' is distinct

from B, contrary to the hypothesis that Z) is a fixed point of the

transformation.

Theorem 9. Tlie points of C{H^HJI^), excluding H^_, form, with

reference to the scale in which H^= 0, H^-=l, H^ = oo, a numter sys-

tem isomorphic with the real nitmber system of analysis.

Proof. The definitions of Chap. VI, Vol. I, give a meaning to the

operations of addition and multiplication for all points of the line I.

In that place we derived all the fundamental laws of operation, except
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the commutative law of multiplication, on the basis of Assumptions

A and E. We have also seen in the present chapter (Theorem 6, Cor. 1)

that the coordinates of points in R {H^H^H^) are the ordinary rational

numbers. Hence it remains to show that the geometric laws of com-

bination as applied to the irrational points ot C {II^H^H^) are the same

as for the ordinary irrational numbers.

The analytic definition of addition of irrational numbers* may

be stated as follows: If a and b are two numbers defined by cuts

(ajj, ^j) and (x^, y^, then a + J is the number defined by the cut

To show that our geometric number system satisfies this condition

in C^H^H^H^), suppose first that a is a rational point of C{H^HJIJ)

and b an irrational point. The projective transformation

(4) od=x + a

changes the set of points [ajj into the set \x^+ a], which is the same

as \x^+ xj. Similarly, it changes [yj into [y^+ yj. Hence, it changes

the cut (x^, y^ into {x^+ x^, y^+ y^, and hence, by Assumption C (2),

changes b into a point determined by a cut which lies between every

pair x^+ x^ and y^-\- y^. Therefore b is changed into the point asso-

ciated with the cut {x^+ x^, y^+ y^. But the transform of & is a+ &.

Hence the geometric sum a + 6 is the number defined by the cut

Next, suppose both a and b irrational The transformation (4)

changes [jcj into the set of irrational points \x^+ a], b into b + a,

and [yj into {y^+ a\. By the paragraph above, the cut which defines

any x^+a precedes the cut which defines any y^+a. Hence, by

Assumption 0(2), the cut which defines any point x^+a precedes

the cut which defines b + a, and this precedes the cut which defines

y^-ir a. Any point x^+ x^ of the lower side of the cut {x^+ x^, y^+ y^
precedes the cut defining one of the points x^+ a, by the paragraph

above, and hence precedes the cut defining b + a. Similarly, any point

of the upper side of this cut follows the cut defining b + a. Hence

(a^i+a^j, y^+y^ is the cut defining b + a. Thus we have identified

geometric addition of points in C{H^HJf^) with the addition of

ordinary real numbers.

» Cf . Fine, College Algebra, p. 50 ; or Veblen and Lennes, Infinitesimal Analysis,
Chap. I.
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The analytic definition of Multiplication of irrational numbers may
be stated as follows : If a and h are positive numbers defined by the

cuts (ajj, y^ and (aj^, y^, let \x'^ be the set of positive values of x^.

Then ab is the number defined by the cut (xjaj^, y^y^. If a is nega-

tive and & positive, «& = — (— a) b. If a is positive and b negative,

ab = — {a{—b)). If both a and b are' negative, ab = {—a){—b). If

a = or 6=0, ab= 0.

Consider the transformation

x' = ax.

If a is positive and rational whUe b is positive and irrational, this

transforms [x^] into [a,a;J, "which is the same as [aJ^aj^J. It also trans-

forms b into ab and [y^] into [ay^], which is the same as [y^y^]-

Hence, by Assumption 0(2), ab is the number associated with

If both a and b are irrational and positive, we again have [a;J,

b, and [yj transformed into [ax^], ab, and [ay^], where, as in the

analogous case of addition, the cut definiag ax^ precedes the cut

defining ab, which in turn precedes the cut defining ay^. Moreover,

any x[x^ precedes some ax^, and any yj/^ follows some ay^^. Hence,

by the same argument as in the case of addition, {x[x^, y^y^ is the

cut with which ab is associated.

The transformation , , ,

,

a;'=(— \)x

changes the cut (x^, x^ defining the irrational number a into the open

cut (— a; , — x\, which therefore defines an irrational a'. But since

x — x^ may be any negative rational and x^— x^ may be any positive

rational, the sum of a and a', which has been proved to be determined

by the cut {x^— x^, x^— x^, must be zero. Hence we have that (—1) a

is the irrational — a such that — a 4- « = 0.

The transformation
, , ^.X — a:(— 1)

is the same as a;'= (— l)a; for all rational points. Hence, byAssumption

C (2), these transformations are the same for aU points of Q>{H^HJI„).

Hence, for points of C{H^H^H„), {-l)x = x{- 1).

By the associative law of multiplication (which, it is to be remem-

bered, depends only on Assumptions A and E) we have, if a is nega-

tive and b positive, , / m^ Qjo = — (— a) 0,
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where (— a) b is determined by the analytic (cut) rule. If a is positive

and b is negative, it follows similarly, with the aid of the relation

(-l)a = a(-l), that

ab = a(- 1){- b) = - {a{- b))
;

and if both a and b are negative,

ab = {-l)(- a){-l){-b) = {- a){-h).

Corollary. With respect to a scale in which H,^= oo, 11 = 0, H= \,

we have ab = ba whenever a and b are in Q{H^H^H^).

Theorem 10. Any projectivity which transforms H^, H^, and H^

into points of the chain C {H^H^H„) transforms any point of the chain

into a point of the chain.

Proof. We have seen that x'= ax and x'= x + a, for rational or

irrational values of a, are projectivities which change H„ into itself

and all other points of C{H^H^H„) into points of the chain. The

transformation x'= 1/x is a projectivity which interchanges' 7/„ and H^

(see § 54, Chap. VI, Vol. I), and by Theorem 9 it changes every point

of C{R^H^H„), except H„ and H^, into a point of C{U^HJ-I„).

As in the proof of Theorem 11, Chap. VI, Vol. I, it follows that

H^, H^, H^ can be transformed into any three points of the chain by

a product of transformations of these three types. Moreover, any

projectivity is fully determined as a transformation of C^Ii^H^HJ)

by the three points B^, B^, B„ into which it transforms H^, H^, H^.

For, suppose there were two such projectivities, 11 and 11', the prod-

uct n"'n' would transform H^, H^, H„ into themselves. Hence, by

Theorem 16, Chap. IV, Vol. I, it would leave invariant every point

of R (H^H^HJ). Hence, by Assumption C (2), it would leave invariant

every point of Q,{HJS^H^. Hence H^^II' would be the identity for

all points of the chain, and 11 would be the same as 11' for all points

of the chain. Hence every projectivity changing H^, H^, H^ into

points of the chain is expressible as a product of projectivities of the

forms «'= ax, »'= a; + a, «'= l/.r. As all these transform the chain

into itself, the theorem follows.

Corollary 1. Any projectivity leaving invariant three points of

the chain C{H^H^H^) leaves every point of the chain invariant.

Proof. Let H be the given projectivity leaving the given points, say

B^, B^, B„, invariant. Let P be the projectivity such that F{B^B^B„)

= {H^H^H^). Then PHP-' leaves H^, H^, H„ invariant and hence
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leaves all points of the chaii*invariant, as shown in the proof of the

theorem. Hence 11 leaves all points of the chain invariant.

Corollary 2. Any projectivity of the chain C{H^HJI^) into itself

is of the form
,

px[ = cXf,+ dx^, " ^

where the coefficients are real numbers.

*12. Chains in general. Definition. If {A, B) is an open cut in

any net of rationality R {KJK^KJ) with respect to the scale K^, K^, K^,

let n be a projectivity transforming R{K^K^K^) iato R{If^H^ir„) and

X^ into Zr„. This projectivity transforms {A, B) into a cut (C, D) in

^{HJIJIJ) with respect to the scale H^, H^, If„. If X is the point

associated by Assumption C with (C, B), the point II~'(A') = JT' is

called the irrational cut-point associated with {A, B).

The point X' is independent of the particular projectivity IT. For let

n' be any projectivity changing {A, B) into a cut {E, F) in R {H^H^HJ)

with respect to the scale H^, H^, H^, and let Y be the point associated

with {E,F) and r'=n'-'(r). Then 11 11'-' changes {E,F) into

(C, D) and hence, by Assumption C (2), must change Y into X. This

can take place only if Y' = X', that is, only if the cut-point X' asso-

ciated with {A, B) is unique.

By projecting any net of rationality into R (H^H^H^) it is shown

that the cut-points associated with it satisfy the conditions stated for

the points associated with the cuts of R(II^ir^ir^) in Assumption C.

Hence the theorems of the last section also apply to any chain what-

ever, a chain being defined as follows

:

Definition. The totality of points of a net of rationality R{ABC),

together with all the irrational cut-points defined by 6pen cuts with

respect to the scale A, B, C in R{ABC), is called the chain defined

by A, B, C and is denoted by C(ABC). The irrational cut-points are

said to be irrational with respect to R{ABC).

Thus we have

Theorem 11. (1) The projective transform of a chain is a chain.

(2) Every open cut in any net of rationality defines a unique

irrational cut-point collinear vnth, hut not in, the net.

(3) If two such cuts with respect to the same scale and in the same

net are distinct, their cut-points are distinct.
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(4) If two open cuts are homologous in a projectivity, their cut-points

are homologous in the same projectivity.

(5) Any projectivity which transforms three points A, B, C into

three points of the chain C,{ABC) transforms any point of the chain

into a point of the chain.

Theorem 12. There is one and only one chain containing three dis-

tinct points of a line.

Proof. Let A, B, C be the given points. They belong to the chaia

C{ABC) into which Q{II^H^H„) is transformed by a projectivity

such that H^B^H^^ABC. By Theorem 11 (5) any projectivity such

that ABC-f^BAC transforms all points of C{ABC) into points of

C{ABC). But by definition such a projectivity transforms C(ABC)

into C{BAC) ; hence C(BAC) is contained in C(ABC). In like man-

ner C{ABC) is contained in C{BAC). Hence C{ABC)= C{BAG)=
C{BCA), etc.

Now suppose A, B, C to be points of some other chain C {PQB). By

Theorem 11(5) a projectivity such that* PQBAj^QPAR changes

all points of C{PQR) into ppints of C{PQB). But by definition it

changes C{PQR) into C{QPA). Hence C{QPA) is contained in

C{PQR). But the same projectivity changes C{QPA) into C{PQR).

Hence C{PQB)=C{QPA). In like manner C{QPA) = C{PBA) =
C{CBA)=C{ABC).

Corollary. A chain contains the irrational cut-point of every open

cut in any net of rationality in the chain.

Theorem 13. The Fundamental Theorem of Projectivity for

A Chain. If A, B, C, D are distinct points of a chain and A', B', G'

any three distinct points of a line, then for any projectivities giving

{A, B, C, D) -^ (A', B', C, B') and (A, B, C, D) -j^ (A'', B', C, D[) we

have D'=D[.

Proof. Let H, H^ be the two projectivities mentioned in the theorem.

Hf^n then leaves every point of C {ABC) fixed ; for it leaves every

point of ^{ABC) fixed, and hence, by Theorem 11 (4), must leave

every irrational cut-point of an open cut in V{{ABC) fixed. But

Hj'^n is then the identical transformation as far as the points of

C{ABC) are concerned. Hen,ce D' =D[.

• Cf . Theorem 2, Chap. Ill, Vol. I.
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This theorem may also be«tated as follows

:

Any projective correspondence between the points of two chains is

uniquely determined by three pairs of homologous points.

Our list of assumptions for the geometry of reals may now be com-

pleted by the 'following assumption of closure.

Assumption R On at least one line, if there is one there is not

more than one chain.

It follows at once, by Theorem 12, that every line is a chain. It also

follows, by an argument strictly analogous to the proof of Theorem 5,

that the dual propositions of Assumptions C and E are true. Hence

we have

Theoeem 1.4. The principle of duality is valid for all theorems

deducible from Assumptions A, E, H, C, E.

*13. Consistency, categoricalness, and independence of the assump-

tions. Let us now apply the logical canons explained in the Intro-

duction (Vol. I) to the foregoing set of assumptions.

Theorem 15. Assumptions A, E, H, C, E are consistent if the real

number system of analysis is existent.

Proof. Consider the class of all ordered tetrads of real numbers

(x^, x^, x^, x^, with the exception of (0, 0, 0, 0). Any class of these

ordered tetrads such that if one of its members is [a^, a^, a^, a,) all

its other members are given by the formula {ma^, ^ma^, ma^, ma^,

where m is any real number not z€iro, shall be called a point. Any
class consisting of aU points whose component tetrads satisfy two

independent linear homogeneous equations

Vo+ Vi+ '*2^2+ ^8*8= ^'

Vo + '"A + %^a + V8=0
shall be called a line. The class of all points and lines so defined

satisfy the assumptions A, E, H, C, E (cf. § 4, Vol. I).

Theorem 16. Assumptions A, E, H, C, 'Rform a categorical set.

Proof. In Chap. VII, Vol. I, it has been proved that the points of a

?pace satisfying Assumptions A, E, P can be denoted by homogeneous

coordinates which are numbers of the geometric number system of

Chap. VI, Vol. I. Since P is a logical consequence of A, E, H, C, R
(cf. Theorem 13), this result applies here, and by Theorem 9 the
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uumber system in question is isomorphic with the real number

system of analysis.

Now if two spaces S^ and S^ satisfy A, E, H, C, K, consider a homo-

geneous coordinate system iu each space and let each point of S^

correspond to that point of S^ which has the same coordinates. This

correspondence is evidently such that if three points of S^ are coUinear,

their correspondents in S^ are coUinear.

It ip worthy of remark that the above correspondence may be set

up in as many ways as there are collineations of S^ into itself.

Theokem 17. Assumptions A 1, A 2, A 3, E 0, E 1, E 2, E 3, E 3',

H, C, R are an independent set.

Proof. The method of proving that a given assumption is not a

logical consequence of the other assumptions was explained in the

Introduction, p. 6, Vol. I. Suppose there is given a class of objects

[x] and a class of subclasses of [x]. If we call each x a point and

each element of the class of subclasses a line,, then each of our

assumptions, when thus interpreted, will be either true or false * with

respect to this interpretation. If all the assumptions but one are true

and the one is false, it cannot be a logical consequence of the others

;

for a logical consequence of true statements must be true. In the

sequel w§ shall call the objects, x, pseudo-points, and the subclasses

of [x] which play the r81e of lines, pseudo-lines.

A 1. The pseudo-points shall , be the points of a real projective

plane tt together with one other poiiU 0. The pseudo-lines shall be

the lines of tt. A 1 is false because there is no pseudo-line contain-

ing 0. A 2 is true because it is satisfied by the ordinary projective

plane. A 3 is true because the only sets of points A, B, C, D, E which

satisfy its hypothesis are in tt. The only pseudo-plane is tt, and there

is no pseudo-space. Hence it is evident that E 0, E 1, E 2, E 3 are true

and E 3' is vacuously true. Assumptions H, C, R are evidently true.

* If the hypothesis of a statement is not verified, we regard the statement as
true. Following the terminology of E. H. Moore (Transactions of the American
Mathematical Society, Vol. Ill, p. 489), we shall describe statements which are
true in this sense as "vacuously true" or "vacuous."

It is possible to put any or all of the assumptions into a form such that they are
vacuous for the ordinary real space. For example, Professor Moore has pointed
out that A 1 could be replaced by the following proposition, which is vacuous for
ordinary space.

A 1. Let 4 be a point and B be a point. If there is no line which is on A and
on B, then A = B.
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A 2. The pseudo-points 4^all be the points of a real projecti\e

three-space S^ together with one other pseudo-point 0. The pseudo-

lines shall be the lines of S^, each pseudo-line, liowever, contaiaing 0.

Thus any two pseudo-points are colKnear with ; a pseudo-plane is

an ordinary plane together with 0; a pseudo-space is S, together

with 0. Hence it is evident that A 2 is false and A 1, A 3, E 0, E 1,

E 2, E 3, E 3' are true. There exist harmonic sequences of pseudo-

points, some of which are ordinary harmonic sequences. Hence

Assumption H is true. By reference to the definition of a quad-

rangular set and harmonic conjugate it is clear (because every line

contains 0) that any pseudo-poiot P is harmonically conjugate to

with regard to any two pseudo-points which are coUinear with F.

Hence a linear net of rationality contains all the pseudo-points of a

pseudo-line. The operations of addition and multiplication are not

unique, however, and hence the definition of order does not apply

;

there are no open cuts, and Assumptions C and R are vacuously

true.

A 3. The pseudo-points shall be the points of a real projective

space Sj, with the exception of a single point 0. The pseudo-lines

shall be the liues of S^, except that in case of those lines which pass

through the pseudo-lines do not contain 0. Clearly A 3 is false

whenever the pseudo-points A, B, C, D, E are chosen so that the

lines AB and DE meet in 0. A 1, A 2, E 0, E 1, E 2, E 3, E 3' are

obviously true. A harmonic sequence and a net of rationality of

pseudo-points can be found identical with an ordinary harmonic

sequence and net of rationality on any line not passing through 0.

Hence H, C, and R are also true.

E 0. The pseudo-points shall be the vertices of a tetrahedron, and

the pseudo-lines the six pairs of pseudo-points. Thus the pseudo-

planes are the trios of pseudo-points, and a pseudo-space consists of

all four pseudo-points. A 1 and A 2 are obviously true. A 3 is true

because we may have E=A and D = B. E 1, E 2, E 3, E 3' are true.

H, C, R are vacuously true.

E 1. There shall be one pseudo-point and no pseudo-line. E 1 is

false and all the other assumptions are vacuously true.

E 2. There shall be three pseudo-points and one pseudo-line con-

taining all three pseudo-points. A 1, A 2, E 0, E 1 are true. A3, E 3,

E 3', H, C, R are vacuously true.
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E 3. The pseudo-points and pseudo-lines shall be the points and

»li]jes of a real projective plane. A 1, A 2, A 3, E 0, E 1, E 2, H, C, E
are true and E 3' is vacuous.

E 3'. The pseudo-points and pseudo-lines shall be the points and

lines of a real four-dimensional projective space. E 3' is false and all

the other assumptions are true.

H. The pseudo-points and pseudo-lines shall be the points and

lines of any modular projective three-space (cf. § 72, Vol. I, and § 16,

below). All the assumptions A and E are true, H is false, and and

E are vacuously true.

C. The pseudo-points and pseudo-lines shall be the points and

linear nets of rationality of a three-dimensional net of rationality in

an ordinary real projective space. All the assumptions are true except

C, vrhich is false. E is vacuously true.

E. The pseudo-points and pseudo-lines shall be defined as the

points and lines in Theorem 15, the coordinates, however, being ele-

ments of the system of ordinary complex numbers. All the assump-

tions are true except E, which is false.

Assumption C, which is more complicated in its statement than

the others, is, however, such that neither of the two statements into

which it is separated may be omitted. This result is established in

the following theorem

:

Theorem 18. Assumption C(l) is not a consequence of Assump-
tion C (2) and all the other assumptions. Assumption C (2) is not a

consequence of C (1) and of the other assumptions even if we add to

C (1) the following : If a projectivity transforms H„ into itself and
H^ and H^ into points of R (H^ff^H^), and transforms an open cut

(A, B) into an open cut (C, D), it transforms the point associated with

{A, B) into the point associated with (0, D).

Proof* (1) Any real number x determines a class K^ of numbers
of the form ax + l where a and 6 are any rationals. K^ is the same
as -S'ax+s for all rational values of a and h. Hence, if x and y are two
irrationals, K^ and ^T^ are either identical or mutually exclusive. Thus
the class of all real numbers falls into a set of mutually exclusive

* This argument makes use of portions of the theory of classes which could not
be treated adequately without a long digression. Hence we assume knowledge of
the methods and terminology of this branch of mathematics without further
explanation.
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classes [K]. With each class K we associate a particular one of its

numbers,* k, and thus obtain a set of numbers [k] such that every

real number can be written uniquely in the form ak + b.

Now consider the number system whose elements are the complex

numbers of the form ai + b, where a and b are rational and i=v— 1.

If we take as pseudo-points and pseudo-lines the points and lines of

a three-space based (as in the proof of Theorem 15) on this number

system, it is clear that all the assumptions except C are satisfied.

If we also take as the pseudo-points H^, H^, H^ those having the

coordinates (0, 1, 0, 0), (1, 1, 0, 0), (1, 0, 0, 0), the net of rationality

R[H^H^II„) consists of iZ"„ and the points whose coordinates are

(«, 1, 0, 0), where x is rational. Suppose now that we associate the

pseudo-point (ai + b, 1, 0, 0) with every cut in this net which in the

ordinary geometry would determine an irrational point {ah + b, 1, 0, 0).

Every point is thus associated with an infinity of cuts, contrary to

Assumption C(l). Moreover, the cuts with which any point is asso-

ciated occur between every two pseudo-points and hence between every

two cuts of R {H^H^R^). Therefore Assumption C (2) remains true

in this space.

(2) For the second half of the theorem the pseudo-points and

pseudo-lines shall be the points and lines of a three-space based on a

commutative number system whose elements are the ordinary rational

numbers and all open cuts in the rational numbers. The laws of

combination shall be such that addition is precisely the same as for

the ordinary number system and multiplication is the sam6 between

rationals and rationals or rationals and irrationals, but different

between irrationals and irrationals. Thus the product of the num-

bers associated with two open cuts will not, in general, be the number

associated with the cut given by the usual rule. Hence the pro-

jective transformation x' = ax will not preserve order relations, and

Assumption C (2) must be false. On the other hand, C (1) and the

other assumptions are obviously true.

* We do not show hW to set up the correspondence. The assumption that this

correspondence exists is a weaker form of the assumption used by Zermelo

(Mathematische Annalen, Vol. LIX, p. 514) in his proof that any class can be well

ordered. Our proof of the second part of the theorem is dependent on the validity

of Zermelo's result that the continuum can be well ordered. The whole theorem

is therefore subject to the doubts that attach to the Zermelo process because of the

lack of explicit methods of setting up the correspondences in question.
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The existence of the required new number system can be inferred

from Hamel's theorem* that there exists a well-ordered set of real

numbers

(5) «!, ttjj' «8' ' "-'

such that every real number can be given uniquely by an expression

of the form

(6) a„+ a^a,+a^a, + + a^a^^,

containing only a finite number of terms, the a's all being rational.

The ordinary rules of combination for cuts determine a multiplication

table for the a's ; that is, a set of rules of the form

(7) a,a. = /3„+ /3,a,_ + ^^a, + + /3a„,

where the /S's are rational. The laws of combination for the number

system in general may now be stated as follows : Express the two

numbers to be added or multipKed in the form (6) ; add or multiply

by the rules for addition and multiplication of polynomials, reducing

the result in the case of multiplication by means of the multiplication

table for the a's.

Now suppose we denote by

(8) a[, a!„ , al, •
the same set of numbers [a] arranged in a different order of the same

type as (5). Such an order would be obtained, for example, by inter-

changing ttj and a^ and leaving the other a's unaltered. There is

therefore a one-to-one correspondence in which every a^ corresponds

to the a[ having the same subscript. Moreover, since the set of aU a's

includes the same elements as the set of aU a"s, every real number
is expressible in the form

(9) %+ <^i<+ «A +
' + a„ai-

A new law of multiplication, which we shall denote by x , is now
,

defined by setting up a multiplication table for the a"s according to

the rule that

(10) aj X «j = a;„-f- a^a[^ -\ -|- ajt'.^

whenever

(1 1) aflj =a^+ a^a,^+ + a„a^.

* Mathematische Annalen, Vol. LX, p. 459
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The product, according to tMfe new law of combination, of two real

numbers is obtained by expressing each in the form (9), multiplying

according to the rule for polynomials, and reducing by the multipli-

cation table for the a"s.

Since the set of all expressions of the form

forms a number system, the set of all expressions of the form

forms a number system isomorphic with the first. For if we let each

«,. correspond to the a[ with the same subscript, the sura of any two

elements of the first number system corresponds, by definition, to

the sum of tlie corresponding two elements in the second number

system. Similarly for the product of a rational by a rational or of

a rational by an irrational. The product of two irrationals in the first

system corresponds to the product of two irrationals in the second,

because the two polynomials in the a's are multiplied by the same

rules as the two in the a"s, and are also reduced by corresponding

entries in the respective multiplication tables.

We may insure that the two number systems shall be distinct by

selecting the a's, in the first place, so that a^= y/2 and a^=V3, and

then choosing the a"s so that a[ = a^.

* 14. Foundations of the complex geometry. Let us add to Assump-

tions A, E, H, C the following assumption

:

Assumption E. On some line, I, not all points belong to the same

chain.

Let ^, i^, ij be three points of I. The geometric number system

determined by the method of Chap. VI, Vol. I, by the scale i^, J^, ^ is

commutative for all the points in the chain C(J^i^^) but not neces-

sarily for other points. However, it is clear, without assuming the

commutativity of multiplication, that

x'=x~^, x'=x + a, x'=ax, x' = xa (a = constant)

define projectivities. For x'= x~^ this follows from § 54, Vol. I; for

x'= x+a it reduces to Theorem 2, Chap.VI, Vol. I ; and for the other

two cases, to Theorem 4, Chap. VI, Vol. I.

Let J be any point of I not in C(JJ^^), and let [X] be the set of

all points in C(iJiJ^). Then, by Theorem 11 (1), the set of points
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[X+ J] is a chain. This chain has no point except H in common

with C(^iJ^), because, if X+J=X'=^P„, it would follow that

X'—X= J, and thus J" would be a point of C(^iJ^). Let us dendte

the chain [X+ J"] by C.

In order to continue this argument we need the following assump-

tion of closure

:

Assumption I. Through a point P of any chain C of the line I,

and any point J on I hut not in C, there is not more than one chain

of I which has no other point than P in common with C.

Now let P be any point of I not in C(^^^) or C Such points

exist, because, for example, the chain C(^j^j) does not coincide with

C{I^I[Z) or C The chain C{PJP,) has, by Assumption I, a point

different from P, in common with C{P^I^P,). Let X^ be this point.

In case X^+ ij, the projactivity

(12) X'= X+J-(iJ-Xfi-;r)

transforms P^ into J, X^ into itself, and P into itself. Hence it trans-

forms C(^^^)=C(^JE;^) into C(JXfi). Hence every point of

C{JX^P), and in particular P, is of the form X+ JX", where Xand
X" are in [X]. If X^= P^, the projectivity

(13) X'=JX

transforms C(^, P^, P) into Q>{PaJP), which contains P. Hence, in

this case P is of the form JX Thus we have

Lemma 1. Every point of the line I is expressible in theform A+JB,
where A and B are in C {P^I{P,).

,

Lemma 2. Two points A + JB and A'+ JB', where A, B, A', B' are

in C {P^P^P), are identical if and only if A = A' and B = B'.

For if B =?t B', A + JB = A'+ JB' implies J= (A' -A)(B- B')-\

and thus J would be in C (-^-^-5) ; and if 5 = B', it implies directly

that^=^'.

Each of the projectivities X'=JX and X'= XJ transforms the

chain C(^iJ^) into C{P^JPJ). Hence, if A be any point of C(^^5),

(14) AJ= JA<,
I

where A' is also in C(I^I^p,).
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Each of the projectivities X*= {P^ — J)X and X'= X(iJ — J) trans-

forms C(iJ^ii) into C{P^(P^-J)Z)- Hence, if A be any point of

C {P,P,P„),
A{P,-J) = {P,-J) A",

where A" is also in C(J°^^). By the distributive law (Theorem 5,

Chap. VI, Vol. I) it foUows that

A-AJ=A"-JA".
By (14), this reduces to

A-JA'= A"-JA".

By Lemma 2, it follows that A = A"= A'. Hence AJ=JA. From
this we can deduce, by the elementary laws of operation,

{A + JB) {C+JD) =A{C+JD)+ JB{C+JD)
=AC+AJD + JBC+ JBJI>

= CA + CJB + JDA + JDJB
= C{A + JB) + JB (A + JB)

= {C+JD){A + JB).

Hence the geometric number system determined by any scale on I

is commutative. Since chains are transformed into chains by any

projective transformation, it follows that the geometric number sys-

tem determined by any scale on any line in a space satisfying A, E,

H, C, E, I satisfies the commutative law of multiplication. Hence,

by Theorem 1,

Theorem 19. Assumption P is satisfied in any space satisfying

Assumptions A, E, H, C, R, I.

Since every point in the geometric number system is expressible

in the form A + JB, we have

(15) J' = A^+JB^,

where A and B^ are in C (I^^P^). Thus J is one of the double points

of the involution

(16) XX'-^B^{X-\-X')-A=0,

which transforms C(^iJ^) into itself. Any two points of C(iJiJ^)

which are conjugate in this involution may be transformed projeo-

tively into -^ and ^ by a transformation which carries C(^iJ^) into

itself. This reduces the involution to

(17) XX'= A,
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where A must be negative relatively to the scale iji?-^, since the

double points are not in C(iJ-^i^). The transformation A'= V- JA"

now reduces (17) to yyi — _ p

and thus transforms J' to a point satisfying the equation

J'=-P.
Hence we have

Theorem 20. The geometric number system in any space satisfying

Assumptions A, E, H, C, R, I is isomorphic with the complex number

system of analysis, i.e. with the system of numbers a + ib, where

i^= — l and a and b are real.

*15. Ordered projective spaces. There is an important class of

projective spaces which may be referred, to as the ordered projective

spaces and which are characterized by the Assumptions S given below.

This class of spaces includes the rational and real projective spaces

and many others. The set of assumptions, A, E, S, is not categorical,

but it may be made so by adding a suitable continuity assumption or

by some other assumption of closure.

These assumptions introduce a new class of undefined elements,

called senses* in addition to the points and lines which are the

undefined elements of Assumptions A and E. The senses are denoted

by symbols of the form S(ABC), where A, B, C denote points.

t

S 1. For any three distinct collinear points A, B, C there is a sense

S{ABC).

S 2. For any three distinct collinear points there is not more than

one sense S(ABC).

53. S{ABC)= S{BCA).

54. S{ABC)¥= S{ACB).

55. // S{ABC) = S{A'B'C') and S{A'B'C')== S{A"B" C"), then

S(ABC)=S(A"B"C").

56. If S(ABO)=S(BCO), then S{ABO) = S{ACO).

S 7. IfOA and OB are distinct lines, and 8{0AA^= S{OAA) and

OAA^A^ ^ OBB^B^, then S{OBB^= S{OBB^.

* Sets of assumptions more or less related to these have been given by A. R.

Schweitzer, American Journal of Mathematics, Vol. XXXI, p. 365, and A.'N. White-
head, The Axioms of Projective Geometry, Cambridge Tracts, Cambridge, 1906.

t With respect to the intuitional basis of these assumptions, cf. figs. 6-12,

Chap. II.
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If S{ABC) be identified i^tli the sense-class which is discussed

below in § 19, Chap. II, it will be seen that S 1 and S 2 are immedi-

ately verified and S 3, • • , S 7 reduce to Theorems 2-6, Chap. II. This

shows that the assumptions S are satisfied by a rational or a real

projective space.

These assumptions are capable, as is shown in Chap. II, of serving

as a basis for a very complete discussion of geometric order relations.

Assumption P is not a consequence of A, E, S alone.

EXERCISES

1. Prove that Assumption II is a consequence of A, E, and S.

2. Prove that with a proper definition of the symbol < (less than) the

geometric number system in an ordered projective space satisfies the following

conditions

:

(1) If a and h are distinct numbers, a < h or h<a.

(2) If a < 6, then a 7^ b.

(3) If a < i and Kc, then a < c.

(4) If a<b, there exists a number, x, such that a<x and x<b.

(5) If < a, then b<a + b for every b.

(G) If < a and < 6, then < a 6.

(Cf. E. V. Huntington, Transactions of the American Mathematical Society,

Vol. VI (1905), p. 17.)

3. Introduce an assumption of continuity, and with this assumption and

A, E, S prove Assumption P.

4. Prove that P is not a consequence of A, E, S alone.

* 16. Modular projective spaces. We have seen (§ 7) that, in any

space satisfying Assumptions A and E, any two harmonic sequences

are projective. Hence, if one harmonic sequence contains an infinity

of points, every such sequence contains an infinity of points, and

by § 8 these points are in one-to-one reciprocal correspondence with

the ordinary rational numbers. On the other hand, if one harmonic

sequence contains a finite number of points, every other harmonic

sequence in the same space contains the same finite number of

points. Hence the spaces satisfying Assumptions A and E fall into

two classes ^— those satisfying Assumption H and those satisfying

the following:

Assumption H. If any harmonic sequence exists, at least one con-

tains only a finite number of points.
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The spaces satisfying H may be called modular, and those satisfy-

ing H nonmodular.

It follows, just as in Theorem 5, that the principle of duality is

true for any modular space.

Let n be any paraboUc projectivity on a line, and let ir„ be its

invariant point. If IZj, be any other point of the line, the poiats

. .
. u-\H^), n-(zr„), ^„, n(5-„), n^(^„) • • •

form a harmonic sequence, by definition. If this is to contain only

a finite number of points, there must be some positive integer n such

that n"(^) = n"'(5j,),. where m is zero or a positive integer less

than n. li n — m = k, we have

n*(n'»(s-„)) = n»(zr„),

and hence H* = 1.

Hence all the points of the harmonic sequence are contained in the set

s-„. n(s-„),-.-. n*->(j9-„).

In case k is not a prime number, that is, if there exist two positive

integers, k^, k^ different from unity such that k = k^- k^, let us con-

sider the parabolic projectivity n*". The points

satisfy the definition of a harmonic sequence. Since any two harmonic

sequences contain the same number of points, it follows that the given

sequence could not have contained more than k^ points. In case ^^

breaks up into two factors, the same argument shows that the given

harmonic sequence could not contain a number of points larger than

either factor. This process can be repeated only a finite number of

times and can stop only when we arrive at a prime number. Hence

we have

Theorem 2 1 . The number ofpoints in a harmonic sequence is prime.

The points of a harmonic sequence may he denoted by

where H is a parabolic projectivity. The period, p, of any parabolic

projectivity is a prime number.
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With reference to a scale in which 11^=0,11 {H^ = 1, and the limit

point of the harmonic sequence is oo, 11 has the equation

Hence the coordinates of the points in the harmonic sequence are

0, 1, 2, ••-, i^-l,

respectively, where 2 represents 1 + 1, 3 represents 2 + 1, etc. Since

n*= 1, we must have that p = Q, p + 1=1, np+ k = k, etc. In other

words, the coordinates of the points in a harmonic sequence are ele-

ments of the field obtained by reducing the integers modulo jp, as

explained in § 72, Vol. I.

By Theorem 14, Chap. VI, Vol. I, the net of rationality determined

by the points whose coordinates are 0, 1, oo consists of the point co

and all pouits whose coordinates are obtainable from and 1 by

the operations of addition, subtraction, multiplication, and division

(except division by zero). Since all numbers of this sort are con-

tained in the set

0, 1, ,p-l,
we have

Theorem 22. The number of points in a net of rationality in a

modular space is p -\-l, p being a prime number constant for the

space in question.

Obviously, if Assumption Q (§ 10) be added to the set A, E, H,

the number of points on any line must he p + 1, p being prime.

A space satisfying A, E, H shall be called a rational modular space.

The problem of finding the double points of a projectivity in a rational

modular space of one or more dimensions leads to the consideration

of modular spaces bearing a relation to the rational ones analogous

to the relation which the complex geometry bears to the real geometry.

The existence of such spaces follows from the considerations in Chap.

IX, Vol. I (Propositions K^^ and KJ. The geometric number systems

for such spaces may be finite* (Galois fields) or infinite.t

*E. H. Moore, The Subgroups of the Generalized Finite Modular Group,

Decennial publications of The University of Chicago, Vol. IX (1903), pp. 141-190

;

L. E. Dickson, Linear Groups, Chap. I.

t L. E. Dickson, Transactions pf the American Mathematical Society, Vol. VIII

(1907), p. 389. See also the article by E. Steinitz referred to in § 92, Vol. I.
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17. Recapitulation. The various groupings of assumpti(jns which

we have considered thus far may be resumed as follows : A space

satisfying Assumptions

is a general projective space

;

is u pr6per projective space

;

is a nonmodular projective space

;

is a modular projective space

;

is an ordered projective space ; >

is a rational modular projective space

;

is a rational nonmodular projective space

;

A, E
A,E,P
A, E, H
A, E, H
A, E, S_

A, E, H, Q
A, E, H, Q
A, E, H, C, E

\

orA, E, K _i

A, E, H, C, E, I

or A, E, J

is a real projective space

;

J-
is a complex projective space.

The first six sets of assumptions are not, and the remaining ones

are, categorical. The set of theorems dedueible from any one of these

sets of assumptions is called a projective geometry, and the various

geometries may be distinguished by the adjectives applied above to

the corresponding spaces.



CHAPTER II

ELEMENTARY THEOREMS ON ORDER

18. Direct and opposite projectivities on a line. In § 9 a point A
was said to precede a point B relative to a scale i^, I^, J^ if the coordi-

nate of ^ in this scale was less than the coordinate of B. Supposing

the coijrdinate of ^ to be a and that of B to be h, the projectivity

changing i^ to ^ and ij to -B and leaving P^ fixed has the equation

(1) x' = (b — a)x + a.

In this transformation the coefficient of x is positive if and only if

A precedes B. But the transformations of the form

(2) x'=ax + ^,

where a is positive, evidently form a group. This group is a subgroup

of the group of all projectivities leaving i^ invariant, for the latter

group contains all transformations (2) for which a i= Q.

The group of transformations (2) for which a is positive is, by what

we have just seen, such that whenever a pair of points A and B are

transformed to A' and B' respectively, A precedes B if and only if A'

precedes B'. The discussion of order relative to a scale could therefore

be based on the theory of this group.

The order relations defined by means of this group have all, how-

ever, a special relation to the 'point Z, and they can all be derived by

specialization from a more general relation defined by means of a more

extensive group. We shall therefore enter first into the discussion of

this larger group, and afterwards (§ 23) show how to derive the rela-

tions of " precede " and " follow " from the general notion of " sense."

The definitions for the general case, like those for the special one, will

be seen to depend simply on the distinction between positive and

negative numbers.

A projective transformation of a line may be written in the form

^1 = «io*o + «lA'
=^0,

where the a.Js are numbers of the geometric number system.

87
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I

Under Assumptions A, E, H, C, R (or A, E, K) the a^'s are real

If attention be restricted to a single net of rationality satisfying As-

sumption H, the a,/s may be taken (Theorem 6, Cor. 2, Chap. I) as

integers. The discussion which follows is valid on either hyp6thesis.*

Definition. The projectivities of the form (3) for which A >
are called direct, and those for which A < are called opposite.

Since the determinant of the product of two transformations (3)

is the product of the determinants, the direct projectivities form a

subgroup of the projective group. The same transformation (3) cannot

be both direct and opposite, for two transformations (3) are identical

only if the coefficients of one are obtainable from those of the other

by multiplying them all by the same constant p ; but this merely

changes A into p^A.

In form, the definition is dependent on the choice of the coordinate

system which is used in equations (3). Actually, however, the defi-

nition is independent of the coordinate system, for if a given projeo-

tivity has a positive A with respect to one scale, it has a positive A
with respect to every scale. This may be proved as follows

:

Let the fundamental points of the scale to which the coordinates

in (3) refer be P^.P^.P^, and let Q^, Q^, Q„ be the fundamental poiats of

any other scale. By § 56, Vol. I, the coordinates y^, y^ of any point R
with respect to any scale Q^, Q^, Q„ are such that yjy^= R (Q^Q^, Q^B).

Suppose that, relative to the scale ^, j^, P,, the projectivity which

transforms Q^, Q^, Q„ to P^, J^, P respectively has the equations

Thus any point B whose coordinates relative to the scale ^, JJ, P
are (x^, x^) is transformed by this projectivity to a point JR' whose

coordinates relative to the scale -^, I^, ^' are (y , y).

Since cross ratios are unaltered by projective transformations,

y<s

Hence it foUows that if x^ and x^ are the coordinates of any point B
relative to the sca^le J^, I{, P, the corresponding values of y and y given

• It is, in fact, valid in any space satisfying Assumptions A, E, S, P. The purely
ordinal theorems are indeed valid in any ordered projective space (§ 15), but those

regarding involutions, conic sections, etc. necessarily involve Assumption P also.

Cf . the fine print at the end of § 19.
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ly (4) are the co&rdinates of ^relative to the scale Q^, Q^, Q„. Let us

indicate (4) by {y^, y^) = T{x^, x^), and (3) by (a?; x[) = S{x^, x^.

Now a direct transformation (3) carries a point whose coordinates

relative to the scale ^, ij, H are {x^, x^ into one whose coordinates rela-

tive to the same scale are {x[, «{), where {x'^, x'^ = S{x^, x^. The coordi-

nates of these two points relative to the scale Q^, Q^, Q„ are (y^, y^ =
T{x^,x^ and {yl, y[) = T{x[, x'^ respectively. Hence, by substitution,

{y[, y[) = T{S{x^, x^)) = T{S(T-\y^,
y^))),

or (jily[) = TST-^y^,y^),

where T~ ' indicates, .as usual, the inverse of T. The determinant of

the transformation TST~ ^ is

D
where K is real (or rational), and A' therefore has the same sign as A.

Thus the definition of a direct projectivity is independent of the

choice of the coordinate system.

This result can be put iu another form which is important in

the sequel:

Definition. Two figures are said to be conjugate under or equiva-

lent with respect to a group of transformations if and only if there

exists a transformation of the group carrying one of the figures into

the other.

Theorem 1. If two sets of points are conjugate under the group of

direct projectivities on a line, so are also the two sets of points into

which they are transformed by any projectivity of the line.

Proof. Let /S be a direct projectivity changing a set of points \A\

into a set of points \B\, and let T be any other projectivity on the

line, and let T(A) =A' and T{B) = B'. Since T~\A') =A, S{A) = B,

and T{B) =B', it follows that TST-'-{A') = B'. But the discussion

above shows that TST~^ is a direct projectivity. Hence [4'] and

[jB'] are conjugate under the group of direct projectivities, as was

to be proved.

According to the definition in § 75, Vol. I (see also § 39, below), the group

of direct projectivities is a self-conjugate subgroup of the group of all projec-

tivities on a line. Since this is the only relation between the two groups

which we have employed in the proof of the theorem above, this theorem

can be generalized to any case in which we have one group of transformations

appearing as a self-conjugate subgroup of another.
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EXERCISES

1. Within the field of all real numbers the positive numbers may be defined

as those numbers different from zero which possess square roots. Generalize

this definition to other fields, and thus generalize the definitions of direct

projectivities. In each case determine how far the theorems on sense and

order in the following sections can be generalized (cf. § 72, Vol. I).

2. The group of projectivities which transform a net of rationality into

itself has a self-conjugate subgroup consisting of those transformations which

are products of pairs of involutions having their double points in the net of

rationality. This group contains all projectivities for which the determinant

is the square of a rational number.

* 3. Work out a definition and theory of the group of direct projectivities

independent of the use of coordinates. This may be done by the aid of

theorems in Chap. "VIII, Vol. I (cf. §§69 and 70, below).

19. The two sense-classes oa a line. Definition. Let A^, B^, C^ be

any three distinct points of a line. The class of all ordered* triads

of points ABC on the line, such that the projectivities

are direct, is called a sense^lass and is denoted by S{A^B^C^). Two
ordered triads in the same sense-class are said to have the same sense

or to be in the same sense. Two collinear ordered triads not in the same

sense-class are said to have opposite senses or to be in opposite senses.

One sense-class chosen arbitrarily may be referred to by a particular name,

as right-handed, clockwise, positive, etc.f

The term « sense," standing by itself, might have been defined as follows

:

" The senses are any set of objects in one-to-one and reciprocal correspondence

with the sense classes." This is analogous to the definition of a vector given

in § 42. When there is question only of one line, any two objects whatever

may serve as the two senses— for example, the signs + and — . This agrees

with the definition of sense as "the sign of a certain determinant." When
dealing with more than one line, it is no longer correct to say that there are

two senses ; there are, in fact, two senses for each line.

* " Order," here, is a logical rather than a geometrical term, just aa in the defi-

nition of " throw " (§ 23, Vol. I). It is a device for distinguishing the elements of
a set. For example, when we say that ABC cannot be transformed into ACB by
any transformation of a given group, It is a way of saying that the group contains
no transformation changing A Into A, B Into O, and O into B.

t A partial list of references on the notion of sense in one and more dimensions
would include : Mobius, Barycentrische Calcul, note in § 140 ; Gauss, Werke, Vol.
VIII, p. 248 ; von Staudt, Beitrage zur Geometrle der Lage, §§ 3, 14 ; Study, Archiv
der Mathematlk und Physik, Vol. XXI (1913), p. 193 ; Enoyclopadie der Math,
W;ss. Ill AB 7, p. 618.
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When one adopts, as we do, t% symbol S(ABC) to stand for a sense-class,

there is no occasion for attaching a separate meaning to the word " sense.'' It

may be regarded as an incomplete symbol,* like the— in the^ of the calculus.
dx clx

Theoeem 2. If the ordered triad ABC is in the sense-class S {A^B^C^),

then S(ABC)=S{A^B^C^). If S{ABC)=S{A'B'C') and S{A'B'C')

= S{A"B"C"), then S(ABC) = S{A"B" C").

-o—O O o—o-
C ABC A" B" 0" A' B'

Fig. 6

Proof Both statements are consequences of the fact that the direct

projectivities form a group.

Theoeem 3. If S {ABC) -h S{A'B'C') and S{A'B'C')^ S(A"B"C"),

then S{ABC) = S{A"B"C").

—o o—o o o o o—o o
C" C B' ABO A!' B" A'

Fig. 7

Proof If S{ABC)^S{A'B'C'), the projectivity ABC^A'B'C is

opposite. Hence the theorem follows from the fact that the product

of two opposite projectivities is direct.

CoROLLAEY. There are two and only two sense-classes on a line.

Theoeem 4. If A, B, C are distinct collinear points, 8 (ABC)
= S{BCA) and S{ABC)4- S{ACB).\

Proof. Let A, B, C be taken as (1, 1), (1, 0), (0, 1) respectively.

Then , _

ily-t —— (A/n

is an opposite projectivity interchanging B and C and leaving A
invariant. Hence S(ABC) =#= S{ACB). In like manner, we can prove

that S{ACB)-/=S{BCA). It follows, by Theorem 3, that S{ABC)
= S{BCA).

* The term ' incomplete symbol " appears in Whitehead and Russell's Principia

Mathematioa, Vol. I, Chap. Ill, of the Introduction, together with a discussion of

its logical significance.

t This may be expressed by the phrase " Sense is preserved by even and altered

by odd permutations." A transposition is a permutation in which two and only two
elements are interchanged, and an men {odd) permutation is the resultant of au
even (odd) number of transpositions. Of. Burnside, Theory of Groups of Finite

Order, Chap. I.
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Theorem 5. If S{ABD) = S{BCD), then S{ABD) = S{ACD).

Proof. Choose the coordinates so that D = (0, 1), A = (1, 0),

B= (1, 1). The transformation of ABD to BCD may be written in

the form q q q o—
'"»"'''"

A B CD
x[ = x^+ax^, Fig. 8

because (0, 1) is invariant and (1, 0) goes to (1, 1). This transforma-

tion will be direct if and only if a > 0. The point C, being the trans-

form of (1, 1), is (1, 1 -I- a). The transformation carrying ABD to

^G-D^ x'-x

a!i'=(l-|-a)a!i,

which is direct because (1 -|- a) > 0.

As an immediate consequence of Theorem 1 we have

Theobem 6. IfS{ABC)=S{A^B^C^andABCA^Bfi^-^A'B'C'A[B[C[,

*^^
S{A'B'C') = S{A[B[C[).

Fig. 9

Theorems 2-6 contain the propositions given in f 15, Chap. I, as Assump-

tions S. Theorem 6 is slightly more general than S 7 but is directly deducible

from it. The developments of the following sections will be based entirely on

these propositions, and hence belong to the theory of any ordered projective

space, except where reference is made to figures whose existence depends

on Assumption P. Theorems of the latter sort hold in any space satisfying

A, E, P, S.

These propositions have the advantage, as assumptions, of corresponding to

some of our simplest intuitions with regard to the linear order relations. The

reader may verify this by constructing the figures to which they correspond

(cf. figs. 6-9). Each proposition will be found to correspond to a number of

visually distinct figures.
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20. Sense in any one-dim6lisional form. Definition. If 1, 2, 3,

V, 2', 3' are elements of the same one-dimensional form, and A, B, C,

A', B', C" are collinear points such that

122,V2"i'^ABCA'B'C',

then the ordered triad 123 is said to have the same sense as 1'2'3' if

and only if S{ABC) = S(A'B'C'). The set of all ordered triads having

the same sense as 123 is called a sense-class and denoted by S{123).

In view of Theorem 6 this definition is independent of the choice

of the points A, B, C, A', B', C". It is an immediate corollary of the

definition that the plane and space duals of Theorems 2-6 all hold

good (cf. figs. 10 and 13).

By the definition of a point conic there is a one-to-one correspond-

ence between the points [P] of the conic and the lines joining them
to a fixed point ij of the conic. We now define any statement in

terms of ojrder relations among the points of the conic [P] to mean

that the same statement holds for the corresponding lines [-^P]. By
Theorem 6, above, together with Theorem 2, Chap. V, Vol. I, it follows

that this definition is independent of the choice of the point P^. The

definitions of the order relations in the line conic, the cone of lines,

and the cone of planes are made dually.*

The propositions with regard to sense are perhaps even more evident intu-

itionally vrhen stated with regard to a conic or a flat pencil than with regard

to the points of a line (cf. figs. 10 and 11).

* These definitions are in reality special oases of the definition given above for

any one-dimensional form, since the cones and conic sections are one-dimensional

forms of the second degree (§ 41, Vol. I) and since the notion of projectivity

between one-dimensional forms of the first and second degrees has been defined

in § 76, Vol. I. However, at present we do not need to avail ourselves of the

theorems in Chap. VIII, Vol. I, on which the latter definition is based.
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21. Separation of point pairs. Definition. Two points A and £ of

a line are said to separate two points C and I) of the same line if and

only if S{ABC) + S{ABB). This is indicated by the symbol AB II CD.

Theorem 7. (1) The relation AB II CD implies the relations CD WAB

and ABWDC, and excludes the relation ACWBD. (2) Given any

four distinct points of a line, we have either AB II CD or ACW BD
or AD WBC. (3) From the relations AB II CD and AD WBE follows

the relation AD II CE. (4) If AB II CD and ABCD -^A'B'CD', then

A'B' II CD'.*

Proof. (1) liAB II CD, we have

(5) S{ABC) + S(ABD),

which, by the definition of separation, implies AB WDC. By Theorems

2—6 we obtain successively, from (5),

S(ABC) = S{ADB),

S{ABC) = S{ADC),

S{ACB)= S{DAB),

S(ACB) = S{DCB),

S{ABC)= S{CDB),

S{CDA)^S{CDB),

the last of which implies CD II AB. The relation AC II BD is excluded

because it means S(ACB) + S{ACD), which contradicts the second of

the equations above.

(2) By the corollary of Theorem 3 we have either S(ABC)=f=

S{ABD) (in which case ABWCD) or S(ABC) = S{ABD). In the

latter case either S(ABC)^ S{ADC) or S(ABC)<= S(ADC). The

first of these alternatives is equivalent to S(ACB) =P S(ACD) and

yields ACWBD; the second implies S(ADC) = S{ABC) = S{ABD)

^ S{ADB), and thus yields AD WBC.

(3) The hypotheses give S(ABC) ¥= S{ABD) and S(ADB) + S{ADE).

The first of these gives S{BCA) = S{DBA), which, by Theorem 5,

unplies S{DBA) = S{DCA), and thus S(ADB) = S(ADC). Hence, by

the second hypothesis, S{ADC) ^ S{ADE), and therefore AD II CE.

(4) This is a direct consequence of Theorem 6.

* The properties expressed in tMs theorem are sufficient to define abstractly the

relation of separation. Cf. Vailati, Rerue de Math^matiques, Vol. V, pp. 76, 183;

also Padoa, Revue de Mathtoatiques, Vol. VI, p. 35.
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Theorem 8. If A and B are harmonically conjugate with, regard

to C and D, they separate C and D.

Proof. By Theorem 7 (2) we have either AB II CD or ACWBD or

ADWBC. We also have ABCD-j^BACD. Hence ACWBD would

imply BC WAD, contrary to Theorem 7 (1) ; and AD WBC would imply

BD WAC, contrary to Theorem 7 (1). Bfence we must have AB II CD.

Theorem 9. An involution in which two pairs separate one another

has no double points.

Proof. Suppose that the given involution had the double points

M, N, and that the two pairs which separate one another are A, A'

and B, B' respectively. Since the involution would be determined

by the projectivity ^^^ _ ^^^,^
in which, by Theorem 8,

S{MNA) 4= S(MNA'),

it would follow, by Theorem 6, that every ordered triad was carried

into an ordered triad in the opposite sense. Since the involution

carries AA'B to A'AB', we should have

S{AA1B) 4= S{A'AB')
;

and hence S{AA'B) = S{AA'B'),

contrary to hypothesis.

This theorem can also be stated in the following form

:

Corollary 1. An involution with double points is such that no two

pairs separate one another.

Corollary 2. If an involution is direct, each pair separates every

other pair. If an involution is opposite, no pair separates any other

pair.

22. Segments and intervals. Definition. Let A, B, C be any three

distinct points of a line. The set of all points X such that

S{AXC) = S{ABC)

is called a segment and is denoted by ABC. The points A and C are

called the ends of the segment. The segment ABC, together with its

ends, is called the interval ABC. The points of ABC are said to be

interior to the interval ABC, and A and C are called its

Corollary 1. A segment does not contain its ends.

Corollary 2. If D is in ABC, then

ABC= ADC.
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CoROLLAKY 3. If D is in ABC, then B and D an not separated by

A and C.

Theorem 10. IfA and B are any two distinct points of a line, there

are two and only two segments, and also two and only two intervals,

of which A and B are ends.

Proof. Let C and D be two points which separate A and B har-

monically. IfX is any point of the line distinct from A and B, either

S{AXB) = S{ACB)

or S{AXB)=:S{Ai)B).

In one caseX is in ACB, and in the other case in ADB.

Definition. Either of the two segments (or of the two intervals)

whose ends are two points A, B may be referred to as a segment AB
(or an interval AB). The two segments or intervals AB are said to

be corriplementary to one another.

Corollary. If A, B, C are any three distinct points of a line, the

line consists of the three segments complementary to ABC, BOA, CAB,

together with the points A, B, and C.

Proof. Any pointX distinct from A, B, C satisfies one of the rela-

tions ACWBX or AB II CX or AXWBC.

Theorem 11. IfA^, A^, • • ,A^is any set ofn{n> 1) distinct points

of a line, the remaining points of the line constitute n segments, each

of which has two of the points A^, A^, -, A,^ as end points and no

two of which have a point in common.

Proof. The theoreni is true for n=2,
by Theorem 1 0. Suppose it true for n=k.

llh + 1 points are given, the point A^^^^

is, by the theorem for the case n = k, on

one of the h segments determined by the

other Ic points, say on the segment whose

ends are A^ and Aj. By the corollary to

Theorem 10, this segment consists of ^j. ^ j,

together with two segments whose ends
"*'

are respectively A^.^.^, A^ and J^ + i,
Aj. Hence the theorem is valid

for w = ^ -I- 1 if valid for n = h. Hence the theorem is established by

mathematical induction.

Definition. A finite set of coUinear points, A^{i = l,^^, n), is in

the geometrical order {A^A^A^A^ • A,} if no two of its points are
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separated by any of the pairs ^^vl^, A^A^, • • -, A^A^ As an obvious

consequence of Theorem 11 we now have

Theorem 12. To any set [A] of n points of a line the notation A^,

A^,- • •, A^ may he assigned so that they are in the order {A^A^ • AJ.
A set of points in the order {A^A^ • • A^ is also in the orders

{A^^ A,A} and {A^A^_^ A^A^}.

EXERCISES

1. liAB II CD and A C II BE, then CD II BE.

2

.

The relations ^£11 CD,ABW CE,ABWDE are not possible simultaneously.

3. Any two points A, B are in the orders {AB} and {BA}. Any three

collinear points are in the orders {ABC), {ACB}, {CAB}.

23. Linear regions. The set of all points on a line, the set of all

points on a line with the exception of a single one, and the segment

are exaraples (cf. Ex. 1 below) of what we shall define as linear regions

on account of their analogy with the planar and spatial regions con-

sidered later.

Definition. A region on a line is a set of collinear points such

that (1) any two points of the set are joined by an interval consisting

entirely of points of the set and (2) every point is interior to at least

one segment consisting entirely of points of the set. A region is said

to be convex if it satisfies also the condition that (3) there is at least

one point of the line which is not in the set.

Definition. An ordered pair of distinct points AB of a convex

region R is said to he in the same sense as an ordered pair A'B' of R

if and only if S{ABA„) = S{A'B'A„), where A^ is a point of the Une

not in R. The set of all ordered pairs of R in the same sense as AB
is denoted by S{AB) and is called a sense-class. The segment comple-

mentary to AA„B is called the segment AB. The corresponding inter-

val is called the interval AB. A set of points of R is said to be in

the order {A^A^ A„} if they are in the order {A^A^ ^„^„}. If C

is separated from A„ by A and B, C is between A and B with respect

to R. If S{AB) = S{CD), then C is said to precede D, and D to follow

C, in the sense AB.

If there is a point B„, other than A„, which is not in the convex

region R, the sense S(ABA„) is the same as the sense S{ABB„), and

the segment AA„B is the same as the segment AB„B. Hence
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Theorem 13. for a given convex region R the above definition has

the same meaning if any other point collinear with R lut not in R 6e

substituted for A„.

CoROLLAEY 1. If S{AB) = S{A'B') and S(A'B') = S{A"B"), then

S(AB) = S{A"B").

Corollary 2. If S{AB) ¥= S{A'B') and S(A'B') -h 8{A"B"), then

S{AB) = S{A"B").

Corollary 3. S{AB) ^ S{BA).

Corollary 4. If S{AB) = S(BC), then S{AB) = S{AC).

These corollaries are direct translations of Theorems 2-5 into our

present terminology. Theorem 7 translates into the following state-

ments in terms of betweenness

:

Theorem 14. (1) If C is between A and B, then B is not betioeen A
and C. (2) If three points A, B, C are distinct, C is between A and B
or B is between A and C or A is between C and B. (3) If C is between

A and B and A is between B and E, then C is between B and E.

Theorem 7 translates into the following statements in terms of

" precede " and " follows."

Theorem 15. (1) If C precedes B in the sense AC, then B does not

precede C in this sense. (2) In tlie sense AG, either B precedes C or G
precedes B. (3) If, in the sense AB, A precedes G and E precedes A,

then E precedes G.

Definition. If A and B are any two points of a convex region R,

the set consisting of all points which foUow A in the sense AB is

called the ray AB. The point A is called the origin of the ray. The

ray consisting of all points which precede A in the sense AB is

said to be opposite to the ray AB. The set of all points which

precede A in the sense AB is sometimes called the prolongation of

the segment AB beyond A.

EXERCISES

1. A convex region on a line is either a segment or the set of all points on

the line with the exception of one point.*

2. If three points of a convex region are in the order {ABC), they are in

the order {CBA} but not in the order {ACB] or {CAB}.
3. In a convex region, if A is between B and C, it is between C and B.

4. Between any two points there is an infinity of points.

* This exercise requires the use of ap assumption of continuity (C and R, or K).
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5. If £ is on ^ C and C is on -^, then C is on AI) and B is on AD.
6. The relations B is on. AC, B is on ^Z), £ is on CD are not possible

simultaneously.

7. If B and C are on ^Z), then £ is on ^C or on CD.

8. Choosing a system of nonhomogeneous coordinates in which yloo is co,

show that the sense AB is the same as the sense A'B' if and only ii B — A
is of the same sign as B' — A'; also that two point pairs have the same sen^e

if and only if they are conjugate under the group

x' = ax -{ h,

where a > 0.

24. Algebraic criteria of sense. If A = (a^, a^, B=(b^, b^), and

C= (c^, Cj) are any three distinct points of the line, the transformation

(6)
< = PoVo + PAiri>

changes (1, 0), (0, 1), and (1, 1) into A, B, and C respectively if and

only if p^ and p^ satisfy the equations

".^Po^+pK
\= Po"'i +Ph

that is, if

h-
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is direct. If S' is opposite in sign to S, one of the projectivities (7) and

(8) is direct and the other opposite, and hence (9) is opposite. Hence

Theoeem 16. Let A= {a^, a^, B=^{\, \), C={c^, e^), A'= (al, a[),

B'= {hi h[), C= (4, 4) be coUinear points. Then S{ABC) = S{A'B'C')

if and only if the expressions

a^ b^
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of points on the planes of one^f these segments but not on the line

a/S, and let [P] be the set of the points on the planes of the other

segment but not on

the line a/3.

The two planes a>

and V of the pencil a/3

which are on any two

points and P are

separated by a and yS.

Hence, by Theorem 7

and § 20, the points

in which the line OP
meets a and /3 are

separated by and P.

In Hke manner, any

two points Oj, Oj de-

termine with the line a^ a pair of planes (or a single plane) not sepa-

rated by a and /8, and hfence the line 0^0^ meets a and /8 in points (or a

single poiut) not separated by 0^ and 0^. By the same reasoning, any

line ij^ meets a and /3 in points (or a point) not separated by ij and i^.

CoKOLLARY 1. If I and m are two coplanar lines, the points of the

plane which are not on I or m fall into two classes such that two points

, Ojj of the same class are not sepa-

rated by the points in which the line

0^ meets I and m, while two points 0,

P of different classes are separated hy

the points in which OP meets I and m.

Corollary 2. There is only one

pair of classes [0] and [P] satisfying

the donditions of the above theorem

(or its first corollary) determined by a given pair of planes {or lines).

Tig. 14

Definition. Two points in different classes (according to Corol-

lary 1) relative to two coplanar lines are said to be separated by the

two lines ; otherwise they are said not to be separated by the lines.

Two points in different classes (according to Theorem 18) relative to

two planes are said to be separated by the two planes; otherwise

they are said not to be separated by the planes.
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EXERCISES

1. If ^1 and l^ are two coplanar lines and any point of their common
plane, all triads of points in a fixed sense-class S^ on Zj are projected from

into triads in a fixed sense-class S^ on l^ (Theorem 6). If P is any other point

of the plane, it is separated from by l^ and l^ if and only if triads in the sense

5j are not projected from P into triads in the sense S^-

This problem can be stated also in terms of the sense of pairs of points in

the region obtained on l^ or l^ respectively by leaving out the common point.

The theorem in this form is generalized in § 30. -In the form stated in Ex. 1

it has the following generalization.

2. If li and l^ are two noncoplanar lines, apd o is any line not intersecting

them, all triads in a fixed sense S-^ on /j are axially projected from o into

triads in a fixed sense S^ on l^ (Theorem 6). The lines not intersecting Zj and

/j fall into two classes : those by which triads in the sense <Sj are projected into

triads in the sense S^, and those by which triads in the sense A^ are projected

into triads in the sense opposite to <Sj.

3. Obtain the definition of separation of two coplanar lines by two points

as the plane dual of the definition of separation of two points by two coplanar

lines. Prove that if two coplanar lines separate two points, then the points

separate the lines. State and prove the corresponding result for pairs of points

and of planes.

26. The triangle and the tetrahedron.

Theorem 19. If a line I not passing through any vertex of a triangle

ABC meets the sides BC,CA, AB in A^, B^, C^ respectively, then any other

linem which meets the segments BAfi CB^A also meets the segmentAC B.

Proof. Suppose first that m
passes through A^; then

ACB^B^^iABC^Cii,

and hence, if B^ and B^ do not

separated and C, (7, and C^ do

not separate A and B. Similarly,

the theorem is true if m passes

through B^.

If m does not pass through A^ or B^, let m' be a line joining A^ to

the point in which m meets CA. By the argument above we have

first that m' meets all three segments BA^G, CB^A, and AC^B, and

then that m meets them.

Let us denote the segment ^ C'^i? by 7, BA^C by a, and CB^A by A
and the segments complementary to a, ^, y by a, ^, 7 respectively. The
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above theorem then gives theinforination that every line which meets

two of the segments a, 0, 7 meets the third. Any line which meets a

and /3 meets 7, for, as it does not pass through A or B, it meets either

7 or 7 ; but if it met 7, and by hypothesis meets a, it would meet /3.

Hence the theorem gives that a, yS, 7 are such that any line meeting

two of these segments meets the third. By a repetition of this argu-

ment it follows that every line of the plane which does not pass

through a vertex of the triangle meets all three segments of one of

the trios a/37, */S7) ^/^Vj */^7> ^ud no line Vv'hatever meets all three

segments in any of the trios a^y, cc/Sj, a/87, ^/^Y-

The lines of the plane, exclusive of those through the vertices,

therefore fall into four classes:

(1) those which meet a, ^, 7,

(2) those which meet a, fi, 7,

(3) those which meet a, yS, 7,

(4) those which meet a, j3, 7.

No two lines l^, l^ of the same class are separated by any pair of the

lines joining the point IJ,„ to the vertices of the triangle, while any two

lines l^, wij of different classes are separated by two of the lines joining

the point Lm. to the vertices. /&:-i'- ;;:/&
//////A''IV'''i^

This result is perhaps more '"""'^

' intuitively striking when put
//////////////////'\

into the dual form, as follows

:

.///////
'

''

////im////////////// '^^^Miiih
Theoeem20. Thepoints of M^M/j9r

a plane not on the sides of a
'

triangle fall into four classes /0///////////////^W - ^M^-ps^a™,
such that no two points L^, L^ ''^^^m^d^M-^M^^^^^S''
of the same class are separated ^^^^^'^-M^^'d^iW^'^'^'''^^^^^

hy any pair of the points in ^W'
which the line L L^ meets the

sides of the triangle, while

any two points L^, M^ of different classes are separated hy txoo of the

points in which the line L^M^ meets the sides of the triangle.

Definition. Any one of the four classes of points in Theorem 20

is called a triangular region. The vertices of the triangle are also

called vertices of the triangular region.
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The property of the triangle stated in Theorem 19 can also serve

as a basis for a discussion of, the ordinal theorems on the tetrahedron

and for those of the {n + l)-point in ?i-space. Suppose we have a tetra-

hedron whose vertices are A^, A^, A^, A^. Let us denote its faces by a^,

a^, a^, a^, the face a^ being opposite to the vertex A^, etc. ; let us denote

the edges by a^, a^^, a^^, a^^, a^, a^^; the edge a^ being the line A,Aj.

Each edge a^ is separated by the vertices J,., Aj into two segments,

which we shall denote by a^ and ff^.. Let tt be a plane not passing

through any vertex ; the six segments which it meets may be denoted

byo- ,o- ,•• -jO-^^, and the complementary segments by o-jj,a-jj, • -jO-^j.

Then as a corollary of

Theorem 19 we have

that any plane which

meets three nonco-

planar segments of the

set o-j,, 0-18, ••.
<^i^

meets all the rest qf

them, and, moreover,

no plane meets all the

segments a^^, ^u,
• • •,

'

er . If we observe that
42

any plane not passing

through a vertex must

meet the edges a^^,

a^^, Wj^ in three distinct points, it becomes clear that the planes not

passing through any vertex fall into eight classes such that two planes

of the same class are not separated by a pair of vertices, whereas

two planes of different classes are separated by a pair of vertices.

Under duality we have

Theorem 21. The points not upon ihe faces of a tetrahedron fall

into eight classes such that two points of the same class are not sepa-

rated hy the points in which the line joining them meets the faces,

whereas two points of different classes are separated^ by two of the

points in tohich their line meets the faces of the tetrahedron.

Definition. Any one of the eight classes of points in Theorem 21

is called a tetrahedral region. The vertices of the tetrahedron are

also called vertices of any one of the tetrahedral regions.
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It would be easy to compl^le the discussion of the triangle and the

tetrahedron at this point— for example, to define the term "boundary"

and to prove that the boundary of any one of the classes of points in

Theorem 20 is composed of A, B, C and three segments Laving the

property that no line meets them all. We shall defer this discussion,

however, to a later chapter, where the results will appear as special

cases of more general theorems.

27. Algebraic criteria of separation. Cross ratios of points in space.

The classes of points determined (Theorems 18-21) by a pair of inter-

secting lines, a triangle, a pair of planes or by a tetrahedron can be

discussed by means of some very elementary algebraic considerations.

As these are similar in the plane and in space, let us carry out the

work only for the three-dimensional cases.

Suppose that the homogeneous coordinates of four noncoplanar

points A^, A^, A^, A^ are given by the columns of the matrix.

(10)

and let {x^, x^, x^, x^) be the homogeneous coordinates of any other

point X Let us indicate by \x, a^, a^, a^\ the determinant of the

matrix obtained by substituting x^, x^, x^, x^ respectively for the ele-

ments of the first column in the matrix above ; by
|

a^, x, a^, a^
|

the

determinant obtained by performing thesame operation on the second

column, etc. The expressions \y, a„, a^, a^\ etc. have similar mean-

ings in terms of the coordinates of a point (y^, y^, y^, y^) = Y. The

following expressions are formed analogously to the cross ratios of

four points on a Kne (cf. § 58, Vol. I):

«01



1
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Eecalling that \x, a^, a^, aj|p is the equation of the plane -^^A^A^

(cf. § 70, Vol. I), we see that if

and * ^*^ ~ '^'^^ "^ ^^"^^ "*" '^^'^^ + «8 «=8 =
/8 {x) = /3„.x„ + /S^a;^ + ^^x^ + yS^aj^ =

are the equations of two planes, the formula given above for the cross

ratio of two points X and Y with the poiats of intersection of the

line XY with these planes becomes

a{x)
_

/3(a;)

Thus two points are in the same one of the two classes determined

by the planes a (x) and /S {x) if and only if this expression is positive.

Tliis result assumes an even simpler form when specialized somewhat

with respect to a system of nonhomogeneous coordiaates. Suppose

that a;^ = bechosen as the singular plane in a system of nonhomo-

geneous coordinates ; then the same point is represented nonhomo-

geneously by {x, y, z) or homogeneously by (1, x, y, z), and the plane

represented above by a («) = has the equation

If ^(x) = be the plane x^ = 0, the expression for the cross ratio

written above becomes , ,

which reduces in nonhomogeneous coordinates, when (x^, x^, x,^, x^ and

(^0' Vi' Vi' y.) ^^® replaced by (1, x', y', z') and (1, x", y", z"), to

^ ' a^x" + a.^j" + oc^z" + a^

Hence two points (x',y',z') and {x",y",z") are separated by the sin-

gular plane, and a^x + a^y + a^z + a^={) if and only if the numerator

and denominator of (14) are of opposite sign. For reference we shall

state this as a theorem in the following* form :

Theorem 23. The two classes of points determined, according to

Theorem 18, hy the singular plane of a nonhomogeneous coordinate

system and a plane ax + by + cz + d = are respectively the points

(x, y, z) for which ax + by + cz + d is positive and the points for

which it is negative.
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EXERCISES

1. Carry out the discussion analogous to the above in the two-dimensional

case, (ieneralize to n dimensions.

2. How many of the 720 numbers analogous to ^,4 are distinct?

28. Euclidean spaces. Definition. The. set of all points of a pro-

jective space* of n dimensions, -With the exception of those on a single

(to _ 1) -space S" contained in the w-space, is called a Euclidean space

of n dimensions. Thus, in particular, the set of all but one of the

points of a projective line is called a Euclidean line, and the set of

all the points of a projective plane, except those on a single line, is

called a Euclidean plane.

Definition. The projective {n — 1) -space S" is called the singular

(n — 1) -space or the (n — V)-space at infinity or the ideal (n — 1) -space

associated with the Euclidean space. Any figure in S" is said to be

ideal or to be at infinity, v?hereas any figure in the Euclidean w-space

is said to be ordinary.

The ordinary points of any line' in a Euclidean plane or space form

a Euclidean line and thus satisfy the definition (§ 23) of a linear

convex region. The definitions and theorems of that section may

therefore be applied at once in discussing Euclidean spaces. Thus,

if A and B are any two ordinary points, we shall speak of " the sjeg-

ment AB" " the ray AB," etc.

The first corollary of Theorem 18 yields a very simple and impor-

tant theorem if the line m be taken as the line at infinity, namely

:

Theorem 24. The points of a Euclidean plane which are not on a

line I fall into two classes such that the segment joining two points of

the same class does not meet I and the segment joining two points

of different classes does meet I.

Corollary. If a is any ray whose origin is a point of I, all points

of a are either on I or on the same side of I.

Ill like manner Theorem 18 yields

Theorem 25. The points of a Euclidean three-space which are not on

a plane ir fall into two classes such that the segment joining two pbints

of the sayne class does not meet ir and the segment joining two points

of different classes does meet ir.

* We shall refer to a line, plane, or n-space in the sense of Chap. I, Vol. I, as a

projective line, plane, or n-space whenever there Is possibility of confusion with

other types of spaces.
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Definition. The two clas^ of points determined by a line I in a

Euclidean plane, according to Theorem 24, are called the two sides

of I. The two classes of points determined by a plane tt in a Euclidean

three-space, according to Theorem 25, are called the two sides of ir.

The two sides of tt are characterized algebraically in Theorem 23.

Definition. An ordered pair of rays h, k having a common origin is

called an angle and is denoted by 4- hJc. If the rays are AB and A C, the

angle may also be denoted by 4 SA C. If the rays are opposite, the angle

is called a straight angle ; if the rays coincide, it is called a zero angle.

The rays h, k are called the sides of 4 hk, and their common origin the

vertex of 4 hk.
EXERCISES

1. The points of a Euclidean plane not on the sides or vertex of a nonzero

angle 4 hk fall into two classes such that the segment joining two points of

different classes contains one point of h or Jc. In case 4 hk is not a straight

angle,,one of these two classes consists of every point which is between a point

of h and a point of k.

2. Generalize Theorem 25 to n dimensions.

29. Assumptions for a Euclidean space. A Euclidean space can

be characterized completely by means of a set of assumptions stated

in terms of order relations. Such a set of assumptions is given below.

It is a simple exercise, which we shall leave to the reader, to verify

that these assumptions are all satisfied by a Euclidean space as defined

in the last section.

The reverse process is also of considerable interest. This consists

(1) in deriving the elementary theorems of alignment and order from

Assumptions I-VIII below, and (2) in defining ideal elements and

showing that these, together with the elements of the Euclidean space,

form a projective space. For the details of (1) and an outline of (2) the

reader may consult the article by the writer, in the Transactions of

the American Mathematical Society, Vol. V (1904), pp. 343-384, and

also a note by R L. Moore, in the same journal, Vol. XIII (1912), p. 74.

On(2)one may consult the articlebyR Bonola,Giornale di Matematiche,

Vol. XXXVIII (1900), p. 105, and also that by E. W. Owens, Trans-

actions of the American Mathematical Society, Vol. XI (1910), p. 141.

Compare also the Introduction to Vol. I.

This set of assumptions refers to an undefined class of elements

called points and an undefined relation among points indicated by

saying "the points A, B, C are in the order {ABC}."
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The assumptions are as follows

:

I. If points A, B, C are in the order {ABC}, they are distinct.

II. If points A, B, C are in the order {ABC}, they are not in the

order {BGA}.

Definition. If A and B are distinct points, the segment AB consists

of all points X in the order {AXB}; all points of the segment AB are

said to be between A and B; the segment together with A and B is

called the interval AB; the lineAB consists of A and-B and all pointsX
in one of the orders {ABX}, {AXB}, {XAB}; and the ray AB consists

of B and all points X in one of the orders {AXB} and {ABX}.

III. If points C and D {C ^ D) are on the line AB, then A is on the

line CD.

IV. If three distinct points A, B, and C do not lie on the same line,

and D and E are two points in the orders {BCD} and {CUA}, then a

point F exists in the order {AFB} and such that D, H, and F lie on

the same line.

Y. If A and B are two distinct points, there exists a point C such

that A, B, and C are in the order {ABC}.

VI. There exist three distinct points A, B, C not in any of the orders

{ABC}, {BCA}, {CAB}.

Definition. If A, B, C are three noncollinear points, the set of all

points collinear with pairs of points on the intervals AB, BC, CA is

called the plane ABC.

VII. If A, B,C are three noncollinear points, there exists a pointD
not in the same plane with A, B, and C.

VIII. Two planes which have one point in common have two distinct

points in common.

IX. IfA is any point and a any line not containing A, there is not

more than one line through A coplanar with a and not meeting a.

XVII. If there exists an infinitude of points, there exists a certain

fair of points A, C such that if [cr] is any infinite set of segments of

the line AC, having the property that each point of the interval AC
is a point of a segment a, then there is a finite subset, <t^, o",, • • •, f^,

with the same property.*

* The proposition here stated about the interval ^C is commonly known as the

Heine-Borel theorem. The continuity assumption is more usually stated in the

form of the " Dedekind Cut Axiom." Cf . R. Dedeklnd, Stetigkeit und irrationalejn

Zahlen, Braunschweig, 1872.
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Assumptions I to VIII are*ufficient to detine a three-space which

is capable of being extended by means of ideal elements into a pro-

jective space satisfying A, E, S. This space will not, in general, sat-

isfy Assumption P. If the continuity assumption, XVII, be added, the

corresponding projective space is real and hence properly projective.

Assumption IX is the assumption with regard to parallel lines.

Assumption VIII limits the number of dimensions to three.

30. Sense in a Euclidean plane. Suppose that L is the line at

infinity of a Euclidean plane. Every coUineation transforming the

Euclidean plane into itself effects a projectivity on Z„ which is either

direct or opposite (§ 18). Since the direct projectivities on /„ form a

group, the planar collineations which effect these transformations on

Z„ also form a group.

Definition. A coUineation of a Euclidean plane which effects a

direct projectivity on the line at infinity of this plane is said to be a

direct coUineation of the Euclidean plane. Any other coUineation of

the Euclidean plane is said to be opposite. Let A, B, C be three non-

coUmear points ; the class of all ordered triads A'B'C such that the

coUineation carrying A, B, and C to A', B', and C" respectively is direct,

is caUed a sense-class and is denoted by S{ABC). Two ordered triads

of noncoUinear points in the same sense-class are said to have the

same sense or to be in the same sense. Otherwise they are said to have

opposite senses or to le in opposite senses.

Smce the direct projectivities form a group, it follows that if a triad

A'B'C is in S{ABC), then S{ABC) =S (A'B'C).

Theorem 2 6. There are two and only two sense-classes in a Euclidean

plane. If A, B, and C are noncoUinear points, S{ABC) = S{BCA) ¥=

S{ACB).

Proof. Let A, B, C be three noncoUinear points. If A', B', C are any

three noncoUinear points such that the projecti\ity carrying A, B, C

to A', B', C respectively is direct, S{ABC) contains the triad A'B'C.

Because the direct projectivities form a group, S{ABC) = S{A'B'C).

The triads to which ABC is carried by coUineations Avhich are not

direct aU form a sense-class, because the product of two opposite

coUineations is direct. Thus there are two and only two sense-classes.

Suppose we denote the luies BC, CA, AB by a, i, c respectively

and let A', B', C be the points of intersection of a, b, c respectively
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with L. The projectivity carrying ABC to BCA evidently carries

a, h, and c to b, c, and a respectively, and thus carries A'B'C to B'C'A',

and thus is direct (§ 19). Hence

8{ABC)=S{BCA).

The projectivity carr)dng ABC to ACB carries A'B'C to A'C'ff, and

hence is not direct ; and hence

S{ABC)-f= S(ACB).

Theoeem 27. Tvjo points C and D are on opposite sides of a line

AB if and only if S{ABC)i^ S{ABD).

This theorem can be derived as a consequence of Ex. 1, § 25. It

can also be derived from the following algebraic considerations.

Let us choose a system of nonhomogeneous coordinates in such a

way that the singular line of the coordinate system is the same as

the singular line of the Euclidean plane. The group of all projec-

tive collineations transforming the Euclidean plane into itself then

reduces (§ 67, VoL I) to

a^ =a,x+'b,y + c,,

(15) ,

' ^/]" " 4

If we change to the homogeneous coordinates for which x = x/x
and y = xjx^, the line at infinity has the equation x^= 0, and the

equations (15) reduce to

(16) x'^ = e^x„+ u^x^+ ftjajj,

On the line at infinity this effects the transformation

x'^ = ajX^+\x^,

x'^ = a^x^+h^x^,

which is direct if and only if A > 0.

Let the nonhomogeneous coordinates of three points A, B, C be

K' <*2)> Q>v ^2)' ("1' ''2) respectively. The determinant

^0.

«1 %

"i "2
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the algebraic sign of S is left iftVariant by all direct coUineations and

changed by all others. Hence we have

Theorem 28. An ordered triad of points {a^, a^), {b^, b^), (c^, c^) has

the same sense as an ordered triad (a'p al), {b[, h'^, {c[, Cj) if and only if

the determinants
"l % 1
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two transformations of this form has a determinant which is the

product of the determinants of the two transformations. Since the

coef&cients appear nonhomogeneously in (18), it is clear that a self-

conjugate subgroup of the group of all transformations (18) is defined

by the condition |a^| >0. It follows by the same reasoning as used

in § 18 that this subgroup is independent of the choice of the frame

of reference, so long as the singular (n — l)-space coincides with the

singular {n — l)-space of the corresponding Euclidean w-space.

Definition. The group of all transformations (18) for which the

determinant lai,|>0 is called the group of direct collineations. In a

Euclidean w-space let A^, A^,- • -, A„^^ be n + 1 linearly independent

points ; the class of all ordered (?i+l)-ads* A[A'^ • A'„^-^ such that the

collineation transforming A^, A^, • •, ^„+i into A[, A[, •, ^i+i respec-

tively is direct is called a sense-class and is denoted by S{A^A^ ' '
" -^n + i)-

Theorem 29. TJiere are two and only two sense-classes in a Euclidean

n^space. The sense-class of an ordered n-ad is unaltered hy even per-

mutations and altered by odd permutations.

Proof. The argument for the three-dimensional case is typical of

the general case. Let the coordinates of four points A, B, C, D be

{a^, a^, a^, (6^, l^, l^), (c^, c^, c^), {d^, d^, d^) respectively. The determinant

(19)

«1 % «3 1

K \ K 1

"i "2 "3 1

d^ d^ d^ 1

is multiplied by
|

a^
|

whenever the points are simultaneously subjected

to a transformation (18). Hence the algebraic sign of (19) is left in-

variant by all direct collineations.

Since an odd permutation of the rows of (19) would change the sign

of (19), no such permutation can be effected by a direct collineation.

The remaining statements in the theorem now follow directly from

the theorem that any ordered tetrad of points can be transformed by

a transformation of the form (18) into any other ordered tetrad.

* 32. Sense in a projective space. Let us consider the group of all

linear transformations
n

(20) <=^H«=j, {i=Q,...,n)

for which the determinant |«,^.| is different from zero.

* An n-ad is a set of n objects (cf . § 19).
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If {x^, • • •, a;„) is a set of homogeneous coordinates, the equations (20)

continue to represent the same transformation when all the a^'s are

multiplied by the same constant p; and t-wo sets of equations like (20)

represent the same transformation only if the coefficients of one are

proportional to those of the other.

If each fty. be multiplied by p, |a^.| is multiplied by /3""^\ Hence,

if \ay\ is negative and n is even, we may multiply each a^^ by — 1 and

thus obtain an equivalent expression of the form (20) for which |a,y|

is positive. If, however, n is odd, p"'^^ = k<0 has no real root. Hence,

if n is odd, a transformation (20) for which
|

a^
|

is negative is not equiv-

alent to one for which \ay\ is positive. Hence the condition |a^.|>0

determines a subset of the transformations (20) if and only if n is odd.

This subset of transformations forms a group for the reason given in

§ 18 for the case n = l.

Definition. If n is odd, the group of transformations (20) for which

I

a^,- 1 > is called the group of direct collineations in n-space.

This definition of the group of direct collineations is independent

of the choice of the frame of reference, as follows by an argument

precisely like that used to prove the corresponding proposition in § 18.

In a space of three dimensions, let us inquire into what sets of five

points the set (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)

can be transformed by direct collineations. If the initial points are to

be transformed respectively into the points whose coordinates are the

columns of the matrix

(21)
«10 «n «12 «18 «I4

'«30 %X «82 «38 «84/

the coUineation must take the form

^22^
*' " ^°"^°''» ^ ^l"ll*V+ /'2^2*2 + /'8«1S^8'

^
'

^2=Po%*o+/'lVi+/'2«^22«'2+ V28»'8'

< =/'o«80^0 +/'l«8A +/'2«82«2 + ^8«88«..

where the p's satisfy the equations

/'o«00 + Pl'^Ol + P2«02 + Ps%S = «04'

(23^
Po'^lO + Pi""!! + ''2«12 + /'3«18 = ""W

/'0«20+/'l«2i+/'2^2+P8«28=«24'

/'0«80 + ^1*81 + /'2«82 + /'8«88 = *84-
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Substituting the values of /j,- determined from these equations in the

determinant of the transformation (22), we see that the value of

this determinant is

(^oiQ'iiSaQ'as) (P'oo'^uP'n'^ii) {"'i,o"'n"'2i"'m) {"'oo'^n"'22<^n)

where the expressions in parentheses are abbreviations for deter-

minants formed from the matrix (21) having these expressions as

their main diagonals. The number (24) has the same sign as

(25) K«n«22«88) Ko«M«^22«83) i'^Oo'^n'^As) K'^ll'^^'^u) («00«n«22«88).

which is entirely analogous to the expression found in Theorem 16.

The initial set of points is transformable into the points whose coor-

dinates are the columns of (2 1) by a direct transformation if and only

if (25) is positive.

This result may be stated in the form of a theorem as follows

:

Theoeem 30. If a set of five points whose homogeneous coordinates

are the columns of ihe matrix (21) he such that the product of the

four-rowed determinants obtained hy omitting columns of this matrix

is positive, it can le transformed by a direct collineation into any

other set of points having the same property, hut not into a set for

which the analogous product is zero or negative.

Corollary. Any even permutation but no odd permutation of the

vertices of a complete five-point can be effected by a direct collineation.

Definition. Let A, B, C, D, E be five points no four of which are

coplanar. The class of all ordered pentads obtainable from the pentad

A, B, C, D, IS by direct collineations is called a sense-class and is

denoted by S{ABCDE).

Theorem 30 and its corollary now give at once the following

:

Theorem 31. There are two and only two sense-classes in a real pro-

jective three-space. The sense-class of a set offive points is unaltered

by even permutations and altered by odd permutations.

If an analogous definition of sense-class had been made in the plane,

we should have had that all planar collineations are direct, and hence

that there is only one sense-class in the plane. This remark, together

with Theorem 31, expresses in part what is meant by the proposition

:

The real projective plane is onesided and the real projective three-

space is two-sided.
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Although we have ground|^ this discussion upon propositions

regarding certain groups of coUineations, the notion of sense is

connected with a much more extensive group. We shall return to

this study, which will give a deeper insight into the notions of sense

and of one- and two-sidedness, in a later chapter.

33. Intuitional description of the projective plane. We may assist our intuitive

conception* of the one-sidedness of the real projective plane by a further

consideration of the regions into which

a plane is separated by a triangle. These

are represented in fig. 16. Since any tri-

angular region is projectively transform-

able into any other, it follows that any

triangular region may be represented

like Region I in fig. 16. In fig. 18 the four

regions are thus represented, togetherwith a portion of the relations among them.
The representation is more complete if the two segments labeled j8 are

superposed in such a way that the end labeled A of one coincides with the

end labeled A of the other. This is represented in fig. 19 and may be realized

in a model by cutting out a rectangular strip of paper, giving it a half twist,

and pasting together the two ends.

Fig. 19

To complete the model it would be necessary to bring the two edges labeled

13 in fig. 18 into coincidence. This, however, is not possible in a finite three-

dimensional figure without letting the surface cut itseif.f

The twisted strip as an example of a one-sided surface is due to Mobius. t

It has only one boundary A^C^A. An imaginary man OP on the surface

(fig. 19) could walk, without crossing the boundary, along a path which is the

* It would not be difficult to give a rigorous treatment of the propositions in this

section, but it is thought better to postpone this to a later chapter.

t Plaster models showing this surface are manufactured by Martin Schilling of

Leipzig. t Gesammelte Werke, "Vol. II, p. 519.
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image of a straight line in the projective plane, till he arrived at the antipodal

position OQ. If a small triangle RST were to be moved with the man with-

out being lifted from the surface or being allowed to touch the man, it would

be found, when the man arrived at the position OQ, that the triangle could

be superposed upon itself, R coinciding with itself, hut S and T interchanged.

In other words, the boundary of the triangular region containing would

coincide with itself with sense reversed.

It is not essential that the triangular region RST be small, but merely

that the figure OUST move continuously so that the triangle RST remains a

triangle and the point is never on one

of its sides. The possibility of making this

transformation of the figure ORST into

OR TS is not affected by joining the two

/3-edges together, because none of the

paths need meet the boundary of the strip.

Therefore a corresponding continuou.o

deformation can be made in the pro-

jective plane.

If we think of the figure ORST in the

projective plane, the four points enter

symmetrically. Thus, since S and T can

be interchanged by continuously moving

the complete quadrangle, any two vertices

can be interchanged by such a motion,

and hence any permutation of the four

vertices can be effected by such a motion.

This is intimately associated with the fact

that all projectivities in the plane are

direct (§ 32), as will be proved in a later

chapter, where the notion of continuous

deformation of a complete quadrangle

in a projective plane is given a precise

formulation.

The triangle RST may be replaced

by any small circuit containing 0, and

it still remains true that and the circuit may be continuously deformed till

coincides with itself and the circuit coincides with itself reversed. For

example, the circuit niay be taken as a conic section, and the projective plane

imaged as the plane of elementary geometry plus " a line at infinity " (see the

introduction to Vol. I, §§ 3, 4, 5, and also § 28 above). The ellipse I (fig. 20)

may be deformed into the parabola II, this into the hyperbola III, this into

the parabola IV, and this into the ellipse V. The reader can easily verify

that the sense indicated by the arrow on I goes continuously to that indicated

on V. The figures may be regarded as the projections from a variable center

of an ellipse in a plane at right angles to the plane of the paper.
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This defoiiiiation of an ellipse and also the corresponding one of the

quadrangle OUST depend on internal properties of the surface; i.e. they are

independent of the situation of the surface in a three-dimensional space. They
are sharply to be distinguished from the property expressed by saying that

the man OP comes back to the position OQ, for the latter is a property of

the space in which the surface lies.* In fact, the closely related proposition,

that if the man OP walk along a straight line in a projective plane till he
comes back to the position OQ, the triangle RST comes back to RTS, implies

that if a tetrahedron (e.g. PQRS) be deformed into coincidence with itself so

that two vertices ai-e interchanged, the other two vertices will also be inter-

changed. And the last statement is a manifestation of the theorem (§ 32)

that although the projective plane is one-sided, the projective three-space is

two-sided.

A sort of model of the pro-

jective three-space may be

obtained by generalizing, the

discussion of the plane given

above. Any one of the eight

regions determined by a tetra-

hedron is projectively equiva-

lent to any other. Hence we
pass from fig. 17 to fig. 21,

which represents in full only

the relations among the seg-

ments, triangular regions, and

tetrahedral regions having A^

as an end, qr vertex. Each of

the triangles having ^^j -^s> -^i

as vertices is represented by two

triangles in fig. 21. Thus, in

order to represent the projective space completely we should have to bring

each of the triangular regions A^A^A^ into coincidence with the one which

is symmetrical with it with respect to ^Ij. In other words, fig. 21 would

represent a projective three-space completely if each point on the 'octahedral

surface formed by the triangular regions A^A^A^ were brought into coinci-

dence with the opposite point.

EXERCISE

Show that the octahedron in fig. 21 may be distorted into a cube so that

the projective three-space is represented by a cube in which each point coin-

cides with its symmetric point with respect to the center of the cube.

*E. Steinitz, Sitzungsberiohte der Berliner Mathematischen Gesellschaft,

Vol. VII (1908), p. 35.



CHAPTER in

THE AFFINE GROUP IN THE PLANE

34. The geometry corresponding to a given group of transformations.

The theorems which we have hitherto considered, whether in general

projective geometry or in the particular geometry of reals, state prop-

erties of figures which are unchanged when the figures are subjected

to coUineations. For example, we have had no theorems about indi-

vidual triangles, because any two triangles are equivalent under the

general projective group, and thus are not to be distinguished from

one another. On the other hand, there does not, in general, exist a

collineation carrying a given pair of coplanar triangles into another

given pair of coplanar triangles; and thus we have the theorem of

Desargues, and other theorems, stating projective properties of pairs

of triangles. We have thus considered only very general properties

of figures, and so have dealt hardly at all with the familiar relations,

such as perpendicularity, parallelism, congruence of angles and seg-

ments, which make up the bulk of elementary EucUdean geometry.

These properties are not invariant under the general projective group,

but only under certain subgroups. We shall therefore approach their

study by a consideration of the properties of these subgroups.

There are, in general, at least two groups of transformations to con-

sider in connection with a given geometrical relation : (1) a group by

means of which the relation may be defined, and (2) a group under

which the relation is left invariant. These two groups may or may

not be the same.*

We have already had one example of a definition of a geometrical

relation by means of a group of transformations. In § 19 two coUinear

triads of points are defined as being in the same sense-class if they are

conjugate under the group of direct projectivities on the line. The

relation between pairs of triads which is thus defined is invariant

under the group of all projectivities (§ 18).

•The group (1) will always be a self-conjugate subgroup of (2), as follows directly

from the definition of a self-conjugate subgroup. See § 39, below, where the rflle of

self-conjugate subgroups is explained and illustrated.

70
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The system of definitions ^d theorems which express properties

invariant under a given group of transformations inay be called, in

agreement with the point of view expounded in Klein's Erlangen

Programm,* a geometry. Obviously, all the theorems of the geometry

corresponding to a given group continue to be theorems in the

geometry corresponding to any subgroup of the given group; and

the more restricted the group, the more figures wiU be distinct rela-

tively to it, and the more theorems wiU appear in the geometry.

The extreme case is the group corresponding to the identity, the

geometry of which is too large to be of consequence.

For our purposes we restrict attention to groups of projective

coUineations,t and in order to get a more exact classification of

theorems we narrow the Kleinian definition by assigning to the

geometry corresponding to a given group only the theory of those

properties which, while invariant under this group, are not invariant

under any other group of projective collineations containing it. This

will render the question definite as to whether a given theorem belongs

to a given geometry.

Perhaps the simplest example of a subgroup of the projective group

in a plane is the set of all projective collineations which leave a line

of the plane invariant. The present chapter is concerned chiefly with

the geometry belonging to this group.

The chapter is based entirely on Assumptions A, E, P, Hj. In fact,

the theorems of §§ 36, 38, 39, 40, 42, 45, 46, 48 depend only on A,

E, Hj. The class of theorems which depend on assiunptions with

regard to order relations has already been touched on in §§ 28-30.

35. Euclidean plajie and the affine group. Let L be an arbitrary but

fixed line of a projective plane tt. In accordance with the definition in

§ 28 we shall refer to l„ as the line at infinity. The points of L shall be

called ideal t points or points at infinity, whereas the remaining points

and lines of ir shaR be called ordinary points and lines. The set of all

ordinary points is a Euclidean plane. In the rest of this chapter the

term " point," when immodified, wiU refer to an ordinary point.

*Cf. F. Klein, Vergleichende Betrachtungen liber neiiere geometrische For-

schungen, Erlangen 1872 ; also in Mathematische Annalen, Vol. XLIII (1893), p. 63.

t From some points of view it would have been desirable to include also all

projective groups containing correlations.

} There is some divergence in the literature with respect to the use of this word
and the word "improper." On the latter term see § 85, Vol. I,
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Definition. Any projective colliueation transforming a Euclidean

plane into itself is said to be ajffine ; the group of all such collineations

is called the ajffine group, and the corresponding geometry the affine

geometry.

Theorem 1. There is one and only one afflne coUineation transform-

ing three vertices A, B,C of a triangle to three vertices A', B', C' respec-

tively of a triangle.

Proof. Since l„ is transformed into itself, this is a corollary of

Theorem 18, § 35, Vol. I.

With respect to any system of nonhomogeneous coordinates of

which Z„ is the singular line, any afiBne collineation may be written

in the form (§ 67, Vol. I)

x' =a^x+h^y + c^,

y' = «2« + ^^ + Ca.

where A = ¥= 0.

36. Parallel lines. Definition. Two ordinary lines not meeting

in an ordinary point are said to be parallel to each other, and the

pair of lines is said to be parallel. A line is also said to be parallel

to itself.

Hence, in a Euclidean plane we have the following theorem as a

consequence of the theorems in Chap. I, Vol. I

:

Theorem 2. In a Euclidean plane, two points determine one and

only one line ; two lines meet in a point or are parallel ; two lines

parallel to a third line are parallel to each other ; through a given

point there is one and only one line parallel to a given line I.

Definition. A simple quadrangle ABCD such that the side AB is

parallel to CD and BC to DA is called a parallelogram.

Definition. The lines A C and BD are called the diagonals of the

simple quadrangle ABCD.
In terms of parallelism, most projective theorems lead to a con-

siderable number of special cases. Moreover, since the affine geom-

etry is not self-dual, theorems which are dual in projective geometry

may have essentially different affine special cases. A few affine theo-

rems which are obtainable by direct specialization are given in the

following list of exercises, and a larger number in the next section.
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E^RCISES

1. If the sides of two triangles are parallel by pairs, the lines joining corre-

sponding vertices meet in a point or are parallel.

2. If in two projective flat pencils three pairs of corresponding lines are

parallel, then each line is parallel to its homologous line.

3. With respect to any system of nonhomogeneous coordinates in which

/<» is the singular line, the equation of a line parallel to ax +?<!/ + c = is

ax -^hy + c' = 0.

4. A homology (or an elation) whose center and axis are ordinary trans-

forms ?co into a line parallel to the axis.

5. If the number of points on a projective line is/i -1- 1, the number of points

in a Euclidean plane is p^, the number of triangles in a Euclidean plane is

lfi{p — Vf{p+ l)/6, and the latter is also the number of projective collinea-

tions transforming a Euclidean plane into itself.

37. Ellipse, hyperbola, parabola. Definition. A conic meeting Z„

in two distinct points is called a hyperbola, one meeting it in only

one point a parabola, and one meeting it in no point an ellipse. The

Ellipse Parabola ByperboTa

Fig. 22

pole of L is called the center of the conic. Any line through the

center is called a diameter. The tangents to a hyperbola at its points

of intersection with l„ are called its asymptotes. A conic having an

ordinary point as center is called a central conic.

EXERCISES

1. An ellipse or a hyperbola is a central conic, but a parabola is not.

2. The center of a parabola is its point of contact with /».

3. No two tangents to a parabola are parallel.

4. The asymptotes of a hyperbola meet at its center.

5. Two conjugate diameters (cf. § 44, Vol. I) of a hyperbola are harmon-

ically conjugate with respect to the asymptotes.

6. If a simple hexagon be inscribed in a conic in such a wa^y that two of

its pairs of opposite sides are parallel, the third pair of opposite sides is parallel.
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7. If a parallelogram be inscribed in a conic, the tangents at a pair of

opposite vertices are parallel.

8. If the vertices of a triangle are on a conic and two of the tangents at

the vertices are parallel to the respectively opposite sides, the third tangent

is parallel to the third side.

9. If a parallelogram be circumscribed to a conic, its diagonals meet in

the center and are conjugate diameters.
'

10. If a parallelogram be inscribed in a conic, any pair of adjacent sides are

parallel to conjugate diameters. Its diagonals meet at the center of the conic.

11. Let P and P' be two points which are conjugate with respect to a conic,

let p be the diameter parallel to PP', and let Q and Q' be points of intersection

with the conic of the diameter conjugate to p. The lines PQ, and P'Q' meet

on the conic.

12. If a parallelogram OAPB is such that the sides OA and OB are conju-

gate diameters of a hyperbola and the diagonal OP is an asymptote, then the

other diagonlEil AB is parallel to the other asymptote.

13. If two lines OA and OB are conjugate diameters of a conic which they

meet in A and B, then any two parallel lines through A and B respectively

meet the conic in two points A' and B' such that OA' and OB' are conjugate

diameters.

14. Any two parabolas are conjugate under a collineation transforming

l^ into itself.*

15. Any two hyperbolas are conjugate under a collineation transforming

Z« into itself.*

16. Derive the equation of a parabola referred to a nonhomogeneous co6r-

dinate system with a tangent aud a diameter as axes.

17. Derive the equation of a hyperbola referred to a nonhomogeneous coor-

dinate system with the asymptotes as axes.

18. Derive the equation of an ellipse or a hyperbola referred to a nonhomo-

geneous coordinate system with a pair of conjugate diameters as axes.

38. The group of translations. Definition. Any elation having

?„ as an axis is called a translation. If I is any ordinary line through

the center of a translation, the translation is said to be parallel to /.

Corollary. A translation carries every proper line into a parallel

line and leaves invariant every line of a certain system ofparallel lines.

Theorem 3. There is one and only one translation carrying a point

A to a point B.

Proof. Any translation carrying Ato B must be an elation with

L as axis and the point of intersection of the line AB with Z„ as center.

Hence the theorem follows from Theorem 9, Chap. Ill, VoL L

* On the corresponding theorem for ellipses, see § 76, Ex. 7.
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Fig. 23

Theorem 4. An ordered po'tut pair AB can he carried by a trans-

lation to an ordered point pair A'B' such that A' is not on the line AB,

if and only if ABBA' is a parallelogram.

Proof. Let i„ and M^ be the points at infiility on the lines AA! and

AB respectively. The translation carrying A to Al must carry the line

AM^ to A!M„ and leave

the line BL^ invariant.

Hence the point B,

which is the intersec-

tion of AM^ with j5X„,

is carried to B', which

is the intersection of

^'Jf„with5Z„. Hence

the points Al and B' to

which A and B respec-

tively are carried by

a translation are such

that ABBA' is a parallelogram. Since there is one and only one

translation carrying A to A', the same reasoning shows that when-

ever ABB'A' is a parallelogram there exists a translation carrying

A and B to A' and B' respectively.

Theorem 5. An
ordered point pair

AB is carried hy a

translation to an

ordered point pair

A'B', where A' is on

the line AB, if and

only if Q{L„AA',

L^B'B), i„ heing

thppoint at infinity

ofAB.

Proof. Let P be

any point not on

the line AB, and let Jf» and iV„ respectively be the points of inter-

section of PA and PA' with l„. Let Q be the point of intersection of

BM^ with PZ„. Then, by the last theorem, the translation carrying
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AtoB carries P to Q, ancj hence carries A' to the point of intersection

of QN„ with AB. Hence JV„, Q, and B' are coUinear, and hence we

have Q{L„AA',L„B'B).

Theokem 6. If A, B, C are any three points, the resultant of the

translations carrying A to B and B to C is the translation carrying

A to a

Proof. Let A„, B„, C« be the points of intersection of the lines

BC, CA, AB respectively with L. Suppose first that the three points

A„, Ba,, C„ are aU distinct. The translation carrying A to B changes

the line AB„ into the line BB^, and the translation carrying B to C

changes the line BB„ into CB„. Hence the line AB„ is invariant

vmder the resultant of these

two translations.

Consider now any other

line through B„, and let it

meetAA„ in A' andBCinC;
also let B' be the poiat of

intersection of A'C„ with

^C(fig. 25). We then have

that the translation carrying

^ to -B carries A' to B'

(Theorem 4), and on ac-

count of Q{A„BB', A„C'C)

(Theorem 5) the translation

carrying 5 to C carries B'

to C". Hence the resultant of the two translations carries A' to C" and

thus leaves the line A'B„ invariant ; that is, it leaves all the lines

through B„ invariant. Since it obviously leaves all points on l„

invariant, it is a translation (Cor. 3, Theorem 9, Chap. Ill, Vol. I).

If two of the three points A^, B^, C„ coincide, they all coincide, and

in this case the theorem is obvious.

By definition, the identity is a translation. Hence we have

Corollary. The set of all translations form a group.

Theorem 7. The group of translations is commutative.

Proof. Given two translations T^ and T, and let A be any point,

T^(A) = A' and T^{A') = B'. If B' = A, T^ is the inverse of T^, and

hence T^ and T^ are obviously commutative. If B' ¥= A and B' is not
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on the line AA', let B (fig. 23) ]j^ the point of intersection of the line

through A parallel to A'B' with the line through £' parallel to AA',

then ABB'A' is a parallelogram, and it is obvious that T^ (B) = B'

and T^{A)=B. Hence TJ!^{A)=B'. But, by the definition of A'

and B', T^T^ (A) = B'. Hence, in this case also, T^ and T^ are

commutative.

In case B' is on the line AA', let P and Q (fig. 24) be two points

such that A'B'QF is a parallelogram, let B be the point of inter-

section of AA' with the line through Q parallel to AP, and let L^,

M^,N„he the points at infinity of P^, P^, and P^' respectively.

Then, since T^{A')=B',it is obvious that Tj^{P) = Q, and hence that

T^(^) = P. Moreover, on account of Q{L„AB,L„B'A'), T:^{A) = A'

implies that T^(B)=B'. Hence T^T^{A) = B', and thus, in this case

also, Tj and T^ are commutative.

Theorem 8. If OX and Y are two nonparallel lines and T is any

translation, there is a unique pair of translations T^, T, such that T,

is parallel to OX, T^ parallel to Y, and T^T^^ = T.

Proof. In case T is parallel to OX or Y the theorem is trivial.

If T is parallel to neither of them, letP=T(0) and let A; and Y^

be the points in which the lines' through P parallel to Y and OX
respectively meet OX and Y respectively. Then OX^P Y^ is a par-

allelogram, and if Tj be the translation carrying to X^, and T^ the

translation carrying to Y^, it follows, by Theorems 4 and 6, that

T,T,=T.

On the oth^er hand, if T{ is any translation parallel to OX, and T^

any translation parallel to OY, and T((0) =A7 and T^(0) =!'{, the

product TlJa carries to a point P' such that OX[P'Y[ is a par-

allelogram. But P'=P if and only if X[= X^ and I\'= Y^. Hence

T determines T^ and T^ uniquely.

Theorem. 9. With respect to a nonhomogeneous coordinate system

in which l„ is the singular line a translation parallel to the x-axis

has the equations
I x'=x + a,

(^)
, y'=y.

Frmf. The point into which (0, 0) is transformed by a given trans-

lation parallel to-the a;-axis may be denoted by (a, 0). By Theorem 5

arid-"§ 48, yol. I, it then foUows that any point {x, 0) of the a;-axis
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is transformed into {x + a, 0). Since lines parallel to the y-axis are

transformed into lines parallel to the y-axis, and since lines parallel

to the a>-axis are invariant, it follows that the given translation takes

the given form (2).

Conversely, any transformation of the type (2) leaves all lines par-

allel to the a;-axis invariant and transforms any other line into a line

parallel to itself. Hence it is a translation parallel to the a>axis.

Theorem 10. With respect to a nonhomogeneov,s coSrdinate system

in which L is the singular lirie, any translation can be expressed in

the form .

„ x':=x + a,

(^)
y'=y + b.

Proof. By Theorem 8 any translation is the product of a translation

parallel to the «-axis by one parallel to the y-axis. Hence it is the

product of a transformation of the form

a;'= x+a,

y'=y>

by a transformation of the form

x'= X,

y'=y + l.

EXERCISE

Investigate the subgroups of the group of translations.

39. Self-conjugate subgroups. Congruence. Definition. Any sub-

group G' of a group G is said to be self-conjugate or invariant*

under G if and only if 2T2~^ is an operation of G' whenever 2 is an

operation of G and T of G'.

The geometric significance of this notion is as follows: Suppose

that two figures F^ and F^ are conjugate under <?', and T is a trans-

formation of G' such that F^ = T {F^. /"-^
j, /'"n

If F^ and F^ are changed into F[ and
\J'

) Xf" J
J^ by any transformation 2 of G, then

^"'^ ^^'^

2-
1 {F[) = F^. Hence t 12"

»
(J?*/) = i?"

,

• These terms have already heen defined in

§ 75, Vol. I.

t These relations may be illustrated by the . .

accompanying diagram (probably due to S. Lie). Sia. 26
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and 2T2~*(i?\') = i?;'. Therefow^ if G' is self-conjugate under G, the

figures Fl and Fl are conjugate under G'. Hence the property of

being conjugate under the self-conjugate subgroup G' is a property

left invariant by the group G. Thus the theory of figures con-

jugate under G' belongs to the geometry corresponding to G, pro-

vided that G is not a self-conjugate subgroup of any other group

of projective collineations.

Theorem 11. The group of translations is self-conjugate under the

affine group.

Proof. Let T be an arbitrary translation and 2 an arbitrary affine

transformation. We have to show that 2T2~' is a translation. If

P be any point of L, 2(P) is also on /„. Therefore, since T
leaves all points of L invariant, so does 2T2~'. The system of

lines through the center of T is a system of parallel lines ; 2 trans-

forms this system of parallel lines into a system of parallel lines;

and hence the latter system of parallel lines is invariant under

2T2-'. Hence (cf. Cor. 3, Theorem 9, Chap. Ill, Vol. I) 2T2-i is

a translation.

Corollary 1. The group of translations is self-conjugate under

any subgroup of the affine group which contains it.

Corollary 2. For any affine collineation 2, and any translation T,

there exists a translation T' such that 2T=T'2 and a translation T"

such that T2=2T".

Proof. Let 2X2"' = T' and 2->T2 = T". By the theorem, T' and

T" are translations. But

2T2-i = T' and 2->T2 = T"

imply 2T = T'2 and T2 = 2T" respectively.

Definition. Two figures are said to be congruent if they are con-

jugate under the group of translations.

This definition will presently be extended by giving other condi-

tions under which two figures are said to be congruent.* In view of

Theorem 11, the theory of congruence as thus far defined belongs to

the affine geometry.

* A complete definition would be of the fotm, "Two figures are said to be con-

gruent if and only !/•'•"
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40. Congruence of parallel, point pairs. The figure consisting pf

two. distinct points A, B may be looked at in two ways with respect

to congruence. We consider either the two ordered* point pairs

AB and BA or the point pair AB without regard to order. In the

second case AB and BA mean the same thing and AB is congruent

to BA because the identity belongs to the group of translations.

On the other hand, the ordered pair AB is not conjugate to the

ordered pair BA under the group of translations, because the trans-

lation carrying ^ to ^ does not carry B to A (this is under Assump-

tions A, E, H^).

Theorem 12. If ABBC is a parallelogram, the ordered point pair

AB is congruent to the ordered point pair CD. If the condition

Q(IiAC', liDB) is satisfied where K, is an ideal point, the ordered

point pair AB is congruent to the ordered point pair CD. .

Proof. This is a corollary of Theorems 4 and 5.

Corollary 1. Let A and B he any two distinct points and the

harmonic conjugate of the point at infinity of the line AB with respect

to A and B. Then the pair AG is congruent to the pair OB.

Definition. The point O in the last corollary is called the mid-

point of the pair AB. In case B=A, A is called the mid-point of

the pair AB.

Corollary 2. The line joining the mid-points of the pairs of vertices

AB and AC of a triangle ABC is parallel to the line BC.

Proof. Let B„ and C„ be the points at infinity of the Hnes AB and

AC respectively, and let jB^ and C^ be the mid-points of the pairs AB
and AC respectively. Then, by the definition of "mid-point,"

AB^BB^=AC^CC„.

Hence the lines B^C^, BC, and B„C„ concur, which means that B^C^

and BC are parallel.

Definition. The line joining a vertex, say A, of a triangle ABC to

the mid-point of BC is called a median of the triangle.

Theorem 13. The three medians of a triangle meet in a point,

* Cf . footnote on page 40,



§§40,41] CONGRUENCE 81

Proof. Let the triangle be JiBO; let A^,B^, C„ be the points at

infinity, of the sides EC, CA, AB respectively ; and let A^, B^, C^ be the

points of intersection of the pairs of lines BB„ and CC„, CC„ and AA^,

\

\

\
/ p'""/^
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EXERCISES

1. The mid-points of a system of pairs of points of a conic A A', BB', CC,

etc. are collinear if the lines A A', BB', CC are parallel. The line containing

the mid-points is a diameter conjugate to the diameter parallel to AA'.

2. Let A and B be two points of a parabola. If the line joining the mid-

point C of the pair AB to the pole P of the line AB meets the conic in 0,

then is the mid-point of the pair CP.

3. If a line meets a hyperbola in a pair of points H^H^, and its asymptotes

in a pair A^A^, the two pairs have the same mid-point.. The pair H-^A-^ is con-

gruent to the pair H^A^.

4. The point of contact of a tangent to a hyperbola is the mid-point of

the pair in which the tangent meets the asymptotes.

5. Let A^ and A^hs each a fixed and X a variable point of a hyperbola,

and let X.^ and X^ be the points in which the lines XA^^ and XA^ meet one of

the asymptotes. The point pairs X^X^ determined by different values of X
are all congruent.

6. The centers of all conies inscribed in* a simple quadrilateral ABCD
are on the line joining the mid-points of the point pairs CA and BD.

1. The centers of all conies which pass through the vertices of a complete

quadrangle ABCD are on a conic C^, which contains the six mid-points of the

pairs of vertices of the quadrangle, the three vertices of its diagonal triangle,

and the double points (if existent) of the involution in which L is met by

the pencil of conies through A, B, C, Dy From the projective point of view,

according to which /«, is any line whatever, C is called the nine-point (or the

eleven-point) conic of the complete quadrangle ABCD and the line L. Derive

the analogous theorems for the pencils of conies of Types II-V (cf. § 47, Vol. I).

8. The five diameters f of the complete quadrilaterals formed by leaving

out one line at a time from a five-line meet in a point A, which is the center

of the conic tangent to the five lines.

9. The six points A determined, according to the last exercise, by the six

complete five-lines formed by leaving out one line at a time from a six-line

are on a conic C^.

10. The seven conies C^ determined, (according to the last exercise, by the

seven complete six-lines formed by leaving out one line at a time from a

seven-line, all pass through three points.

42. Vectors. Any ordered pair of points determines a set of pairs

all of which are equivalent to it under the group of translations. In

order to study the relations between such sets of pairs we introduce

the notion 6i a vector. The term " vector " appears in the literature

• A conic is said to be inscribed in a given figure if the figure is' circumscribed

to the conic (cf. § 48, Vol. I).

t Cf . Ex. 4, § 40. This and the following exercises are taken from an article by
W. W. Taylor, Messenger of Mathematics, Vol. XXXVI (1907), p. 118.
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under a multitude of guises, nsne of which, however, is in serious

contradiction with the following abstract definition. In this definition

the term " ordered pair of points " is to be understood to include the

case of a single point counted twice.

Definition. A planar field of vectors (or vector field) is any set of

objects, the individuals of which are called vectors, such that (1) there

is one vector for each ordered pair of points in a Euclidean plane, and

(2) there is only one vector for any two ordered pairs AB and A'B'

which are equivalent under the group of translations. A vector cor-

responding to a coincident pair of points is called a null vector or a

zero vector, and denoted by the symbol 0.

For example, a properly chosen set of matrices would be a vector field

according to this definition. So would also the set of all translations including

the identity ; also a set of classes of ordered point pairs such that two point

pairs are in the same class if and only if equivalent under the group of trans-

lations. However a vector field be defined, it will be found that, in most

applications, only those properties which follow from the definition as stated

above are actually used.

A precisely similar state of affairs exists in the definition of a number

system. The objects in the particular number system determined for a given

space by the methods of Chap. VI, Vol. I, are points, but a number system in

general is any set of objects in a proper one-to-one correspondence with this

set of points.

In the following discussion we shall suppose that one field of vectors

has been selected, and all statements will refer to this one field. Thus,

the vector corresponding to

the point pair A£ is a definite

object, and we shall denote it as

" the vector^£," or, in symbols,

Vect (AB).

Since any point of a Eu-

clidean plane can be carried by

a translation to any other point,

the set of all vectors is the same

as the set of vectors OA, where

is a fixed and A a variable point. Consequently, the following defi-

nition gives a meaning to the operation of " adding " any two vectors.

Definition. If 0, A, C are points of a Euclidean plane, the vector

OC is called the sum of the vectors OA and AC. In symbols this is

Fio. 28
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indicated by Vect (0(7) = Vect (OA) + Vect (AC). The operation, of

obtaining the sum of two. vectors is called addition of vectors.

An obvious corollary of this definition is that

Vect (AB) + Vect (BA) = 0.

Hence we define: >
'

Definition. The vector Vect (BA) is called the negative of the

vector Vect (AB), and denoted by — Vect (AB).

Theorem 14. The operation of addition of vectors is associative;

that is, if a, b, e are vectors, (a + J) + c = a + (6 + c).

Proof. Let the three vectors be OA, AB, BC respectively ; then, by

definition, both (Vect (0^) +Vect (^5))+Vect (^C) and Vect (0.4) +
(Vect {AB)+ Yect{BC)) are the same as Vect (00).

Definition. Two vectors are said to be collinear if and only if

they can be expressed as Vect {OA) and Vect {OB) respectively, where

0, A, B are collinear points.

Theorem 15. The sum of fuio, noncollinear vectors OA and Q^ i0

the vector OC, where C is such that OACB is a parallelogram. . :

Proof. By Theorem 4, the vector 05 is the same as the vector AC.

Hence, by definition, the sum of OA and OB is OC.

Theorem 16. The sum of two collinear vectors OA and, OB is a

vector OC such that Q{IiAO, J^BC), where li is the point at infinity^

of the line AB.

,

Proof. Letiand

M be two points

such that OBML
is a parallelogram.

Hence Vect (OB)

=

Vect(LJf). Then,

by definition, C
must be such that

Vect {LM) = Vect

(^0), that is, such

that ACML is a

parallelogram. Let

L^ be the ideal

point of intersection of the lines OL and BM, and let M„ be the ideal

point of intersection of the lines AL and MC. The complpte quadrangle

Z7Jf7:„j»f„ determines QdiAO, P^BC).
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Corollary. If 0, A, B are^hree coUinear points, and C a point

such that Vect (OA) + Vect (OB) = Vect (OC), then, with respect to any

scale (cf. § 48, Vol. I) in which I^ is and li the point at infinity

of the line OA, A+B = C.

Proof Cf. Cor. 1, Theorem 1, Chap. VI, Vol. I.

Theorem 17. The operation of adding vectors is commutative ; that

is, if a and b are vectors, a -j- b = b + a.

Proof. Let the vectors a and b be Vect (OA) and Vect (OB)

respectively. If 0, A, B are noncollinear, the result follows from

Theorem 15, and if they are coUinear, from Theorem 16.

43. Ratios of coUinear vectors. By analogy with the case of addition

we should be led to base a definition of multiplication of coUinear

vectors upon the multiplication of points in § 49, Vol. I. There are,

however, a great many ways of defining the product of two vectors,

which would not reduce to this sort of multiplication in the case of

coUinear vectors. Hence, in order to avoid possible confusion we shall

not introduce a definition of the multiplication of vectors at present,

but only of what we shall call the ratio of two coUinear vectors.

Definition. The ratio of two coUinear vectors OA and OB is the

number which corresponds to A in the scale in which i^ is 0, i^ is B,

and £ is the point at infinity of the line OA. It is denoted by

Vect(O^) , OA— ^^ or by
Yect (OB) ' OB

It is to be emphasized that the ratio of two coUinear vectors as

here defined is a number. By comparison with the definition in § 56,

Vol. I, we have at once

Theorem 18. If A, B, C, D„ are coUinear points, D„ being ideal,

AO
^{D,A,BC) = ^-

Theorem 13, Chap. VI, Vol. I now gives

Theorem 19. If A.^, A^, A^, A^ are anyfour coUinear ordinarypoints,

^(AA'A^i) -W AA
Theorem 2(i. If two triangles ABC and A'B'C are such that the

sides AB, BC, CA are parallel to A'B', B'G', C'A' respectively,

AB BC CA
A'B'

~ B'C " CA'

"
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Proof. Suppose that the translation which carries A' to A carries

B' to B^ and C to C^. Then B^ is on the line AB and C^ on the line

AC, and the line B^C^ is parallel to BC. Thus, if B„ be the point at

infinity of the line AB, and G. the point at infinity of the line AC,

B„ABB^^ C.ACC^.

IT V rr,v. 10 AB AC CA
Hence, by Theorem 18, _ =_ =—.

which is, by definition, the same as

AB __ CA
A'B' ~ CA'

'

In like manner, it follows that

AB _ BC
A'B'~B'C''

Since we have not defined the product of two vectors, it is necessary

to resort to a device in order to compute conveniently with them.

This we do as follows:

Definition. With respect to an arbitrary vector OA, which is called

a unit vector, the ratio qb
OA'

whereOB is any vector collinear with OA, is called the magnitude of OB.

Observe that the magnitude of OB is the negative of the magnitude

of BO. Since the magnitude of a vector is a number, there is no difii-

culty about algebraic computations with magnitudes. In the rest of

this section we shall use the symbol AB to denote the magnitude of

the vector AB. No confusion is introduced by this double use of the

symbol, because the ratio of two vectors is precisely the same as the

quotient of their magnitudes.

Definition. If T is any coUineation not leaving L invariant, the

lines T{L) and r"*(D are called the vanishing lines of T. If 11 is

any projectivity transforining a line Itoz, line V (which may coincide

with I), the ordinary points of I and V which are homologous with

points at infinity are (if existent) called the vanishing points of 11.

If n is an involution transforming I into itself but not leaving the

point at infinity invariant, the vanishing point is called the center of

the involution.

Theorem 21. Definition. If and 0' are the vanishing points,

on I and V respectively, of a projectivity transforming a line I to a
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parallel* line V, and X is a vHhiable point of I, and'X' the point of V

to whichX is transformed, the product OX • O'X' is a constant, called

the power of the transformation.

Proof Let H be the point at infinity of I and I' ; and let X^ and

Xj be two values of X, and X/ and X^ the points to which they are

transformed by the given projectivity. Then, by the fundamental

property of a cross ratio,

B (^0, X^X^) = B (O'JP, XlXl) = R (^ 0', X^Xl),

OX O'X'
and hence, by Theorem 18, —-^= _, y,

-

(^X. (J Xa

Hence, by the definition of magnitude of vectors,

OX^ O'Xl = OX^ O'X;.

Corollary 1. The power of an involution having a center and

a conjugate pair AA^ is OA OA^.

Corollary 2. Let U be a homology whose center is an ordinary

point F and whose axis is an ordinary line, and let D he any point of

the vanishing line n~'(D. IfP is a variable point, P' = n(P), and

D' is the point in which the line through P' parallel to FD meets the

vanishing line n(/„), then pp j)p

FP'^ p'n''

Proof. Let Q and Q' be the points in which the line FP meets the

vanishing lines I1~\L) and n(^„) respectively. By the theorem,

PQ-P'Q' = FQ-FQ';

from which we derive successively

PF+FQ ^ FP'+P'Q'
FQ ~ P'Q'

PF_ FP'

FQ~P'Q''
FP _ QF
FP'~ P'Q''

Since 11 is a homology, the two vanishing lines are parallel Hence

QF__DF_
P'<^~ P'D''

FP DF
Hence FP'^P^

• With the extension of the definition of congruence in the next chapter the

restriction to parallel lines may be removed.
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EXERCISES

1. If a pTo]ectivitj ABCD -/;;^
A'B'CD' is such that the point at infinity ot

the line AB corresponds to the point at infinity of the line A'B',

AB ^ A'B'

CD CD'

'

2. If three parallel lines a, b, c are met by one line in the points A', B', C
respectively and by another line in A"B"C" respectively, then

A'B' ^ A"B"
A'C'~ A"C"'

3. If ABCD are any four coUinear points,

AB CD + AC DB + AD BC = 0.

4. Six points form a quadrangular set Q {A^B^C^, A^B^C-^ if and only if

B {A^A^, B^C{) E (Bi5„ Cj^i) R {C^C^, A^B^) =-1.

5. The condition for a quadrangular set may also be written

A^ B^ CiA^^_^
A^B, ' B^C^ ' C,A^

6. If three tangents to a parabola meet two other tangents in Pj, P^, P^ and

Qv ^2. Qa respectively, then ^ ^ ^^
P^s^Q^,'

Conversely, if five lines are such that the points in which two of them meet

the other three satisfy this condition, the conic to which the five lines are

tangent is a parabola.

7. Let O be the center of a hyperbola, and A,^ and A^ the points in which

the asymptotes are met by an arbitrary tangent ; , if another tangent meets the

asymptotes OA^^, OA^ in B^ and B^ respectively,

OB^ ~ OA^'

8. If a fixed tangent jo to a conic at a point P meets two variable conju-

gate diameters in Q and Q', then PQ • PQ' is a constant. Let be the center

of the conic. If the diameter parallel to p meets the conic in S, then

PQ-PQ'^-(OSy.

9. Let Oj and 0^ be the points of contact of two fixed parallel tangents to

a conic. If a variable tangent meets the two fixed tangents in X^ and X^

respectively, O^X^ O^X^ is constant. If is the center of the conic and B is

a point of intersection of the diameter through O parallel to the fixed tangents,

O^X,.0,X, = (iOB)^.
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44. Theorems of Menelaus, 4ieva, and Carnot.

Theorem 22 (Menelaus). Three -points A', B', C of the sides BC,

CA, AB, respectively, of a triangle are collinear if and only if

A'B B'C CA
A'G B'A C'B

= 1.

Proof. Let the points at infinity of BC, CA, AB,

A'B' be A^, B^, C„, H respectively, and let A" be \

the intersection of Ali, witli BC. Then, supposing A', B', C collinear,

P P
{B^B'A C)= (A^A'A" C) and (C„ C'BA)= {A^A'BA").

Hence

and

Hence

§^ = K {B^B', ^C) = B {A^A', A"C)
B A
CA

A'C

A'
A"'

A'A"
^,^

- B (C„ C, BA) = K {A^A', BA") = ^^
A'B A'G A'A"A'B B'C C'A_

A'C
'

B'a' C'B" A'C ' A'A"

The converse argument is now obvious.

A'B
= 1.

Theorem 23 (Ceva). The necessary and sufficient condition for the

concurrence of the lines joining the vertices A, B, C of a triangle to

the points A', B', C of the opposite sides is

A'B B'C CA_
^^ A'C

' B'A ' CB~
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Froof. Let C" be the point of intersection of the lines A!^ and AB.

Suppose first that C" is an ordinary point. Then, by the theorem of

Menelaus. ^ ^ ^^
^' A!G ' B'A ' C"B

The point C" is harmonically conjugate to C with respect to A and B
if and only if the lines AA', BB', CC meet in a point. Thus,

^ > C'B ' C"B

is a necessary and sufficient condition that AA', BB', CC concur. But

on multiplying (5) by (6) we obtain (4).

In case C" is an ideal point, the line A'B' is parallel to AB and,

by Theorem 20. ^^_,
>' a'c'b'a

The condition that C" be harmonically conjugate to C with regard to

A and B now takes the form

C'A_
C'B

~

On multiplying this into (7) we again obtain (4).

Theorem 24 (Carnot). Three pairs of points, A^A^, B^B^, C^C^,

respectively, on the sides BC, CA, AB, respectively, of a triangle are

on the same conic if and only if

A^B B^C C^A A^B B^C C^A
^' A^C' B^A C^b' A^C' B^a' C^B '
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Proof. Suppose first that th»conic reduces to two lines conteiining

A^, Bj, Cj and A^, B^, C^ respectively. The formula (8) in this case

follows directly from

Theorem
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3. If a line BC meets a conie va. A^ and A 2, and two parallel lines through

B and C, respectively, meet it in the pairs Cj, C^ and Bj, B^ respectivelyi,

A^B AjB BiC BgC^j
AjC' A^C' C\Jj' C\JJ

4. Let two lines a and 6 through a point O meet a conic in the pairs A^, A^

and fij, £2 respeetively. If 0, a, h are variable in such a way that a and i

remain respectively parallel to two fixed lines,

0^1 OA^

OBi OBi
is a constant.

5. If the sides of a triangle meet a conic in three pairs of points, the three

pairs of lines joining the pairs of points to the opposite vertices of the triangle

are tangents to a second conic. State the dual and converse of this theorem.

6. If two points are joined to the vertices of a triangle by six lines, these

lines meet the sides in six points (other than the vertices) which are on a

conic. Dualize.

7. If a line meets the sides j4„^i, A^A^, , A^A^, respectively, of a simple

polygon AgA^A^ • • • ^„ in points Bg, B^, ^B„ respectively,

AgBgA^^ A„B^ ^ ^
A^Bg A^B, AgB„

8. If a conic meets the lines AgA^, A-^A^, •, AnAg, respectively, in the

pairs of points BgCg, B^C.^, , B„C„ respectively,

-^o°o -^oPo -^1-^1 A^Ci A„B„ A„C„ _ -

A^Bg AiCi A^Bi' A^Ci'" AgB„' AgC„

9. If a conic is tangent to the lines AgA^, A^A^, -, A„Ag, respectively, in

the points Bg, B^, •••, B„ respectively,

AgBg A^B^
.
A„B„

A^Bg A^Bj, AgB„
= (_l)n-l.

45. Point reflections. Definition. A homology of period two whose

axis is l„ is called a point reflection.

From this definition there follows at once

:

Theorem 25. A point reflection is fully determined hy its center.

The center is the mid-point of every pair of homologous points. Every

two h-omologous lines are parallel.

Theorem 26. The product of two point reflections whose centers

are distinct is a translation parallel to the line joining their centers.

Proof. The product obviously leaves fixed all points of Z„ and also

the line joining the two centers. Let C^ and C^ be the two centers,
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aud let P be any point not on tSe line C^C^. Also let P' be the trans-

form of P by the point reflection with C^ as center, and let Q be the

transform of P' by the point reflection with C^ as center. Since C^ is

the mid-point of the pair PP', and C^ of the pair P'Q, the line PQ is

parallel to C^C^ (Theorem 12, Cor. 2). Thus the product of the two
point reflections leaves invariant all lines parallel to C^C^, and hence

is a translation.

Corollary. The product of any even number of point refections is

a translation.

Theorem 27. Any translation is the product of two point refections

one of which is arbitrary.

Proof. Let T be any translation, C^ the center of any point reflec-

tion, Cj = T(Cj), and C^ the mid-point of the pair Cj^C^. The product

of the reflections in C^ and C^ is a translation, by Theorem 26, and

since it carries C^ to C^, it is the translation T, by Theorem 3.

Corollary 1. The product of any odd number of point reflections

is a point refection.

Proof. Let the given point reflections be P,, Pj, • • •, Psb+i- By
Theorem 26 the product PjV.^ • • • Pj^ reduces to a translation, which,

by Theorem 27, is the product of two point reflections one of which is

P2„^i. Hence there exists a point reflection P such that

PP...p =PP P =P

Corollary 2. The product of a translation and a point refection

is a point reflection.

Corollary 3. The set of all point reflections and translations form
a group.

Theorem 28. The group of point reflections and translations is a

self-conjugate subgroup of the afline group.

Proof. It has been proved, in Theorem 11, that if T is a trans-

lation and 2 an affine coUineation, ST2~' is a translation. Precisely

similar reasoning shows that if T is a point reflection, 2T2~' is a

point reflection.

Corollary. The group G of point reflections and translations is

self-conjugate under any subgroiqi of the afline group which contains G.
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Theokem 29. With respect to any system of nonhomo'geneous coordi-

nates in which l„ is the singular line, the equations of a point reflection

have the form ,

x'= —x + a,

(^>
y'=-y + h.

Proof. The point reflection whose center is the origin is of the form

y'=-y,

because this transformation evidently leaves (0, 0) and l„ pointwise

invariant and is of period two. Since any other point reflection is the

resultant of this one and a translation, it must be of the form (9).

EXERCISES

1. An ellipse or a hyperbola is transformed into itself by a point reflection

whose center is the center of the conic.

2. Let [C^] be a system of conies conjugate under the group of translations

to a single conic. Under what circumstances is [C] invariant under the group

of translations and point reflections ?

3. Investigate the subgroups of the group of trahslations and point

reflections.

4. Any odd number of point reflections Pj, P^, • •, P„ satisfy the condition,

(P,P,...P,)^=1.

5. Let T be the point reflection whose center is the pole of Im with

respect to the n-point whose vertices are the centers of ?i point reflections

P„ P„ •••, P„. Then*
PiTPjTPjT • • P„T = 1.

46. Extension of the definition of congruence. Definition. Two

figures are said to be congruent if they are conjugate under the group

of translations and point reflections.

This definition is obviously in agreement with that given in § 39.

It will be completed in § 57, Chap. IV. The main significance of the

present extension of the definition is that it removes any necessity of

distinguishing between ordered and nonordered point pairs in state-

ments about congruence.

• Cf . pp. 46, 84, Vol. I. The center of T is the " center of gravity " of the cen-

ters of Pj, • ., P„. Cf. H.Wiener, Berichte der Gesellschaft der Wissenschaften zu

Leipzig, Vol. XLV (1893), p. 568.
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Theorem 30. Any ordered point pair AB is congruent to the

ordered point pair BA.

Proof. Let be the mid-point of the ordered point pair AB. The

point reflection with as center interchanges A and B.

CbEOLLAEY. If a point reflection transforms an ordered point pair

AB to A'B',
y^^j. ^^^^ ^_ y^^^ ^^,^,j

Proof. By Theorem 26 the given point reflection is the product of

the point reflection in the mid-point of AB and a translation. The

point reflection in the mid-point of AB interchanges A and B, and the

translation leaves all vectors unchanged.

47. The homothetic group. Definition. A homology whose axis

is Z„ is called a dilation. Dilations and translations are both called

homothetic transformations. Two figures conjugate under a homo-

thetic transformation are said to be homothetic.

Homothetic figures are also called, in conformity with definitions

introduced later, " similar and similarly placed."

The point reflections are evidently special cases of dilations. Since

the product of two perspective coUineations (§ 28, Vol. I) having a

common axis is a perspective colUneation, the set of all homothetic

transformations form a group; and by an argument like that used

for Theorem 11 this group is self-conjugate under the affine group.

Hence we have

Theorem 31. The set of all homothetic transformations form a

group which is a self-conjugate subgroup of the ajine group.

Further theorems on the homothetic group are stated in the

exercises below.

EXERCISES

1. The ratios of parallel vectors are left invariant by the homothetic group.

2. If two point pairs AB and CD are transformed by a dilation into A'B'

and C'ly respectively, . „ /-.tj

A^'"^ C'ly'

3. If two triangles are homothetic, the lines joining corresponding vertices

meet in a point or are parallel.

4. The equations of the homothetic group with respect to any nonhomo-

geneous coordinate system of which U is the singular line are

x' = ax + h,

y'=ay\r a.
'' -'
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48. Equivalence of ordered point triads. Although the theory of

congruence as based on the group of translations and point reflections

does not yield metric relations between pairs of points unless they

are on parallel lines, yet when applied to point triads it yields a

complete theory of the equivalence (in area) of triangles.*

In this section we shall give the definitions and the more important

sufficient conditions for equivalence, using methods somewhat analo-

gous to those in the first book of Euclid's Elements. Instead of tri-

angles, however, we shall work with ordered triads of points. This

permits the introduction of algebraic signs of areas, though, as we do

not need to refer to the interior and exterior of a triangle, we shall

not actually employ the word "area." The triads of points which are

referred to are all triads of noncollinear points.

Our definitions have their origin in the intuitional notions : that any

triangle ABC is equivalent in area to the triangle BCA, that two triangles

are equivalent in area if one can be transformed into the other by a transla-

tion or point reflection, and that two triangles which can be obtained by adding

equivalent triangles are equivalent.

Definition. If ABC and ACD are two ordered point triads, and

B, C, and I) are coUiuear, and B^J) (fig. 33), the point triad ABB is

called the sivm oiABC and ACD and is denoted by ABC+ACB or by

ACD + ABC. A A

Definition. An ordered point triad t is said to be equivalent to an

ordered point triad t' (in symbols, t ^ t') (1) if t can be carried to t'

by a point reflection, or (2) if t and t' can be denoted by ABC and

* The idea of building up the theory of areas without the aid of a full theory of

congruence is due to E. B.Wilson, Annals of Mathematics, Vol.V (2d series) (1903),

p. 29. His method is quite different from ours, being based on the observation

(cf. § 52, below) that an equiafSne coUineation is expressible as a product of simple

shears. Still another treatment of areas based on the group of translations and

employing continuity considerations is outlined by Wilson and Lewis, "The Space-

time Manifold of Relativity," Proceedings of the American Academy of Arts and

Sciences, Vol. XLVIII (1912). We shall return to the subject in later sections.
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BCA respectively, or (3) if the^p exists an ordered point triad i such

that t^i and t^ t', or (4) if there exist ordered point triads t^, t^,

t[, <2 such that t^—t[, t^—t'^ and t = t^+t^ and t'=t[+ t'^. An ordered

point triad t is not said to be equivalent to an ordered point triad t'

unless it follows, by a finite number of applications of the criteria (1),

(2), (3), (4), that t ^ t'.

Since any translation is a product of two point reflections, Criteria

(l)!and (3) give

Theorem 32. Two ordered point triads are equivalent if they are

conjugate under the group of translations and point reflections.

Theorem 33. If A, B, and G are noncollinear points, ABC — ABC,

ABC ^ BCA, ABC ^ CAB.

Proof/ From (2) of the definition it follows that ABC^ BCA and

BCA ^ CAB. 'Hence,hj{3),ABC^CAB. Bnt,hy {2), CAB ^ ABC.

Hence, by (3), ABC^ ABC.

From the last two theorems and from the form of the definition

we now have at once

Theorem 34. If t^ ^ t„, then t„ ^ ^./ 1 2' 2 1

Theorem 35. If A, B, C are any three noncollinear points and

the mid-point of the pair AB, then

AOC^OBC.

Proof. Let C be the point to which

C is changed by the translation

shifting A to 0, and let M be the

point of intersection of the non-

parallel lines BC and OC'. Since

COBC' is a parallelogram, M is the

mid-point 6f the pairs CB and C'O.

Thus we have

AOC^OBC'^BC'0 =BC'M+BMO
and OBC= OBM+ CMC.

But the point reflection with M as center carries OMC into C'MB.

^^^^^ OMC^ C'MB ^ BC'M,

and OBM^BMO,

and hence, by comparison with the equivalences and equations above,

JOC^OBC.
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Theorem 36. Two ordered point triads ABC^ and ABC^, where

C + C , are equivalent if the line C^C^ is parallel to the line AB.

Proof. Let C^ be such

that B is the mid-point of

Cj(7,, and let the line C^C^

meet the line AB in 0, which

is an ordinary point because

(7j is not on the line C^C^.

It follows (§ 40) that is the

mid-point of the pair C^C,.

By Theorems 34 and 35,

ABG^'^BAC^^C^BA. By

definition, C^BA=O^BO +
CfiA. ByTheorem 35,(7350

^CfiB and CfiA^C^AO.
Hence C^BA^C^AO+C^OB
= CAB^ ABC,. Hence ABC, ^ ABC,.

2 2 I '£

Corollary. If a point B' is on a line OB and a point C on a

different line OC, and the lines BC' and B'C are parallel, BOC^B'OC.

Proof. By hypothesis,

BOC=BOC'-irBC'C

and C'B'O^C'B'B+C'BO.

But C'B'B^C'CB^BC'C,

by Theorems 36 and 34,

and C'BO ^ BOC, by

Theorem 34. Hence BOC
^C'B'O^B'OC.

Fig. 35

Fig. 36

Theorem 37. If A, B, and C are any three noncollinear points, and

P and Q are any two distinct points, there exists a line r parallel to

PQ such that if B is any point of r, ABC ^ PQR.

Proof. Let T be the translation such that T {A) = P, and let

T(5)=5' and T(C) = C". If B' is not on the line PQ, let B!

be the intersection (fig. 37) of the line through C" parallel to PB'

with the line through P parallel to QB'. If B' is on the line PQ, let

R' be the point of intersection with PC' of the line through H
parallel to QC.
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In both cases the lines which^tersect in B' are by hypothesis non-

parallel, so that R' is always an ordinary point. By Theorem 32,

ABG^PB'C. In case B'

is not on PQ, it follows, by

Theorem 36, that PB'C'^
PB'R'^PQE'. In case 5'

is on PQ, it follows, by the

corollary of Theorem 36,

that PB'C'^PQR'. By
Theorem 36 the line r

throughR' parallel

to PQ is such that

for every point R
onr.ABC^PQR.

,-P^'

Fig. 37

EXERCISES

1. Two ordered point triads ABC and AB'C are equivalent if the points

B, C, B', C are collinear and Veot (BC) = Vect (B'C).

2. Let be the point of intersection of the asymptotes I and m of a

hyperbola, and let L and M be the intersections with I and m respectively

of a variable tangent to the hyperbola. Then the ordered point triads OLM
are all equivalent.

49. Measure of ordered point triads. Tlie theorems of the last sec-

tion state suf&cient conditions for the equivalence of ordered point

triads. In order to i

obtain necessary con- c, Q-

ditions, we shall in-

troduce the notion

of measure, analogous

to the magnitude of

a vector.

Definition. Let

0, P, Q be three non-

collinear points. The

measure of an ordered

point triad ABC rela-

tive to the ordered triad OPQ as a unit is a number m{ABC) deter-

nuned as follows : If the line BCia not parallel to OP, let B^ and C^

be the points in which the lines through B and C respectively, parallel

Fio. 38
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to OP, meet the line OQ, and let A^ be the point ia which the line

through A, parallel to OP, meets the lineB 0. Let AA^ denote the magni-

tude of the vector AA^ relative to the unit 0P(§ 43), and B^C^ the

magnitude of the vector B^C^ relative to the unit OQ. The measure of

the ordered triad ABC is * ^^ „ ^

and is denoted by m {ABC). If the line BC is parallel to OP, CA is

not parallel to OP, and the measure of J^Cis defined to be m {BCA)_

If this definition be allowed to apply to any ordered point triad

whatever (instead of only to noncoUinear triads, cf. § 48), we have

m(ABC) = whenever the points A, B, C are collinear.

Theorem 38. If ABC^A'B'C, then m {ABC) = m {A'B'C).

Proof. Let us examine the four criteria in the definition of equiva-

lence in § 48.

(1) In case ABC is carried to A'B'C' by a point reflection, each of

the vectors ^^^ and B^C^ is transformed into its negative (Theorem 30,

corollary), and hence the product of their magnitudes is unchanged.

(2) According to the second criterion, ABC^BCA. Suppose, first,

that neither BC nor CA is parallel to OP, and let A^^, B^, C^ have the

meaning given them in the definition above. Then

m{ABC)=AA^-B^C^.

Let B^ (fig. 38) be the point in which the line through B, parallel to

OP, meets the hne CA, and let A^ be the point in which OQ is met by

the parallel to OP through A. Then if BB^ and C^A^ represent the

magnitudes of the corresponding vectors relative to OP and OQ
as units,

m{BCA)=BB^-C^A^.

By Theorem 20,
AA,^A^^

^
BJ3 BC

But since the lines CC^, A^A^, BB^ are parallel, it follows from § 43 that

A,C_A,C,
\

Hence

BC Bfi^

AA,^A^

or m{ABC)=AA^- B^C^=BB^- C^A='m,{BCA).

• The factor ^ is lacking in this expression, because we. are taking a triangle

rather than a parallelogram as the unit.
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111 case BCis parallel to OP^tlie last clause of the definition states

^^^^^
m{ABC) = m{BCA).

In case CA is parallel to OP, AB and jBCare not parallel to OP, and

hence the argument above shows that

But, by definition,

Hence

m{CAB)=m{ABC).

m{BCA) = m{CAB).

m{ABC)=m{BCA).

K^^t;

(3) Corresponding to the fact that if t^ ^ t^ and t^ ^ t^, then

we have that, since m{t) is a uniquely defined number,

if m (<j) = m (t^), and m {t^ = m (Q, then m [t^ = m (i,^.

(4) Let B, C, D be three col-

linear points and A any point not

on the line BC (fig. 39). In case

the line £C is not parallel to OP,

let A^ be the point in which the

line through A, parallel to OP,

meets BC, and let B^, C\, D^ be

the points in which the lines

through B, C, D respectively,

parallel to OP, meet OQ. Then

m,{ABD)

^AA^-B^B^
= AA^-B^C^+ AA^

= m{ABC) + vi{ACD)

CD11

In case the line jBC is parallel

to OP, let S be the point in which

BO meets OQ, and A^ be the

point in which the line through

^,parallel to OP,meets OQ. Then
Fig. 39

m {ABD) = m (BDA) =BD iSA^=BC • SA^+CB- SA^

= m (BCA)+ m
(
CDA) = m{ABC) + m {A CD).

Thus, in every case, if <i+ <2= i^, »''
(<i)
+ »» (^2) = »» (Q

•

Comparing the results proved in these four cases with the definition

of equivalence, we have at once that whenever t^^t^, m{t^=m (t^).
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Theorem 39. If B, C, and D are collinear points, and the point A is

not on the line £C, m(ABC\ BC
m{ABI))^B3'

Froof. In case the line BO is not parallel to OP, let A^, B^, O^ have

the meaning given them in the definition of measure, and let D^ be the

point in which the line through 2>, parallel to OP, meets OQ (fig. 39).

^^^'^
mjABO) ^ AA^ B,C^ ^ B, C,

m (ABD) AA^ BJ)^ Bp^

'

But, by §43. |# = |^B^D^ BD

In case 5C is parallel to OP, let A^ be the point in which the hne

through A, parallel to OP, meets OQ, and S the point in which BC
meets OQ. Then

m (ABC) _ m (BCA) BC SA^ BC
m (ABD) ~ m {BDA) ~ BD SA^ ~ BD

'

CoROLLAEY 1. I/B, C,D,U are povnts no two of which are collinear

with a point A,

MAB,AC,AD,AE) = '^^^^^^'^^^^^.
^ ' ' ' ' m{ABE) m,{ACE)

Corollary 2. If B, C,D are points no tvjo of which are coUiv^ar

with a point A, and if P„ is the point at infinity of the line CD (the

latter v^t being parallel to AB),

Theorem 40. If m{ABC) = m{A'B'C')^ 0, then ABC^A'B'C.

Froof. By Theorem 37 there exists a point C" on the line A'C
such th&t ABC^A'B'C". ILenceA'B'C'^A'B'C", and by the last

theorem, C" = C".

In consequence of the last two theorems the unit point triad may
be replaced by any equivalent triad without changing the measure of

any triad.

Theorem 41. IfABC^ABC', and C ¥= C, the lim CC is paraUd

to the line AB.
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Proof. The unit triad OPQipiay be chosen so that OP is parallel

to AB. Then if C^ is the point in which the line through C, parallel

to OP, meets OQ, and B^ the point in which AB meets OQ,

m{ABC)=AB-B^C^.

If Ci' is the point in which the line through C", parallel to OP, meets OQ,

m{ABC')==AB-B^Cl.

By Theorem 38, m (ABC) = m (ABC), and hence C^= C[. Hence the

line CC is parallel to AB.

Theorem 42. IfABC^AB'C, and B' is on the line AB, and C on

the liiu AC, then the line BC' is parallel to the line B'C.

Proof. By the corollary of Theorem 36, if C" is a point of AC such

that BC" is parallel to B'C, then

ABC^AB'C".

By Theorem 41 the only points C such that ABC^AB'C are on the

line through C", parallel to AP'. Hence C'=C".

It is notable that although the sufficient conditions for equivalence given

in § 48 are all proved on the basis of Assumptions A, E, Hj, the discussion of

the ratios of vectors, and hence all the necessary conditions for equivalence,

involve Assumption P in their proofs. This is essential,* as we can shovr by

proving that Assumption P is a logical consequence of these theorems, together

with the previous theorems on equivalence. As was pointed out in § 3, Assump-

tion P is a logical consequence of the theorem of Pappus, Theorem 21, § 36,

Vol. I. When one of the lines of the configuration is taken as L, this theorem

assumes the form

:

If a simple hexagon

AB'CA'BC is such

that A, B, C are on one

line and A', B', C on

another line, and ifAB'

is parallel to A'S and

BCparallel toB'C, then

CA' is parallel to CA.

In case the lines

containing ABC and

A'B^C, respectively, are parallel, this can be proved from the Desargues

theorem on perspective triangles ; so that we are interested only in the

* The r61e of Assumption P(or rather of the equivalent theorem of Pappus) in

the theory of areas was first determined in a definite way by D, Hilbert, Grundlagen

der Geometrie, Chap. IV,
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case when AB and A'B' intersect in a point 0. By Theorem 36, since AB'
is parallel to A'B, OAA'^OBB'; and since BC'ia parallel to B'C, OBB'

^

OCC. By the definition (3) of equivalence it follows that OAA'^OCC.
But by Theorem 42 this implies that AC is parallel to A'C.

This is perhaps the simplest way of proving the fundamental theorem of

projective geometry if it be desired to base projective geometry upon elemen-

tary Euclidean geometry (cf. Ex. 3, § 54).

The notion of measure can be extended to any ordered set of n

points, i.e. (cf. § 14, VoL I) to any simple ov-point. The details of this

discussion are left to the reader. An outline is furnished by the

problems below. The principal references are to A. F. Mobius, Der

barycentrische Calcul, §§ 1, 17, 18, 165; Werke, VoL I, pp. 23, 39, 200;

Vol. II, p. 485. See also the Encyclopadie der Math. Wise., IllAB 9, § 12.

It is to be borne in mind in using these references that our hypotheses

are narrower than those used by the previous writers.

EXERCISES

1. For any three points A, B, C,

m(ABC) + m(ACB) = 0.

2. For any four points O, A, B, C,

m(ABC) = m(OAB) + m(OBC) + m(OCA).

3. For any n points Aj^, A^,- • •, A„ the number

m^OA^A^) + m(OA^A^)+ + m(OA„_iA„) + m(^OA„A{),

is the same for all choices of the point 0. We define it to be the measure of

the simple n-point A^A^ • A„ and denote it by m^Aj^A^ • • -A^).

4. m(Aj^A^ A^_-^A„) = m{A^A^ A„A^).

5. m(^AyA^ • • -^n) + m(^i^,4„+i- • • A„^^) = m{A^A^ A^^.^).

6. Derive a formula for m(Aj^A^-- A„) analogous to the definition of

m(^ABC) in terms of vectors collinear with two arbitrary vectors OP and OQ.

7. Prove the converse propositions to those stated in the exercises in § 48.

8. If ABCD and A'B'CD' are two parallelograms whose sides are respec-

tively parallel,
„^^ABCD) _ AB BC^
m {A'B'C'D') A 'B' ' B'C

'

9. The variable parallelogram two of whose sides are the asymptotes of a

hyperbola and one vertex of which is on the hyperbola has a constant measure.

10. If a variable pair of conjugate diameters meets a conic in point pairs

A A', BB', the parallelogram whose sides are the tangents at A, A', B, B' has

a constant measure. The parallelogram ABA'B' also has a constant measure.
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50. The equiaffine group. Theorem 43. If two equivalent ordered

point triads t^ and t^ are transformed hy an afftne collineation into

t[ and t'^, then t[ ^ tl^.

Froof. It is necessary merely to verify that the relation used in

each of the criteria (1), • • •, (4) in the definition of equivalence (§ 48)

is unaffected by an affine collineation. For Criterion (1) this reduces

to Theorem 28. For Criteria (2), (3), (4) it is a consequence of the

fact that an affine cpllineation transforms ordered triads into ordered

triads and coULaear points into coUinear points.

Theorem 44. If an affine collineation transforms one ordered point

triad- into an equivalent point triad, it transforms every ordered point

triad into an equivalent point triad.

Proof. It follows from Theorem 43 that if ABC is transformed by

a given collineation into an equivalent ordered point triad -4'jB' C",

then every point triad equivalent to J5C is transformed into a point

triad equivalent to A'B'C and thus into one equivalent to ABC. By
Theorem 37 any ordered point triad whatever is equivalent to some

point triad ^Z)C, where D is on the line ^5. Hence the present

theorem wUl be proved if we can show that ADC is, transformed into

an equivalent point triad.

Denote the point to which D is transformed by the given collinea-

tion by D'. By Theorem 39,

mjADC) _AD m {A'B'C') _ A!D[
_

m {ABC)~ AB^ m {A'B' C) " A'B'

'

By §43, ^ = ^{PU,BD),

where H is the point at infinity of the line AB. But since the given

collineation is affine, R is transformed to the point at infinity PJ, of

the line A'B', and

A'l^ _ m(A'D'C')
' A'B' ~ m {A'B'C')'

^{PU,BD)=^{P1A',B'D')=.-,^,-^^^,^,^,^

Since m{ABC) = m {A'B'C), it follows that m{ADC) = m{A'D'C').

^^'^^^ ADC^A'D'C.

Definition. Any affine collineation which transforms an ordered

point triad into an equivalent point triad is said to be equiaffine.
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Theorem 45. The equiaffine collineations form a self-conjugate

stibgroup of the affine group.

Proof. By the last theorem an equiaffine collineation transforms

every ordered point triad into an equivalent point triad. Hence, by

Condition (3) in the definition of equivalence, the product of two

equiaffine collineations is equiaffine. By Theorem 43, 2T2~^ is equi-

affine whenever T is equiaffine and 2 affine.

Theorem 46. Let A, B, A', B' he points such thatA^ Band A' 4= B'^;

let a he a line on A hut not on B, and let a' he a line on A' hut not

on B' . There is one and only one equiafUns collineation transforming

A to A', B to B', and a to a'.

Proof. Let C be any point distinct fromA on a. By Theorem 37,

there is a point C on the line a' such that

ABC^A'B'C.

By Theorem 1 there is one and only one affine transformation carrying

A, B, C to A', B', C respectively, and by definition this transformation

is equiaffine. By Theorem 41, C" is the only point on a' such that

ABC — A'B'C. Hence (Theorem 44) there is only one equiaffine

transformation carrying A, B, a into A', B', a' respectively.

EXERCISE

Any affine collineation leaves invariant the ratio of the measures of any

two point triads.

*51. Algebraic formula for measure. Barycentric coordinates.

Consider a nonhomogeneous coordinate system in which L is the

singular line. Let the unit of measure for ordered triads be OPQ,

where = (0, 0), P = (1, 0), Q = (0, 1). Let ^= {a^, a^), B = {h^, b^
G = (Cj, Cj) ; the line through A, parallel to OP, consists of the points

{a^+ X, a^), where \ is arbitrary, and the line BO has the equation

(§ 64, Vol. I),

= 0.

In case the line BC ia not parallel to OP, and therefore h^+ c^, the point

A^ which appears in the definition of measure (§ 49) is (fflj+X, a^,

where \ satisfies

X
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This is a particular one of the homogeneous coordinate systems

for which ABC is the triangle of reference, and of course corresponds

to a particular choice of the point (1, 1, 1). Other particular systems

may be obtained by replacing (1, a^, a^) by (k, ka^, ka^) and like

changes. The coordinates written down, however, have (in view of (10))

the remarkable property that

^^=m{PBC), ^=m{APC), ^^=m{ABP).

Also, in view of Ex. 2, § 49, they satisfy the condition

for all ordinary points F. If ABC be taken as the unit of measure,

tins condition; assumes the form

Since aU. ordinary points satisfy this condition, the equation

!„+?,+ ?,= o,

which can always be satisfied by properly chosen homogeneous coordi-

nates, must represent L. Therefore the point (^, ^, ^), which is polar

to l„ relatively to the triangle ABC, must be the point of intersection

of the medians of this triangle.

Definition. Given a homogeneous coordinate system with respect

to which the line at infinity has the equation

the three numbers x^, x^, x^, which are homogeneous coordinates of an

ordinary point P and satisfy the condition

are called the harycentric coordinates of P, relative to the triangle

a;o=0, a;j=0, x^=Q.

EXERCISES

1. Defining the baryoentric coordinates of a point P, relative to a triangle

ABC,&s
^ m(ABP) . ^ m(BCP) . ^ m(CAP)

^^ m(ABC)' -^
~ m(ABCy ^^ m{ABC)'

prove that a line is represented by a linear equation.

2. If A, B, C, D are four fixed points of a conic, and P a variable point, the

ratio m(ABP) m(CDP)
m(ADP)-m(CBP')

la constant (cf. Cor. 1 Theorem 39).
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3. Show that the equation of a conic through five points, A, B, C, D, E may
be written in the form

(ADE) (BCE) (ABX) (CDX)

where (ADE) stands for

• (ABE) {CDE) (ADX) (BCX) = 0,

«1
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The product {LI} • {L^l^ transforms C^BA to CB^A and is therefore

an equiafBne collineation. In like manner, {LJ^ {LI} is also equiaffine.

Hence the product {Lj,^ {L^l^ is equiafKne.

Theorem 49. An equiaffine collineation is a product of two line

reflections.

Proof. Let T be any equiaffine collineation. If there be any point

which is not on an invariant line of T, let A^^ be such a point. Let

A^ A^, A^ be defined by the conditions

T(A^)= A^, T{A;)=A^, T{A^)=A^.

By the hypothesis on J^ the points A^, A^, A^ are noncoUinear, and by

the hypothesis that T is equiafBne
,

Hence, by Theorem 41, the line A^A^ is parallel to A^A^, or else A^= A^.

Let Jlfj be the mid-point of the pair A^A^, and M^ of the pair A^A^.

Let L^ be the point at infinity of the line A^A^, L^ of the line A^A^, and

K of the line A^A^. Since A^A^ is parallel to A^A^, it follows that

ji.
A,

AgAJL=A^A^K, and hence, by the definition of mid-point, that M^, M^,

and ijj are coUinear. Since A^, A^, and the point at infinity of the line

A^A^ are transformed by T to A^, A^, and the point at infinity of the

line^^^3,r(.¥;)=ilf,. .

Let l^ be the line A^M^, and l^ the line joining the mid-point of A^A^

to the mid-point of M^M^. By the above,

and {LJ,){A^A^M^) = A^A^M^.

Hence {Z/J • {L^l^} (AJ^M^) = A^A^M^.

But since T{A^A^M^ = A^A^M^, it follows, by Theorem 1, that
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In case there is no point not«n an invariant line of T, the invariant

lines all meet in a point 0. For the point of intersection of any two
of them is invariant, and any three nonconcurrent ordinary lines have

at least two ordinary points in common. Thus we should be led to

a contradiction with Theorem 46 if the invariant lines were not

concurrent.

Let A^ be a point which is' not invariant, and let A^ = T (A ).

Also let JB^ be another point which is not invariant and not on

the line A^^A^, and let T {B^) = B^. The lines A^A^ and B^B^ neces-

sarily meet in 0.

If is ordinary, then since any line through it is invariant, aU
points of Z„ are invariant, and hence A^B^ is parallel to A^B . Since

r is equia£&ne,
A^B^O^A^B^O.

Hence, by Theorem 42, A^B^ and A^B^ are parallel, and A^B^A^B^ is a

parallelogram. Hence is the mid-point of A^A^ and B^B^, and T is

a point reflection.

Let a be the line A^A^

andA the point at infinity

of a, and let 6 be the line

5jJSj and B the point at

infinity of b. The product

{Ab}- {Ba} transforms j4j,

B^,0 into A^,B^,OTesT^&- ' ^' ^^^^^
tively, and hence is T.

If is an ideal point, let I be the line A^B^, and let m be the line

joining the mid-points of ^^^^ and B^B^. Then {Om} {01} transforms

0„A^, B^ into 0, A^, B^ respectively, and hence, by Theorem 46, is F.

Corollary 1. An equiaffine collineation F such that A, F (A) and

r''(^) are collinear for all choices ofA is either a point reflection or

a translation or an elation whose center is at infinity and whose axis

is an ordinary line.

Proof. In the argument above it was proved that if the point is

ordinary, F is a point reflection; and that if is ideal, F = {Om} {01}.

If m and I are parallel, F is evidently a translation ; and if m and I

are not parallel, it is an elation with as center and the line joining

to the point Im as axis.
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Definition. An elation whose center is at infinity and whose axis

is an ordinary line is called a simple shear.

Corollary 2. T/T = {L^Q •

{'^A}> then for every line I concurrent

with l^ and l^ which is not a double line of T there exist points L and

M and a line m such that

r = {Mm} • {LI}.

There also exist a point M' and a line mJ such that

r = {LI} • {M'm'}.

If lie taken as variable,

Proof. The first conclusion follows from the arbitrariness in the

choice of A^ in the proof of the theorem above. The second conclusion

follows from the first, combined with the fact that

The projectivities foUow from the constructions given in the proof of

theorem for A^, A^, M^, etc.

Corollary d. If V = {LJJ • {LJ.^, then for every point L of L
which is not a douile point of T, there exists a pointM of Z„ and two

lines I and m concurrent with l^ and l^ such that

r = {Mm} {LI}.

There also exist a point M' and a line mJ such that

V = {Ll}- {M'm!}.

Theorem 50. The set of all affine coUineations which are products

of line reflections form a group. Every transforrnation of this group

is either an equiaffi,ne transformation or the product of an equiafine

transformation by a line reflection.

Proof. By Theorems 48 and 49 the product of an even number

of line reflections is equiafBne and reduces to a product of two line

reflections. Hence the product of an odd number of line reflections

reduces to a product of three line reflections. The statements ^bove

follow in an obvious way from this.
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eSercisks

1. Let the points at infinity of l^, l^, I respectively in Theorem 49, Cor. 2,

be denoted by L{, Xj, L'. If the points i^, L^, L^, L^ are distinct, the pairs

L^L{, L^Li, LL' are in involution.

2. In case L^ is on l^ and L^ is not on l^, {LJ^} {LJj^} = T is a collineation

of Type II (cf. § 40, Vol. I), parabolic on L and of period two on the line

joining ij to the point of intersection of /^ and l^. If I be any line, except l^,

through the point ^1^2, P the point in which I meets U, and L the harmonic
conjugate of £j with respect to P and T(P),

T = {Ll^}.{LJ}.

If M be the harmonic conjugate of L-^ with respect to P and T-i(P),

t: = {l,i}-{mi^}.

3. The product {LjJ^} -{Ljl^} is a point reflection if and only if ij is on

l^ and ij o'l
^i-

-^ point reflection with O as center is the product of any

two line reflections {Ljlj) and {L^l^} for which l^'is on 0, l^ on O, ij on Zj,

and Zj on ?j.

4. The product {LJ,^} {LJ^} is a translation if and only if L^ = L^ and l^

is parallel to l^. The ideal point L^ is the center of the' translation. If T is

any translation, T^ its center, Pj any ordinary point, P — T (Pj), P^ the mid-

point of the pair PPj^, and p.^ and 2>2 t"" parallel lines through Pj and Pj

respectively, T = { ?'„, p^) • { T„,p^].

5. The product {LJ.^}-{L^l^} is a simple shear if L^^L^ and 1^=1^, or

if i]^ = L^ and /j intersects Zj in an ordinary point, but not in any other case.

6. Let S be a simple shear whose axis is I and whose center is L.

Let Pj be any point of ?», P = S {Px), and Pj the harmonic conjugate of

L with respect to P and Pj. Then S = {P2'} • {-Pi'}- If Px '-'^ ^'^y ^^^

meeting I in an ordinary point, p = S(j5i), and p^ the harmonic conjugate

of I with respect to p and ;0j,

2 = {ift} • {£;>,}.

7. Let PP^P^P^P^ be a simple pentagon. Let Cj, Cj, Cg, C^, Cj be the

mid-points of the pairs PP-i, PiP^, P^Ps, PgPii P^P respectively. If the line

PP-i is parallel to P3P4, and PP^ is parallel to PjPj, the three lines CJ^C^,

C^C^, PC^ are concurrent or parallel. Discuss the degenerate cases.

8. Every equiaffine transformation is either the identity or a point reflec-

tion or an elation whose center is at infinity (i.e. a translation or a simple shear)

or expressible as a product of two elations whose centers are at infinity.

9. Prove Cors. 2 and 3 of Theorem 49 directly, without using the theory

of equivalence.

10. A necessary and sufficient condition that a planar collineation be the

product of two harmonic homologies is that it transform ordered point triads

into equivalent point triads relative to a fixed line of the collineation regarded

as L (E. B. Wilson, Annals of Mathematics, Vol. V, 2d series (1903), p. 45).
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11. Let us denote an involution whose double points are L and M by

{LM). If 7i= {L^M.^} and I^ = {L^M^} are two distinct involutions on the

same line, then for every point L^ of this line, ij not being a double point

'

of Ii- I^t there exists a unique point M, and involution {L^M^} such that

if we denote {XjA/j} by I^ and {L^M^} by I^,

Jg/j/i = /i, and /j/i = Igli-

The pairs iiMj, L^M^, L^M^, L^M^ are all pairs of the same involution,

unless the pairs L^M^ and L^^M^ have a point in common, in which case all

four pairs have this point in commoii.

12. The projectivities on a line which are expressible in the form

{ijilfi} • {ijil/j} form a group.

The last two exercises connect with the following algebraic considerations.

An involution in a net of rationality is always of the form (§ 54, Vol. I)

, ax + b
r = ,

ex — a

where a, b, c, d are rational. The double points are the roots of

cx^ — 2 ax — 6 = 0,

and both will be rational if k is rational in

o" + 6c = F.

Now any projectivity is the product of two involutions, a double point of one

of which may be chosen arbitrarily. The projectivity may therefore be written

,ax + b , ,,
a h b I

„ _ ex — a _ (aa' + b'c) x + {a'b — ab')

ax + h , (ac' — a'e)x + (be' + aa')
c' a
ex— a

and so has the determinant

aa'be' + aV + bVe& + b'eaa' - (aa'bc' - a^b'c' - a'%e + aa'b'c)

= a'^ia"^ + b'c') + be (b'c' +a"') = VK\

where K^ = a^^ + b'c'. Hence (1) the product of two involutions whose double

points have rational coordinates is a projectivity whose determinant is a per-

fect square; and (2) if the determinant of a projectivity is a perfect square, and

one of two involutions of which it is a product has rational double points,

then the other has rational double points. Hence there is a subgroup of the

group of coUineations of a linear net of rationality generated by the involu-

tions with rational double points. This is the group of transformations whose

determinants are perfect squares.
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*53. Algebraic formulas fas line reflections. Let us employ the

uonhomogeneous coordiuates for which l„ is the singular Une and

the corresponding homogeneous coordiuates for which

—
' = a;, -s=

The line L now has the equation x^ = 0, and the equations (1) of the

affine group become

(13)

0'

h^i,
a, h.

=#=0.

x^ — Cjaid + d.^x^ + b^x^,

On the line l„ this effects the transformation

X-y =^ CC^X-^ ~p OyjC^j

*2 ^^ ^i'^\ "T" b^x^.

According to § 54, Vol. I, this is an involution if and only if a^= —l^.

Thus a^= — &2 is a necessary condition that (13) represent a line

reflection.

The ordinary double points of (13) are given by the following

equations, in which we have put a= a^= — h^.

.
{a-l)x + \y + c^=Q,

a,«-(« + l)y + c^=0.

If (13) is to be a line reflection, it must have a line of fixed points.

Hence the two equations (14) must represent a single ordinary line,

which requires

(15) = .1 \
-{a + 1)

1 «.

c„ -(a + 1) c

The first of these conditions is equivalent to A = — 1.

Since the coefficients of x and y in (14) cannot all vanish, the

conditions (15) are also suflicieut that (14) represent a single ordinary

line. Hence

Theorem 51. A transformation of the form

x' = ax+ h^y + c^,

y' = «2« - ay + c,,

i

is a line reflection if and only if

(16)

A = — a
= -1,

a — lc.
-{a + 1) 6.

= 0.
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From this it follows that a product of two line reflections is such

that A = 1, and a product of three line reflections is such that

A = — 1. By Theorems 47 and 49 any transformation for which A = 1

is a product of two line reflections. Any transformation T for which

A = — 1, when multiplied by a line reflection A yields a transforma-

tion 2 for which A= 1, Le. an equiaffine transformation. From TA= 2
follows T = 2A. Hence T is a product of three line reflections. Thus

we have (of. Theorem 47)

Theorem 52. The group of affine transformations which are prod-

ucts of line reflections has the equations

x' = a^x + hj) + Cj,

y' = a^x + \y + c^,

= 1.

EXERCISES

1. The set of all afBne transformations which are products of equiaflBne

transformations by dilations form a group which is a self-conjugate subgroup

of the affine group. Its equations are

where k is any number in the geometric number system.

2. The set of all affine transformations which are products of line reflections

and dilations form a group which is selfK!onjugate under the affine group. Its

equations are
if = a^x + b^y + Cj,

a„ bJi/=a^x-\- h^y + C55,

where k is any number in the geometric number system.

54. Subgroups of the affine group. We give below a list of the

principal subgroups of the affine group which we have considered in

this chapter and in § 30 of Chap. II. These are all self-conjugate

subgroups. We also include the groups which will be considered in

the next chapter in connection with the Euclidean geometry.

The groups are all described by means of the conditions which

must be imposed on the coefficients of the equations of the aifine

group to reduce it to each of the other groups. In some spaces, i.e.

when the variables and coefficients are in certain number systems,

these groups are not all distinct. However, they are all distinct in

ease the yajiableg and coefficients are ordinary rational numbers.
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With respect to a system of%onhomogeneous coordinates of which

Z, is the singular line, the equations of the affine group are

where A = -h 0.

The principal subgroups connected with the af&ne geometry are

:

(2) A>0;
the transformations satisfying this condition are direct (§ 30).

(3) A = k\

where k is in the geometric number system (§53, Ex. 1).

(4) A = ±F,

where k is in the geometric number system (§ 53, Ex. 2).

(5) A= = l;

these are products of two or of three line reflections (Theorem 52).

(6) A = l,

the equiaffine group (§ 51).

(7) a=h=Q, a=\,

the homothetic group (§ 47).

(8) a,= 6i=0, a=\, <=1,
the group of translations and point reflections (§ 45).

(9) a, = &i=0, ai=6,= l,

the group of translations (§ 38).

The principal groups connected with the Euchdean geometry are

:

(10) al + al = hl+ll=f=Q, afi^ + afi^ = {i,

the Euclidean group (§§ 55 and 62). Its transformations are called

similarity transformations.

(11) < + < =
6i= + 6,^¥=0. a;b^ + aX=^, A>0,

the direct similarity transformations.

(12) al + al=^ + ^i^Q, afi^ + ajb^=0, A = k\

where k is in the geometric number system.

(13) a,' + a^ = h^ + b^^O, a^b^ + ajb^=0, A = ±ft«,

where A is in the geometric number system.
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(14) «! + «2 = 1. ±K> «. = T h
the group of displacements and symmetries (§ 62).

(15) al + al = li a^ = \, \ = -\,

the group of displacements.

The relations among

these groups may be

indicated by the follow-

ing diagram, in which

we have included only

those groups which are

distinct in case of the

realgeometry. Adotted

line indicates that the

lower of thetwo groups

joined is a subgroup of

the upper, and a solid

line that it is a self-

conjugate subgroup.

The fundamental importance of the

group of translations is indicated by

the fact that it is a self-conjugate

subgroup of each of the other groups.

.Euclidean

E^iaf/ine

Homotketic

]
TranaUUions

Fig. 44

EXERCISES

1. Supposing the number of points on a line to be /> + 1, what is the number

of transformations in each of the groups listed above 1

2. Supposing the geometric number system to be (a) the ordinary real, or

(6) the ordinary complex number system, how many parameters are there in

the equations for each of the groups listed above ?

3. Prove that the plane affine geometry as a separate science could be based

on the following assumptions with regard to undefined elements, called points,

and undefined classes of points, called lines

:

I. Two points are contained in one and only one line.

II. For any line I and any point P, not on I, there is one and only one line

containing P and not containing any point of I.

III. Every line contains at least two points.

IV. There exist at least three noncollinear points.

V. The special case of the Pappus theorem given in the fine print in § 49}

or Theorem 41.



CHAPTER IV

EUCLIDEAN PLANE GEOMETRY

55. Geometries of the Euclidean type. "We come now to the

exteusion of the definition of congruence which was promised in

§§ 39 and 46. This requires the consideration of groups which are

not self-conjugate under the affine group. Not being self-conjugate,

these groups are not determined uniquely by the affine group, and

hence our definitions will contain a further arbitrary element.

Definition. Let I be an arbitrary but fixed involution on l^. This

involution shall be called the absolute or orthogonal involution. The

group of all projective colHneations leaving I invariant shall be called

a parabolic * metric group. The transformations of the group shall

be called similarity transformations. Two figures conjugate under

the group shall be said to be similar. The geometry corresponding

to the group shall be called the parabolic metric geometry.

The absolute involution is supposed to be fixed throughout the

rest of the discussion, but of course there are as many parabolic metric

groups as there are choices of I. We nevertheless speak of the para-

bolic metric group in order to emphasize the fact that we are fixing

attention on one group.

In case the plane in which we are working is a real plane and

the absolute involution is without double points, the parabolic

metric geometry is the Euclidean geometry. It is for this reason

that we refer to the parabolic metric geometries as geometries of

the Euclidean type.

The investigations in the following sections are arranged in order

of increasing specialization. First we consider a perfectly general

involution, I, in a projective plane satisfying A, E, P, H^. Then we

consider a particular type of involution in an ordered plane, and finally

limit the plane to be the real plane.

* The reason for the term "parabolic" In this connection is explained in a

later chapter, where the elliptic and hyperbolic metric groups are defined.

119
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When the plane and the involution are fully specialized, it is

a theorem (§ 70) that the real plane is contained in a complex

plane in which the absolute involution has double points. Thus

the theorems on the general type of involution (where the possible

existence of double points is taken into accoimt) come to have a

new application.

56. Orthogonal lines. Definition. Two lines are said to be orthog-

onal or perpendicular to each other if and only if they meet L in

conjugate points of the absolute involution.

The following consequences of this definition are obvious

:

Theorem 1. Tlie pairs ofperpendicular lines through any point, 0,

are the pairs of an involution. Through any point there is one and

but one line perpendicular to a given line. A line perpendicular to one

of two parallel lines is perpendicular to the other. Two lines perpen-

dicular to the same line are parallel.

Definition. In case the absolute involution I has two double

points, /j and I^, they are called the circular, points. Any line

through /j or I^ is called an isotropic line or a minimal line.

Any isotropic line has the property of being perpendicular to itself.

The circular points are so called because all ordinary points of any

circle (cf. § 60) are on a conic through I^ and I^. The ordinary points

of the conic section referred to in the following lemma will later be

proved to be on a circle.

Definition. A homology of period two whose center L is on L, and

whose axis I meets l„ in the point conjugate to the center with regard

to the absolute involution, is called an orthogonal line reflection, and

is denoted by {Ll}.

Since the center of a homology is not a point of the axis, the center

cannot be a double point of the orthogonal involution, nor can the

axis pass through such a point. An orthogonal line reflection is of

course a special case of a line reflection as defined in § 52.

Lemma. Let and I[ he two points not collinear with either double

point of the absolute involution. There is one and only one conic, C%

having as center, passing through P^, and having the pairs of the

absolute involution as pairs of conjugate points.

Proof. Let i? be the harmonic conjugate of ij with respect to

and the point at infinity, li, of the line OiJ. Any conic containing ^
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and having as center must •Bntain i^, by the definition of center.

Let X be a variable point of L, and Y the conjugate of X in the

absolute involution. Any of the triangles OXY must be self-polar to

any conic satisfying the required conditions. But if P is the point of

intersection of the lines P^X and ^ Y, and Q the point of intersection

of iJX and or,

P^OP^P^^PQP,X,

and hence the

points ij and P
are harmonically

conjugate with re-

spect to X and Q.

Hence P must

be on any conic

through 7J with

regard to whichX
is the pole of Q Y.

Hence P must be

on any conic satis-

fjdng the hypothe-

ses of the lemma.

Since J?[X] -^P^\Y"\, the points P, together with ^ and P^, consti-

tute a unique conic (§ 41, Vol. I); and this conic, by its construction,

satisfies the condition required by the lemma.

CoBOLLAEY. In case the absolute involution has double points the

conic C^ passes through them.

Theorem 2. An orthogonal line reflection leaves the absolute in-

volution invariant.

Proof. If I is the axis of an orthogonal line reflection and L
its center, let be any point on I and ij any point not on I. The

conic C"'(cf. Lemma), which contains ij, has as center, and has the

absolute involution as an involution of conjugate points, must have

L and I as pole and polar. Hence, by the definition of pole and polar

(§ 44, Vol. I)C"' is transformed into itself by the harmonic homology

having L and I as center and axis. Hence the absolute involution is

transformed into itself by the orthogonal line reflection {LI}.

Fig. 45
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Theorem 3. The product of two orthogonal, line reflections whose

axes are parallel is a translation parallel to any line perpendicular

to the axes.

Proof. Let the given line reflections be {LJ,^ and {Lj.^. Their axes

meet in a point L' of l^, and Z^ and L^ must be conjugate to L' with

respect to the absolute involution. Hence L^= L^. The product there-

fore leaves all points on l^ invariant and also all lines through L

.

Hence it is a translation parallel to any line through L^.

Theorem 4. A translation, T, whose center is not a double point of

the absolute involution, is a product of two orthogonal line reflections,

{Ll\, {Ll^, where L is the center of the translation. If is an arbi-

trary ordinary point and P the mid-point of the pair and T (0),

I may be chosen as OL' and l^ as PL', where L' is the conjugate ofL

with respect to the absolute involution. Or l^ may be chosen as PL'

and I as the line joining T (0) to L'. A translation whose center is a

double point of the absolute involu-

tion is a product offour orthogonal

line reflections.

Proof If \=0L' and l^=PL',

the reflection {Ll^ leaves inva-

riant and {Ll^ carries to T(0).

Hence the translation {Ll^ {Ll^

carries to T (0), and,by Theorem 3,

Chap. Ill, is identical with T.

If \=PL'. and l^ = QL', where

Q = T (0), the reflection {Ll^ carries to Q and {Ll^ leaves Q
invariant. Hence, as before, {Ll^ • {Ll^ = T.

A translation whose center is a double point of the absolute involu-

tion can be expressed as a product of two translations with arbitrary

points of L as centers (Theorem 8, Chap. Ill), and hence is expressible

as a product of four orthogonal line reflections.

Definition. If the axes of two orthogonal line reflections intersect

in an ordinary point, 0, the product is called a rotation about 0, and

the point is called its center.

Theorem 5. A rotation which is the product of two orthogonal line

reflections whose axes are orthogonal is a point reflection.

-0- O -6

Fig. 46
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Proof. Let the two line refleiations be {-L/J and {L}^ and let be

the point of intersection of l^ and l^. Since l^ and l^ are orthogonal,

L^ is on l^ and L^ on Z^. The product {-tj^j} •
{-Z^i^i} therefore leaves

and every point of L invariant. Moreover, it is of period two on the

axis of either of the line reflections. Hence it is a homology of period

two with as center and L as axis, i.e. a point reflection.

Definition. If a line I is perpendicular to a line m, the point of

intersection of the two lines is called the /oo< of the perpendicular I.

A line I is said to be the perpendicular bisector of a pair of points

A and B if it is perpendicular to the line AB and its foot is the

mid-point of the pair AB.

Definition. A simple quadrangle ABCD is said to be a rectangle

if and only if the lines .45 and CD are perpendicular to AD and BC.

EXERCISES

1. A parallelogram ^5CD is a rectangle if and only if the lines AB and

AD are perpendicular.

2. The perpendicular bisectors of the point pairs AB, BC, CA of a tri-

angle ABC meet in a point.

3. The perpendiculars from the vertices of a triangle to the opposite sides

meet in a point.

4. The lines through the vertices of a triangle parallel to the transforms

of the opposite sides by a fixed orthogonal line reflection are concurrent.

57. Displacements and symmetries. Congruence. Definition. The

product of an even number of orthogonal line reflections is called

a displacement. The product of an odd number of orthogonal line

reflections is called a symmetry.

Theorem 6. The set of all displacements form a self-conjugate

subgroup of the parabolic metric group.

Proof. That the displacements form a group is evident because

(cf. § 26, Vol. I): (1) the identity is a displacement, being the prod-

uct of any orthogonal line reflection by itself; (2) the inverse of a

product of orthogonal line reflections is the product of the same set

of line reflections taken in the reverse order
; (3) the product of an

even number of orthogonal line reflections by an even number of

orthogonal line reflections is, by definition, a displacement

The group of displacements is contained in the parabolic metric

group by Theorem 2.
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If {Ll} is an orthogonal line reflection, 2 a similarity transformation,

and L' =1, (L), I'=1 {I), then 2 • {Ll} 2~' is a harmonic homology

with L' as center and V as axis. But since L and the point at infinity

of I are paired in the absolute involution, so are L' and the point

at infinity of V. Hence 2 • {Ll} -2"^= {L'V} is an orthogonal line

reflection.

If Aj and A^ are any two line reflections 2AjAj2~^= 2Aj2~*2Ajj2 1

A similar argument shows that l^h-J^^ • • A„ •
2"'' is a product of

n orthogonal line reflections whenever A^, • • • , A„ are orthogonal line

reflections and 2 is in the parabolic metric group. Hence the group

of displacements is a self-conjugate subgroup 'of the parabolic metric

group.

Corollary 1. The set of all displacements and symmetries form
a self-conjugate subgroup of th-e parabolic metric group.

Definition. Two figures such that one can be transformed into

the other by a displacement are said to be congruent. Two figures

such that one can be transformed into the other by a symmetry are

said to be symmetric.

Corollary 2. If a figure F^ is congruent to a figure F^, and F^ to

a figure F^, then F^ is congruent to F^.

Corollary ?>. If a figure F^ is symmetric with a figure F^, and F
is symmetric with a figure F^, then F^ is congruent to F^.

Corollary A. If a figure F^ is symmetric with a figure F, andF
is congruent to a figure F^, then F^ is symmetric with F

.

Since translations and point reflections leave the absolute invo-

lution invariant, the definition of congruence given in this section

includes the definitions in §§39 and 46 as special cases. Theorem 6

shows that the theory of congruence and symmetry in general belongs

to the geometry of the parabolic metric group. It must be remem-

bered, however, that the theory of congruence of point pairs on parallel

lines belongs to the afBne group. In other words, the part of the theory

of congruence developed in Chap. Ill is independent of the choice of

the absolute involution.

In case the absolute involution has double points, the theory, of

congruence of point pairs on the minimal lines (§56) is different

from that on other lines. As wiU appear in the following sections the
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theory on any line which is%iot minimal is essentially the same

as that developed in Chap. Ill on the basis afforded by the gi-oup of

translations and point reflections. On a minimal line, however, the

set of points [P] such that OiJ is congruent to OP consists of aU points

on this line except the point G. For let I^ and I^ denote the double

points of the absolute involution, Jj being the one on the line OP^.

Let Q be a point of the line 01^ distinct from and from J^, and let

P be any point of 01^ distinct from and from J^. If Aj be the

orthogonal line reflection whose center

is the point at infinity of the line P^Q

and whose axis passes through 0, and

Aj be the orthogonal line reflection

whose center is the point at infinity

of the line QP and whose axis passes

through 0, we have K^{P^ = Q and

\{Q) = P. Hence the rotation A^Aj

transforms ^ to

P. Combining

transformations

oftheformAjjAj

with transla-

tions it is clear

that we have

Theorem 7. Any pair of points on a minimal line is congruent to

any other pair of points on the savne line.

For example, if a mid-point of a pair AB were defined to be a

point C such that ^C is congruent to CB, we should have that when-

ever the line AB is minimal, the point C may be any point on this

line different from A and B. The theorems on mid-points in Chap. Ill

would in general have exceptional cases. It is to avoid this difficulty

that we have adopted the definition of mid-point given in § 40,

Chap. III. A similar remark applies to the definition of ratio of

coUinear point pairs in § 43, Chap. III.

Definition. A parallelogram ABCD whose sides do not pass

through double points of the absolute involution and in which the

point pair AB is congruent to the point pair AB is called a rhombus.

A rhombus which is also a rectangle is called a square.
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EXERCISES

1. Prove that the group of displacements and symmetries could be defined

as the group of all collineations leaving invariant the set of all conies obtain-

able by translations from a fixed central conic.

2. The parabolic metric group consists of all projective collineations trans-

forming the group of displacements into itself.

3. Two point pairs on nonminimal lines are symmetric if and only if they

are congruent.

4. The perpendicular bisector of a point pair .45 contains all pointsP such

that APii congruent to BP.

5. The simple quadrangleABCD is a rhombus if and only if the linesAC and

BD are the perpendicular bisectors of the point pairs BD and AC respectively.

6. A parallelogram ABCD is a rectangle if and only if the point pair AC
is congruent to the point pair BD.

7. Specialize the quadrangle-quadrilateral configuration (§ 18, Vol. I) to the

case where the vertices of the quadrangle are the vertices of a square.

58. Pairs of orthogonal line reflections. Theorems. If A^,A^, A
are three orthogonal line .reflections whose axes pass through a point

{ordinary or ideal), the product AjA^Aj is an orthogonal line

reflection whose axis

passes through 0.

Proof. In case the

three axes are parallel,

the product A^A^^ is a

translation, and so by

Theorem 4 is expressible

in the form A^A^, where

A^ is an orthogonal line

reflection whose axis is

parallel to the other

axes. Hence

In case two of the

axes are not parallel, the

third axis must pass

through their common point 0. Let P be any point not coUinear with

and a circular point. Let C^ be the conic, existent and unique

according to the lemma of § 56, which passes through P, has as

center, and haa the absolute involution as an involution of conjugate

Fig. 48
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points. If Q^ be any point Tl C\ let A^{Q^=Q^, A^{Q^)=Q^,

According to this construction the line Q^Q^ is parallel to Q^Q^
and Q^Qg to Q^Q^, where in case Q,- = Qj, the line Q^Qj is taken to mean

the tangent to C^ at Q^. Hence, by Pascal's theorem (Chap. V, Vol. I)

or one of its degenerate cases' it follows that Q^Q^ is parallel to Q^Q^.

and {A^A^Ay{Q;, = Q,.

Since Q^ is an arbitrary point of C\

(A3A,A/=1-

The transformation A^A^A^ is not the identity, because it cannot leave

invariant a point, different from 0, of the axis of A^ unless A^, = A^,

and in the latter case the product is equal to A^. Since AgA^jA^ leaves

invariant the line Q^Q^ (or the tangent a,tQ^, if Q^= Q^, it leaves in-

variant the point at infinity of this line and also the line through

perpendicular to it. As A^A^Aj is of period two, it follows that it is

an orthogonal line reflection.

Corollary 1. If A^, A^, and A^ are any three orthogonal line

reflections whose axes meet in a point or are parallel, there exists an

orthogonal line reflection A^ such that A^A, = A^A^, and an orthogonal

line reflection A^ such that A^A^ = A^A^.

Proof. By the theorem, A^ exists such that

Hence A^A^ = A,A^.

In like manner, A^ exists such that

Hence A^A^ = A,A,.

Corollary 2. The product of any odd number of orthogonal line

reflections whose axes meet in a point or are parallel is an orthogonal

line reflection.

Proof. By the theorem, whenever m S 3, the product of n orthog-

onal line reflections whose axes are concurrent reduces to a product

of n—2. Thus, if n is odd, the number of line reflections can be

reduced by successive steps to one.
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li nia even, this process reduces the number of line reflections in

the product to two. Thus we have

CoEOLLAEY 3. The product of any even number of orthogonal line

reflections is a rotation in case their axes meet in a point, and is a

translation in case the axes are parallel.

CoROLLAEY 4. An orthogonal line reflection is not a displacement.

Corollary 5. The set of all rotations having a common center is a

commutative group.

Proof. A rotation is defined as a product of two orthogonal line

reflections whose axes meet in an ordinary point. So, by definition,

the identity is a rotation, and the inverse of a rotation A^A^ is the

rotation A^A^. The product of two rotations is a rotation by Cor. 3.

Hence the rotations having a given point as center form a group.

To show that any two of these rotations are commutative amounts

to showing that

(1) AAA,A, = A,AjAA

whenever the A's are orthogonal line reflections whose axes concur.

By the theorem we have

and hence
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But since A„ • • Aj and A^ • ^ A( leave invariant, the product

T,^ • • T{ leaves invariant, and hence, by Theorem 3, Chap. Ill, is

the identity. Hence
a„.-.Ai=a:..-a,',

where A^, • • •, A^ are orthogonal line reflections whose axes pass

through 0. By Cor. 3, Theorem 8, A;^ • • • A/ is a rotation about 0.

59. The group of displacements. Theorem 10. Let O he an arbi-

trary point. Any displacement can he expressed in the form PT, where

V is a rotation about and T a translation.

Proof. By precisely the argument used in the last theorem the

given displacement can be expressed in the form

A' ••A'T' ••T'

where A,! (i = 1, • • , 2 w) is an orthogonal line reflection whose axis

passes through 0, and T/ (i = 1, • • • , 2 m) is a translation or the identity.

The product T^„ • • • Ti' is, by Theorem 6, Chap. Ill, a translation. By

Cor. 3, Theorem 8, A^„ • • • A{ is a rotation or a translation. Since it

leaves uivariant, it is a rotation.

Corollary 1. Any displacement can also be expressed in the form

T'P', where T is a translation and P' a rotation with as center.

Corollary 2. Any symmetry is a product of a line reflection whose

axis contains an arbitrary point and a translation.

Theorem 11. Any displacement, except a translation having a

double point of the absolute involution as center, is a product of two

orthogonal line reflections.

Proof. Let be an arbitrary point. By the last theorem the given

displacement reduces to PT, where T is a translation and P a rotation

about 0. If the center, L, of T is not a double point of the absolute

involution, by Theorem 4,

T = {zy.{zy,

where I and / meet L in the conjugate of L relative to the absolute

involution and where l^ passes through 0. By Cor. 1, Theorem 8, there

exists an orthogonal line reflection {Mm} such that

P = {Mm} {L\}.

Hence PT = {Mm} {L\} {L\} • {Ll^

= {Mm} {ZZ
J.
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If P is not the identity, it is clear that m and l^ cannot be parallel,

and hence PT is a rotation. ' >

In case T is a translation whose center is a double point of the

absolute involution, it can be expressed (Theorem 8, Chap. Ill) as a

product of two translations T^, T, whose centers are not double points

of the absolute involution. Hence, if P is not the identity, PT^ is a

rotation, and thus PT^T^ is also a rotation. In case P is the identity,

we have the exceptional case noted in the theorem.

CoEOLLARY. A displacement is either a rotation or a translation.

The following two theorems have the same relation to the para-

bolic metric group and the group of displacements, respectively, that

the fundamental theorem of projective geometry (Assumption P) has

to the projective group on a line.

Theorem 12. A trarisformatwn of the jparaholic metric group

leaving invariant two ordinary/ points not collinear with a double

point of the absolute involution is either an orthogonal line reflection

or the identity.

Proof. Denote the given fixed points by and P, and let C^ be the

conic throughP having as center and the absolute involution as an

involution of conjugate! points. Since C^ is uniquely determined by

these conditions (cf. the lemma in § 56), it is left invariant by the

given transformation V. Now T leaves 0, P, and the point at infinity

of the line OP invariant. Hence the line OP is point-wise invariant,

and every line I perpendicular to it is transformed into itself. Since

C" is also invariant and each of the lines perpendicular to OP meets

C" in at most two points, T is either the identity or of period two.

If of period two, it is evidently an orthogonal line reflection.

Theorem IS. A displacement leaving invariant a point and a

line I containing hit not containing a double point of the absolute

involution is either the identity or a point reflection with as center.

Proof. Let P be any ordinary point of I distinct from 0, and let

C be the conic through P having as center and the absolute invo-

lution as an involution of conjugate points. A displacement leaving

invariant, being a product of two orthogonal line reflections whose

axes meet in 0, must leave C invariant. Hence it either leaves P
invariant or transforms it into the other point in which the line OP

meets C", In the first case the transformation must, by Theorem 12
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and Cor. 4, Theorem 8, reduce t(^the identity. In the second case the

given displacement, which we shall denote by A, multiplied by the

orthogonal line reflection A whose axis is the line through perpen-

dicular to OF, leaves P invariant. Hence, by Theorem 12,

AA=A',

where A' is a line reflection having OP as axis or the identity. Hence

A = A'A.

Since A cannot be a line reflection, A' cannot be the identity. Since

the axes of A and A' are perpendicular, A is a point reflection.

EXERCISES

1. A displacement which carries a point A to a point B and has a point

(ordinary or not) ag center is, if the line OA is not minimal, the product of

an orthogonal line reflection whose axis is OA followed by one whose axis is

the line joining to the mid-point of the TpairAB.

2. If three of the perpendicular bisectors of the point pairs AB,BC, CD,

DA of a simple quadrangle meet in a point, the fourth perpendicular bisector

passes through this point.

*3. Any affine transformation which leaves a central conic invariant is a

line reflection whose center and axis are pole and polar with regard to the

conic or a product of two such line reflections.

*4. In case the absolute involution is without double points, the group of

displacements can be defined as the group of transformations common to the

parabolic metric group and the equiaffine group. Thus two ordered point

triads are congruent if they are both equivalent and similar. Develop the

theory of congruence on this basis, and show what difficulties arise in case

the absolute involution has double points.

60. Circles. Definition. A circle is the set of all points [P] such

that the point pairs OP, where is a fixed point, are all congruent to

a fixed point peiir OJ^, provided that the line 01^ does not contain a

double point of the absolute involution. The point is called the

center of the circle.

Since the displacements form a group, it is clear that I^ may be any

one of the points P. It has already been proved (§ 57) that if the

line 01^ contained an invariant point of the absolute involution, the

set [P] would consist of all ordinary points, except 0, of the line 01^.

Theorem 14. A circle consists of the ordinary points of a conic sec-

tion having the pairs of the absolute involution as pairs of conjugate

points. The center of the circle is the pole of l„ with respect to the circle.



182 EUCLIDEAN PLANE GEOMETRY [Chap.iv

Proof. Let be the center of the circle and ij any point of the

circle. The circle consists of all points obtainable from 2J by displace-

ments which leave invariant. If one of the line reflections of which

each of these displacements is a product be taken to have OPf, as axis

(Cor. 1, Theorem 8), it follows that the circle consists of the points

obtainable from ij by orthogonal line reflections whosp axes pass

through 0. But the system of points so obtained is identical by

construction with the ordinary points of the conic referred to in

the lemma of § 56.

Corollary. In case the absolute involution has no double points,

every circle is a conic section. In case the circular points exist, they

and the points of any circle form a conic section.

Theorem 15. The ordinary points of any proper^conic, with regard

to which the pairs of the absolute involution are pairs of conjugate

points, form a circle.

Proof. A conic C^ with regard to which the pairs of the absolute

involution are conjugate points cannot be a parabola, since all poiuls

of L are conjugate to the point of contact of a parabola. Hence C"

has an ordinary point as center. Let P be any point of C\ By

definition there is one and only one circle through P which has as

a center. By Theorem 14, this circle is a conic through P having

as center and the pairs of the absolute involution as pairs of conjugate

points. By the lemma of § 56 there is only one such conic. Hence

the circle throughP with as center contains the ordinary points of C".

Theorem 16. Three noncollinear points, no two of which are on a

minimal line, are contained, in one and only one circle.

Proof. Let the three points be P^, I^, and J|. Let i„ be the point

at infinity of the line l^Il and I the perpendicular bisector of the

point pair ^ij. The polar of i„ with regard to any circle through ij

and ij must, by Theorem 14, pass through the mid-point of iJ2J and

the conjugate of i„ in the absolute involution. Hence the polar of

L. with regard to any circle through ij and j^ must be I. In like

manner, the polar of the point at infinity M„ of the line P^J^ with

regard to any circle containing ij and ij must be the perpendicular

bisector m of ^^. Since the points I^, ij, ^ are not collinear, I and

m intersect in an ordina^^' point 0, which must be the pole of
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Z„ilf„ = U with regard to anjL circle through ij, ij, and i^. Since,

by definition, there is one and only one circle through P with as

center, there cannot be more than one circle through ij, ij, and ij.

Since the product of

the orthogonal line re-

flection with 01^ as axis

by that with I as axis

transforms the point pair

01^ into the point pair

01^, the circle through

ij with as center con-

tains j^. Alike argument

shows that it contains^.

Hence there is one circle

containing i^, JJ, and i^.

Observe that we do

not prove at this stage

that a circle has a point on every line through its center. This could

not be done without further hypotheses on the nature of the plane

than we are making at present.

Fig. 49

EXERCISES

1. The locus of the points of intersection of the lines through a points

with the perpendicular lines through a point B, not on a minimal line through

^, is a circle whose center is the mid-point of the pair AB.

2. A tangent to a circle is perpendicular to the diameter through the point

of contact.

3. Any two conjugate diameters of a circle are orthogonal.

4. If the tangents at two points A and B of a circle meet in a point O,

the pairs OA and OB are congruent.

5. If Z is the perpendicular bisector of a point pair AB, then the circles

through A and B meet I in pairs of an involution whose center (§ 43) is the

mid-point of AB.

6. The system of all circles having a common center meet any line in the

pairs of an involution.

7. A parallelogram which circumscribes a circle must be a rhombus.

8. A parallelogram inscribed in a circle is a rectangle.

9. If two circles have two points in common, the pair of tangents at one

common point is symmetric to the pair of tangents at the other.

10. The feet of the perpendiculars from any point of a circle to the sides

of an inscribed triangle are collinear.
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61. Congruent and similar triangles. Two of the three fundamental

criteria for the congruence of triangles can be derived at the present

stage. The third criterion, that in terms of " two sides and the included

angle," essentially involves order relations and is given in § 63.

In the following theorems we shall restrict attention to triangles

none of whose sides pass through double points of the absolute invo-

lution. The sides of a triangle ABC which are opposite to the vertices

A, B, C are denoted by a, I, c respectively. It will be observed that

mstead of angles we refer to ordered line pairs.

Theorem 17. Two triangles ABC and A'B'C' are congruent in such

a way that A corresponds to A' andB to B' if the point pair AB is con-

gruent to the point pair A'B' and the ordered line pairs ca and ch are

congruent to the ordered

line pairs e'a' and c'V

respectively.

Proof. By hypothesis,

there is a displacement V
carrying A and B to A'

and B' respectively. Let

r(a) = a",r(6)=6", and

V{C) = C". lia"^a',Yfe>

should have the ordered

line pair c'a' congruent to '
-^la. 50

c'a", and hence there

would be a transformation leaving B' and c' invariant and carryii^ a'

to a", but this transformation, by Theorem 13, would be the identity

or a point reflection with B' as center contrary to the assumption that

a" 4^ a'. In like manner it follows that V'= V, and hence that G"— C.

Theorem 18. If in two triangles ABC and A'B'C' the point pairs

AB, BC, CA are congruent, respectively, to A'B', B'C', C'A', the pair of

lines he is congrmnt to the pair of lines Vc'. The two triangles are

either congruent or symmetric.

Proof. By hypothesis, there is a displacement which carries A'B' to

AB. Let C" be the point into which C is carried by this displacement.

Let C" be the point to which C" is carried by the orthogonal line

reflection of which AB is axis. Now if C were not identical with C"

or C", we should have three congruent point pairs AC, AC", AC" and
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three other congruent point pai]j| BC,BC", BC'". That is, there would

be two circles, one with A as center and one with B as center, having

three points in common. If C, C", C" were coUinear, or if two of them

were on a minimal line, this would contradict Theorem 14 ; otherwise

it would contradict Theorem 16.

The conclusions of the theorem are now obvious.

The theorems converse to the above are not difficult and are stated in

the exercises below. The theorems on similar triangles (Exs. 3, 4, 5) are

proved in an analogous way, using Theorem 12 instead of Theorem 13.

For these theorems we used the following definition

:

Definition. Two figures are said to be directly similar if and

only if one can be transformed into the other by a similarity trans-

formation which effects on l„ the same transformation as some dis-

placement. A transformation of this sort is called a direct similarity

transformation.

EXERCISES

1. If two ordered point triads are congruent, the corresponding ordered point

pairs and line pairs are congruent.

2. If two ordered point triads are symmetric, the corresponding point pairs

are congruent and the corresponding ordered line pairs are symmetric.

3. If the ordered line pairs ab, bc,ca are congruent, respectively, to the ordered

line pairs a'b', b'c', c'a', the ordered triad abc is directly similar to the ordered

triad a'b'c'.

4. If the ordered line pairs ab, be, ca are symmetric, respectively, to the

ordered line pairs a'b', b'c', c'a', the ordered triad abc is similar to the ordered

triad o'6'c'.

5. If two ordered triads abc and a'b'c' are directly similar, the ordered pairs

ab, be, ca are congruent to a'b', b'c', c'a' respectively. If the ordered triads

are similar but not directly similar, the ordered pairs ab, be, ca are symmetric

to a'b', b'c', c'a' respectively.

6. A direct similarity transformation is a product of a displacement and

a homology.

62. Algebraic formulas for certain parabolic metric groups. Adopt-

ing a system of nonhomogeneous coordinates {x, y) for which l„ is the

singular line, and a system of homogeneous coordinates for which

X, x„

the line L has the equation x^ = 0, and any involution on it can be

written in the form (§§ 54, 58, Vol. I),

x^=0, ax^^+ hXjX^+ hx^^+ cx^^= 0.
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If the coordinate system be chosen so that (0, 1, 0) and (0, 0, 1) are

conjugate points in this involution, the bilinear equation reduces to

(3) ax^^+cx^^=Q.

Here the point (0, 1, 1) is paired with the point (0, c, — a). In

case the involution contains two pairs of points which are harmoni-

cally conjugate, one pair may be chosen as (0, 1, 0) and (0, 0, 1; and

the other pair as (0, 1, 1) and (0, 1, — 1). In that case (3) reduces to

(4) x^^+x^=Q.

For the rest of this section we assume that the absolute involution

contaius two pairs of points which are harmonically conjugate with

respect to each other. Such involutions exist in every plane satis-

fying Assumption H^, since any two distinct coUinear pairs of points

determine an involution. Hence this assumption is no restriction on

the nature of the plane in which we are working. It is, moreover,

easy to replace the formulas which we shall obtain from (4) by the

more general but more cumbersome formulas based on (3).

The equations of the transformation required to change (3) into (4) are

Hence it is clear that in the complex geometry (§ 5) every involution may be

reduced to the form (4), and in the real geometry only those involutions can

be reduced to this form which are such that a/c > 0. The involutions of the

latter type are direct (§ 18).

The equations of the affine group are

(5) !«'i
= c^x^+a^x^+\x^,

and if the involution (4) is to be transformed into itself, all pairs

ajj, x^ and x^, x^ which satisfy

must also satisfy

which is the same as

Hence
Ul + al = l>l + ll*0,
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are the necessary and sufficientConditions that (5) leave (4) invariant.

Combining these two equations, we obtain

a^a^ + a* - b^a^ - a^'b^ =

or (a^ + «!)(«!_ 6^2)^0.

Thus we infer a^=±b^ and a^= T b^. Hence

Theorem 19. The equations of the parabolic metric group are

where e^= 1.

Any conic section has an equation of the form (§66, Vol. I)

(7) ftoO^O "I" ^ll'^'l "I" *22"''2 + ^ '"oA^l "I" 2 *02'^0'''2 "I" 2 a^^x^X2= 0,

which determines on the Mne «„ = an involution whose double

elements satisfy 2 , 2,0 n

Comparing with (4), we have that a circle must satisfy the condition

«ii=«22^0, a,,= 0.

If this circle is to have (1, 0, 0) as center, i.e. as pole of x^= 0, the

equation (7) must also satisfy the condition

«01=0 = «02-

Thus, returning to nonhomogeneous coordinates, the equation of a

circle with the origin as center must be of the form*

(8) af+f=k.

According to § 59, the transformations of the parabolic metric

group leaving such a circle invariant are all displacements or sym-

metries, and, moreover, all displacements and symmetries leaving the

origin invariant leave this circle invariant. Substituting (6) in (8), we

see that a displacement or symmetry leaving the origin invariant is

of the form x'-ax + 8ux-ax + py,
a^+^2=i.

y'=e{-Px + ay),

* This argument does not prove that every equation of this form represents a

circle. The answer to this question depends on tlie value of fc.
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Since any displacement or symmetry is expressible as the resultant

of one leaving the origin invariant and a translation (Theorem 10,

Cor. 1), we have

Theorem 20. The equations of the group of displacements and

spnmetries are

where a^ + /3^ = 1 and e^ = 1.
;

By § 54, Vol. I, a transformation of the form (9) effects an involu-

tion on L if and only if e = — 1. By Theorem 10, Cor. 2, a&y symmetry

leaving the origin invariant is a line reflection. Hence

Theorem 21. The displacements are the transformations of the

type (9) for which e = 1 and the symmetries those for which e = — 1.

EXERCISES

1. The equation of a circle containing the point (ajb^ and having the

point (fiihj) as center is

ix - a,y + (y - \Y = (s - a,y + {\ - h,)\

2. Two lines ax + by + c = and a'x + b'y + c' = 6 are orthogonal if and

only if aa' + hb' = 0.

3. In case the absolute involution has double points, the equiaffine trans-

formations of the parabolic metric group are of the form (9), where a^ + ;8^ = e

and e = ± 1.

63. Introduction of order relations. Let us now assume that the

plan§ which we are considering is an ordered plane in the sense

of § 15. We may therefore apply the results of Chap. II, particu-

larly of §§_^28-30. Let us also assume that the absolute involution

satisfies the condition referred to in § 62, that there exist two pairs

of points conjugate with regard to the absolute involution which-

separate each other harmonically. By Theorem 9, Chap. II, and its

corollaries, it follows that any two pairs of the absolute involution

separate each other, and that the absolute involution has no double

points.* This result may conveniently be put in the following form:

Theorem 22. Two pairs of perpendicular lines interseeping in the

same point separate each other. No line is perpendicular to itself.

* The geometry arising from the hyperbolic case has been studied by Wilson and

Lewis in the article referred to in § 48.



§63] ORDER RELATIONS 139

The restrictions which we h^^e just introduced enable us to state

the fundamental theorem (Theorem 13) about the group of displace-

ments in the following more precise form

:

Theorem 23. The only displacement leaving a ray invariant is

the identity.

Proof. Let A be the origin and B any point of the ray. Since any col-

Hneation preserves order relations,A is transformed into itself. Since the

lineAB is invariant, the displacement is a point reflection or the identity

(Theorem 13). But a point reflection would changeB into a point of the

ray opposite to the ray AB, and thus not leave the ray AB invariant.

With the aid of this theorem we can complete the set of funda-

mental theorems on congruent triangles, the first two of which were

given in § 61.

Theorem 24. Two triangles ABC andA'B'C are congruent if the

point pairs AB, AC and the angle 4- CAB are congrue7it respectively

to the point pairs A'B', A'C' and the angle A C'A'B'.

Proof. Since the angle * 4 CAB is congruent to thp angle 4 C'A'B',

there exists a displacement A^ carrying A to A' and the rays AC and

AB to A'C and A'B' respectively. Since the point pair AB is con-

gruent to A'B', there is also a displacement A^ carrying A to A' and B
to B', and since ^C is congruent to A'C', there is a displacement A,

carrying A to A! and C to C'. By Theorem 23, A^ = A^ and A^ = A^.

Hence the displacement A. carries the triangle J5C to A'B'C'.

EXERCISES

1. Two triangles ABC and A'B'C are congruent if the point pair AJi is

congruent to the point pair A'B' and the angles 4 CAB and 4 CBA are con-

gruent respectively to the angles 4 CA'B' and 4- C'B'A'.

2. If two triangles ABC and A'B'C are congruent in such a way that ^1

corresponds to A' and B to B', the angles A ABC, 4.BCA, A CAB are con-

gruent to the angles 4- A'B'C, 4-B'C'A', 4- C'A'B' respectively.

3. If two triangles ABC and A'B'C are symmetric in such a way that A
corresponds to A' and B to B', the angles 4 ABC, 4BCA, 4 CAB are con-

gruent to the angles 4 C'B'A', 4 A'C'B', 4 B'A'C respectively.

4. Let ^, JS, C be three collinear points and P„ the point at infinity of the

line joining them ; B is between A and C if and only if

^ Q<^(P^A,CB)<1.

5. An orthogonal line reflection interchaiUges the two sides of its axis.

* Note that an angle is an ordered pair of rays (§ 28).
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64. The real plane. Let us finally assume that we are dealing

with the geometry of reals. In consequence, we have the theorem

(§ 4) that any one-dimensional projectivity which alters sense (i.e. for

which A < 0) has two double elements. This may be put into the

following form as a theorem of the af&ne geometry.

TiiEOKEM 25. If A^ and Jjj are any two points of an ellipse, any

line I, meeting the line A^A^ in a point between A^ and A^, meets the

ellipse in two points.
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But, by construction, A^CA^CL^ Q^L^ Q^C„.

Hence, by Theorem 6, Chap. II,

But the points C„, L„, Q^ are carried to C„, L^, Q^, respectively, by

the projectivity [^^^[^j], indicated in (10). Hence the projectivity

[QJ'XiQJ is opposite. Since [QJx[^J is direct, [QJ^[Q^] is oppo-

site. From this, since Q^ and Q^ are carried by a perspectivity with

.1, as center to L^ and L^ respectively, it follows (Theorem 6, Chap. II)

that the proiectivity rr ^ r t- n

is opposite. By the remark at the beginning of the section this pro-

jectivity must therefore have two double points, and by the definition

of the projectivity these double points must be points of intersection

of I with i:\

Corollary 1. The points in which I meets the ellipse are separated

by J, and J., relative to the order relations on the ellipse.

Troof. Let D^ and B^ (fig. 51) be the two points in which I meets

the ellipse, and let A, A^, A„, etc. have the meanings given them in

the proof of the theorem. Then since the projectivity [ij-^[i^] is

opposite, S{D^D^L^) ^ S{D^D^L^).

Hence the lines AB^ and AD^ separate the lines AA^ and AA^, which,

according to the definition in § 20, implies that the pair of points I\D
separates the pair A^A^ on the ellipse.

Corollary 2. Hie points in which I meets the ellipse are on opposite

sides of the line A^A^.

Proof. Let a be the tangent at A^. By the first corollary the lines

a and A A^ separate the lines A^D^ and A^I)^. Hence, if A' denote the

point in which a meets B^B^, B^ and B^ separate A' and C. Now A'

is not between Z)j and B^, because if it were, the Mne a would meet

the ellipse in two points instead of only in one. Hence C is between

B and B , and hence B^ and B^ ai-e on opposite sides of I.

Theorem 2Q. A rotation which transforms a given circle into itself

transforms any triad of points on the circle into a triad of points in

the same sense relatively to the order relations on the circle.
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Troof. Let the given triad of points be A, B, C, let be any other

point of the circle, and let J„, 5„, C. be the points at infinity of the

lines OA, OB, 00 respectively ; let 0',A',B', C, AL,BL, CL be the points

to which 0, A, B, C, A„, B„, C„, respectively, are carried by the' given

rotation ; let A'i, B'l, C'l be the points at infinity of the lines OA', OB',

OC respectively.

The given rotation effects on Z„ a transformation which is the prod-

uct of two hyperbolic involutions. Hence S{A„B^C„) = S{ALBLCL).

As in the proof of Theorem 25, the projectivity ALbLCLj;;A!1B'^C'I

is direct because otherwise it would have double points and these

would be common to the circle and L. Hence S(ALBLCL) =S{A'1B'1C'J,)

and, therefore, S{A.B^ C„) = S{A'lB'l C'l). Projecting from 0, we have,

by the definition of sense on a conic (§ 20), that

8{ABC) = S(A'B'C').

Theoreili 26, which is here proved only for a real space, can be proved for

any ordered space by the methods of the next chapter. This theorem states

one of the most intuitionally immediate properties of a rotation. In fact,

most of the older discussions of the notions of sense describe sense, without

further explanation, as "sense of rotation."

EXERCISES

1. If 4 -4OB is any angle, and PQ any ray, there is one and only one ray

PR on a given side of the line PQ such that4AOB is congruent or symmetric

to 4 QPR-
*2. Prove that Theorem 25 is not true in a space satisfying Assumptions

A, E, H, Q.

65. Intersectional properties of circles. Theorem 27. IfA and B
are any two distinct points, then on any ray having a point as

origin there is one and only one point P such that the pair AB is

congruent to the pair OP.

Proof. Let B^ be the point to which B is carried by the translation

which carries A to 0. The circle through B^ with as center contains

all points Q such that OQ is congruent to AB. Let B^ be the point

to which B^ is transformed by a point reflection with as center.

Then since is between B^ and B^, any line I through (and distinct

from OB^ must meet the cifcle in two points, according to Theorem 25.

But by Theorem 23 neither of the rays on I which have as origin

can contain more than one point of the circle. Hence each of these
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rays contains just one point of ^e circle. Hence each ray with as

origin contains a single point P such that AB is congruent to OP.

Combining this theorem with Theorem 23, we have

Theorem 28. There is one and only one displacement carrying a

given ray to a given ray.

This result characterizes the group of displacements in the same

way that the proposition that there is a unique projectivity of a

one-dimensional form carrying any ordered triad of elements to any

ordered triad characterizes the one-dimensional projective group.

Theorem 29. If two circles are such that the line joining their

centers meets them in two point pairs which separate each other, the

circles have two points in common, one on each side of the line joining

the centers.

Proof. Let the two circles be Cl and C^, and let them meet the

line joining the centers in the pairs ij^j and P^Q^ respectively. Let A
be the center (§ 43) of the involution T in which I^Q^ and P^Q^ are

pairs, and let a be the

perpendicular to the line

ij^ at A.

Since^ and Q^ separate

J^ and Q^, the ordered

triads P^Q^P^ and Q^PyQ^

are in the same sense.

The involution V inter-

changes these two triads

and hence transforms any

triad into a triad in the

same sense. Hence ^ is between^ and Qi. Hence, by Theorem 2 5, the

line meets the circle C^ va. two points A^ and A^ ; and by the second

corollary of this theorem, A^ and A^ are on opposite sides of the line ijft.

The lines A-^I^ and A^Q^ are orthogonal since ij and Q^ are the ends

of the diameter of a circle through A^. The line A^A is orthtigonal to

the line through A.^ parallel to I[Qi. Hence the involution V is per-

spective with the involution of pairs of orthogonal lines through A^.

Hence Jj, ^, and Q^ are on a circle whose center is on the line P^Q^.

By Theorem 16 this circle must be C^. Hence C\ and Gf have A^

m common. A similar argument shows that A^ is on C^ and C,".

Fig. 52
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66. The Euclidean geometry. A set of assumptions. In the geom-

etry of reals the coefficients of the formulas derived in § 62 are real

numbers. The formulas given for displacements in that section are

the well-known equations for the "rigid motions" of elementary

EucKdean geometry. Hence the geometry of the parabolic metric

group in a real plane is the Euclidean geometry.

This result can also be established by considering a set of postu-

lates from which the theorems of Euclidean geometry are deducible

and proving that these postulates are theorems of the parabohc

metric geometry. It then follows that all the theorems of Euclidean

geometry are true in the parabolic metric geometry.

As a set of assumptions for Euclidean geometry of three dimensions

we may choose the ordinal assumptions I-IX which are stated in § 29,

together with the assumptions of congruence (X-XVI) stated below.

For our immediate purpose, however, a set of assumptions for Euclid-

ean plane geometry is needed. To obtain such a set we merely replace

VII and VIII by the foUowing:

VII. All points are in the same plane.

Thus our set of postulates for Euclidean plane geometry is I-VI,

=m, ix-xvL
Assumptions X-XVI make use of a new undefined relation between

ordered point pairs which is indicated by saying "AB is congruent

to CZ>." It must be verified that the new assumptions are vahd

when this relation is identified with the relation of congruence

defined above.

X. If A + B, then on any ray whose origin is a point C there is

one and only one point D such thatAB is congruent to CD.

Proof. This is the same as Theorem 27.

XL IfAB is congruent to CD and CD is congruent toEF, thenAB

is congruent to EF.

Proof. This is a consequence of the fact that the displacements

form a group.

XIL IfAB is congruent to AB', and BC is congruent to B'C and

{ABC} and {AB'C'}, then AC is congruent to ^C.
Proof. By Theorem 28, there is a unique displacement which

carries A and B to A' and B' respectively. This displacement carries
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C to a point C" such that {A'^B^'}, because a collineation preserves

order relations. Moreover, the point C" so obtained is such that BC is

congruent ioB'C' and^C to A'C; and, by Theorem 27, there is only

one point C in the order {A'B'C} such that BC is congruent to B'C'.

XIII. AB is congruent to BA.

Proof. AB is transformed into BA by the point reflection whose

center is the mid-point of AB.

XIV. If A, B, C are three iioncollmear points and D is a point in

the order {BCD}, and if A'B'C' are three noncollinear points and D'

is a point in the order {B'C'D'} such that the point pairs AB, BC,

CA, BB are respectively congruent to AlB' , B'C', C'A', B'B', then AD
is congruent to A'D'.

Proof. Since AB is cougruent to A'B',

there exists a displacement A which

carries AB to A'B'. Let A(C)=C^,

A {D) = D^. Also let C^ and D^ be the

points to which C^ and D^ are trans-

formed by the orthogonal line reflection

having A'B' as axis.

According to § 57, the pair BCis con-

gruent to B'C^ and to B'C^; CA to C^A'

and C^A'; BD to B'D^ and B'D^; and

AD to A'D^ and A'D^. It follows that ^ ^^^ 53

C must coincide with C^ or C^, for

otherwise there would be two circles, one with A' as center and the

other with B' as center, contaiaing the three points C^, C^, C.

If C = Cj, it follows, by Theorem 23, that D' = D^, and hence that

AD is congruent to A'D'. If C"= C^, it follows, similarly, that D'=D^,

and hence that AD is congruent to A'D'.

Definition. If and X^ are two points of a plane a, then the set

of points [X] of a such that OX is congruent to OX^ is called a ei7xle.

XV. If the line joining the centers of two coplanar circles meets them

in pairs of points, J^Q^ and IIQ^ respectively, such that {i^iJ^J and

{I[QiQ^, the circles have two points in common, one on each side of

the line Joining the centers.

Proof. This is the same as Theorem 29.
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XVI. If A, B,C are three points in the order {ABC} and B^, B

,

B^, • -are points in the order {ABB^, {AB^B^, • such that AB is

congruent to each of the point pairs BB^, B^B^, • • -, then there are not

more than a finite number of the points B^, B^, • • • between A and C.

Proof. Let B„ be the point at infinity of the line AB. Then B^ is

the harmonic conjugate of A with respect to B and B„, B^ is the har-

monic conjugate ofB with respect to B^ and B„ ; and so on. Thus A, B,

B^, B^, • • form a harmonic sequence of which B„ is the limit-point.

Since C has a finite coordinate, the result follows from § 8, Chap. I.

The set of assumptions I-XVI is not categorical It provides

merely for the existence of such irrational points as are needed in

constructions involving circles and lines (see § 77, below). It can be

made categorical by adding Assumption XVII, § 29. It must be

noted, however, that when XVII is added, X—XVI become redundant

in the sense that it is possible to introduce ideal elements and then

bring in the congruence relations by means of the definitions in this

and the preceding chapters.

In order to convince himself that the assumptions given above are

a sufficient basis for the theorems of Euclid, the reader should carry

out the deduction from these assumptions of some of the fundamental

theorems in Euclid's Elements. An outline of this process will be

found in the monograph on the subject from which the assumptions

have been quoted.*

In making a rigorous deduction of the theorems of elementary

geometry, either from the assumptions above or from the general

projective basis, it is necessary to derive a number of theorems which

are not mentioned in Euclid or in most elementary texts. These are

mainly theorems on order and continuity. They involve such matters

as the subdivision of the plane into regions by means of curves, the

areas of curvilinear figures, etc., all of which are fundamental in the

applications of geometry to analysis, and vice versa. In so far as

these theorems relate to circles, they have been partially treated in

§§ 64-65 and will be further discussed in the next chapter. The

methods used for the more general theorems on order and continuity,

however, are less closely related to the elementary part of projective

geometry and will therefore be postponed to a later chapter.

* Foundations of Geometry, by Oswald Veblen, in Monographs on Modem
Mathematics, edited by J. W. A. Toung, New York, 1911.
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67. Distance. In § 43 we llhve defined the magnitude of a vector

OB as its ratio to a unit vector OA collinear with it ; but in . the

afSne geometry the magnitudes of noncoUinear vectors are abso-

lutely unrelated. In the parabolic metric geometry we introduce

the additional requirement that any two unit vectors OA and

O'A' shall be such that the point pair OA is congruent to the

point pair O'A'.

Thus, if a given unit vector OA is fixed and C is the circle through

A with as center, any other unit vector must be expressible in

the form Vect (OP), where P is a point of the circle. This gives two

choices for the unit vector of any system of collinear vectors, and

each of the two possible unit vectors is the negative of the other.

Therefore, while it is possible under our convention to compare the

absolute values of the magnitudes of noncoUinear vectors, there is

no relation at all between their algebraic signs. This corresponds to

the fact that there is no unique relation between particular sense

classes on two nonparallel lines.

Formulas in which the magnitudes of noncoUinear vectors appear

must, if they state theorems of the Euclidean geometry, be such that

their meaning is unchanged when the unit vector on any line is re-

placed by its negative. This condition is satisfied, for example, in

Exs. 2 and 4, § 71.

The ratio of two collinear vectors is invariant under the affine

group; the magnitude of a vector is invariant under the group of

translations; but the absolute value of the magnitude of a vector,

according to our last convention, is invariant under the group of

displacements. The last invariant may be defined directly in terms

of point pairs as follows

:

Definition. Let AB be an arbitrary pair of distinct points which

shall be referred to as the unit of distance. If P and Q are any

two points, let C be a point of the r^y AB such that the pair ^C is

congruent to the pair PQ. The ratio

AC
AB

is called the distance from P to Q, and denoted by Dist (PQ). If L
is any point and I any line, the distance from L to the foot of the

perpendicular to I through L is called the distance from L to I.
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It follows directly from the theorem above that Dist {PQ) is

uniquely defined and positive whenever P ^Q, and zero whenever

P =Q. From the corresponding theorems on the magnitudes of

vectors there follows the theorem that if {^5C}, then

Dist (,AB) + Dist (BC) = Dist {AC).

Other properties of the distance-function are stated in the exercises.

The notion of the length (or circumference) of a circle may be defined a:

follows : Let Pj, Pj, • •, P„ be n points in the order {P-J'^ • • P„} on a circle,

and let
^ ^ ^.^^ ^p^p^^ ^ jj.^^ ^p^p^^ ^ _ _^ ^.^j. ^p^p^^

It can easily be proved that for a given circle C^, the numbers ip obtained from

all possible ordered sets of points Pj, Pj, • • •, P„, for all values of n, do not

exceed a certain number.

Definition. The number c, which is the smallest number larger than all

values of p, is called the length or circumference, oi the circle C^.

The proof of the existence of the number c will be omitted for the reasons

explained below. The existence of c having been established, it follows with-

out difficulty that if c and c' are the lengths of two circles with centers and

(y, respectively, and passing through pointsP and P', respectively,

c ^ Dist {OP)

c' ~ Dist (O'P')'

Choosing the point pair OP' as the unit of distance and denoting the con-

stant c' by 2 71, this gives the formula

(11) c = 2 IT • Dist ippy

The theory of the lengths of curves in general could be developed at the

present stage without any essential difficulty. This subject, however, is very

different (in respect to method, at least) from the other matters which we are

considering, and therefore will be passed over with the remark that, starting

with the theory of distance here developed, all the results of this branch of

geometry may be obtained as applications of the integral calculus. Even the

theory of the length of circles which we have summarized in the paragraph'

above involves the ideas, if not the methods, of the calculus.

EXERCISES

1. Two point pairs AB and CD are congruent if and only if Dist {AB) =

Dist (^CV).

2. If A, B, C are noncollinear points, DLst (AB)+ Dist (5C) >Dist {AC).

3. Two triangles .45C and A'B'C are similar in such a way thatv4 corre-

sponds to A', B to B', and C to C if and only if

Dist(^.g) _ Dint {AC) ^ Dist(£C)

Dist {A'B') Dist {A'C) ~ Dist {B'C)

'
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4. Relative to a coordinate systap in which the axes are at right angles,

the distance between two points (x^, y^), (x^, y^ is

V(a;i - x^f + (!/i
- y^y,

the positive determination of the radical being taken. The distance from a

point (x^y^ to a line aa; + 6y + c = is the numerical value of

q,x^ + fcyi + e

Va'' + V

68. Area. The area of a triangle, as distinguished"from the measure

of an ordered point triad, may be defined as follows

:

Definition. Eelative to a unit triad OPQ (§ 49) such that the

lines OP and OQ are orthogonal and the point pairs OP and OQ are

congruent to the unit of distance, the positive number

l\m{ABC)\

is called the area of the triangle ABC, and denoted by a (ABC).

As was brought out in Chap. Ill, the theory of measure of polygons

belongs properly to the afiine geometry. But the standard formula

for the area of a triangle in terms of base and altitude (Ex. 1, below)

involves the ideas of distance and perpendicularity and hence belongs

to the parabolic metric geometry. It should be noticed that this

formula assumes that the side of the triangle which is regarded as

the base does not pass through a double point of the absolute invo-

lution. This condition is satisfied under the hypotheses of §§ 63, 64,

but is not always satisfied in a complex plane ; whereas the definitions

of equivalence and measure as given in Chap. Ill are entirely free of

such restrictions.

The theory of areas in general depends on considerations of order and

continuity which we have not yet developed, and which, like the theory of

lengths of curves, belongs essentially to another branch of geometry than that

with which we are concerned in this chapter. We shall, however, outline

the definition of the area of an ellipse from the point of view of elementary

geometry, because the derivation of the area of an ellipse from that of the

circle affords rather an interesting application of one of the theorems about

the affine group.

Let Pj, Pj, • •, P„ be any finite number of points in the order {P-^P^ • P„}

on an ellipse E^ with a point O as center, and let

A = a(OP^P^) + a(OP,P,)++ a(OP„P^).

It can easily be proved that-there exists a finite number, a(E^), which is the

smallest number which is greater than all values of A formed according to

the rule above.
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Definition. The number a(E^)i3 called the area of the ellipse.

In case E^ is a circle, C^, it is easy to prove that

where ir is the constant defined above and r — Dist (OPj).

Now suppose E^ is an ellipse with two perpendicular conjugate diameters

OA and OB which meet E^ in A and B respectively, and let C^ be the circle

through A with as center, and let C be the point in which the ray OB
meets C^. The homology T with OA as axis and the point at infinity pf OB
as center, which transforms B to C, is an affine transformation carrying the

ellipse E^ to the circle CK This homology transforms the triangle OAB to

the triangle OA C ; and the

areas of these triangles

satisfy the relation

a(OAC') ^ Dist (OC)
^j^

a (OAB) Dist (OB)

It follows, by § 50, that the

homology transforms any tri-

angle into one whose area is

k times as large. By the

definition of the area of au

ellipse, therefore,

a(C') ^ Dist (OC)

a (£2)
~ Dist (OB)

'

Denoting Dist (OA) by a and

Dist (OB) by b, this gives

a(E^)=:I^:
a

trab.
Fig. 54

EXERCISES

1. The numerical value of the measure of a point triad ABC is equal to

'Diat(AB) •Dist(CC'), where C is the foot of the perpendicular from C to

the line AB.

2. If abed is a simple quadrilateral whose vertices are on a conic and Pisa
variable point of the conic, -r^. , ,„ ^ t^- , ,^ ^^ Dist (Pa) Dist (Pc)

Biat(Pb)-Dist(Pd)

is a constant (cf. Ex. 2, § 51).

3. If a projective coUineation carries a variable pointM and two fixed lines

a, b to M', a', V respectively, the number

is a constant.

Dist(JI/r7)
,
Dist(M'aO

Dist (If6) Dist(ilf'6')
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4. Let F be the center of a hoi*logy T and I the vanishing line, T-^(l„').

If P is a variable point and Q = T{P),

where A; is a constant.

5. The area of an ellipse is ira/2, where a is the area of any inscribed

parallelogram whose diagonals are conjugate diameters.

6. Among all simple quadrilaterals circumscribed to an ellipse, the ones

whose sides are tangent at the ends* of conjugate diameters have the

least area.

7. Among all simple quadrilaterals inscribed in an ellipse, the ones whose
vertices are the ends of conjugate diameters have the greatest area.

8. Of all ellipses inscribed in a parallelogram, the one which has the lines

joining the mid-points of opposite sides as a pair of conjugate diameters has

the greatest area.

9. Of all ellipses circumscribed to a parallelogram, the smallest is the one

having the diagonals as conjugate diameters.

69. The measure of angles. The unit of distance may be chosen

arbitrarily, because any point pair can be transformed under the par-

abolic metric group into any other point pair. It is otherwise with

angles or line pairs, because, for example, an orthogonal line pair can-

not be transformed into a nonorthogonal pair. Therefore the systems

of measurement for angles obtained by choosing different units are,

in general, essentially different. We shall give an outline of the

generally adopted system of measurement, basing it upon properties

of the group of rotations leaving a point invariant.

Let J^ be an arbitrary point different from 0, and C the circle

through ^ with as center. Let ij (fig. 55) be the point different from

ij in which the line 1^0 meets C^, and let P^ and i| be the points in which

the perpendicular to 1^0 at meets C". By Cor. 1, Theorem 25, these

points are in the order {^Pi^jR} on the circle. Let o- denote the

segment -^-^i^. Any line through meets C^ in two points which

are separated by ij and i^, and hence meets o- in a unique point.

Let jP be the point in which the line thr^ough perpendicular to

I^B meets cr. And, in general, let [ij], m= 1, 2, • • • be the set such

that ij is the point in which the line through perpendicular to I^P^

21

meets <r.

*The ends of a diameter are the points in which it meets the conic.
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The line OE obviously meets the line J^J^ in the mid-point of the

pair ^jP, and the mid-point is between ij and P. Hence, by Cor. 1,

Theorem 25, we

have the order re-

lation {P'F^:^^,

where P' denotes,

for the moment,

the point not on

o- in which the

line OP meets the

circle. Since is

between P and P',

the same corollary

gives {P,P^P,P'}.

SincePis on the

segment a,wehave

either {PoPPl^}

QT {P^P^P^Pi}. The

second of these

alternatives, how-

ever, when combined with {P'l^PI^, would imply {P'iJ^PP}, con-

trary to {I^PJ^P'}. Hence {iJPJP^} is impossible, and we must

have {l^PPPi}. In like manner it is proved that {I^PPJ^} and, ia

general, that
{ij . • . ^^. . . ^ij}.

2" 2"-^

Let n denote the rotation (a point reflection in this case) which

leaves fixed and transforms I^ to i^, and let W" denote the rotation

transforming ij to ij. The rotation H*, being the product of the

orthogonal line reflection with OP as axis followed by that with

OP as axis, carries the point pair OP to the point pair OiJ. Hence*

(n*)^=n.

In like manner it follows that

• The symbol A» where A is any transformation and n a positive integer, has

been defined in § 24, Vol. I.

Fig. 55
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Let us denote (n^")" by 11^", where m is any positive or negative integer,

and n^"(i^) by ^.

Now all rotations are direct (Theorem 26). Hence ^^(^^P) =
S{P^P^P^)=S{P^P^Il). Combining these relations with {P„PPJl},we

have the order relation {I^PPPIl}, and in general, by a like argument,

2" 2" 2«

Hence we have {^-^,^,,^}, whenever < ^ <^ < 1, as can easily

be seen on reducing the two fractions to a common denominator.

Since 11^ = 1, it follows that whenever m/2" is expressible in the

form 2k + a, k being an integer,

(12) n"+' = n- and P,,^^ = P^.

Definition. Let ir be the constant defined in § 67, (11). The
number a ir, where a — m/2'', is called the measure of any angle

congruent to 4-llOP^. An angle whose measure is air is also said

to he equal to 2 a right angles.

The measure of an angle is indeterminate according to this defi-

nition. In fact, according to (12), whenever the measure of an angle

is ;8, it is also 2 ^tt + /S, where k is any positive or negative integer.

This indetermination can be removed by requiring that the measure

/3 chosen for any angle shall always satisfy a condition of the form

0s/S<2 7r, or-7r</Ss^.
Since the rays OJ^ do not include all rays with as center, the

definition just given does not determine the measures of all angles.

The required extension may be made by means of elementary con-

tinuity considerations, the details of which we shall omit. The essential

steps required are : (1) to prove that if P be any point ui the order

{I^PPI^}, there exists a positive integral value of n such that {l^IlPPIl}
;

(2) hence to prove that if P be any point on the circle not of the form

^„ the points of the form ^, fall into two classes, [^] and [P], such

that {^j^P^}, and there is no point, except P, on every segment J^PJ^

of tlie circle
; (3) having required that < a < /3< 2, to define 11''*+"'

/where k is an integer, positive, negative, or zero, and x is the number
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such that a < ic < /8 for all a's and yS's) as the rotation about carry-

ing^ to P
; (4) to show that if a; is a rational number m/w, (E")" = n""

;

(5) to define measure of angle as above, but with the restriction that

a = 'mil'' removed ; (6) to prove that the measure of the sum of two

angles differs from the sum of the measures by 2 hv, the simi being

defined as below.

Definition. If a, h, c are any three rays having a common origin,

but not necessarily distinct, any angle ^a^Cj congruent to 4-ac is said

to be the sum of any two angles 4 ap^ and 4 6/, such that 4 ap^ is

congruent to 4 ah and 4 6,Cj is congruent to 4 he. The sum 4 a^c^ is

denoted by 4 a])^+ 4 h^c^.

For some purposes it is desirable to have a conception of angle according

to which any two numbers are the measures of distinct angles. This may be

obtained as follows

:

Definition. A ray associated with an integer, positive, negative, or zero,

is called a numbered ray. An ordered pair of numbered rays having the same

origin is called a numbered angle. If the measure of an angle 4 hk in the earlier

sense is a, where osa<2 tt, tte measure of a numbered angle in which h is

associated with m, and k with n, is

2 (n — m) TT + a.

Defining the sum of two numbered angles in an obvious way, it is clear that

the sum of two numbered angles has a measure which is the sum of their

measures.

The trigonometric functions can now be defined, following the

elementary textbooks, as the ratios of certain distances multiplied

by ± 1 according to appropriate conventions. This we shall take for

granted in the future as having been carried out.

70. The complex plane. Instead of the assumption in § 64, we

could assume that the Euclidean plane is obtained by leaving out one

line ixorp. the complex projective plane (A, E, J, or A, E, H, C, E, I).

All the results of Chap. Ill and of the present chapter up to § 63 are

appKcable to this case. The rest of the theory, however, is essentially

different from that of the real plane, because the absolute involution

necessarily has two double points and because a line does not satisfy

the one-dimensional order relations. Thus the minimal lines play a

principal r81e and must be regarded as exceptional in the statement of

a large class of theorems; and another large class of theorems of

elementary geometry (those involving order relations) disappears

entirely.
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For the present, therefore, we ^all confine attention to the geometry

of reals, but shall make use, whenever we find it convenient to do

so, of the fact (§ 6) that a real space S may be regarded as immersed

in a complex space, S', in such a way that every line Z of S is contained

in a unique line I' of S'. As a direct consequence it follows that any

conic C" of S is a subset of the points of a unique conic of S'. For

any five points of C^, regarded as points of S', determine a unique

conic of S' which, by construction (§ 41, Vol. I), contains all points

of C^ and is uniquely determined by any five of its points. Similar

reasoning will show that any plane tt of S is contained ia a unique

plane tt' of S' ; and Hke remarks may be, made with regard to any

one-, two-, or three-dimensional form.

A like situation arises with respect to transformations. A projective

transformation 11 of a form in S is fully determined, according to the

fundamental theorem of projective geometry, by its effect on a finite

set * of elements of S. Since the fundamental theorem is also valid in

S', there is a unique projective transformation 11' which has the same

effect on this set of elements as 11.

Specializing these remarks somewhat we have : A Euclidean plane

•TT of S is a subset of the points of a certain Euclidean plane tt' of S'.

The line at infinity L associated with tt is a subset of the line at

infinity IL associated with tt'. The absolute involution I- on L deter-

mines an involution I' on l'„ in which all the pairs of I are paired.

The involution I' has two imaginary double points, the circular points

(§ 56), which shall be denoted by I^ and I^. Since a circle in w is a

conic having I as an involution of conjugate points, every circle in tt is

a subset of the points on a conic in tt' which passes through I^ and I^.

The problem of the intersection of a line and a circle, or indeed of

a line and any ellipse, can now be discussed completely. In the proof

of Theorem 25 the intersection of a line I and an ellipse E^ was seen

to depend on finding the double points of a certain projectivity

[i
J
-7- [i ] on I. Any three points L[, i", i"', and their correspondents

ij, Zj', i"', determine a projectivity on the complex line V containing

I, and, by the fundamental theorem of projective geometry, this pro-

jectivity is identical with [-^^^/^["[-Z'j] so far as real points are concerned.

The double points of this projectivity are common to the complex

*For example, in case of a one-dimensional form any three elements of the form

are such a set.
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line containing I and the complex conic containing U^. These points

are real if the hypothesis of Theorem 25 is satisfied; they are real

and coincident if Z is tangent to H^ ; otherwise they are imaginary.'

A similar discussion will be made in the next section of the prob-

lem of the intersection of two circles, but first let us make certain

definitions and conventions which wiH simplify our terminology.

According to the definitions in § 6, any point of S' is said to be

complex, and a complex point is real or imaginary according as it

is contained in S or not. In the case of lines, however, we have

three things to distinguish : a line of the space S, a line of S' which

contains a line of S as a subset, and a line of S' which contains

no such subset. In current usage a line of the last sort is called

imaginary, a line of either of the first two sorts is called real, and a

line of either of the last two sorts is called complex. The current

terminology therefore permits a confusion between a real line as a

locus in S and a real line as a particular kind of a complex line.

In most cases, however, no misunderstanding need be caused by

this ambiguity of language, and we shall in future usually employ

the same notation for the real line Z of S and the line I' of S' which

contains I. The same remarks apply to conic sections and, indeed, to

all one-dimensional forms.

Definition. Any element (point, line, or plane) or set of elements

of S' is said to be complex. Any element or set of elements of S is

said to be real. A line or plane of S' which contains a line or plane,

respectively, of S is said to be a real line or real plane of S'. A one-

dimensional form of S', a subset of whose elements are real elements

of S' and contain all the elements of a one-dimensional form of S, is

called a real one-dimensional form of S'. An element or one-dimen-

sional form of S' which is not a real element or real one-dimensional

form of S' is said to be imaginary.

Definition. A projective transformation of a real form of S' is

said to be real if it transforms each real element of S' into a real

element of S'.

Strictly speaking, these definitions distinguish between the two

senses of the word " real " by phrases such as " real line of S'." But

in practice we shall drop the " of S'." The one-dimensional forms as

thus far defined are all of the first or second degrees, but the defini-

tion can be extended without essential modification to forms of higher
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degree and also to forms of inoi# than one dimension. We shall take

this extension for granted whenever we'have occasion to use it.

In accordance with these conventions, the points I^ and I^ which

are really the double points of I' will be referred to in future as the

double points of the absolute involution I. In like manner, any line I

and circle C^ which have no real points in common will be said to

have in common the two points common to the complex line and the

complex conic which contain I and C^ respectively.

The utility of these conventions will be understood by the reader

if he will write out in full the discussion of pencils of circles in the

following section, putting in explicitly, in notation and language, the

distinction between elements of S and S'.

It is also convenient in many cases to extend the formulas for

distance, area, etc. given in §§ 67-69 to imaginary elements. Thus,

for example, in case (x^, y^ and (x^, y^ are imaginary points such that

('^i" '^^^+ {yi- y^^ is a positive real number, '^{x^- x^'' + {y^-y^'^

will be referred to as the distance from {x^, y^ to {x^, y^). Extensions

of terminology of this self-evident sort will be made when needed,

without further explanation.

71. Pencils of circles. Consider two circles Cj and C^ in a real

Euclidean plane. Let their centers be denoted by C^ and C^, and in

case C^ ¥= C^, let b denote the line C^C^. By Theorem 25, b meets each

circle in a pair of real points which we shall denote by i^^^ and I^Q^

respectively. The two pairs may be entirely distinct, in which case

let r denote the involution on b transforming each pair into itself ; or

they may have one point in common, in which case the line through

this point perpendicular to 6 is a common tangent of the two circles.

The two pairs cannot coincide, because the circles would then coincide.

Thus four cases may be distinguished

:

(1) The circles have the same center.

(2) The circles have a common tangent and point of contact.

(3) The involution F is direct.

(4) The involution T is opposite.

A circle is, by § 60, a real conic which, according to the terminology

of the last section, contains the double points of the absolute invo-

lution. Let us denote these points (the circular points) by J^ and I^

and apply the results of § 47, Vol. I, on pencils of conies.
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In the first case let denote the common center of the two circles.

The lines 01^ and 01^ are then tangent to both circles at I^ and I

respectively. Hence, by reference to § 47, Vol. I, it is evident that

the two circles belong to a pencil of circles of Type IV.

In the second case Cf and C^ have in common the points I^ and /

as well as a common tangent and point of contact. Hence they belong

to a pencil of Type II which contains all circles touching* the given

line at the given point.

In the third case, since the involution V is direct, the pairs P Q
and P^Q^ separate each other. Hence, by Theorem 29, the circles have

two real points, A^ and A^, in common. Hence they belong to a pencil

of Type I consisting of aU conies through A^, A^, I^, and I^. This may

also be seen as follows

:

Since the involution V has no double points (§ 21), it has a center

(§ 43) which we shall call 0. Let a be the line perpendicular to h at 0.

Then by the argument used in the proof of Theorem 29, is between

I[ and Q^. Hence a meets Cj in two real points A^ and A^ (fig. 52).

The pencil of conies through A^, A^, I^, I^ meets h in the pairs of an

involution among which

are I[Q^ and O and the

point at infinity of 6.

Hence Cj is a conic of

the pencil, and hence a

meets C^ in A, and A„.

In this case, therefore,

the two circles belong to

a pencil of Type I.

In the fourth case the

involution F cannot have

a double point at infinity,

because then the other

double point would have

to be the inid-point of

iJGj and also of I^Q^, and

thus C^ and C^ would have a common center. Hence in this case also

the center of the involution T is an ordinary point. Let a denote

*A conic and one of its tangent lines are said to touch each other at the point of

contact. Two conies touching a line at the same point are said to touch each other.

Fig. 56
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the perpendicular to b at 0, ancftet A^ and A^ be the points in which

a meets Cj. These points are imaginary ; for otherwise, since they

are interchanged by the orthogonal line reflection with i as axis,

would be between them, and hence, by Cor. 1, Theorem 25, would

be between -^ and Q^, contrary to the hypothesis that F is opposite.

Precisely as in the third case it follows that A^ and A^ are also on C^.

Hence in this case also C^ and C| belong to a pencil of Type I.

In each case the facts estabhshed make it clear that the two circles

could not both be members of more than one pencil of conies. Since

any two circles fall under one of the four cases, we have

Theorem 30. Definition. Any circle contains the real points of a

certain conic in the complex plane. Two conies determined by circles

are contained in a unique pencil of conies, which is of Type I, II, or IV.

The set of circles which the conies of such a pencil have in common with

the real plane is called a pencil of circles. If the pencil of conies is

of Type IV, the pencil of circles is the set of all circles having a fixed

point as center ; if the pencil of conies is of Type II, the pencil of

circles is the set of all circles tangent to a given line at a given point

;

if the pencil of conies is of Type I, the pencil of circles is the set of all

circles having a given pair of distinct real points in common, or else

the set of all circles with centers on a given line and meeting this line

in the pairs of an involution with two ordinary double points.

Definition. The line a joining the centers of two nonconcentric

circles is called the line of centers of the two circles or of the pencil

of circles which contains them. If the circles have a common tangent

and point of contact, this tangent is called the radical axis of the two

circles or of the pencil of circles ; if not, the line perpendicular to a

at the center of the involution in which the circles of the pencil meet

a is called the radical axis. The double points of this involution are

called the limiting points of the pencil of circles. Any circle of the

pencil is said to be about either one, or both, of the limiting points.

The discussion above has established

Theorem 31. The radical axis of two circles passes through all

points common to them which are not on the line at infinity. The

limiting points of the pencil which they determine are real if the cir-

cles meet only in imaginary points and imaginary if they meet in

two real points.
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Thboeem 32. The circular points, the limiting points of a pencil

of circles of Type I, and the two points not at infinity in which the

circles of the pencil intersect are the pairs of opposite vertices of a

complete quadrilateral. TJie sides of the diagonal triangle of this

quadrilateral are l„, the radical axis, and the line of centers of ths

pencil.

Proof. Let A^ and A^ (fig. 57*) te the points other than I^ and I^

common to the circles of the pencil, and let B^ and B^ be the points

of intersection of the pairs of hnes I^A^, I^A^ and I^A^, I^A^ respectively.

Whether A^ and A^ are

real or imaginary, the line

A^A^— a, which is the radi-

cal axis, is reaL Hence its

point at infinity^„ is real

;

and hence the line B^B^,

the polar of A^ with regard

to any circle of the pencil,

is real.

Since the line I = B^B^

is the polar of A^, it con-

tains the centers of all

conies through ^j, A^, I^, I^.

Hence b is the line of

centers of the pencil of circles through A^ and A^. The points B^

and B^ being diagonal points of the complete quadrangle A^A^I^I^

are evidently the double points of the involution in which the

pencil of circles meets h, and hence are the limiting points of

the pencil.

Taking Theorems 31 and 32 together, we see that any pair of real

points Aj^, A^ determines a pair of imaginary points B^, B^ such that

either pair is the pair of limiting points of the pencil of circles through

the other pair ; that, conversely, any pair of imaginarj' points B^, B^,

which are common to two circles, determines two real points A^, A^

which are in the above relation to^^, B^; and that the three pairs

A^A^, B^B^, I^I^ are pairs of opposite vertices of a complete quadri-

lateral. The relation between the two pencils -of circles, the one

* Fig. 57 is, of course, a diagram in which certain imaginary elements are repre-

sented by real ones. On the use of figures in general, cf . p. 16, Vol. I.

Fig. .57
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through A^ and A^ and the oth^ about A^ and A^, is thus extremel}'

symmetrical. It can be described in purely real terms by means of

the foUowing theorems and definition:

Theoeem 33. Definition. If two circles have a point in common

such that the tangents to the two circles at this point are orthogonal,

the two circles have another such point in common. Two circles so

related are said to he orthogonal to each other.

Proof. An orthogonal line reflection whose axis is the line of cen-

ters transforms each circle into itself and transforms the given point

of intersection into another point of intersection. Since orthogonal

lines are transformed to orthogonal lines, the tangents at the second

point are also orthogonal.

Theorem 34. If a line through the center of a circle C^ meets the

circle in a pair of points F^Q^ and meets any orthogonal circle K^ in

a pair of points P^Q^, the pairs P^Q-^ and I^Q^ separate each other

harmonically. Conversely, if P^Q^ and P^Q^ separate each other har-

monically, any circle through ij and Q^ is orthogonal to C\

Proof. Let T be one of the points common to the two circles, and

let t be the tangent to the circle TI^Q^^ at T. The pencil of circles

tangent to t at T meets

the line I[P2 in the pairs

of an involution T, and

hence the first statement

of the theorem will follow

if we can prove that ^
^nd Qi are the double

points of this involution.

The line perpendicular

to t at T and the line

perpendicular to im at i^

are tangents to the circle TP^Qi at T and i^ respectively, and hence

(Ex. 4, § 60) meet in a point M such that the pairs Mil and MT are

congruent. Hence the circle through T withM as center is tangent

to t atT and to P^I^ at ij. Hence i^ is a double point of T. A similar

argument shows that Q^ is also a double point.

To prove the converse proposition we observe that there is only

one circle through ij and T and orthogonal to C\ One such circle, by

Fig. 58
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the argument above, passes through the point Q^, which is harmon-

ically separated from ^ by ij and Q^ Hence the circle P^Q^T is

orthogonal to C^.

As a corollary we have

CoEOLLARY 1. The set of all circles orthogonal to a pencil of Type I
is the pencil of circles through the limiting points of the first pencil.

Another form in which this result may be stated is the following

:

Corollary 2. Let C^ he a circle, A^ any point not its center, and A
the point on the line joining A to the center of C^ which is conjugate

to A with regard to the conic C^. Then all circles through A and

orthogonal to C^ meet in A^.

Definition. Two points are said to be inverse with respect to a

circle if and only if they are conjugate vsdth regard to the circle and

coUinear with its center. The transformation by which every point

corresponds to its inverse is called an inversion or a transformation

hy reciprocal radii.

Thus, the center of the circle is inverse to every real point at infinity*

We shall return to the study of inversions in a later chapter.

EXERCISES

1. In case the limiting points of a pencil of circles are real, the radical axis

is their perpendicular bisector.

2. If is any point of the plane of a circle, and a variable line through

meets the circle in two points X, Y, the product OX • F is constant, and equal

to (OTy in case there is a line OT tangent to the circle at T. The product

OX • Oy is called the power of with respect to the circle.

3. The power of any point of the radical axis of a pencil of circles with

respect to all circles of the pencil is a constant, and this constant is the same

for all points of the radical axis.

4. If O is the center of a circle, C any point of the circle, and.4i and.4j

any two points inverse vyith respect to it,

0A^-0A^ = {0Cy.

5. Through two points not inverse relative to a given circle, there is one

and but one circle orthogonal to it.

6. By a center of similitude of two circles is meant the center of a dilation

(§ 47) or translation which transforms one of the circles into the other. If the

circles are concentric, they have one center of similitude ; if they are not con-

centric, they have two. The centers of similitude harmonically separate the

centers of the two circles. The one which is between the centers of the two
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circles is called the interior, and the other is called the exterior, center of

similitude. The common tangent *of two circles meet in the centers of

similitude.

7. Three circles whose centers are not coUinear determine by pairs six

centers of similitude which are the vertices of a complete quadrilateral having

the centers of the circles as vertices of its diagonal triangle. Generalize to the

case of n circles.

8. If a circle K^ meets two circles C^ and C^ in four points at which the pairs

of tangents are congruent or symmetric, the four points are collinear by pairs

with the centers of similitude of Cf and C^. Prove the converse proposition.

72. Measure of liue pairs. The circular points I^, I^ figure in a

very important formula for the measure of a pair of lines.* With the

exception of these two points, and two lines tj, i^ which pass through

them, all the points and lines to which we shall refer in this section

are real.

The center and the point at infinity of the axis of an orthogonal hne

reflection are harmonically conjugate with regard to I^ and I^. Hence

any orthogonal line reflection, regarded as a transformation of the

complex space, interchanges I^ and I^, and any displacement leaves

Jj and /j separately invariant. Moreover, there exists a displacement

transforming any (real) point of ? a. to any other (real) point of /„. Hence

a necessary and sufficient condition that a pair of points F, P' of Z„ he

transformable by a displacement to a pair Q, Q' of L is

(13) E(PP',7/,) = R(Qe',//,).

Now any pair of lines meeting L in P and P' can be transformed

by a translation into any other pair of lines meeting it in P and P',

and any pair of lines meeting Z„ in § and Q' can be transformed by

a translation into any other pair of lines meeting it in ^ and Q'.

Hence the necessary and sufficient condition that a pair of lines

meeting L in P and P' be congruent to a pair of lines meeting it

in Q and Q' is (13).

This suggests as a possible definition of the measure of a pair of

nonparaUel lines Z,,Z,,

R(y^,vJ,

where i and i are the lines joining the point of intersection of l^

and I to I and / respectively. It would satisfy the requirement of

*This formula is due to A. Cayley. Cf . EncyclopSdie der Math. Wiss. Ill AB 9,

p. 901, footnotes 98 and 99.
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being unaltered by displacements. In the case of measure of point

pairs, however, we have

Dist {AB)+ Dist (BC) = Dist (A C)

whenever {ABC}, and this condition is not satisfied by the cross ratio

given above. We have, in fact,

(14) R m^, i^i^) B {l,l„ i,s) = B {l,l„ vJ
whenever \, l^, l^ are concurrent. This is easily verified by substituting

in the formula for cross ratio (§ 56, Vol. I).

From (14) it is obvious that if we define

(15) m{l^l^)=c\og^{\l^,i^i^),

the measure of line pairs will satisfy the condition

m(Z^y+ m(?,y=m(y,)

whenever l^, l^, l^ are concurrent. Since the logarithm is a multiple-

valued function, we must specify which value is chosen; and we

must also determine the constant c conveniently.

Making use of the same coordinate system as in § 62, any point on

L may be denoted by (0, a, /S). In case a//8 is real, {a/^f > 0, and hence

a and y8 may be multiplied by a factor of proportionality so that

(16) a^+yS'^^l.

Throughout the rest of this section we shall suppose a and ^ subjected

to this condition. This is equivalent to supposing that

a = cos (0 + 2 nir), /3 = sin (0 + 2 ntr),

where = = 2 tt, and n is an integer, positive, negative, or zero.

The double points of the absolute involution satisfy the condition

and so may be written

I = {Q,l,i) and X,= (0, 1,-i),

where i =V— 1. Now if l^ and l^ meet Z„ in (0, a^, /8j) and (0, a^, /S^)

respectively, it follows that (§ 58, Vol. I)

^ («!«;,+ /3i/3a) + i (o^i^a- Q^a/Si)

a^a^+ ^1^2- i (ai^j- a^/Si)
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The numbers a= a^a^+^^^^ aij^ 0==a^^^— a^^^ satisfy the conditiou

a'-+ /3^ = 1. In fact, if a^= cos 9^ and a^= cos 6^, then a = cos 6 and

/8 = sin 6, where = 6^— 6^+2 rnr. Hence

Here again, a^a^— ^ and fi=1a^ satisfy the condition

In fact, a = cos 2 ^. Thus

(17) ^{l^l^,i^i^)=a +
= cos 2 + i sin 2 ^

Hence

(18) logK(;A.v,) = 2i0,

where 2 ^ is real and may be chosen so that ^ 2 ^ < 2 w. Hence,

choosing the constant c in (15) as -—> we have

(19) mil^l^) = ^\ogV^(l^l^,i^i^) = d,

where may be chosen so that S ^ < tt.

The formula (19) is interesting in connection with the theorem

that the sum of the angles of a triangle is equal to two right angles.

This proposition can easily be established without the consideration

of imaginaries, on the basis of the definitions in the last section. From

our present point of view, however, it appears as follows: Let the

three sides of a triangle be a, b, c, and let them meet the line at

infinity in A^, B„, C„ respectively. It is easQy verifiable that

B {A^B^, I/^) R (5„C„, J/^) • B (C„^„, J/^ = 1,

from which it follows by (19) that

m (aJ) + m (be) + m (ca) = ir.

Here we have a theorem on the line pairs rather than on the angles

of a triangle. Indeed, (19) is necessarily a formula for the measure

of a pair of lines and not of an angle, because of the fact that two

opposite rays determine the same point at infinity.

The number m(ab) may also be defined as the smallest value

between and 2 tt, inclusive, of the measures of the four angles

^ttj&j which may be formed by a ray a^ of a and a ray b^ of 6.

Following the common usage, we shall say that two pairs of lines

which are congruent make equal angles, etc.
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EXERCISES

1. UA and B are any two points, the locus of a point P such that the rays

PA and PB make a constant angle is a circle.

2. If in two projective flat pencils three lines of one make equal angles with

the corresponding three lines of the other, the angle between any two lines of

the one is the same as the angle between the corresponding lines of the other.

3. If OA, OB, OC, OD are four lines of a flat pencil,

B iOA, OB; OC, OD) = ^^^^^^ ^ 5!^4|^.^ ^ SYD-^-AOD sm4.B0D
In case the four lines form a harmonic set,

2 cot 4. AOB = cot 4- AOC + cot4.A0D.

4. If jIj, A^, Ag, A^ are four points of a circle,

Aj^Ag • A^A^ = Aj^A^ • AgA^ + A^A^ A^A^,

where AjAj represents Dist (AfA/) or — Dist (AfA/) according as S (OAfA/) =
S {OA^A^ or not, O being an arbitrary point of the circle and S (OA^Aj)

being a sense-class on the circle.

5. If a, b, c are the sides of a triangle and a^a^, b-J)^, CjC^ are pairs of lines

through the vertices be, ca, ab respectively, the six lines Oj, a^, Jj, 6j, a^, c^ are

tangents of a conic if and only if

sin (a^b) sin (a^b) sin (b^c) sin (b^c) sin (c^a) sin fag) _ .

sin (a^c) sin (a^c) sin (b^d) sin (b^a) sin (Cj6) sin (Cji)

6. The points of a ray having (x, y) as origin may be represented in

^^^^°^
(=c + Xa,y + \^,

where a and /S are fixed and X>0. There is a one-to-one reciprocal corre-

spondence between the rays having (x, y) as origin and the ordered pairs of

values of a and y3 which satisfy the condition

a^+ P,^
= 1.

WTien a and fi satisfy this condition, the numerical value of A is the distance

between (x, y") and (a; -^ Au, ^ -I- \pi)-

7. Two angles formed by the pairs of rays

(x„ + Aa, 3^0 + A^) and (a, -I- Aa', y„ -t- A^')'
;^>o

(S„ -f Aa, y„ + A/8) and (2„ + AS', y^ -^ A^')

respectively are congruent if and only if

ai^ -f ^^' = S5' + yS/g'.

8. Relative to the homogeneous coordinates employed above, the formula

for the distance between (a;g, x-^, x^ and (y^, y^, y^) may be written

=^0^0 a;oyo

^0 x^ x^
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73. Generalization by projec^on. The relation established in § 66

between Euclidean and projective geometry furnishes a source of new
theorems in each. A theorem which has been proved for projective

geometry can be specialized into a theorem of Euclidean geometry, or

a theorem of Euclidean geometry may be generalized so as to furnish

a theorem of projective geometry.

The two processes, of generalization and of specialization, may often

be combined in a happy way with the principle of duality or with

other general methoxls of projective geometry. Thus a theorem proved

for Euclidean geometry can be generalized into a theorem of projective

geometry and the dual of the general theorem specialized into a new
theorem of Euclidean geometry. As an example, let us take the

theorem of Euclid:

A. The perpendicularsfrom the vertices of a triangle to the opposite

sides meet in a point (the orthocenter).

The sides of the triangle meet the line at infinity in three points,

and the three perpendiculars are lines from the vertices to the

conjugates of these three points in the absolute involution. The

Euclidean theorem is therefore a special case of the following

projective theorem:

B. The lines joining the vertices of a triangle to the conjugates, with

respect to an arbitrary elliptic involution on a line I, of the points in

which the opposite sides meet I, are concurrent.

This is a portion of Theorem 27, Chap. IV, Vol. I, the orthocenter

and the three vertices of the triangle being the vertices of a complete

quadrangle. But though the Euclidean theorem is a special case, yet

the general theorem for elliptic involutions in real geometry may easily

be proved by means of it. For, given any elliptic involution whatever

and any triangle, the involution can be projected into the absolute

involution and the given triangle will go into a triangle of the Euclid-

ean plane. Hence the general theorem, B, that certain three lines

meet in a point could fail to be true only if the Euclidean theorem,

A, failed.

It is to be noted that this proves the theorem only for a real space and

an elliptic involution. In a oomplex space (§ 5) it might happen that any
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transformation which carried the involution into the absolute involution

would carry the triangle into one whose sides are not all real.

Now consider the plane dual of the projective theorem, B.

B'. The 'points of intersection of the sides of a triangle with the

conjugates in an arbitrary involution at a point L, of the lines joining

the vertices to L, are collinear.

If the involution at L is taken as the orthogonal involution we

have the Euclidean theorem:

A'. The three sides of a triangle are met in three collinear points

hy the perpendiculars from a fixed point to the lines joining this point

to the opposite vertices.

The second of the two processes which we are here emphasizing, namely

the discovery of Euclidean theorems by specializing projective ones, is bril-

liantly illustrated in many of the textbooks on projective geometry. We may
mention the following :

L. Cremona, Elements of Projective Geometry, Oxford, 1894.

T. Keye, Geometrie der Lage, Leipzig, 1907-1910.

R. Sturm, Die Lehre von den GeometrischenVerwandtschaften, Leipzig, 1909.

R. Boger, Geometrie der Lage, Leipzig, 1900.

H. Grassman, Projective G«ometrie der Ebene, Leipzig, 1909.

J. J. Milne, Cross-Ratio Geometry, Cambridge, 1911.

J. L. S. Hatton, Principles of Projective Geometry, Cambridge, 1913.

The reader will find material for the illustration of the second process,

namely the discovery of projective theorems by generalizing metric ones, in

Euclid's Elements, and even more in such books as the following

:

J. Casey, A Sequel to the First Six Books of the Elements of Euclid,

Dublin, 1888.

C. Taylor, Ancient and Modern Geometry of Conies, Cambridge, 1881.

J. W. Russell, Elementary Treatise on Pure Geometry, Oxford, 1905.

The class of theorems which are here in question will be dealt with to some

extent in the following chapter, and the methods available will be extended

in Chap. VI by the study of inversions. But on account of the magnitude of

the subject many important theorems will be found relegated to the exercises

and many others omitted entirely. In nearly every such case, however, a good

treatment can be found in one or another of the books on projective geometry

referred to above.

The current textbooks do not often classify theorems on the basis of the

geometries to which they belong (§ 34) and the assumptions which are neces-

sary for their proof (§ 17). Some progress has been made on such a classifi-

cation in the present book (cf. § 83 below), but more remains to be done.
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Another criticism on current UBoks is that they employ imaginary points

in a rather shy and awkward manner. This is doubtless due to the fact that,

previous to a logical treatment of the subject based on definite assumptions,

the geometry of reals was regarded as having, somehow, a higher degree of

validity than the complex geometry. The reader will often find it easy to

abbreviate the proofs of theorems in the literature by a free use of imaginary

elements (cf. § 78).

EXERCISES

1. Generalize projectively the following theorems:

(a) The medians of a. triangle meet in a point.

(b) The perpendiculars at the mid-points of the sides of a triangle meet

in a point.

(c) The diagonals of a parallelogram bisect each other.

2. Let A^, Bj, Ci be the points in which the lines joining the vertices A, B, C,

respectively, of a triangle to the orthocenter, 0, meet the opposite sides. The
circle through A^, B^ and Cj contains the mid-points of the pairs AB,BC, CA
and of the pairs OA, OB, OC. This circle is called the nine point or Feuerbach

circle of the triangle. Cf. Ex. 7, § 41.

3. A hyperbola whose asymptotes are orthogonal is said to be equilateral

or rectangular. Every hyperbola passing through four points of intersection

of two equilateral hyperbolas is an equilateral hyperbola.

4. All equilateral hyperbolas circumscribed to a triangle pass through its

orthocenter.

5. The centers of the equilateral hyperbolas circumscribed to a triangle

lie on the nine-point circle.



CHAPTER V*

ORDINAL AND METRIC PROPERTIES OF CONICS

74, One-dimensional projectivities. The general discussion of one-

dimensional projectivities in Chap. VIII, Vol. I, has a great many

points of contact with the ordinal and metric theorems of the last

three chapters. Por example, a rotation leaving a point invariant

transforms into itself any circle C* with as a center. The transfor-

mation effected on the circle hy the rotation is a one-dimensional

projectivity havmg the point as center and the line at infinity as

axis. The defining property of the axis of the projectivity in this case

is that if a pair of points AB ot the circle be rotated into a pair A'B'

(i.e. if ^AOB be congruent to ^A'OB'), then the line AB' is parallel

to the line A'B, which is a well-known Euclidean theorem.

The proposition that any rotation is a product of two line reflec-

tions corresponds to the proposition that any projectivity is a product

of two involutions. The point reflection with as center is commut-

ative with all the other rotations about and hence effects on (f an

involution which (§ 79, Vol. I) belongs to all the projectivities effected

on C by the rotations of this group. This involution is harmonic

(§ 78, Vol. I) to the involution effected on C by any orthogonal line

reflection whose axis contains 0, and hence aU the involutions of the

latter sort form a pencil. Thus alL the theorems of § 79, Vol. I, can

be specialized so as to yield theorems about the group of rotations

with as center.

There are many other applications of the theorems in Chap. VI,

Vol. I, to affine and Euclidean geometry (a few of them are indicated

in the exercises below), but the main application which we are to

consider at present is to the theory of order relations. Let us first

recall some of the ordinal theorems which have already been estab-

lished, and interpret them on the conic sections. Extending the

definition of § 4, we shall say

:

* In the earlier chapters of this volume we have used only the first seven chap-

ters of Vol. I. The present chapter may advantageously be read in connection with

Chaps. VIII-X, Vol. I. Chap. IX is first used in § 77 and Chap. X in § 85.

170
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Definition. A projectivity«of a one-dimensional form in any

ordered space is hyperbolic, parabolic, or elliptic according as it

has two, one, or no double points.

With regard to involutions, we have already established the follow-

ing propositions (§21): If an involution preserves sense, each pair

separates every other pair. If an involution alters sense, no pair

separates any other pair. An involution which does not alter sense

is elliptic ; that is to say, tlie pairs of a hyperbolic involution do not

separate each other. The double points of a hyperbolic involution

separate every pair of the involution.

Definition. If A, B, C, D are four distinct points of a conic, the

point of intersection of the lines AB and CD is called an interior

point in case the pairs AB and CD separate each other* and an

exterior point in case these pairs do not separate each other. The

set of all interior points is called the interior or inside of the conic,

and the set of all exterior points is called the exterior or outside of

the conic.

The pairs AB and CD are conjugate in the involution with as

center. Hence, if these two pairs separate each other, this involution

preserves sense and is such that any two of its pairs separate each

other. Hence any two lines through which meet the conic meet it

in pairs of points which separate each other. That is to say, the def-

inition of an interior point is independent of the particular choice of

the points A, B, C, D. A like argument applies in case is exterior.

In case the involution with as center has double points, the liaes

joining to these points are tangent to the conic. Hence the next

to the last of the propositions about involutions stated above implies

that there are no tangents through an interior point. These results

may be stated as follows

:

Theorem 1. The points eoplanar with a conic fall into three

mutually exclusive classes : the conic itself, its interior and its

exterior. Each interior point is the center of an involution on

the conic which preserves sense, and each exterior point of one

which alters sense. All points of a tangent, except the point of

contact, are exterior points of the conic.

* Cf . § 20, particularly the footnote.
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Now let be any interior point. If 0' is any point conjugate to

with regard to the conic, there exists (cf. fig. 59) a complete quad-

rangle ABCD whose vertices are points on the conic such that AB
and CD meet in and AD and CB meet in 0'. But by Theorem 7,

Fig. 59

Chap. II, if AB separates CD, then AD does not separate BC, and

hence O'is an exterior point. Hence the polar line of any interior

point consists entirely of exterior points. Hence

Theorem 2. All points conjugate to an interior point are exterior.

Suppose, further, that the tangent to the conic at B meets the line

00' in a point P and the line BD meets 00' in a point P' (fig. 59).

Then P and P' are conjugate points with regard to the conic. Moreover,

ABCDj^OPO'P'.

Since A and C do not separate B and D, it follows that the pair 00'

does not separate the pair PP'. That is.

Theorem 3. On a line containing an interior point of a conic the

pairs of conjugate points with regard to the conic do not separate

one another.

By elementary propositions about poles and polar there follow

at once

:

GoKOLLARY 1. The pole of a line which contains an interior point

is an exterior point.

Corollary 2. The polar of an exterior point contains some in-

terior points.
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In § 78, Vol. I, it was establi^ed that any projectivity is a product

of two involutions one of which is hyperbolic. Since a hyperbolic

involution is opposite, it follows that if the given projectivity is direct,

it is a product of two opposite involutions ; and if the given projec-

tivity is opposite, it is a product of a direct and an opposite involution.

But in the second case the direct involution is, by the argument just

made, a product of two opposite involutions. Hence

Theorem 4. A direct projectivity is a product of two opposite

involutions, and an opposite projectivity is a product of three opposite

involutions. An opposite projectivity is also expressible as a product

of a direct and an opposite involution.

In the case of projectivities on a conic, the axis of the product of

two involutions is the line joining their centers. Hence we have, as

consequences of this theorem,

Corollary 1. Any line in the plane of a conic contains points

exterior to the conic.

Corollary 2. A projectivity whose center is an interior point, and

whose axis therefore consists entirely of exterior points, is direct.

In the fourth exercise, below, we need the following definition

:

Definitiok. The line perpendicular to a tangent to a conic and

passing through its point of contact is called the normal to the conic

at this point.

EXERCISES

1. "^^Tiat transformations of the Euclidean group effect projectivities on

Zo to which the absolute involution belongs? How are these distinguished

from the remaining similarity transformations by their relation to the cir-

cular points? What transformations of the Euclidean group are harmonic

on l„ to the absolute involution ?

2. Show that the measure of a line pair as defined in § 72 is the logarithm

of the characteristic cross ratio of a certain projectivity on U. Obtain an

analogous formula for the measure of an angle in terms of the characteristic

cross ratio of a projectivity on a circle.

3. Any noninvolutoric planar collineation which leaves invariant a conic

and a line transforms the points of the line by a projectivity to which belongs

the involution of conjugate points with regard to the conic.
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4. If P is any fixed point of a ccmic and RQ, a, vari3,ble. point pairrsjioh

that 4RPQ is a right angle, the lines RQ, meet in a fixed point on the,

normal at P.
, ., ... •

5. The lines joining homologous points in a noninvoliitorio. projectivity

on a conic are the tangents of a second cbnic. '

6. If P is any fixed point of a conid and RQ, a variable pair of' points

such that ^RPQ has constant measure, the lines RQ are the tangents to a

second conic.
: .:

;

7. If a projectivity F on a line is a product of an involution having double

points, Aj^ and Bj, followed by another involution, and if. r-i(4j) =yt„ t^'A^

and T(Aj) = A^, then A^ and B^ are harmonically conjugate with regard to.

Ag and A^ whenever A^t^ A^; and B^ = A^ whenever Ag = A^.

8. If ^1 and B^ are a pair of an involution I which is left invariant by a

projectivity T, and if r-i(^i) = Af^^^A^ and T(Aj) = A^-^ ^„, then A^ and

A^ are harmonically conjugate with regard to ^j and By
9. Let A and A' be any pair of an involution I. \i A -^ A', any projec-

tivity n which transforms I into itself and leaves A invariant is either the:

involution, with A and A' as double points, or the identity.

10. Generalize § 80, Vol. I, so as to apply to the group of translations and

the equiaffine group, using the fact that the transformations in each of thfese

groups are products of pairs of involutoric projectivities.
,

75. Interior and exterior of a conic.

Theoeem 5. Any two joints of a conic are the ends of two linear

segments one consisting entirely of interiorpoints andfhe other entirely

of exterior points.

Proof. Let the given points be denoted by A and S, let C and D.

be any two other points of the conic which separate A and B, and Jet,

<7 and a- represent the segments ACB and ADB on the conic. By the

definition of the order relations on the conic, the lines joining C to

the points of a meet the line AB in the points of a segment ^
' whose

ends are A and^, and these points satisfy the definition of ii),terior

points. In like manner the lines joining C to points of a meet the

line AB in a segment a-' which is complementary to F' and consists

entirely of exterior points.

In a real plane the following theorem is a consequence of what

we have just proved, but in order to have the result for any ordered,

plane we give a proof which is entirely general.

Theorem 6. Any two interior points of a conic are the ends of d:

segment consisting entirely of interior points. '
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Proof (fig. 60). Let A and C^& two interior points. Let A^ be any
point of the conic not on the line^C. The lines J^Cand A^A are not

tangent to the conic, since (Theorem 1) the involutions at^ and Care
both elliptic. Let A^ and B^ respectively be the points, distinct from

A^, in wliich the lines A^A and A^C meet the conic. The two segments

of the conic whose ends are A^ and B^ are projected by the lines

through A^ into the two segments of the line J C which have A and
C as their ends. "We shall prove that the segment o- of the line AC
which is the projection of the segment complementary to A^AJi^ con-

sists entirely of interior points.

Let B be any point of a. The

lineA^ then meets the conic in

a point Cjwhich is separated from

A^ by A^ and B^. Let B^A meet

the conic in C^, let C^ meet it in

A^, and let AJ3 meet it in B^, so

that A^B^C^Afi^C^ form a Pascal

hexagon whose pairs of opposite

sides meet in A, B, C. SLoce A is

an interior point, we have the

order {C^A^B^A^. SinceB was chosen so that C^ and J^ are separated by

j5„ and J„, we have {5„ C„A^A\. From these there follows {S C„ABA}(.

Transforming this by the involution atA we have { C^B^A^C^A^. Hence

we have {B^C^A^C^B^A^. Since the involution with center at C is

elliptic,we have {-Bj^j^j^J. Hencewehavef^^Cj^jjC^-B^^j^J. Hence

Cjj and A^ separate A^ and C^, and hence B is interior to the conic.

Theorem 7. Any two exterior points are ends of a segment consist-

ing entirely of exterior points.

Proof. Let the two exterior points be E^ and E^. If the line E^E^

is tangent, all points on it except the points of contact are exterior,

since each of these points is the center of a hyperbolic involution

on the conic. In this case the theorem is obvious. If the line E^E^

meets the conic in two points, the theorem reduces to Theorem 5.

If the line E^E^ does not meet the conic, and both the segments with

-E'j and E^ as ends should contain interior points, /, and I^ respectively,

then neither of the segments whose ends are I^ and I^ could consist

entirely of interior points, contrary to Theorem 6.
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The theorems above are connected with the following algebraic considera-

tions : Any involution can be written in the form

(1) :^ = ££+*.
^ ' ex— a

If we regard a, 6, c as a set of homogeneous coordinates in a projective plane,

then for every involution (1) there is one and only one point (a, b, c) ; and

inversely for every point (a, b, c) there is a unique involution (1), provided

that the point does not satisfy the condition

(2) a'+bc = 0.

By § 18 the projectivities (1) for which

(3) o" + Jc >

are opposite, and those for which

(4) a" + 6c <

are direct.

The equation (2) represents a conic section of which the points satisfying (3) are

the exterior and those satisfying (4) are the interior. This may be proved as follows:

The conic is given by the parametric representation (§ 82, Vol. I)

a:b:c = x:x^: — \,

and any involution on the conic is given by the transformation (1) of the

parameter x. The center of the involution is the point of intersection of the

lines containing pairs of the involution. The point (0, 0, 1) of the conic is

given by the value of the parameter x and thus is transformed to the point

given by the value x = — b/a, namely, the point (— ah, b^, — a"). The point

(0, 1, 0) of the conic is given by a; = oo and thus is transformed to the

point given by a; = a/c, namely, the point (ac, a", — c^). The point of inter-

section of the lines joining (0, 0, 1) to ( — ab, b\ — a^) and (0, 1, 0) to

(ac, a\ — c^) is manifestly (— a, 6, c). Hence (— o, J, c) is the center of the

involution (1), and therefore is interior to the conic if (4) is satisfied and the

involution direct, and exterior to the conic if (3) is satisfied and the involu-

tion opposite.

EXERCISES

1. Parabolic projectivities are direct.

2. Two of the three vertices of apy self-polar triangle of a conic are

exterior points.

3. The center of a hyperbola is an exterior point.

4. The center of a circle is an interior point.

5. In a Euclidean plane all points interior to a circle and all points on it

(except the point of contact of the tangent in question) lie entirely on one

side of any one of its tangents.
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6. If a segment A^B^ is contafted in a segment A^B^, the circle the ends

of whose diameter are Aj^ and i?j is composed of points interior to the circle

the ends of whose diameter are A^ and B^.

7. In a Euclidean plane all points interior to an ellipse lie entirely on

one side of any line consisting entirely of exterior points.

8. Any two pairs of conjugate diameters of an ellipse separate each other.

Two pairs of conjugate diameters of a hyperbola never separate each other.

9. If is the center of a conic K^, the polar reciprocal of a conic C
with respect to lO will be an ellipse, parabola, or hyperbola according as

is interior to, on, or exterior to C^.

10. Consider a conic C in a planar net of rationality satisfying Assump-

tion H. The points of the net exterior to the conic fall into two classes [£]
and [i^] such that two tangents to the conic can be drawn from any point E
and no tangent can be drawn to the conic from any point F. On any line in

which one E is conjugate to an F with regard to C^, every E is conjugate to

an F. On any line in which one E is conjugate to an E, every E is conjugate

to an E and every F to an F. The interior points fall into two classes [/]

and [^] such that the pairs of conjugate lines on a point / either both meet

C^ or both do not meet C^, whereas one member of any pair of conjugate lines

on a point J meets C^ and the other member does not meetC
11. Let the equation of a conic be /(x^, ij, r^) = and let the determinant

of the coefficients of /(Xq, x^, x^) be

«00 «01 %i
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Theorem 9. On any line through an interior point of a conic the

involution of conjugate points is hyperbolic, and the line meets the

conic in the double points of this involution.

By Cor. 2, Theorem 3, the polar of an exterior point is a line

through an interior point. The lines joining the exterior point to

the points of intersection of its polar with the conic are tangents.

Hence i

Corollary 1. Through any exterior point there pass two tangents

to u conic.

Corollary 2. Two involutions, one at least of which is elliptic,

have one and only one common pair.

Proof. The center of an elliptic involution represented on a conic

is an interior point. The line joining this point to the center of any

other involution meets the conic in two points which are pairs of

both involutions. Since any pair of an involution is collinear with

the center, the two points so constructed are the only pair common

to the two involutions.

A special case of this corollary may be stated iu the following form:

Corollary 3. In a given one-dimensional form there is one and

only one pair of elements which are conjugate with respect to a given

elliptic involution and harmonically separated by a given pair of

elements.

Since a hyperbolic involution is determined by its double points, it

is evident that any two hyperbolic involutions are equivalent under

the group of all projectivities of a one-dimensional form. The corre-

sponding theorem for elliptic involutions is best seen by representing

the involutions on a conic. The two centers I^, I^ are interior points,

and the line joining them meets the conic in two points Cj, C^ which

do not separate them (Theorem 5). Let 0^ and 0^ be the double

points (Theorem 8) of the involution in which I^I^ and C^C^ are pairs.

An involution with either of the points 0^ or 0^ as center will

evidently transform the one with 7^ as center into the one with I^

as center. Hence

Corollary 4. Any two elliptic involutions in the same real one-

dimensional form are conjugate under the projective group of that

form.
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-' '
.1, EJ^RCISES

. . ,
, ,

; 1 . . 'i

1. AD involutions which are harmonic to (i.e. commutative with and
distinct froiA)' an elliptic involution are hyperbolic.

2. If two points A, B of a line separate each point P(P ^A, P 9^ B) of

the line from its conjugate point in a given elliptic involution, A and B are

conjugate in this involution.

3. A hyperbolic projectivity is opposite or direct according as a pair of

homologous points does or does not separate the double points.

" 4. Elliptic projectivities are direct.

5. The center of an ellipse is an interior point.

6. The involution determined on the line at infinity of a Euclidean plane

by an ellipse' is elliptic, by a hyperbola, hyperbolic.

7. Any two ellipses are conjugate under the affine group.*

8. An involution in a flat pencil is either such that every pair of conju-

gate lines is orthogonal or there is one and only one orthogonal pair of

conjugate lines.

9. A conic having two pairs of perpendicular conjugate diameters is

a circle.

10. If ^'Ij and A^ are the real limiting points of a pencil of circles, each

circle of the pencil either contains j4j and is on the opposite side of the radi-

cal axis from A^, or contains A^ and is on the opposite side of the radical

axis from A-^.

11. Of two circles of a pencil, both containing the same limiting point,

one is entirely interior to the other.

12. For any angle, 4- ABC, there is one and only one pair I, I' of orthog-

onal lines through B which separate the lines BA and BC harmonically. One

line, I, of the pair contains points P interior to 4 ABC, and JlABP is con-

gruent to 4PBC. The line I is called the interior bisector, and the line I' the

exterior bisector, of the angle 4 ABC.
13. The asymptotes of an equilateral hyperbola bisect any pair of conju-

gate diameters.

14. The bisectors of the angles of a triangle ABC meet in four points, one

in each of the four regions determined hjABC according to § 26. These four

points are the centers of four circles inscribed in ABC and are the vertices of

a complete quadrilateral of which ABC is the diagonal triangle. The mid-

point of the pair BC is the mid-point of the points of contact of either pair

of inscribed circles whose centers are coUinear with A.

15. Let V and T" be the vanishing points (§ 43) of a projectivity on a

line, the notation being so assigned that the point at infinity is trans-

formed to V There exist two points A, B which are transformed to

two points A', B' such that

AV=VB = A'V'=V'B'.

»Cf. §37, Exsv 14andl5.
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77. Ruler-and-compass constructions. The discussion in Chap. IX,

Vol. I, reduces any quadratic problem to the problem of finding the

points of intersection of an arbitrary line with a fixed conic. Accord-

ing to Theorems 5 and 9 the necessary and sufficient condition that

a line coplanar with a conic meet it in two points is that the line

pass through an interior point of the conic. Hence this condition

will serve to determine the solvability of any problem of the second

degree in a real space. Thus the discussion of linear and quadratic

constructions, under the projective meaning of these terms, may be

regarded as complete.

When we adopt the Euclidean point of view, the fixed conic may

be taken as a circle; and therefore every problem of the second

degree is reduced to the problem of determining the points of inter-

section of an arbitrary line with a fixed circle (cf. § 86, Vol. I).

The constructions of elementary Euclidean geometry which are

known as ruler-and-compass constructions involve the determination

of the points of intersection (whenever existent) of two arbitrary lines,

or of an arbitrary line with an arbitrary circle, or of two arbitrary

circles. The last of these problems has been shown in § 65 to be

reducible to the first and second. Hence any ruler-and-compass con-

struction may be reduced to the problem of finding the intersection

of an arbitrary line with a fixed circle.

On account of the special character of the line at infinity, there is

not a perfect correspondence between the linear constructions of pro-

jective geometry and the Euclidean constructions by means of a ruler.

The operations involved in the linear constructions of projective

geometry are

(a) to join two points by a (projective) line

;

(&) to take the point of intersection of any two lines.

These are evidently equivalent to the followingEuclidean operations:

(1) to join two ordinary points by a line

;

(2) to take the point of intersection of two nonparallel lines

;

(3') to draw a line through a given point parallel to a given line.

The first of these operations corresponds to the proposition that

two points are on a imique line, the second to the proposition that

two nonparallel lines determine a unique point, These operations
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may be thought of as carried dbt with a straightedge or ruler whose

length is not limited.

The operation (3') can be effected by means of (1) and (2), together

with the following operation

:

(3) to find on any ray through a point A, a point C such that the

point pair ^C is congruent to a preassigned point pair AB*

For let A be the given point and let BChe the given line. Let be

a point on the lin&AB in the order {ABO} such that-B^ is congruent

to BO. Let A be the point of the line OC in the order OCA such that

CO is congruent to CA. Then AA is evidently parallel,to BC.

Thus (1), (2), and (3) serve as a basis for all linear operations in

the projective sense. They obviously yield also a certain class of

quadratic constructions; but they do not suffice for all quadratic

constructions. The latter may be provided for, as explained above,

by adjoining the operation of taking the point of intersection with a

fixed circle of an arbitrary line through an arbitrary interior point.

For the proof that (3') is not a consequence of (1) and (2), and

that (1), (2), (3) do not provide for all quadratic constructions, the

reader is referred to Hilbert, Grundlagen der Geometric, Chap. VII

(4th edition, 1913).

EXERCISES

1. Given three collinear points ^4, B, C such that .45 is congruent to BC,

show how to construct a parallel to the Idne AB through an arbitrary point P
by means of the operations (1) and (2) alone.

2. Given two parallel lines, show how to find the mid-point of any pair of

points on either of the lines by means of (1) and (2) alone.

3. Given a parallelogram and a point P and a line I in its plane. Through

P draw a line parallel to I, making use of the ruler only.

* It is important to notice that the pairs AB and A C have the point A in com-

mon. Thus (3) provides merely for drawing a circle through a given point and

with a given other point as center. The drawing instrument to which this corre-

sponds is a pair of compasses which snaps together when lifted from the paper, so

that it cannot he used to transfer a point pair ^B to a point pair A'B' unless

A = A'. This will be understood by anyone reading the second proposition in

Euclid's Elements, which shows how to lay off a point pair congruent to a given

point pair on a given ray. The operation (3) may be replaced by the operation of

finding on any rayAB a, point C such that the point pairAG is congruent to a fixed

point pair OP. The instrument for this operation may be thought of as a measur-

ing rod of fixed length (say unit length) without subdivisions. (Cf . the reference

to Hilbert, belpv.)
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4. Given a point pair AC and its mid-point B, using the ruler alone,

construct the point pair AD such that
,

AC _
AD ""

5. Griven four collinear points A, A', B, B', construct the fixed point of

the parabolic projectivity carrying'^ to^' and B to B'.

6. Given a projectivity on a line, find a pair of corresponding points A
and A' such that a given pointM is the mid-point of the segment AA'.

7. Inscribe in a given triangle a rectangle of given area.

8. Given four tangents of a parabola!, construct a tangent parallel to a

given line.
'.-i

9. Given three points of a hyperbola and a line parallel to each asymptote,

find the point of intersection of the hyperbola with a line parallel to one of

,the asymptotes.

10. Construct by ruler and compass any number of tangents to a conic

given by five of its points ; also any number of points of a conic given by

ive of its tangents.

11. Construct any number of points of a parabola through four given

points. . .

12. Construct any number of points of a parabqla ,touching three given

lines and. passing through a given point.

13. Through a given point construct an orthogonal pair of lines confu-

gate iyith regard to a conic. (If the point is exterior to the conic, these

lines are the bisectors of the angles formed by the tangents to the ponic

from this point.)

78. Conjugate imaginary elements. It has been shown in § 6 that

a real projective space S can be regarded as immersed in a complex

projective space S' in such a way that every line of S is a subset of

a uniq.ue line of S'. Certain additional definitions and conventions

have been introduced in § 70. But in both these places little use was

made of the properties of imaginary elements beyond their existence

and the fact that S' satisfies Assumptions A, E, P. We shall now

prove some of the most elementary theorems about the relation be-

tween elements of S and S'.

DEFiNi;riON. Two imaginary points, lines, or planes are said to be

conjugate relative to a real one-dimensioned form of the first or second

degree if and only if they are the double elemelits of an' involution

in the .real form.
., . -

As an example consider a real conic C^'and a line i exteriocto it.

The conic and. the line have in G0j:]^inpnthe dDuJ)le points, of.an ellip-

tic involution on I. But these points are also the double points of
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the involution on C^ whose axis is I. Hence the points common to

C^ and I are conjugate imaginaries both with respect to C^ and to I.

Since any one-dimensional form of the first or second degree whose

elements are points is a line or a point conic, and since the double

points of any involution on a conic are the intersections of the axis

of the involution with the conic, we have

Theorem 10. Any two conjugate imaginary points are on a

real line.

By duality we have that any two conjugate imagiuary planes are

on a real line.

Two conjugate imaginary lines are by definition on a real point,

line conic, cone of lines, or regulus. If they are on a real line conic,

the plane dual of the argument above shows that they are on a real

point. By duahzing in space we obtain the same result for conjugate

imaginary lines of a cone of hnes. Hence we have

Theoeem 11. Any two conjugate imaginary coplanar lines are on

a real point and any two conjugate imaginary concurrent lines are

on a real plane.

Conjugate imaginary lines on a regulus \^iU. be considered in a

later chapter.

Theorem 12. The lines joining a real point to two conjugate

imaginary points not collinear with it are conjugate imaginary lines.

Proof. The conjugate imaginary points are double points of an

elliptic involution on a real line. From any point not on this line

this involution is projected into an involution of lines whose double

lines are the projections of the given points.

Theorem H. If A^A^ and B^B^ are two pairs of conjugate imagi-

nary points on different lines, the lines -AJi^ and A^B^ meet in a real

point and are conjugate imaginary lines.

trmf. By hypothesis the lines A^A^ and B^^ are real and hence

thtey meet ib a real point C. Let B be the conjugate of C in the elliptic

involution with A^ and A^ as double points. By Corollary 3, Theorem 9,

there are^ two real points P and Q which ate paired 'in this involution

and separate B and C harmonically. LetA be the conjugate of C in the

elliptic involution with B^ and B^ as double points, and let B and S be
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the two real points which are paired in this involution and separate

A and C harmonically. Since any two harmonic sets are projective,

CBPQ = CAES and CBPQ = CASE.

The centers of these two perspectivities are two real points Cj and C^,

and since each perspectivity transforms two pairs of the elliptic invo-

lution on the line A^A^ into two pairs of the elliptic involution on the

line B^B^, it transforms A^ and A^ to B^ and B^ Hence one of the

points Cj and C^ is the intersection of the lines A^B^ and A^B^ and

the other that of the lines A^B^ and A^B^. By Theorem 12 each of

these pairs of lines is a pair of conjugate imaginaries.

The complete quadrilateral whose pairs of opposite vertices are

AjA^, B^B^, and C^C^ is analogous to the quadrilateral considered in

§ 71 whose vertices were I^I^ and the limiting points of two orthog-

onal pencils of circles (cf. fig. 57). With regard to the existence of

such quadrilaterals we have

Theorem 14. Let A^A^, B^B^, G^C^ he the pairs of opposite vertices

of a complete quadrilateral. If A^A^ and BJB^ are pairs of conjugate

imaginary points, then C^ and C^ are real and the diagonal triangle of

the complete quadrilateral is real. If A^ and A^ are real and B^ and

B^ are conjugate imaginaries, then C^ and C^ are conjugate imaginaries

and the diagonal triangle is real.

Proof. In the first case C^ and C^ are determined as in the proof

of the last theorem and hence are real. The diagonal triangle has for

its sides the three real lines A^A^, BJB^, C^C^.
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In the second case let a be ^e line through A^ which is harmon-

ically conjugate to A^A^ with respect to the pair of lines A^^ and

A^^. Since the latter two lines are conjugate imaginaries and A^A^

is real, a is real. The harmonic homology with A^ as center and a as

axis transforms B^ and B^ to C^ and C^. Hence C^ and C^ are conjugate

imaginaries and the line C^^ is real.

Eelatively to a real frame of reference a real involution is repre-

sented by a bilinear equation with real coefficients (§ 58, Vol. I), and

its double points appear as the roots of a quadratic equation with real

coefficients. Hence the coordinates of a pair of conjugate imaginary

points are expressible in the form

and («„- *y„. a^i- *yi. ^2- ^^a. «8- '^y^'

where x^, x^, x^, x^, y^, y^, y^, y^ are real. Like remarks can be made

with regard to the coordinates of a plane or a line, and Theorems 10-14

can easUy be proved analytically on this basis. The following theorem

appears to be easier to prove analytically than synthetically

:

Theorem 15.-4 complex line on a real plane contains at least one

real point.

Proof. Let the equation of the line be

This may be expressed in the form

{ul + iu'l) a;, -|- {u[ + iu[') x^ + {%l + iu'^) x^ = 0,

where it,', m", etc. are reaL This equation is equivalent, if a;„, ajj, x^

are reqvured to be real, to

M„\ -I- u[x^ + Wj'iCj = 0,

u'lx^ + u[\ + «>j = 0,

two equations which are satisfied by at least one real point.

EXERCISES

1. A conic section through three real and two conjugate imaginary points

is real.

2. A pair of conjugate imaginary points cannot be harmonically conjugate

with regard to another pair of conjugate imaginary points.

3. An imaginary point is on one and only one real line and has one and

only one conjugate imaginary point.
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79. Projective, affine, and Euclidean classification of conies. Let us

regard a real plane tt as immersed in a complex plane ir', and consider

all conies in tt' with respect to which the polar of a real point is always

a real line.*

Throughout the rest of this chapter the word "conic" shall be used

in this sense. The involution of conjugate points with regard to such a

conic is one in which real points are paired with real points. Hence,

if a conic contains one real point, every real nontangent line through

this point contains another point of the conic, and the conic is real

The conies under consideration therefore fall into two classes/the real

conies t and those containing no real point.

By § 76, Vol. I, any two real conies are equivalent under the group

of projective coUineations. The same proposition holds also for any two

conies of the other class, as we shall now prove. Let two such conies

be denoted by C^ and C^. On an arbitrary real line I they each deter-

mine an elliptic involution of conjugate points. By Cor. 4, Theorem 9,

there is a projectivity of the line I carrying the involution deternuned

by C| into that determined by C^. Any projectivity of the real plane

which effects this transformation on I wUl carry C^ into a donic C,

which has the two conjugate imaginary points A^, ^^ on Z in common

with Cj. A coUineation leaving I invariant will now carry the pole

of I with regard to C, to the pole of I with regard to (7j ; and therefore

carries C, to a conic C^ which has A^, A^ and the tangents at these

points in common with Cf. Let L be the pole of I with regard to C^

and ij be any real point of I. By Cor. 3, Theorem 9, there is a pair of

points MM^ which are conjugate with respect to C^ and harmonically

separate L and L^ and also a pair M'Ml conjugate with respect to

C^ and -harmonically separating L and Ly The homology with I as

axis, L as center, and carrying M' to Jf carries C^ to Cj. Hence we have

Theorem 16. An]/ two. real conies or any two imaginary conies

with real polar systems are conjugate under the group of real pro-

jective coUineations.

* In § 85 this condition is seen to be equivalent to the condition that the equa-

tion of the conic relative to a frame of reference in tt shall be expressible with

real coefScients. For the present discussion, however, we do not need the general

theory of correlation which is used in § 85.

t According to some usage any complex locus which has a real equation is called

real. Cf . Pascal's TJepertorium der HSheren Mathematik, Vol. II (1910), Chap. XIII

(Berzolari). According to this definition both of the above classes of conies would

be called real.
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If tli,^ line /be taken as th^^ne at infinity of a Euclidean plane

the argument above shojvs that any two imaginary conies are also

conjugate under the affiiie group. Since these conies do not meet

any real line in real points, they are .analogous to ellipses no matter

how the line at infinity is chosen. Hence we make the definition

:

'I'-'-'Definition; An' imaginary conic with a real polar system is called

an vniagindry ellipse.

The results just established, together with thpse stated in Ex. 7,

§ 7 6,' and' Ex^. 14 and 15, § '37, may be summarized as follows:

Theorem 17. Under the aff,ne gmCpthe conies with real polar

systems fall into four classes, parabolas, hyperbolas, ' real ellipses,

imaginary ellipses. Any two conies of the same class are equivalent.

Under the Euclidean group conies must be characterize^.-by their

relations to the circiilar poitots I, I. Since a real- couie" which does

not meet X. ii; real points ineets it in coH-jtigate^^ilnaginary points,

any real*' conic'' through I^ ai,so coptaiiis I^ anjl^is therefore a circle.

For thfB same reason the imaginary conip'iJetermined by an elhptic

polar System must contain I^ if it copifcis J^.

DjitlNiTiON. An imaginary eUi^e with respect to which the pairs

of conjugate points on ijene. pairs of the absolute involution is called

an imaginary circle.

Theorem I'S. .dfiy two real circles or any two imaginary circles

are similar.

Proof. Let the centers, necessarily real, of two circles C"' and ^^
be Oj and 0^ respectively. The center 0^ may be transformed to 0^ by a

translation Tj. This carries C^ to a circle CI. Any real line I through

Oj meets Cj in two points Ci and C^ and /v^ in two points K^ and K^.

Since each of these pairs is harmonically conjugate with respect to 0^

and'' the point at infinity 0„ of I, the homology T^ with 0^ as center

and'Z„'as axis which carries C^ to K^ also carries C^ to K^. This homol-

ogy evidently carries all real points to real points if C^, C^, K^, K^ are

real If C^C^ Wd 'KJ[i^^ are pairs of conjugate imaginary points, con-

sider (§ 77) the real pa,ir of points PF' harmonically conjugate with

regard to C^C^ and 00„ and the real pair QQ' harmonically conjugate

with regard .to' A'jJJ^ andiOO«. The homology T^ must carry P and ;P'

to ^ and Q' and tlerefore carl'ies all real points to real points in

tMs' case., I ..>•
' '':>.']

;
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Now the conic C^ is fully determined by its points Jj, I^, Cj, Cj and

its center 0^ and K" is fully determined by I^, I^, K^, K^ and 0^. Hence

Tj carries Cl to K\ The product TJ^ carries C^ to K\

Theorem 19. Any two parabolas are similar.

Proof. Let C" and K"^ be two parabolas and let C„ and K„ be their

points of contact with Z„. Let Tj be any rotation carrying C, to ^„
and let Tj(C^)=Ci. Let^„ be the conjugate of Z". in the absolute

involution and let c be the ordinary line through iC. tangent to Cj

and its point of contact ; also let h be the ordinary line through

K^ tangent to K"^, and K its point of contact. The translation T

Fig. 62 ^\

carrying C to ^ carries ctok and Cl to a conic Cl touching l„ at K^.

Any line I through K, not containing K„ or X„, meets C" in a point

C" and X° in a point X'. The homology T^ with K as center, /« as

axis, and carrying C to K' carries C^ to K\ The product T^T^T^ is a

similarity transformation carrying C to X".

No theorem analogous to the last two holds for ellipses and hyper-

bolas. Suppose an ellipse or a hyperbola C^ meets L in (7j and C^ and

another ellipse or hyperbola X'' meets it in X^ and X^. In case a

similarity transformation carries C^ and C^ into Z'^ and X^,

(5) B>(7/„C,C,)=R(V„^,^,).

Conversely, if C" and X^ satisfy the condition (5) there evidently

exists a rotation carrying C^ and C^ to Z^ and X^. This rotation carries

C7* to a conic C^ which passes through X^ and X^. By an argument
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analogous to the proof of Theorftn 18 it can be shown that if C^ and

K^ are both real ellipses, or both imaginary ellipses, or both hyper-

bolas, there is a similarity transformation carrying Cj to X^. Hence

,
Theorem 20. Two real ellipses or two imaginary ellipses or two

hyperbolas which meet Z„ in pairs of points C^C^ and K^K^ are

similar if and only if Bi(//,, CjC^)= ^(7/^, K^K^).

EXERCISE

A hyperbola for which B (A^a' ^^1^2) = — 1 is rectangular (Ex. 3, § 73).

80. Foci of the ellipse and hyperbola. Let C^ be any hyperbola or

real or imaginary ellipse, and let l^, l^ be the tangents to C^ through

/j and Zg, l^ the tangents to C^ through I^. The circular points I^, I^

are one pair of opposite vertices of the complete quadrilateral I^IJJ^-

Let the other two pairs of opposite vertices be F^F^ and F[F^ respec-

tively (fig. 63), let a be the line F^F^, b the line FlF^, and the point

of intersection of a and b. Also let A„ and B„ be the points at infinity

of the lines a and b respectively. The triangle 0A„£„ is self-polar

with respect to C^. Hence is the center of C" and is therefore real.

Let X be any real point not on l^, l^, l^, l^ or C\ By the dual of the

Desargues theorem on conies (§ 46, Vol. I) the tangents to C^ through

X are paired in the same involution with JETj, XI^ and XF^, XF^ and

XFl, XFl. The double lines x^, x^ of this involution are harmonically

conjugate with regard to XI^, XI^ and to the tangents to Cf. Hence

they are paired both in the involution of orthogonal lines atX and

the involution of lines conjugate with respect to C^ at X. Hence

by Cor. 2, Theorem 9, x^ and x^ are real, and are the unique pair of

orthogonal lines on X which are conjugate with regard to C^.

In particular, if X= it follows that a and b are real and are the

only pair of orthogonal and conjugate diameters of C^. Hence A„ and

jB„ are also real. If Xis not on a, b, or L, the lines x^ and x^ meet a

in a pair of real points X^, X^ distinct from A^ and 0. Since F^ and F^

are harmonically conjugate with respect to the real pairs X^X^ and J„ 0,

they are either real or conjugate imaginaries. But since I^ and I^ are

conjugate imaginaries, by Theorem 14 if one of the pairs F^F^ and

F[Fl is a pair of real points, the other is a pair of conjugate imagi-

naries, and conversely. Hence the notation may be so assigned that

F and F are real and F[ and F'^ are conjugate imaginaries.
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Let ^j and A^ be the points in which a meets C" and B^ and B^ the

points in which b meets C^. By construction neither of the lines a

and b can be tangent to C^ so that each of the pairs A^A^ and B^B^ is

either real or a pair of conjugate imaginaries.

In case C^ is an imaginary ellipse, both A^A^ and B^B^ are neces-

sarily pairs of conjugate imaginaries. In case C^ is a real ellipse, the

line L does not meet it in any real point, and hence 0, the pole of l^,

is an interior point. Hence both a and b meet C^ in real points.

Hence if C is an ellipse, A^, A^, B^, B^ are all real. Whether C is

an ellipse or a hyperbola, the tangents to C" from F^ are conjugate

imaginary lines since they join the real point F^ to the conjugate

/

Tig. 63

imaginary points I^ and I^. Hence F^ is interior to C^, as is also F^

by a like argument. Hence the line F^F^ meets C^ in real points.

Hence if C^ is a hyperbola, A^ and A^ are real. But if G^ is a hyper-

bola, is an exterior point, and hence A^, which is harmonically

separated from by A^ and A^, must be an interior point. Hence J,

the pole of A„, does not meet C" in real points, and consequently 5,

and B^ are conjugate imaginaries.

Let the polars of F^, F^, F[, F[ relative to C^ be denoted by rfj, rf,,

d[, d[ respectively. Then rfj and A^ being the polars of real points are

real ; and since their point of intersection is polar to a, it is 5«, and

hence they are parallel to b. In like manner d[ and A'^ pass through

A^ and are conjugate imaginaries.
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Definition. The lines a, and% defined above are called the axe» of

the conic C^, a being called the major, or principal, axis and b the

minor, or secondary, axis. Each of the points F^, F^, F[, Fl is called a

focus, and each of the points A, A B„B^ a vertex, of the conic C\
Each of the lines d^, d^, d[, d^ is called a directrix of C".

Fig. 64 Fig. 65

In the course of the discussion of the complete quadrilateral l^lJJ^

we have established the following propositions

:

Theorem 21. If C^ is a hyperbola or a real or imaginary ellipse

which is not a circle, its axes are the unique pair of conjugate diam-

eters which are mutually perpendicular. Two of thefoci and two of the

directrices are real. The real foci lie on the major axis and the real

directrices are perpendicular to it. The other two foci are conjugate

imaginaries and lie on the minor axis. If C^ is real, the real foci are

interior points and the real directrices are exterior lines. If C" is a

real ellipse, all four of the vertices are real; if C" is a hyperbola, the

two vertices on the major axis are real and those on the minor axis

are conjugate imaginaries.

The two tangents to C^ through F^ pass also through J^ and I^.

Pairs of conjugate lines at F^ are separated harmonically by these

two tangents and hence meet L in pairs of the involution whose

double points are 7^ and I^. If we limit attention to real elements,

this may be expressed by saying that the pairs of conjugate lines with

respect to C" which pass through a focus are orthogonal. Conversely,

if the pairs of orthogonal lines at any point F are conjugate with

respect to C", the double lines of the involution of orthogonal lines at
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P would have to coincide with the double lines of the involution of

conjugate lines, and hence P would be a focus. Hence

Theorem 22. The real foci of a hyperbola or a real or imaginary

ellipse are the unique pair of real points at which all pairs of con-

Jugate lines are orthogonal.

The set of all conies tangent to the four minimal lines l^, 1,1,1

form a range (§ 47, Vol. I). Hence the pairs of tangents to these conies

through any point P not on the sides of the diagonal triangle OA^B^

form an involution among the pairs of which are the pairs of lines

P/i, PI^; PF^ PF^; and PF[, PF[. Now if P is on C, there is only

one tangent to C at P, and this tangent is therefore a double line of

the involution. This and the other double line have to be harmon-

ically conjugate with respect to PI^ and PI^; that is, if C^ and P
are real, the two double lines have to be orthogonal. These double

lines must be harmonically conjugate also with respect to PF^

and PPj,. Thus we have a result which may be expressed as follows

(cf.Ex. 12, §76):

Theorem 23. The tangent and the normal to a real ellipse or

hyperbola at any real point are the bisectors of the pair of lines

joining this point to the real foci.

In the proof of this proposition we have excepted the vertices of

the conic, but tl;ie validity of the proposition for these points is self-

evident. Another proposition which follows directly from the discus-

sion above is the following, in which we make use of the fact that the

pair of real foci determines the pair of imaginary ones, and vice versa.

Theorem 24. Definition. The system of all conies having two

real or two imaginary foci in common is a range of conies of Type I.

The two conies of the set which pass through any real point have

orthogonal tangents at this point. Such a range of conies is called a

system of confocal conies or of confocals.

The construction for the foci which has been considered in this section,

when applied to a circle, reduces to a very simple one. The tangents to the

circle at /j and 7^ meet in the center of the circle. The center of the circle

is therefore sometimes referred to as the focus and the line at infinity as the

directrix.

The term " focus " is derived from the property stated in Theorem 23, in

consequence of which, if the conic be regarded as a reflecting surface, all rays

of light diverging from one focus will be reflected back to the other focus.
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In the rest of the chapter th||,foci, center, directrices, and axes of

an ellipse or a hyperbola will be denoted by the same letters as in this

section. The notation has been assigned so that for an ellipse the points

are in the order
{D^A^F^OF^A^^},

and for the hyperbola in the order

{F^Ap^OD^A^F^},

where D^ and D^ denote the points of intersection of the principal

axis with the directrices d^ and d^ respectively.

81. Focus and axis of a parabola. Let (7" be any parabola. Since

it is tangent to l„, there are two ordinary tangents to it through I^

and Jj respectively ; let these be denoted by l^ and l^ respectively.

Let their point of intersection be denoted by F, their points of contact

with C^ by L^ and L^ respectively, and the line LJ^^ by d. Also let

the point of contact of C^ with L be denoted by A„, the line A^F by

a, and the point, other than A„, in which a meets C^, by A.

Definition. The point F is caUed the focus, the line d the direc-

trix, the line a the axis, the point A the vertex, of the parabola C^.

Fig. 66

That the focus, directrix, etc. of a parabola are real may be proved

as follows: The transformation from pole to polar with regard to

C^ transforms the absolute involution to an involution of the lines

through A^ and transforms I^ and I^ into A^L^ and A„L^ respectively.

The involution in the lines at A„ is perspective with an involution

among the points of f which has L^ and L^ as double points. Hence

L and L^ are conjugate imaginary points. Hence by Theorem 10 the
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line d is real. Hence its pole, F, is real. Hence the line a joining

F to A^ is real, and also the poiat A.

Since the two tangents to C^ through F pass through I^ and /,

any two conjugate lines through F are perpendicular. Conversely, if

the pairs of conjugate lines at any point are orthogonal, the tangents

through this point must contain I^ and I^ respectively. Hence F is

the only such point. Since the tangents through F are imaginary, F
is interior to (7", and hence all real points on d are exterior.

The tangent at ^ is parallel to d, and hence by the construction of

d perpendicular to a. Since the tangent at any other ordinary point

of C" is not parallel to d, it follows that the line a is the only diameter

of C* which is perpendicular to its conjugate lines. These and other

obvious consequences of the definition may be summarized as follows

:

Theokem 25. The axis of a parabola is real and is the only

diameter perpendicular to all its conjugate lines. The focus of a

parabola is real and lies on the axis. The focus is the unique point

at which all pairs of conjugate lines are orthogonal. It is interior to

the parabola. The directrix is real, is the polar of the focus, and is

perpendicular to the axis. All real points of the directrix are exterior

to the parabola. The vertex 'is real and is the mid-point of the focus

and the point in uihich the directrix meets the axis.

The system of all conies tangent to l^ and l^ and to L at A„ forms a

range of Type II (§ 47, Vol. I) which consists of all parabolas having

F as focus and a as axis. The pairs of tangents to these conies

through any real point P of the plane are by the dual of Theorem 20,

Chap. V, VoL I, the pairs of an involution in which PI^ is paired with

PJj and PF with PA^. The tangents to the two conies of the range

which pass through P are the double lines of this involution and

hence separate PI^ and PI^ harmonically. Thus we have

Theokem 26. The parabolas with a fixed focus and axis form a

range of Type II. The two parabolas of the range which pass through

a given point have orthogonal tangents at this point.

The tangent to either parabola through P is therefore normal to the

other. Since thesetwoHnes separatePFandPA„ harmonically, we have

Theokem 27. The tangent and the normal to a parabola at any

point are the bisectors of the pair of lines through this point of which

one passes through the focus and the other is a diameter.



§81] FOCAL PEOPEETIES 196

EXERCISES

1. If P is any point of an ellipse, the normal at P is the interior bisector

of 4 F^PF^. If P is any point of a hyperbola, the tangent at P is the interior

bisector of 4.F^PF^.

2. At any nonfocal point in the plane of a conic there is a unique pair of

orthogonal lines which are conjugate with regard to the conic. In case of an

ellipse or a hyperbola these lines harmonically separate the real foci. In case

of a parabola they meet the axis in a pair of points of which the focus is

the mid-point.

3. For any point P of an axis of a conic there is a unique point P'on
the same axis such that any line through Pis orthogonal to its conjugate

line through P'. The pairs of points P and P' are pairs of an involution

(called a, focal involution) whose double points are the foci of the conic, or, in

case of a parabola, the focus and the point at infinity of the axis. If P and

P' are on the minor axis, 4 PF^^P' is a right angle. If the conic is a parabola,

F is the mid-point of the pair PP'.

4. Of two confocal central conies having a real point in common, one is

an ellipse and the other a hyperbola.

5. The tangents at the points in which a conic is met by a line through

a focus meet on the corresponding directrix.

6. If two conies have a focus in common, the poles with regard to the

two conies of any line through this focus are coUinear with the focus.

7. Let P be any point of a conic, and Q the point in which the tangent at

P meets a directrix. If F is the corresponding focus, 4.PFQ is a right angle.

8. If a circle passtes through the two real foci and a point P of a conic, it

will have the two points in which the tangent and normal at P cut the other

axis as extremities of a. diameter.

9. If a variable tangent meets two fixed tangents in points P and Q
respectively, and P is a focus, the measure of 4PFQ is constant.

10. Let
<i
and t^ be two tangents of a central conic meeting in a point T;

the pair of lines t-^, TF^ is congruent to the pair TF^, t^.

11. The line joining the focus to the point of intersection of two tangents

to a parabola makes with either tangent the same angle that the other tangent

makes with the axis.

12. Let jo be a variable tangent of a parabola, and P a point of p such that

the line PF makes a constant angle with p. The locus of P is a tangent to

the parabola.

13. The foci of aU parabolas inscribed in a triangle lie on a circle.

14. A circle circumscribed to a triangle which is circumscribed to a

parabola passes through the focus.

15. The circles circumscribing four triangles whose sides form a complete

quadrilateral pass through a point which is the focus of the parabola having

the sides of the quadrilateral as tangents.
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16. Let P be any point coplanar with, but not on an axis of, a conic C^.

The lines which are at once perpendicular to and conjugate with regard to C
to the lines through P are the tangents of a parabola (the Steiner parabola).

The axes of C^ are tangents of this parabola.

17. If P and P' are a pair of one focal involution of a central conic, and

Q and Q' a pair of the other, P, P", Q, Q' are on an equilateral hyperbola,

which may degenerate into a pair of orthogonal lines.

18. Given five points of a conic, construct by ruler and compass the center,

the axes, the vertices, the foci, and the directrices. Construct the same

elements when five tangents are given.

82. Eccentricity of a conic. Let i** be a real focus, and d the cor-

responding directrix, of a conic C^ which is not a circle. Let a be the

major axis of C'', and h the line parallel to d such that if a meets d

in a point B, and ^ in a point H, D is the mid-point of the pair FH.

Then d is the vanishing line (§ 43) of the harmonic homology T with

F as center and h as axis.

Fig. 67

Since i^ is a focus, the tangents to C through F pass also through

the circular points. Hence the transformation T changes C into a

circle K^ with F as center. Now if jP is any point of the circle,

F' the point of C to which P is transformed by T, and D' the

point in which the line through P' parallel to FD meets d, it follows

by Cor. 2, Theorem 21, Chap. Ill, that

Dist (P'F) _ Dist (PF)

Dist {P'JD')
~

Dist {FB)

'

Since Dist (PF) and Dist (FB) are constants, it follows that

Theorem 28. Definition. The ratio of the distances of a point

of a conic to a focus and to the corresponding directrix is a constant

called the eccentricity.
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The conic C^ is a parabola if and only if the circle K^ is tangent

to d, the vanishing line of F. l5*this case

Dist {FD) = Dist {PF),

and hence the eccentricity is unity. The conic C is a hyperbola if

and only if K^ meets d in real points. In this case

Dist (FD) < Dist {PF),

and hence the eccentricity is greater than one. Applying a like

remark to the ellipse we have

Theorem 29. A conic section is an ellipse, hyperbola, or parabola

according as its eccentricity is less than, greater than, or equal to

unity.

A circle is said to have eccentricity zero, because if P and F be held

constant, and D be moved so as to increase FD without limit, the ratio

Dist (PF)/ Dist (JTD) approaches zero.

The eccentricity of a hyperbola or an ellipse is evidently the same

relatively to either of its real foci, because the two foci and the

corresponding directrices are interchangeable by an orthogonal line

reflection whose axis is the minor axis of the conic.

As an immediate corollary of the definition of eccentricity we have

Theoeem 30. Two real conies are similar if and only if they have

the same eccentricity.

On comparing this theorem with Theorem 20, it is evident that the

eccentricity is a function of the cross ratio of the double points of

the absolute involution and the potats in which the conic meets L.

As an example of this relation we have (by comparison with § 72)

the theorem that any two hyperbolas whose asymptotes make equal

angles have the same eccentricity. The formula connecting the eccen-

tricity of a hyperbola with the angular measure of its asymptotes is

given in Ex. 7, below, and the formula for the eccentricity in terms

of the cross ratio referred to in Theorem 20 is given in Ex. 9.

Since a real focus of any conic is an interior point, the line through

a real focus (e.g. F^, fig. 64) perpendicular to the principal axis meets

the conic in two points, Q^Q^- The number Dist {Q^Q^ is evidently

the same for both foci of an ellipse or hyperbola, and hence is a fixed

number for any conic C^.
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Definition. The number p = Dist (Q^Q^) is called the parameter,

or latus rectum, of the conic C^.

In the following exercises e wUl denote the eccentricity and p
the parameter of any conic. For an elhpse or hyperbola a denotes

Dist (OA^) and c denotes Dist (OF^). For an ellipse b denotes

Dist (05j). For a hyperbola h denotes Vc^-a\

In all cases a radical sign indicates a positive square root.

EXERCISES

1. If P is any point of an ellipse, Dist (F^P) + Dist (F^P) = 2 a.

2. If P is any point of a hyperbola, Dist (F^P) - Dist (F^P) = ± 2 a.

3. In an ellipse Dist (BiF^) = a and a^ = b^ + c\

4. Dist (A,F,) . Dist {F,A,) = /A ^ ^ ,,2

5. In an ellipse or hyperbola e = - and/i =

6. In a parabola Dist (.4F) =/)/4.

7. The measure 6 (§ 67) of the pair of asymptotes of a hyperbola is

determined by the equation 2
cos 6 = \ -

e'

8. For an equilateral hyperbola e = '\2.

9. The cross ratio R {C^C^, I^I^) = P referred to in Theorem 20 is con-

nected with the eccentricity by the relation

,^ 4fc

* l-l-2yfc+/fc2

— 4 ifc

in case of an ellipse, and by e^ = —7 ^

in case of a hjrperbola.

10. Let ^^ and & be the circles with as center and passing through the

vertices A^ and B^, respectively, of an ellipse, and let a variable ray making

an angle of measure d with the ray OA meet these circles in X and Y
respectively. Then the line through Y parallel to OA^ meets the line through

X parallel to OB^ in a point P of the conic. If x and y are the coordinates

of P relative to the axes of the conic,

x = a cos $, y = h sin 6.

6 is called the eccentric anomaly of the point P-

H. Relative to a nonhomogeneous coordinate system in which the prin-

cipal axis of a conic is the x-axis, and the tangent at a vertex the y-axis, the

equation of a parabola, ellipse, and hyperbola, respectively, can be put in

the form y'=px,

y^=px-^x\
a Ct
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12. Relative to the asymptotes as axes, the equation of a hyperbola may
be written „ , ,„

xy = —-

13. Relative to any pair of conjugate diameters as axes, an ellipse has the

equation 2 2

and a hyperbola, -— — -^ = 1.

If A' is a point in which the a;-axis meets the conic, Dist (0A'') = a'. In

the case of an ellipse, if B' is one of the points in which the y-axis meets the

conic, Dist (OB') = V.

14. The measiu'e of the ordered point triads OA'B' is a constant.

15. The numbers a' and V satisfy the conditions a'^ + 6'^ = a'' + J^ in case

of an ellipse and a"^ — b'^ = a' — b^ in case of a hyperbola.

16. The equation of a system of confocal central conies relative to a sys-

tem of nonhomogeneous point coordinates in which the axes of the conies

are i = and y = is

+ T^r-^ = 1.

where A, is a parameter. In the homogeneous line coordinates such that

«jS + Uj^y + «o = gives the condition that the point (a;, y) be on the line

[«j, «i, Mj], the equation of a system of confocals is u^ = (a^— A.) u^ + (b^ — X)u|.

17. Relative to point coordinates in which the origin is the focus, ^ =
the axis of the parabolas, and a; = perpendicular to the axis, the equation

of a system of confocal parabolas is

y^ - 2(p - X)x + \(p - X) = 0.

In the corresponding homogeneous line coordinates this is (cf. Ex. 16)

pu^ — 2 UjUg — A.(«f + u^) = 0.

83. Synoptic remarks on conic sections. An inspection of the

literature will convince one that it would not be practical to include

a complete list of the known metric theorems on conic sections in a

book like this one. The theorems which we have derived, however,

are sufficient to indicate how the rest may be obtained either directly

as special cases of projective theorems or as consequences of the focal

and affine theorems given in this chapter and Chap. III.

The theorems on conic sections have been classified according to

the geometries to which they belong. The most general and elemen-

tary which we have considered are those which belong to the proper

projective geometry (§ 17), the geometry corresponding to the projec-

tive group in any space satisfying Assumptions A, E, P. Theorems
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of this class are given in Vol. I, particularly in Chaps. V, VIII, X.

A second large class contains those theorems which belong to the

aflBne geometry in any proper projective space. These are treated

somewhat fuUy in Chap. III.

The theorems of the class considered in §§ 74, 75 of this chapter

belong to the projective geometry of an ordered space. The theorems

of § 76 belong to the projective geometry of a real space. Finally,

in §§ 80-82 we have been considering theorems of the Euclidean

geometry of a real space.

It is quite feasible to make a much finer classification of theorems

on conies. This would mean, for example, distinguishing those proper-

ties of foci which hold in a parabolic metric geometry in a general

space, then those which hold in an ordered space, and then those

which are peculiar to the real space.

The theorems which have been under discussion in the remarks

above refer in general to figures composed of one conic section and a

finite number of points and lines. Theorems regarding more than

one conic at a time have not been considered in any considerable

number, and the theory of families of conies has not been carried

beyond pencils and ranges. For an outline of this subject the reader

is referred to the Encyclopadie der Math. Wiss., Ill CI, §§ 56-90.

EXERCISES

1. The diagonals of the rectangle formed by the tangents at the vertices

of an ellipse are conjugate diameters for which a' = V. The angle between

this pair, of conjugate diameters is less than that between any other pair of

conjugate diameters. For this pair of conjugate diameters a'+ V is a maxi-

mum. It is a minimum for a' = a,V = h.

2. If two orthogonal diameters of a conic meet it in P and Q,

for an ellipse, and

for a hyperbola.

3. The locu8 of a point from which the two tangents to a conic C^ are

orthogonal is a real circle in case C^ is an ellipse or a hyperbola for which

a > 6 ; is a pair of conjugate imaginary lines through the center and the cir-

cular points in case C^ is a hyperbola for which a = Z> ; is an imaginary circle

in case (7" is a hyperbola for which a < ?j ; is the directrix in case C^ is a parab-

ola. The circle thus defined is called the director circle of C^. Construct it

by ruler and compass.
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4. A variable tangent to a centr^conic is met by the lines through a focus

which make a fixed angle with it in the points of a circle. In particular, the

locus of the foot of a perpendicular from a focus to a tangent is a circle.

5. If « is a variable tangent of a central conic, Dist (Fj<) . Dist (F^^t) = b^.

If t' is the other tangent parallel to t, Dist (t\t) Dist (F^f) = bK

6. If F is a focus of a conic and Pj, P^ the points of intersection of an
arbitrary line through F with the conic,

J- + J-
P,F FP,

IS a constant.

7. If the tangent to a conic at a variable point P meets the axes in two
points T^ and 1\, and the normal at P meets them in iVj and iVj, then

Dist (PTi) • Dist (Pr^) = Dist {PN-,) • Dist {PN^)

= Dist (PFj) • Dist (PF2).

8. There is a unique circle which osculates* a given conic at a given

point P. This is called the circle of curvature at P- Its center is called the

center of curvature for P and lies on the normal at P.

9. Construct by ruler and compass the center of the circle of curvature

at an arbitrary point of a given conic.

10. The circle of curvature of a conic C^ at a point P meets C^ in one and

only one other point, Q. The line PQ is the axis and the pointP the center of an

elation which transforms K^ into C. The center of curvature is transformed

by this elation into the center of the involution on C^ in which the pairs of

orthogonal lines at P meet C^.

11. The tangent and normal at any point P of a conic C^ are both tangent

to the Steiner parabola (Ex. 16, § 81) determined by this point. The point

of contact of the normal with the parabola is the center of the circle of cur-

vature of C at /*, and the point of contact of the tangent with the parabola

is the pole of the normal with respect to C^. (For further properties of the

circle of curvature, cf. EncyclopSdie der Math. Wiss., Ill C 1, § 36.)

12. The polar reciprocal of a circle with respect to a circle having a

point as center is a conic having as a focus. (A set of theorems related

to this one will be found in Chap. VIII of the book by J. W. Russell referred

to in § 73.)

84. Focal properties of coUineations. The focal properties of conic

sections are closely related to a set of theorems on coUineations

some of which are given in the exercises below. A good treat-

ment of the subject is to be found in the Collected Papers of

H. J. S. Smith, Vol. I, p. 545, and further references in the

Encyclopadie der Math. Wiss., Ill AB 5, § 9.

* Cf . § 47, Vol. I.
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Let n be any real projective collineation which does not leave l„

invariant, and let p and q be its vanishing lines ; so that 11 {p) = I,

and n (Z„) = 2- If Ii and Zj are the circular points, let U.~^{I^ = P^,

II-' (/j) = -^, n (7j) = Q^, n (/j) = Q^. By the theorems of § 78 the

lines i^/j and ^Zj meet in a real point Jj, and ij/^ and ^/j meet

in a real point ^^j. If 11 (J^) = 5^ and II (^j) = B^^ it is clear that

the complete quadrilateral whose pairs of opposite vertices are

/j/j, I{P^, A^A^ is transformed into one whose pairs of opposite

vertices are Q^Q^, I^I^, B^B^. The following propositions are now

easily verifiable, and are stated as exercises.

EXERCISES

1. A^ia such that any ordered pair of lines meeting at ylj is transformed

by n into a congruent pair of lines. ^^ is such that any two lines meeting in

A^ are transformed by 11 into a symmetric pair of lines. No other points

have either of these properties.

2. Every conic having a focus at A-^ or A^ goes to a conic with a focus at

Bj or Bj respectively.

3. The range of conies having A-^ and A^ as foci is transformed by 11 into

the range of conies with B^ and B^ as foci ; and this is the only system of

confocals which goes into a system of cohfocals.

4. The pencil of circles with A-^, A^ as limiting points is transformed by II

into that having Bj, B^ as limiting points ; and these are the only two pencils

of circles homologous under 11. The radical axes of the two pencils are the

two vanishing lines.

5. If P is any point and 11 (P) = P', then the ordered point triad A-^PA^

is similar (but not directly similar) to the ordered point triad B-^P'B^.

6. At a point of a Euclidean plane there is in general one and only one

pair of perpendicular lines which is transformed into a pair of perpendicular

lines by a given affine cpllineation.

7. In any two projective pencils of lines there is a pair of correspond-

ing orthogonal pairs of lines. The line pairs which are homologous with

congruent line pairs form an involution.

8. Any projective collineation which does not leave ?« invariant is express-

ible as a product of a displacement and a homology.

85. Homogeneous quadratic equations in three variables, Kevers-

ing the process which is common in analytic geometry, it is possible

to derive certain classes of algebraic theorems from the theory of

conic sections. We shall illustrate this process in a few important

cases and leave the development of further algebraic applications to

the reader.
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The general homogeneous equation of the second degree can

be written in the form

where «„ = a,,. Let us first suppose that

(7) A^
«00
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In § 79 we have seen that any conic having a real polar system is

in one of two classes, and that any two conies of the same class' are

projectively equivalent. Now it is obvious that

(10) x!+a;^+ x^=0

is the equation of an imaginary conic, and that

(11) x^+x^-xl=0

is the equation of a real conic. Hence we have

Theorem 32. Any quadratic equation in three homogeneous vari-

ables whose discriminant A does not vanish is reducible by real linear

homogeneous transformation of the variables to the form (10) or to

the form (11).

Algebraic criteria to determine whether a given conic C^ whose

equation is in the form (6) belongs to one or the other of these classes

may easily be determined by the aid of simple geometric considera-

tions. In case C" contains no real points, the line «„= has no real

point in common with it, and the point u^=Q (which is on the Hne

x^= 0) is on no real tangent to it. On the other hand, if the line a;„=
contained no real point of C^, and C^ were real, this line would consist

entirely of exterior points, and hence there would be a tangent to C''

through the point 11^= 0. Hence a pair of necessary and sufficient

conditions that C^ contain no real points are (1) x^=Qia on no point

of C,^ and (2)>Mj= is on no tangent of C^.

Substituting «„= and a;^ = in (8), we have the equation of an

involution •

which, by § 4, is elliptic if and only if A^ > 0. By a dual argument

applied to (9), the necessary and sufficient condition that there be no

real tangents to C^ through the point Mj= is

(13)
^20 ^22

>0.

By a well-known theorem on determinants (or a simple computation)

this reduces to
a,i • ^ > 0.



§85] ALGEBRAIC THEORY 205

Hence we have ^
Theorem 33. The imaginary conies are those for whieh

A^ > and a^^- A> 0,

and the real ones are those for which not loth of these conditions

are satisfied and for which A^ 0.

In these conditions it is obvious that^^^^ and a^^ may be replaced

by Afi and a^., where i, j = 0, 1, 2, provided that i ^ j.

Let us now investigate the cases where ^ = 0, and first the case in

which not all the cofactors A^, A^^, A^^ are zero. To fix the notation,

suppose that A^^ 0. Then the bilinear equation (8) is satisfied

by x^= A^^,
*^i

=-^01' ^2~-^o2' °° matter what values are taken by

x[, x[, x[. Hence in this case (8) determines a transformation, V, of

all the points {x[, x[, x'^ distinct from {A^, A^^, A^yuito lines through

{A^, ^„j, AJ. A collineation which transforms {A^ A^^,^J to (1, 0, 0)

must reduce (8) to

It is to be noted that

-11 ri -li-r-i
(14)

, , ..., , , „., „ K^K-,

^0.

because if this determinant vanished, T would transform all points

{x[, x[, x'^ into a single line, and hence A^ would vanish. Hence T

transforms any point {x[, x[, x'^ into the line paired in a certain invo-

lution with the line joining {x^, x[, x'^) to {A^, A^^,,A^. The double

lines of the involution must satisfy the quadratic equation (6).

Comparing with the definitions in § 45, Vol. I, we have that when

.4=0 and not all the cofactors A^, A^^, A^^ are zero, (6) represents a

degenerate conic consisting of two distinct lines and that (8) represents

the polar system of the conic. Since the lines represented by (6) are

the double lines of a real involution, they are either real or a pair of

conjugate imaginaries. In the first case (6) can evidently be trans-

formed by a collineation to

(15) xl-xl=(i,

and in the second case to

(16) xl + xl={i.
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The criteria to distinguish the two cases may be found by considering

the intersection with (6) of a line «,.= 0. This yields imaginary points

(just as in the nondegenerate case) if and only if A^^ > 0, and real

points if and only if A„ S 0. Hence the case where (6) represents a

pair of real lines occurs if and only if ^j,.SO, for i=0, 1, 2.

Finally, suppose that A^= ^^^=A^^=A=0. In view of the identity,

(17) A„Ajj-Al.= a^-A, {i^j^hi=i)

this implies that aU. the cofactors A^j are zero, and hence that (8)

represents the same line, no matter what values are substituted for

xl, x[, x^. Hence (6) represents a single real line (i.e. two coincident

real lines), and the polar system (8) transforms all points not on this

line into this line. If this line be transformed to x^= 0, (6) obviously

becomes

(18) xl = 0.

A degenerate point conic is two distinct or coiacident lines. These

may always be represented by a quadratic equation which is a product

of two linear ones. For such a quadratic A=Q, because if ^ #= 0, the

equation has been seen to represent a nondegenerate- conic. Hence

the theory of degenerate point conies is equivalent to that of homo-

geneous quadratic equations for which ^ = 0.

The complete projective classification of conies, degenerate or not,

may now be stated as an algebraic theorem in the form

:

Theorem 34. Any homogeneous quadratic equation in three vari-

ables may he reduced by a real linear homogeneous transformation,

(19) a'.' = S«(,aj. (i=0, 1, 2),|aj,|^0

to one of the normal forms (10), (11), (16), (15), (18). The criteria

which determine to which one of theseforms an equation (6) is reducible

may be summarized in the following table :

A:^0 A = o

Imaginary
Conic
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Since the algebraic expressions^ the above criteria determine conditions

on the conic which are independent of the choice of coordinates and thus are

invariant under the projective group, it is natural to inquire whether they are

algebraic invariants in the sense of § 90, Vol. I. A direct substitution will

readily verify that ^ is a relative invariant of (6).

Suppose we regard the coefficients of (6) as homogeneous coordinates

("oo> "ii; "s2> "oi' '"lo' "12) °^ ^ point in a five-dimensional space. Then ^ =
determines a certain cubic locus in this space the points on which represent

degenerate conies. Now if there were any other invariant of (6) under the

projective group, gay tfi (a^), the equation <^ (ay) = would represent a locus

in this five-dimensional space. But since each nondegenerate conic is projec-

tively equivalent to every other nondegenerate conic, this locus would have to

be contained in the locus of .4 = 0. From this it can be proved, by the general

theory of loci represented by algebraic equations, that the locus of <^ (oy) =
coincides with that oi A = 0, and that hence

<l>
(a^) is rationally expres'sible

in terms of A. Thus A is essentially the only invariant of (6) under the

projective group.

The question, however, arises whether there are not other rational func-

tions of the coefficients of (6) which are invariant whenever ^ = 0. If there

were such a function, say <^ (a«). the conies for which <^ (ay) = would

be a subclass of the degenerate conies which is transformed into itself by

all complex projective collineations. The only class of this sort consists

of the coincident line pairs which are given by two conditions, Agg = 0,

^jj = 0. In view of the theoreln that a locus represented by two inde-

pendent algebraic equations cannot be the complete locus of a single

algebraic equation, this shows that there is no other invariant of (6) even

for the eases in which A — 0.

This reasoning could be expressed still more briefly by saying that, while

the set of all conies is a five-parameter family, and the set of degenerate

conies a four-parameter family given by one condition, the only invariant

subset of the degenerate conies is the two-parameter set of coincident line

pairs which have to be given by two conditions and so cannot correspond to

a single invariant in addition to A.

EXERCISES

1. In case .4 = 0, the lines represented by (6) intersect in the point

(vCi„„, V]iij, VA^^'), unless the three cofactors .4 ,•( vanish, in which case (6)

represents the coincident line pair

("^00^0 + "^11^1 + "^22^2)"= 0-

2. In case (6) represents a pair of distinct lines, (9) represents their point

6i intersection counted twice. In case (6) represents a pair of coincident

lines, ^4,- = (;,; = 0,1, 2).
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86. Nonhomogeneous quadratic equations in two variables. The

affine theory of point conies corresponds to the theory of

+ «oi^ ^%^y
(20)

«i \ ^0,

where the a^.'s satisfy the same conditions as in the last section.

The theorem that any nondegenerate conic is an imaginary ellipse,

real ellipse, hyperbola, or parabola, and that any two conies of the

same class are equivalent under the affine group, translates into the

foUowiDg : Any quadratic equation in two variables, for which ^ ^
is transformable by a transformation of the form

a;' = ax + hv + c„
(21) ,

^ ^/^ 1'

into one of the following four forms

:

(22) a^ + 2/' + l=0,

(23) ar' + /-l=0,
(24) a^-2^-l=0,

(25) ^ + y=^.

To know this it is merely necessary to observe that these equations

represent conies of the four types respectively.

The criteria to determine in which class a given conic (? belongs

may be inferred from the discussion in the last section if we set

X = xjx^ and y = xjx^. It is then evident that A^ > for an ellipse,

A^ = for a parabola, and A^ < for a hyperbola. Hence the

affine classification of cases where A =^ may be summarized in the

following table

:

.4 5*0

Imaginary Ellipse
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Conjugate
Imagikaey Lines
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EXERCISES

1. A and A^^^ are invariants of (20) under the afflne group.

2. In case A = Af^^ = 0, Aj^^/a^^ and A^^/a^j^ are invariants of (20) under

the aflBne group.

3. The homogeneous coordinates of the center of (20) are (^jj, Ag^, A^),
_ A - A

4. If Agg ^ 0, the translation x = x—-^> y = y— -^ transforms (20) into

a^^^ + 2 Oiji^ + flazF + "T" = 0-

5. If ^ 5^ and 4„„ ^ 0, the asymptotes of (20) are given by the equation

6. Any diameter of a parabola is parallel to a-^^x + a-^^y = and to

87. Euclidean classification of point conies. With respect to a non-

homogeneous coordinate system in which the pair of Unes a; = and

y = is orthogonal and bisected by the lines x = y and x = — y, the

transformations of the Euclidean group take the form (21) subject to

the conditions

(32) < + < =
6i^ + 6|, aA + «262=0,

and the displacements are subject to the additional condition

(33) «i *i = 1.

Since any ellipse or hyperbola is congruent to one whose principal

axes are a; = and i/ = 0, and since any parabola is congruent to a

parabola with the origin as vertex and y = as its principal axis, it

follows that any conic is congruent to a conic having one of the

following equations

:

(34)

(35)

(36)

(37)

The normal forms to which degenerate point conies can be reduced

by displacements are evident when one recalls that two pairs of non-

parallel lines are congruent when they have the same cross ratio with

x^
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the circular points and that two pairs of parallel lines are congruent

if the lines of each pair are the same distance apart.* By comparison

with the second table (^ = 0) in § 86 we find

(38) 5 + y"=0.

(39) a;«+ c^=0,

(40) 5-y"=0'

(41) a!"-c*=0,

(42) a; = 0,

(43) a;''=0.

The group of displacements is extended to the group of similarity

transformations by adjoining transformations of the form

(44) *, - ,
'

A; :^ 0.
y' = hy.

Transformations of this sort will reduce the equations (34) -(43) to

normal forms in which 6, c, and p are all unity.

The criteria for determining to which of these normal forms a

conic is reducible under the group of displacements or that of simi-

larity transformations are the same as those already found for the

afi&ne group. Two conies whose equations can be reduced to the same

normal form are evidently equivalent under the group of displace-

ments if and only if they determine the same values for a and 6 or c

or p, and under the Euclidean group if they determine the same value

for a. The numbers a, b, c, p are evidently absolute invariants of the

corresponding conies under the group of displacements, and a in (38)

and (40) also under the Euclidean group.

The problem of determining a, b, c, p in terms of the coefficients

of (20) presents no special difficulty, and will be left to the reader to

be considered in connection with the exercises below and those at the

end of the next section.

Wlaen 6, c,p are all unity, a is a function of the eccentricity given by

the equations in Exs. 7 and 9, § 82. The same reference gives the con-

nection between the eccentricity and the invariant V— ^^/(a^^-f- a^.

* The distance apart is the distance of an arbitrary point on one of tlie parallel

lines from the other line. The formula for distance is applied to the case of a pair

of conjugate imaginary lines as explained in § 70.
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EXERCISES

1. If ^ 7^ and A^ ^ 0, the angular measure of the asymptotes is 0, where

tane = ^ °°
-

Moreover, tf =- i log B (C^ C^, IJ^),

where C^ and Cj are the points in which the conic meets Z«, and /j and /„ are

the circular points. If 4 = and A^g ^ 0, these formulas give the angular

measure of the lines represented by (20). Derive from this the formula for o

in (38) and (40) in terms of the coefficients of (20).

2. A^^ and Ojj + a^^ are absolute invariants of (20) under the group of

displacements, andV— ^(,g/(ajj + a^j) under the Euclidean group. If ^ ^t

and Oil + a^2 — ^' (^0) represents an equilateral hyperbola ; if ^ = and

"ii + "'za
~ ^' ^* represents a pair of orthogonal lines or la, and an ordinary line.

3. If 4 5^ and A^^ ^ 0, the axes of (20) are

ai2(x^ + y") + ("22 - «ii) ^y = 0,

where x and y are defined as in Ex. 4, § 86..ere x auu y aie ueiiiieu ».s iii jZijL. *, g ou. i
—

^

—

-

4. For an ellipse the constants a and 6 are -*/——— and a /— , where A^

and Xj are the roots of •
'"''

(46) X''- (flu + a,j) X + 4„„ = ;

and for a hyperbola a and ib are -»/——— and -1/-—-— The discriminant of

(45) is (a„ - s,)= + 4 af,.
^ ^""^^ ^ ^"""^^

5. If .4 Tt and .dj,, = 0, the parabola (20) touches /« at (0, Ou, — Ojj)

which is the same as (0, a^^, — a-^^. The axis is

(46) a^^x + aijjr +
°"°" '*' °°''°^' = 0.

"11 + "22

88. Classification ofline conies. The projective classification of line

conies is entirely dual to that of point conies and so need not be con-

sidered separately. The aflBne classification, however, corresponds to

a new algebraic problem. If the line coordinates are chosen so that

is tne condition that the point (a^^, x^, x^ be on the line [w^, u^, mJ, the

point coordinates being the saroe as already used, we have the problem

of reducing equations of the iorip (9) to normal forms by means of

transformations of the forJ<j

(47) u[= Vb,u-a^u, 1^^ ¥=0.
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These are the transformal^ns which leave the line [1, 0, 0]

invariant. If

<=
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of «„„, a^j, a^ being different from zero
; (2) coincident real points,

a = a^^ = a^^= a^ = ; (3) conjugate imaginary points, a = 0, a^ >
for at least one value of i:

For the affine classification let us observe that since [1, 0, 0]

is the line at infinity, the condition that at least one factor of

(9) represent a point at infinity i^ ^o»~ ^- '^^ following criteria

are now evident.

a =

OONJUGATIi
Imaginary Points
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2. In case a = and A^^^ 0, thK distance between the points represented

3, The normal forms for line conies under the group of displacements are

(63) «= + a'u^ + bHI = 0,

(64) «„» - a'u^ ^ b^ul = 0,

(65) «o"
- a^u} + b^ui = 0,

(66) 4 «„«i + jt.«| = 0,

(67) u^ + k^l = 0,

(68) ul + cV = 0,

(69) M„= - ;fc2„2 _ 0,

(70) «o«i = 0,

(71) «i2_c2„| = o»

(72) < = 0.

(73)
^

ul = 0.

Here a, h, p have the same signiflcanoe as in (34) -(37); 2 Jd is the distance

between the two points represented by (67) ; 2 i is the distance between the

two points represented by (69) ; c is expressible in terms of the cross ratio of

the circular points and the two points represented by (68) or (71).

* 89. Polar systems. The theorems on the classification of conies

(§ 79) may be regarded as completing the discussion of projective polar

systems in a real plane. There is, however, a certain amount of inter-

est in making the discussion of polar systems without the intervention

of complex elements, and basing it entirely on the most elementary

theorems about order relations. This treatment will hold good for a

projective space satisfying Assumptions A, E, S, P.

Theoeem 36. In any projective polar system in an ordered plane

the involutions of conjugate points on the sides of a self-polar triangle

are all direct, or else one involution is direct and the other two opposite.

Proof. Let ABC be the self-polar triangle (fig. 68), and let PP' be

a pair of points on the side 5C and QQ' & pair, on the side CA. Let B
be the point of intersection of the lines PQ and AB, that of AP' and

BQ', and R' that of CO and AB. Then AP' is the polar of P, BQ' of Q,

PQ ot 0, and CO of B. Hence B and B' are paired in the involution

of conjugate points on AB. Let B" be the point in which P'Q' meets

AB; B" is the harmonic conjugate of B' with respect to A and\B.
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If the involutions on -BC and CA are direct, P and P' separate B
and C, and Q and Q' separate C and A. It follows by Theorem 19,

Chap. II, that B and B" do not separateS and ^. Hence by Theorems

7 and 8, Chap. II, B' is separated from Bhy A and jB, and hence the

involution on the line AB is direct.

On the other hand, if the involutions on BC and CA are not direct,

P and P' do not separate B and C, and Q and Q' do not separate C

and ^. Hence .B and B" do not, and therefore B and .B' do, separate

A and .B. Hence again the third involution is direct.

We have thus shown that at least one of the three involutions is

direct ; and that if two are direct, so is also the third. From this the

statement in the theorem follows.

The reasoning above is valid in any ordered projective space.

Specializing to the real space, we have

Corollary 1. The involutions on the sides of a self-polar triangle

of a projective polar system in a real plane are all three elliptic, or

else two are hyperbolic and the third is elliptic.

Theorem ?>1. If the involutions of conjugate points on the sides of

one self-polar triangle of a projective polar system in an ordered plane

are direct, the involution of conjugate points on any line is direct.

Proof. Let the given self-polar triangle on the sides of which the

involutions of conjugate points are direct be ABC. The theorem wiU
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follow if we can prove that the*avolution of conjugate points on any

line through a vertex of such a triangle is direct. For any hne I meets

-BC in a pointM which has a conjugate point N onBC. By the prop-

osition which we are supposing proved, the involutions on the sides of

the self-polar triangle, AMN, are direct ; and by a second application

of the same proposition, the involution of conjugate points on Z is

direct. Thus the proof of the theorem reduces to the proof that the

involution of conjugate points on any line through A is direct.

Let such a line meet BC in a point P', and let P be the conjugate

of P' in the involution on BC. Let Q and Q' be a conjugate pair

distinct from A and C on the line A C, and let 0, B, B', R" have the

same meaning as in the proof of the last theorem (fig. 68). Also let

<y be the conjugate of on the line AP', i.e. let 0' be the intersec-

tion of AP' with PQ. Applying Theorem 19, Chap. II, to the triangle

ABP' and the lines O'R and OR', it follows that, since C and P do

not separate B and P', and R and R' do separate A and B, and 0'

are separated by A and P'. Hence the involution of conjugate points

on the line AP' is direct.

Corollary 1. If the involutions on two sides of a self-polar triangle

of a polar system in an ordered plane are opposite, then two of the

involutions on the sides of any self-polar triangle are opposite and

the third is direct.

Proof. If there were any self-polar triangle not satisfying the con-

clusion of the theorem, this would, by Theorem 36, be one for which

all three involutions were direct. By Theorem 37 it would follow

that the involutions on all lines were direct, contrary to hypothesis.

The propositions stated in the last two theorems and in the last

corollary may evidently be condensed into the following

:

CoEOLLAKY 2. Any projective polar system in an ordered plane is

either such that the involution of conjugate points on any line is direct,

or such that on the sides of any self-polar triangle two of the involur-

tions are opposite and the third direct.

Applying this result in a real plane, we have that every projective

polar system is either such that all involutions of conjugate points

are elliptic, or such that on the sides of any self-polar triangle two

involutions are hyperbolic and the third elliptic. In the latter case

let ABC be a self-polar triangle, AB and AC being the sides upon
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which the involutions are hyperbolic. Let the double points of the

involution on AB be C^ and C^, and those of the involution on J (7 be

B^ and B^. The polar of Cj is then the line C^G. The conic section

K^ through C^, C^, B^, B^ and tangent to the line C^C at C^ has a

polar system in which ABC is a self-polar triangle, and in which the

given involutions are involutions of conjugate points. By § 93, VoL I,

these conditions are sufficient to determine a polarity. Hence the

given polarity is the polar system of K^. Thus we have

Theorem 38. Definition. A projective polar system in a real plane

is either the polar system of a real conic, or svAih that the involution of

conjugate points on any line is elliptic. A polar system of the latter

type is said to be elliptic.

The existence of elliptic polar systems is easily seen as follows:

Let ABC be any triangle, O any point not on a side of this triangle,

P' the point of intersection of OA with BC, Q' the point of intersec-

tion of OB with CA, and P and Q any two points separated from P'

and Q' by the pairs BC and CA respectively. By the theorems in

§ 93, Vol. I, there exists a polar system in which the triangle ABC
is sel£-polar and the point is the pole of the line PQ, and by the

theorems in the present section this polar system is elliptic.



CHAPTER VI

INVERSION GEOMETRY AND RELATED TOPICS*

90. Vectors and complex numbers. The properties of the addition

of vectors have been derived in § 42 from those of the group of

translations. If the operation of multiplication is to satisfy the dis-

tributive law, „ , ,

a(o -\-c) = ab + ac,

multiplication by a vector, a, must effect a transformation on the

vector field such that & + c is carried into the vector which is the

sum of those to which b and c are carried. Since the group of trans-

lations is a self-conjugate subgroup of the Euclidean group, any

similarity transformation of the vector field satisfies this condition.

Let us then consider the transformations effected on a vector field

by the Euclidean group. Any similarity transformation is a product

of a translation by a similarity transformation leaving an arbitrary

point invariant. But a translation carries every vector into itself.

Hence any similarity transformation has the same effect on the field

of vectors as a similarity transformation leaving invariant. Hence

the totality of transformations effected on the vector field by the

Euclidean group is identical with the totality of transformations

effected on it by the similarity transformations leaving invariant.

Since no such transformation changes every vector into itself, any

two of them effect different transformations of the field of vectors.

Hence we have

Theorem 1. The group of transformations effected by the Euclidean

group in a plane upon the field of vectors is isomorphic with the group

of similarity transformations leaving an arbitrary point invariant.

To obtain a definition of multiplication we restrict attention to the

group of direct similarity transformations and make use of the fact

that if OA and OB are any two nonzero vectors, there is one and but

* The main part of Chap. VII is independent of this chapter. The two chapters

may therefore be taken up in reverse order if the reader so desires.

219
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one transformation of this group carrying tlie points and ^ to

and B respectively.

Definition. Eelative to an arbitrary vector OA, which is called

the unit vector, the product of two vectors OX (whereX^ 0) and OY
is the vector OZ to which F is carried by the direct similarity trans-

formation carrying OA to OX, and is denoted by OX • OY. In case

X=0, OX-OY denotes the zero vector.

As obvious corollaries of this definition

we have the following two theorems

:

Theorem 2. The triad of points OAY
is directly similar to the triad OXZ if

and only if

0Z= OX-OY.

Theorem 3. The equation

0Z= OX-OY Fig. 69

is satisfied if and only if 2iA0X-\-4.A0Y=2i.A0Z and Dist{OZ) =
Dist {OX) Dist {OY), the unit of distance ieing OA.

Since the direct similarity transformations leaving a point invari-

ant form a group, the operation of multiplication must be associative, i.e.

OX-{OY- OZ) = {OX- OY) OZ,

and also such that there is a imique inverse for every vector OB for

which O ^ B, Le. there must be a vector OF such that

o^-or=o^.

The group of direct similarity transformations leaving invariant is

commutative because it consists of the rotations about (which form

a commutative group by § 58) combined with dilations with as

center. Hence the operation of multiplication is commutative, Le.

OX-Or=OF-OX

The fact that the group of translations is self-conjugate under the

group of displacements translates into the distributive law,

OX- (or-i- OZ) = OX- 0Y+ OX- oz.

Eecalling the definition of a number system given in Chap. VI,

VoL I, we may summarize these results by saying.
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Theorem 4. With respect toithe operation of addition described, in

§ 42 and of multiplication defined in this section, a planar vector

field is a commutative num,her system.

In proving this theorem we have made use of no properties of the Euclidean

group except such as hold for any parabolic metric geometry for which the

absolute involution is elliptic. In case the absolute involution were hyper-

bolic, exceptions would have to be made corresponding to properties of the

minimal Hnes.

The definition of multiplication of vectors as given here does not

conflict with the notion of the ratio of coUinear vectors as developed

in Chap. III. For the quotient of two coUiaear vectors is a vector

coUinear with the unit vector OA, and the system of vectors coUin-

ear with OA constitutes a number system isomorphic with the real

number system. Thus, if we denote the unit vector by 1, any vector

OX coUinear with it may be denoted by

xl,

where, according to the definition of § 43, a; is a real number and

where, according to our present definition, x denotes OX itself.

Let us denote a vector OB such that the line OB is perpendicular

to the line OA and such that Dist (0J5) =Dist(0^), by i. Then by

the definition of multipUcation,

i» = - 1.

Any vector coUinear with i is expressible in the form xi, where a; is a

vector paraUel to 1, and by Theorem 8, Chap. Ill, any vector whatever

is expressible uniquely in the form

al + hi.

The product of two vectors may be reduced by the associative,

distributive, and commutative laws as foUows:

(al + 6i) (cl + di) = (al + hi) cl + (al + hi) di

= (ac — bd)l + {be + ad)i

By comparison with §§3 and 14 this shows that

Theorem 5. A planar field of vectors is a number system isomor-

phic with the complex number system, i.e. the geometric number system

of a complex line.
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The isomorphism in question is that by which the complex number

a + hi corresponds to the vector al + hi. Supposing that the funda-

mental points of the scale on the complex line are J^, JJ, F„, this

means that there is a correspondence between the complex line and

the Euclidean plane in which ij corresponds to 0, P^ to A, and every

point whose coordinate relative to the scale P„, jF^, ij. is

a + hi

corresponds to the point Q of the Euclidean plane such that

OQ = al + hi.

One obvious property of this correspondence which we shall have

to use later is that the points of the complex line which have real

coordinates relative to the scale ij, i^, ij, correspond to the points of

the line OA, or, in other words, that the points of the chain * C (I^P^P^),

other than P,, correspond to the points on the real line OA.

Theorem 5 may be made the basis of a method for the investigation of

theorems of Euclidean geometry, particularly those relating to n-lines and

circles. The complex numbers may be regarded as the coordinates of the

points of the Euclidean plane and many interesting theorems obtained by

interpreting simple algebraic equations. Compare the articles by F. Morley,

Transactions of the American Mathematical Society, Vol. I, p. 97 ; Vol. IV,

p. 1; Vol. V, p. 467; Vol. VIII, p. 14.

The whole subject is closely related to certain elementary parts of the

theory of functions of a complex variable. Cf. an article by F. N. Cole,

Annals of Mathematics, 1st Series, Vol. V (1890), p. 121.

91 . Correspondence between the complex line and the real Euclidean

plane. The operation of addition of vectors has been so defined that

OX' =0X+ OP,

where andP are fixed and X and X' variable points, may be taken

as representing a translation carrying X to X'. The operation of

miiltiplication has been defined so that

OX' = OP-OX
may be taken to represent a direct similarity transformation carrying

into itself and X to X'. Thus the general direct similarity trans-

formation may be written

OX' = OP 0X+ OQ.

* Cf. § 11. The reader who has omitted the starred sections in Chap. I may
take a chain C (PgP-^Pa,) as by definition consisting of those points of a complex

line which have real coordinates relative to the scale Pg, P,, P„.
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The last theorem may therefor^e stated in the following form

:

Theorem 6. Let Q^, Q^, Q„ he three arbitrary points of a complex

projective line I, and let P^ and I{ he two arhitrary points of a Euclid-

ean plane it in whose line at infinity L an elliptic absolute involution

is given. There exists a one-to-one and reciprocal correspondence T in

which P^ corresponds to Qf^yP^ to Q^, L to Q„, and every ordinary point

of IT to a point of I distinct from Q„. This correspondence is such that

to every projective transformation of I leaving Q„ invariant, i.e. to

every transformation of the form

(1) ,
x' = ax + h, « =7^ 0,

there corresponds a direct similarity transformation of ir, and

conversely.

The question immediately arises, What group of transformations

of TT corresponds to the general projective group on I, i.e. to the set

of transformations

b
(2)

, ax-\-h

CX + d
0?

The transformation of tt corresponding to

(3) x' = l/x

must change any point P to a point P' such that

P,P' P,P = P,P,.

Hence, by Theorem 3, JlPP^Px is congruent to AP^P^P'. Therefore

the orthogonal line reflection with P^P^ as axis must carry P to a

point P" of the line P^P'- If P be re-

garded as a variable point of a line

through P^, it follows that the correspond-

ence between P' and P" is projective. In

this correspondence ij corresponds to the

point at infinity of the line P^P', and each

of the points in which this line meets the

circle through ij with ij as center corre-

sponds to itself. Hence the correspond-

ence between P' and P" on a given line

through P^ is an involution, and P' and P" are conjugate points with

respect to the circle. Hence (§ 71), if P be a variable point of the

plane, the correspondence between P' and P" is an inversion. Hence

Fig. 70
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the transformation of tt corresponding to a/ = Xjx is the product

of the orthogonal line reflection with ^^ as axis and the inversion

with respect to the circle through P^ with ^ as center.

Now any transformation (2) is evidently (cf. § 54, Vol. I) a product

of transformations of the forms (1) and (3). But the transformation

(1) has been seen to correspond to a direct similarity transformation,

Le. to a product of a dilation and a displacement. A displacement has

been proved in Chap. IV to be a product of two orthogonal line

reflections ; and a dilation will now be shown to be a product of two

or four inversions and orthogonal line reflections.

For consider a dilation A with a point as center and carrying

a point ^ to a point B. If O is not between A and B, there exists

(Theorem 8, Chap. V) a pair of points C^C^ which separate A and B
harmonically and have as mid-point. Let 1^ be the inversion with

respect to the circle with as center and passing through C^. The

transformation l^A leaves invariant all points of the circle through A
with as center, and effects a projectivity on each line through

which interchanges and the point at infinity. The projectivity on

each line through is therefore the involution carrying each point

to a conjugate point with regard to the circle through A with as

center. Hence I^A is an inversion, I^^, with respect to this circle.

From IjA = I^ follows A = I^I^. If is between A and B, let A be

the point reflection with as center. The product AA is a dilation

such that is not between A and AA (A^. Hence AA is a product of

two inversions Ij, I^ and A = AI^^I^. Since A is a product of two

orthogonal line reflections, A is a product of four inversions and

orthogonal line reflections.

Hence any projective transformation of a complex line I corresponds

under T to a transformation of a real Euclidean plane ir which is a

product of an even nwmber ofinversions and orthogonal line reflections.

The converse of this proposition is also valid. In order to prove it

we need only verify (a) that the product of two orthogonal line reflec-

tions in TT corresponds to a projectivity of I, (/3) that the product of an

orthogonal line reflection A and an inversion P of tt corresponds to a

projectivity of I, and (7) that the product of two inversions PjPj of ir

corresponds to a projectivity of I. The first of these statements is a

corollary of Theorem 6.
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To prove (/8) let us first cq§sider the case where the axis of A
passes through the center of P. Let 0^ be one of the points iu which

the axis of A meets the invariant circle of P,X be any point of tt, and

X' = AP (X). The considerations given above in connection with the

transformation (3) show that -y

^^-
ox'

and hence that AP corresponds to a transformation of I of the same

type as (3), i.e. to an involution. Moreover, AP is obviously the same

as PA. In case the axis of A does not pass through the center of P,

let A' be an orthogonal line reflection whose axis passes through the

center of P. Then

AP = AA' • A'P and PA = PA' • A'A.

The products AA' and A'A correspond to projectivities by Theorem 6,

and PA' = A'P corresponds to an involution by what has just been

proved. Hence AP and PA correspond to projectivities.

To prove (7) let A be an orthogonal line reflection whose axis

contains the centers of P^ and P^. Then

P,P, = P^A.AP,.

The products P^A and AP^ correspond to projectivities by (/S). Hence

PjPj corresponds to a projectivity. Thus we have the important result

:

Theorem 7. A projective transformation on a complex line corre-

sponds under V to a transformation of the real Euclidean plane

ivhich is a product of an even number of inversions and orthogonal

line reflections, and, conversely/, any transformation of the real

Uuclidean plane of this type corresponds to a projectivity of the

complex line.

92. The inversion group in the real Euclidean plane.

Definition. The transformations of a Euclidean plane and its

line at infinity which are products of orthogonal line reflections

and inversions are called circa Iar transformations, and any circular

transformation which is a product of an even number of inversions

and orthogonal line reflections is said to be direct.

Theorem 8. Definition. Tlie set of all circular transformations

of a Euclidean plane and its line at infinity in which an absolute
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involution is given constitute a group which is called the inversion

group. The set of direct circular transformations form a subgroup

of the inversion group, which, if the Euclidean plane is real, is

isomorphic with the projective group of a complex line.

The first part of this theorem is an obvious consequence of the

definition, and the second is equivalent to Theorem 7. That not all

circular transformations are direct is shown by the special case of

an inversion. An inversion is not a direct circular transformation,

because it leaves invariant all points of a circle and hence cannot

correspond under F to a projectivily. Combining Theorems 8 and 6

we have

CoEOLLAEY. In a real Euclidean plane the group of circular

transformations leaving l„ invariant is the Euclidean group, and the

direct circular transformations lecCving l„ invariant are the direct

similarity/ transformations.

The isomorphism between the group of direct circular transforma-

tions and the projective group on the line may be used as a source

of theorems about the former. Thus the fundamental ' theorem of

projective geometry (Assumption P) translates into the following

theorem about the real Euclidean plane:

Theorem 9. A di/rect circular transformation which leaves three

ordinary points, or two ordinary points and L, invariant is the

I identity. There exists a direct circular transformation carrying any

three distinct ordinary points A, B, C respectively into three distinct

points A', B', C respectively, or into A', B', and l„ respectively.

Now consider a circular transformation 11 which is not direct and

which leaves three distinct points A, B, C invariant. By definition

n = A,„+i • Aj, • • • A^ • Aj,

where A,, (i = 1, 2, • • •, 2 m + 1) is an inversion or an orthogonal line

reflection. Let A be an orthogonal line reflection whose axis contains

A, B, C, if these points are collinear, or an inversion with respect to

the circle containing them in case they are not collinear. Then AH
is a direct circular transformation leaving A, B, C invariant. Hence

AIT = 1.

SlQce A is of period two, this implies

n = A.
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The same argument applies in^case one of the points A, B, C is

replaced by L. Hence we have

THEqBEM 10. ^ circular transformation which is not direct and

leaves invariant three distinct ordinary 'points A, B, C, or two ordinary

points A, B, and Z„, is an orthogonal line reflection or an inversion

according as the invariant points are eollinear or not.

Theorem 11. If II is a circular transformation and A an inver-

sion or orthogonal line i^eflection, UAII"' is an inversion or orthogonal

line reflection.

Pfoof. Let A, B, C be three of the invariant points of A ; then

IIAII-i leaves 11 (A), II (B), U (C) invariant. If

1I=AA---A„,

where A^, • • •, A„ are orthogonal line reflections or inversions, then

nAn-= A,A,..-A,AA„...AA,

and is thus a product of an odd number of orthogonal line leflections

or inversions. Hence by the last theorem it is an orthogonal line

reflection or an inversion.

The invariant elements of 11AH"' are those to which the invariant

elements of A are carried by 11. Since nAII"^ is an inversion or an

orthogonal line reflection, we have

Corollary 1. Any circular transformation carries any circle into

a circle or into the set of points on an ordinary line and on L. It

carries the set of points on l„ and an ordinary line into a set of this

sort or into a circle.

Corollary 2. If C^ and K^ are any two circles and I any line,

there exists a direct circular transformation carrying C^ to K^ and

one carrying C^ to the set of all points on I and L.

Proof. Let A, B, C be any three points of C^ let A', B', C be any

three potuts of K^, and let A!, B' be any two points of I. By Theorem 9,

there exist direct circular transformations 11 and II' such that

U{ABq=:A'B'C' and W {ABC) = A'£'L.

Since A', B', C are not eollinear, the set of points into which 11 carries

C^ must be a circle ; and since there is only one circle containing

A', B\ C, this circle is K^. Since there is no circle containing A', B',

and Z„, the set of points into which 11' carries C^ must be the set of
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points on L and an ordinary line. Since the ordinary line coutains

A' and S', it must be I.

An inversion. (§ 71) transforms all lines through its center into

themselves and interchanges the center with Z„. Hence, by the last

two corollaries, we have at once

COROLLAKY 3. An inversion carries a circle through its center into

the set of points on l„ and a line not passing through the center.

Corollary 4. A pair of circles which touch each other is carried

hy an inversion into a pair of circles which touch each other, or into

a circle and a tangent line together with l„, or into two parallel lines

and Z„.

Proof. Let C^ and K^ be two circles which touch each other

Since an inversion is a one-to-one reciprocal correspondence except

for the origin and l„, if neither C^ nor K^ passes through the origin,

they must be carried into two circles having only one point in

common and which therefore touch each other. If C^ passes through

the origin and K^ does not, C" is carried into L and an ordinary

line I, while K^ is carried into a circle K^ which has one and only one

point in common with the line pair l„l. Since l„ cannot meet K^ in

a real point, I meets it in a single point and therefore is tangent. If C"

and JST^ both pass through the center of inversion, they are transformed

into Z„ and a pair of ordinary lines I, m. Since C^ and K^ have only

the center of inversion in common and this is transformed into L,

the lines I and m can have no ordinary point in common. Hence I

and m are parallel.

It was remarked in § 90 (just before the fine print at the end)

that the correspondence F between the complex line and the real

Euclidean plane is such that the points of a certain chain C (I^I^Z))

with the exception of Z, correspond to the points of a certain Euchd-

ean line I. Since ^ corresponds to L, the chain C (^^-S) corresponds

to the line pair IL. Under the projective group on a line any two

chains are equivalent ; and under the group of direct circular trans-

formations any circle is equivalent to any circle or any line pair /?„

(Cor. 2). Hence we have

Theorem 12. The correspondence T is sv^h that chains in the com-

plex line correspond to real circles or to line pairs IL, where I is

ordinary and l„ the line at infinity of the Euclidean plane.
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The theory of chains on a cmnplex luie is therefore equivalent to

the theory of the real circles and lines of a Euclidean plane. In view

of this equivalence we shall freely transform the terminology of the

complex line to the Euclidean plane, and vice versa. Thus we shall

speak of the cross ratio of four points in the Euclidean plane and of

pencils of chains in the complex line. The exercises below contain a

number of important theorems some of which can be obtained directly

from the definitions in § 71 and some of which can be proved most

simply by translating projective theorems on the complex line into

the terminology of the Euclidean plane.

Definition. An imaginary circle is an imaginary conic through

the circular points such that its polar system transforms real points

into real lines.

The definition of an inversion given in § 71 applies without change

to the case of imaginary circles.

On the geometry of circles in general the reader is referred to the

papers by Mobius in Vol. II of his collected works ; to those by Steiner

in Vol. I (especially pp. 16-83, 461-527) of his collected works; to

Vol. II, Chaps. II, III, of the textbook by Doehlemann referred to ir.

Ex. 4 ; and to the forthcoming book by J. L. Coolidge, A Treatise on

the Circle and the Sphere, Oxford, 1916.

EXERCISES

1. An inversion with respect to an imaginary circle is a product of an

inversion with respect to a real circle and a point reflection having the

same center as the circle.

2. The inverse points on any line through the center of a circle C^ are

the pairs of an involution having as center, li A^ and A^ are any two

inverse points, OA^ OA^ is a constant, which in case of a real circle is equal

to (OCy, C being a point of CK

3. Two pairs of points A A' and BB' are inverse with respect to a circle

with as center if and only if (1) is coUinear with the pairs AA' and

BB', and (2) the ordered triads 0^15 and OB'A' are similar, but not

directly similar.

4. A linkage which consists of a set of six bars OA, OC, AB, BC, CD,

DA, jointed movably at the points 0, A, B, C, D, and such that Dist (OA) =

Dist (OC) and ABCD is a rhombus, is called a "Peauoellier inversor." If

is held lixed and B varies, the locus of D is inverse to that of B with

respect to a circle with as center. If B be constrained, say by an additional

link, to move on a circle through 0, D describes a line. On the general
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subject of linkages, cf. K. Doehlemann, Geometrische Transformationen,

Vol. II, p. 90, Leipzig, 1908, and A. Emch, Projective Geometry, §§ 62-67,

New York, 1905.

5. If A, B, C, D axe four points of a Euclidean plane,

,

B (AB, CD) = ke's,

, . Hist (AC) Bist (BC) , . -
where ^=

t^- ^; a r,i y- t^- ^)r.r.v ^^^ 6 = a-B,
Dist (AD) Dist (BD) '^

where u. and fi are the measures of 2i.CAI) and /iCBD respectively. The
number k is invariant under the inversion group, and 6 under the group of

direct circular transformations. The four points are on a circle or coUinear

if = 0.

6. Construct a point having with three given points a given cross ratio.

7. Ifn is any circular transformation, the points O= Il-^(l„) and 0'=II(L)

are called its vanishing points. The lines through are transformed by 11 into

the lines through O'. If X is any point of the plane, and X' = 11 (X), then

Dist (OX) • Dist (O'X') is a constant, called the power of the transformation

(cf. § 43).

8. Let A and B be two points not coUinear with and let 11 (^) = ^',

n (B) = B'. The ordered point triads OAB and C/B'A' are directly similar if

n is direct, and similar, but not directly so, if II is not direct.

9. The equations of an inversion relative to rectangular nonhomogeneous

coordinates, having the center of inversion as origin, are

. kx , ky

x^-iry^ " x^\y^

The circle of inversion is real or imaginary according as A > or i < 0.

10. The coordinate system for the real Euclidean plane obtained by means

of the isomorphism of the Euclidean group with the projective group leaving

a point invariant on a complex line is such that the coordinate z of any point

is a; + iy, where x and y are the coordinates in a system of rectangular non-

homogeneous coordinates and i^ = — 1. The points z of a circle satisfy the

condition , , , , ,

,

MJrh o 6 .
f,

ctJr d |c rf|

where t is real and variable and a, b, c, d are complex and fixed. If c = 0, this

circle reduces to a line.

11. The circles orthogonal to z = are^
ct + d

_ (a+b^it+b+aa
~

(e + d^)it+ d+ ca'

where a and j3 are real.

12. The circles through two points Zj, Zj are given by

aU + 1
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13. A circle with Zj as center i^ given by

« — Zj = fee'*,

where S < 2 ir and kis a, real constant.

14. The centers of the circles circumscribing the four triangles formed by

the sides of a complete quadrilateral are on a circle. This circle is called the

center circle of the complete quadrilateral. The centers of the center circles

of the five complete quadrilaterals formed by the sides of a complete five-line

are on a circle called the center circle of the five-line. Generalize this result.

93. Generalization by inversion. By the corollary of Theorem 8

the set of direct circular transformations leaving l„ invariant is the

group of direct similarity transformations, and the set of all circular

transformations leaving Z„ invariant is the Euclidean group. This is

the basis of a method of generalization by inversion entirely analo-

gous to the generalization hy projection employed in § 73.

In case a figure F^ vrhich is under investigation can be trans-

formed by one or more inversions into a known figure F^, then such

of the relations among the elements of F^ as are invariant under

circular transformations must hold good among the corresponding

elements of F^.

In order to apply this method it is necessary to know relations

which are left invariant by the circular transformations. The most

elementary of these are given in the last section, but perhaps the

most important property of an inversion for this purpose is that of

isogonality, or " preservation of angles."

Definition. If Cl and Cl are two circles having a point Q in com-

mon, and mj and m^ are the tangents to Cl and C| respectively at Q,

the measure (according to § 72) of the ordered line pair m^^ is

called the angular measure of the ordered pair of circles at Q, or

simply the angle between the two circles at Q. If Cl is any circle,

wi-a a line meeting it in a point Q, and m^ the tangent to Cl at Q^

the measure of the ordered line pair m^m^ is called the angle between

m^ and Cf, and the measure of m-^m,^ is called the angle between Cl

and m . The measure of a line pair m^^ is called the angle* between

m^ and m^.

Theorem 13. An angle a hetween two circles or a circle and a

line or letwetn two lines is changed into ir — a hy an inversion or

•In accordance with common usage, we are here using the term "angle" to

denote a number, in spite of the fact that we use it in § 28 to denote a geometrical

figure.
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an orthogonal line reflection and is left unaltered hy any direct

circular transformation.

Proof. The statement with regard to direct circular transformar

tions is an obvious consequence of the one with regard to inversions

and orthogonal line reflections. What we have to prove is, therefore,

the following:

Let n be an inversion or an orthogonal Hne reflection, and let l^

and l^ be two hues meeting in a point P such that 11 (P) = Q is an

ordinary point. If l^ is carried by 11 into a line, let this line be denoted

by m^; and if l^ (together with L) is carried to a circle Cl, let m^ denote

the tangent to Cf at Q; Hkewise, if l^ is carried by 11 into a line, let

this line be denoted by m^; and if l^ (together with L) is carried to a

circle Cl, let m^ denote the tangent to Cl at Q. The two ordered pairs

of lines IJ,^ and m^m^ are symmetric.

In case 11 is an orthogonal line reflection, mj= 11 [l^ and mj= 11 (l^^

and the proposition is a direct consequence of the definition of the

term " symmetric "
(§ 57). Suppose, then, that 11 is an inversion hav-

ing a point as center.

One of the lines l^, l^, say

l^, can be transformed into

itself if and only if l^ is on 0.

By hypothesis O^P; hence

if n (l^ = l^, the line l^ goes

into the set of points dif-

ferent from on a circle C|

through and Q. Then m^

is the tangent to Cl at Q.

Any line through which

meets l^ in an ordinary

point X meets Cl in the

point which corresponds to

X under the inversion. Hence the line n^ through and tangent

to Cl cannot meet l^ in an ordinary point, and is therefore parallel to l^.

Hence the line pair l^^ is congruent to the pair l^^. The line m^ is

the tangent to Cl at Q. Since l^^ is carried to l.{m^ by the orthogonal

line reflection whose axis is the perpendicular bisector of OQ, the pair

\n^ is symmetric with l^m^. Hence l^l^ is symmetric with l^^.

Fig. 71
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If neither of the lines l^, l^ is%-ansformed into itself, neither passes

through 0. Let I denote the line OP. Then by the last paragraph 11^

is symmetric with Im^, and 11^ with Im^. But by Theorem 13, Chap. IV,

the symmetry which carries 11^ to Im^ must be identical with that

which carries II to Zm„. Hence II is symmetric with mm^.
2 2 \ 2 •> 12

As an exercise in generalization by inversion let us prove the following

:

Theorem 14. If three circles C^, C^, Cg meet in a point in such a way that

each pair of them makes an angle —
, and also meet hy pairs in three other points

P, Q, R, the circle (or line) through P, Q and R makes with each of the other

circles an angle —

Proof. The pair of circles which meet at obviously make the angle — at
o

each of the points P, Q, R. An inversion n with respect to a circle having

as center must therefore change them into the sides of an equilateral triangle.

The circle circumscribing this triangle makes the angle - with each of the
o

sides. But since this circle is the transform of the circle PQR by 11, the

conclusion of the theorem follows.

As a second application of the theory of inversion, in combination with

projective methods, we may consider the theorem of Feuerbach on the nine

point circle (cf. Ex. 2, § 73).

Theorem 15. The nine-point circle ofa triangle touches thefour inscribed circles.

Proof. Let the given triangle be ABC, and let the mid-points of the pairs

BC, CA, AB be A^, B^, C^ respectively. The nine-point circle is the circle

containing A.^,B^, Cj.

Let K^ and K^ be the two inscribed circles whose centers are on one of the

bisectors of 4 CAB. In case Kf and /Cf touch the line BC at the same point,

this is the mid-point A^ of the pair BC, the triangle ABC is isosceles, and the

nine-point circle obviously touches K^ and K^ a,tA^. In every other case there
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is one line, I, besides AB, BC, CA, which touches both K^ and if|. Let A'B'C
be the points in which I meets the sides BC, CA, AB respectively. Then AA',

BB', CC are the pairs of opposite vertices of a complete quadrilateral circum-

scribing both Kl and /f.|, and the diagonal triangle of this quadrilateral is a

self-polar triangle both for Kl and Kl (§ 44, Vol. I). Since the side ^^' of

this triangle is the line of centers of K^ and Kl, the other two sides, BB' and

CC, are parallel to each other and perpendicular to AA'. Let their points of

intersection with AA' \>e. B^ and Cg respectively. These two points are con-

jugate with respect to both circles, and hence must be the limiting points of

the pencil of circles containing iff and K\. The radical axis of the pencil of

circles is the perpendicular bisector of the pair B^C^, and hence (§ 40) passes

through the mid-points of all the pairs BC, B'C, BC, B'C, B^Cg. In partic-

ular the radical axis of K^ and K^ passes through A^, the mid-point of BC.

Hence there is a circle G^ with Aj^aa center and passing through 5^ and C^.

Let r be the inversion with respect to G". Since this circle passes through

B„ and C„, it is orthogonal both to Kf and if| (Theorem 34, § 71), and hence

r transforms each of these circles into itself. We shall now prove that T
transforms I into the nine-point circle.

Let B^ be the point in which A^B^ meets I. Since A^^Bj^ is parallel to AB,

it is not parallel to I, and hence B^ is an ordinary point. Since A^^B^ contains

the mid-point ^j of the pair CB and is parallel to BC, it contains the mid-

point Cg of the pair CC. The involution which T effects on the line Aj^B^

must have C„ as one of its double points and ^j as its center ; hence the other

double point must be the point Bg in which A^B^ meets BB', because ^i is the

mid-point of the pair CgB^. Thus (?" passes through B^ as weU as through Cj.

But since n/

Bo-A-'CgA = BgB^CgBi,

Bj and B^ are harmonically conjugate with respect to C^ and Bg. Hence T
transforms B^ to Bj^.

In like manner it can be shown that if C^ is the point in which Aj^C^ meets

I, r transforms C^ to Cj. Since any line whatever is transformed by F to a

circle through ylj, it follows that I is transformed to the circle through ^j, Bj,

and Cj, i.e. to the nine-point circle. By Theorem 11, Coj. 4, since I is tangent

to K^ and if|, the nine-point circle touches K^ and K^. Since it has not been

specified which of the bisectors oi 2i.CAB contains the centers of Kl and K\,

this argument shows that the nine-point circle touches all four inscribed circles.

EXERCISES

1. Any three points can be carried by an inversion into three collinear

points.

2. Two nonintersecting circles can be carried by an inversion into

concentric circles.

3. Any direct circular transformation is a product of an inversion and

an orthogonal line reflection.
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4. A product of two inversion's an involution if and only if the circles

are orthogonal.

5. Of four circles mutually perpendicular by pairs, three can be real.

6. The nine-point circle meets the circle through C^ having A-^ as center

in points of the line A'B'.

7. The nine-point circle of a triangle touches the sixteen circles inscribed

to the triangle or to any of the triangles formed by pairs of its vertices with the

orthocenter.

8. Let three circles C^, C^, CI meet in a point 0, and let P^, P^, Pg be the

other points of intersection of the pairs C^C^, C^C^, C^Cl respectively. If Qj

be any point of C^, Q^ the point of C^ collinear with and distinct from Q^ and

Pj, and Qg the point of C^ collinear with and distinct from Qj and P^, then Qj,

Pj, and Qj are collinear.

9. The problem of ApoUonius. Construct the circles touching three given

circles. Cf. Pascal, Repertorium der Hoheren Mathematik, II 1, Chap. II, on

this and the following exercise.

10. The problem of Malfatti. Given a triangle, determine three circles each

of which is tangent to the other two and also to two sides of the triangle.

94. Inversions in the complex Euclidean plane. Thus far we have

dealt only with a real Euclidean plane. The definition of an inver-

sion given in § 71, however, applies without change in the complex

Euclidean plane ; i. e. two points A^, A^ are inverse with respect

to a circle C^, provided they are conjugate with respect to C' and

collinear with its center. The transformation thus defined is obviously

one to one and reciprocal for all points of the complex projective

plane except those on the sides of the triangle OI^I^, where is the

center of C^, and I^ and I^ are the circular points at infinity. Any

point of Z„ is carried to. by the inversion, and O is carried to every

point of L. The circular point /^ is transformed to every point of the

line OIj^, and every point of the line 01^ is transformed to I^. In like

manner I^ is transformed to every point of the line 01^, and every

point of this line is carried to I^.

Definition. The sides of the triangle OI^I^^ are called the singular

lines of the inversion with respect to C, and the points on these lines

are called its singular points.

The principal properties of an inversion may be inferred from

the following construction : If A^ is any point not on a side of the

triangle OIJ^; let B^ and B^ be the points distinct from I^ and
7^^

(fig. 73) in which the lines A^I^ and A^I^ respectively meet C\ Let

A be the point of intersection of I^B^ and I^B^. The points A^^ and A^
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are mutually inverse because, by familiar theorems on conies, they

are conjugate with regard to 6'^ and collinear with 0.

From this construction it is evident in the first place that all

points, except I^ of the line J^/^, are transformed into points of the

line A^T^, and vice versa. Hence an inversion transforms the minimal

lines through I^ into the ^b,

minimal lines through J^,

and vice versa. More-

over, the correspondence

between the two pencils

of minimal lines is such

that if -B is a variable

point of C^ the line J^B

always corresponds to

I^B. In other words, the

correspondence effected

by an inversion between

the two pencils of mini-

mal lines is a projectivity generating the invariant circle C^

The definitions of circular and of direct circular transformations,

given in § 92, apply without change in the complex Euclidean plane.

The result just obtained therefore implies that any direct circular

transformation transforms each pencil of minimal lines projectively

into itself, and any nondirect circular transformation transforms

each pencil of minimal lines projectively into the other.

Now suppose that A^ is a variable point on any line I not contain--

ing I^ or I^.

I

(4) IM.^^IM.l

Since B^ and B^ are always on the conic C",

(5)

and

(6)

Hence

(7)

But corresponding lines of these two pencils intersect in the vari-

able point A^, which is therefore always on a conic through I^ and I^
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or on a line. In the projectivi^ (5) the line Ifi corresponds to L;
in (4) Z« corresponds to itself; and in (6) Z„ corresponds to Ifi.

Hence in (7) the line 1^0 corresponds to Ifi, and so the circle or line

generated by (7) passes through 0.

This result may be stated in a form which takes account of the

singular elements, as follows : Any degenerate conic consisting of L
and a nonminimal line is carried by an inversion with respect to C'

into a conic (degenerate or not) which passes through I , I , and 0.

Next suppose A^ to be a variable point on any nondegenerate conic

through /^ and I^. In this case

(8) I,[AJ-^I,[AJ,

and hence by the projectivities (5) and (6) we have

Hence A^ is again on a conic through I^ and 7^^, which can degenerate

only if L corresponds to itself under (9). The latter case implies, by

(5) and (6), that 1^0 and 1^0 correspond under (8) or, in other words,

that the locus of A^ passes through 0. Hence any nondegenerate conic

JK^ through I^ and I^ corresponds by the inversion icith respect to C^

to a conic through I^ and I^, which degenerates into a pair of lines,

one of which is l„, only in case K" passes through 0.

This result, together with the other statement italicized above,

amount to an extension of Cors. 1 and 3 of Theorem 11 to the com-

plex Euclidean plane. From our present point of view we can also

establish the following theorem, which did not come out of the

reasoning in § 92.

Theorem 16. The correspondence between two circles which are

homologous under an inversion is projective.

Proof. If A^ is a variable point of one circle and A^ of the other,

then, in the notation above, 7^5^ = I^A^, and hence by (5)

which is a necessary and suflScient condition that the correspondence

between the two circles be projective (cf. the corollary and definitions

following Theorem 10, Chap. VIII, Vol. I).
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The same reasoning also applies in case one or both of the conies

which are the loci of A^ and A^ degenerate. We thus have

Corollary. A projective correspondence is established by (in in-

version between any two homologous lines or between a line and

its homologous set of points on a circle.

The proof of Theorem 13 on the preservation of angles under a cir-

cular transformation applies without change in the complex Euclidean

plane. This theorem can also be proved by the use of considerations

with regard to the circular points. We shall give the argument for

the case of orthogonal circles, leaving it as an exercise for the reader

to derive the proof along these lines for the general case.

It has been proved in § 71 that the circles through two points A,

A^ are orthogonal to the circles through two points B^, B^ if and only

if the pairs A^A^, B^B^, and I^I^ are pairs of opposite vertices of a

complete quadrilateral (cf. iig. 73). The sides I^A^, I^A^, I^A^, I^A^ of

such a quadrilateral are transformed by an inversion relative to any

circle into four lines through I^ and I^. Hence the points A^, A^, B^,

B^ are transformed into four points A^, A^, B[, B^ such that I^I^,

A[Al, and B[Bl are pairs of opposite vertices of a complete quadri-

lateral Hence the pencils of circles through A^, A^ and B^, B^

respectively are transformed into two pencils such that the circles

of one pencil are orthogonal to those of the other.

With this result it is easy to prove that Theorems 8-11, 13, and

their corollaries hold in the complex Euclidean plane, proper excep-

tions being made so as to exclude minimal lines and pairs of points

on minimal lines. This is left as an exercise.

95. Correspondence between the real Euclidean plane and a complex

pencil of lines. The correspondence between a complex one-dimen-

sional form and the points of a real Euclidean plane, together with

l^, can be established in a particularly interesting way if the one-

dimensional form be taken as the pencil of lines on one of the circular

points of the line at infinity of the Euclidean plane.

Let Z„ be the line at infinity, and I^ be one of the circular points.

By Theorem 15, Chap. V, each line through J^ ccmtains at least one

real point. No line through Jj, except L, can contain more than ohe

real point ; for otherwise it would be a real line, and hence would mfeet

L in a real point contrary to the fact that I^ is imaginaty. Thai each
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line through J^, except Z«,, contaiiis one and only one real point of the

Euclidean plane. Let us denote by V the correspondence by which

Z„ corresponds to itself and the other lines through I^ correspond each

to the real point which it contains.

By § 94 a direct circular transformation transforms the pencil of

lines on I^ projectively into itself. Hence every direct circular trans-

formation corresponds under T' to a projectivity of the liaes on I^.

By Theorem 9 there is one and only one direct circular trans-

,
formation carrying an ordered triad of distinct points to an ordered

triad of distiiict points ; and by Assumption P there is one and only

one projectivity carrying an ordered triad of liaes of a pencil to any

ordered triad of the pencil. Hence a given projectivity of the pencil

of lines on I^ can correspond under T' to only one direct circular trans-

formation. In other words, F' sets up a simple isomorphism between

the projective group of a complex one-dimensional form and the

group of direct circular transformations.

The correspondence between the points of a real line and the lines

joining them to I^ is evidently projective. Since the cross ratio of

four points of a real line is real, so is the cross ratio of the lines join-

ing them to /j. Hence any real line together with L corresponds

under V to a chain. Since any two chains of a one-dimensional form

are projectively equivalent, and any circle of the Euclidean plane is

equivalent under the inversion group to an ordinary line and l„, it

follows that under T' any chain corresponds to a circle and any circle

to a chain.

The correspondence T' may be used to transfer the theory of invo-

lution from the complex pencil of lines to the Euclidean plane. Let

AA', BB', CG' be pairs of opposite vertices of a complete quadrilateral

of the Euclidean plane. The pairs of lines joining these point pairs

to /j are pairs of an involution. Hence

Theorem 1 7. The pairs of opposite vertices of a complete quadri-

lateral are pairs of an involution, i.e. they are pairs of homologous

points in a direct circular transformation of period two.

In other words, the pairs of opposite vertices of a complete quad-

rilateral constitute the image under V (and hence under F) of a

quadrangular set. While the converse of this proposition is not

true, the proposition can be generalized by inversion so as to give
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a construction for the most general quadrangular set in which no

four of the six points are on the same circle or line (of. Ex. 1, below).

We shall state the construction in terms of chains.*

Theorem 18. Given two pairs of points AA' and BB' and a point

C such that no four of the five points are on the same chain. The

chains C (AB'C) and C (A'BC) either meet in a point D other than C

or touch each other at C. In the latter case let D denote C. The chains

C (DAB) and C (DA'B') meet in a point C such that AA', BB', CC
are pairs of an involution.

Proof. Consider the figure in the Euclidean plane (together with i„)

corresponding under F' to the figure described in the theorem. If

r' (X>) ^ l„, r' (Z>) can be transformed to Z„ by an inversion I.

Under IF' the four chains C (AB'C), C {A!BC), C (DAB), and C (BJ^B')

correspond to Euclidean lines (with Z„), and hence AA!, BB', CC' corre-

spond to the vertices of a complete quadrilateral ; so that the theorem

reduces to Theorem 17. If T' (D) = l„, the theorem reduces directly

to Theorem 17.

Corollary. Three pairs of points on a complex line AA', BB',

CC, such that the chains C (A'B'C), C (A'BC), C (AB'C), C (ABC)

are distinct, are pairs of an involution if and only if the four

chains have a point in common.

EXERCISES

1. Three pairs of points of the same chain AA', BB', CC are in involution

if for any point D not in the chain the chains C (^DAA'), C (DBB'), C (DOC)
are in the same pencil.

2. Derive Ex. 15, § 81, from the theory of involutions in a plane.

3. If AA', BB', CC are pairs of opposite vertices of a complete quadri-

lateral, the three circles having AA', BB', CC respectively as ends of their

diameters belong to the same pencil, and the radical axis of this pencil passes

through the center of the circle circumscribing the diagonal triangle of the

quadrilateral.

4. Construct the double points of an involution in a Euclidean plane with

ruler and compass.

* This puts in evidence the fact that while the geometry of real one-dimensional

forms depends essentially on constructions implying the existence of two-dimen-
sional forms, the geometry of the complex projective line could be developed

without supposing the existence of points outside the line,
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96. The real inversion plan* In a real Euclidean plane an inver-

sion has been seen to be a one-to-one and reciprocal transformation

except in that it transforms l„ to the center of inversion, and the center

to l„. An inversion, therefore, is strictly one to one if we regard it as

a transformation of the set of objects composed of the points of the

real Euclidean plane together with h regarded as a single object.

Definition. The set of points in a real Euclidean plane, together

with the line at infinity regarded as a single object, is called a real

inversion plane; l„ is called the point at infinity of the inversion

plane. The set of points on a real circle, or on a real line I together

with Z„, is called a circle of the inversion plane. An inversion is either

an inversion in the sense of § 71 with respect to a real or imaginary

circle or an orthogonal line reflection. Circular transformations, etc.

are defined as in § 92. The set of theorems about the inversion plane,

which remain valid when the figures to which they refer are sub-

jected to every transformation of the inversion group, is called the

real inversion geometry.

Although the point at infinity receives special mention in this

definition, from the point of view of the inversion geometry it is not

to be distinguished from any other point of the inversion plane. For

any point of the inversion plane can be carried to any other point of

it by an inversion. In a set of assumptions for the inversion geometry

as a separate science, there would be no mention of a point at infinity

;

just as there is no mention of a line or a plane at infinity in our

assumptions for projective geometry.

The inversion geometry has a relation to the Euclidean geometry

which is entirely analogous to the relation of the projective geometry

to the Euclidean ; namely, the set of transformations of the inversion

group which leaves one point of the inversion plane invariant is a

parabolic metric group in the Euclidean plane obtained by omitting

this point from the inversion plane.

A large class of theorems about circles can be stated with the

utmost simplicity in terms of the geometry of inversion. For exam-

ple, the propositions that three noncoUinear ordinary points determine

a circle and that two ordinary points determine a line combine into

the single proposition

:

Theorem 19. In the inversion plane any three distinct points are

on one and hut one circle.
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The theorem that there is one and only one circle touching a given

circle C^ at a given point A, and passing through a given point B not

on C^, may be put in the following form, which also includes the

proposition that through a given point not on a given line I there is

one and but one line parallel to I.

Theorem 20. There is one and hut one circle through a point A on

a circle C^ and a point B not on C", and having no point except A in

common with C^.

The theory of pencils of circles makes no special mention of

the radical axis (§ 71), for the radical axis (with l^) is merely one

circle of the pencil and is indistinguishable^ from the other circles.

In like manner the center of a circle is not to be distinguished

from any other point; for the center is merely the inverse of l„,

with respect to the circle, and the inversion group does not leave

l„ invariant.

Thus the theory of pencils of circles in the inversion geometry

involves no reference to the radical axis or to the line of centers.

A pencil of circles may be defined as follows:

Definition. A pencil of circles is either (a) the set of all circles

through two distinct points, or (b) the set of all Circles orthogonal

to the circles of a pencil of Type (a), or (c) the set of all circles

through a point of a given circle C^ and meeting C^ in no other point.

A pencil of circles is said to be hyperbolic, elliptic, or parabolic,

according as it is of Types (a), (b), or (c). Any point common to all

circles of a pencil is called a base point of the pencil.

By comparison with the theorems in the preceding sections it is

evident that the pencils of circles of these three types include all the

pencils referred to in § 71 and also certain pencils of circles which

are regarded as degenerate, from the Euclidean point of view. Thus,

consider a pencil of lines through an ordinary point of a Euchdean

plane. Each of these lines, with L, constitutes a degenerate circle, and

the set of degenerate circles is a pencil according to the definition

above. Again, a pencil of parallel lines in the Euclidean plane deter-

mines a set of circles \^K^'\ in the inversion plane which have in

common only the one point Z„. By Theorem 11, Cor. 3, any inver-

sion r with a center transforms [^^] into a set of circles [Z^f]

through which have in common no other real points than 0.
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Since there is one and onlj^one circle of the set [K^] through

every point of the Euclidean plane, [K^] must be a pencil of

circles of Type (c).

The fundamental theorems about circular transformations may be

stated as follows

:

Theorem 21. A circular transformation is a one-to-one transfor-

mation of the inversion plane which carries circles into circles. There

is a unique direct circular transformation carrying three distinct

points A, B, C to three distinct points A', B', C' respectively. A circular

transformation leaving three points invariant is either an inversion

relative to the circle through these three points or the identity.

The theorems on orthogonal circles in § 71, together with the

corresponding propositions on circles, lines, and orthogonal line

reflections, become:

Theorem 22. Two circles are orthogonal if and only if one of them

passes through two points which are inverse with respect to the other.

Corollary 1. Two circles are orthogonal if and only if they belong

respectively to two pencils of circles such that the limiting points of

one peficil are the common points of the circles of the other pencil.

Corollary 2. If A^ and A^ are inverse with respect to a circle C",

all circles through A^ and orthogonal to C* pass through A^.

The correspondence F, which was established in §§ 90, 91, between

the Euclidean plane and the complex projective Hne, is one to one

and reciprocal between the inversion plane and the complex line.

Since circles and chains correspond under F, the inversion geometry

is identical with the geometry of chains on a complex line. The direct

circular transformations of the inversion plane correspond to the

projectivities of the complex liae.

It follows from § 90 that the inversion with respect to the chain

C (^„©i6») transforms every point z= x-\-iy into the conjugate imagi-

nary point z = x — iy. Hence an inversion with regard to any chain

is a transformation projectively equivalent to that by which each

point goes to its conjugate imaginary point (cf. § 78). For this reason

we make the definition

:

Definition. Two points are said to be conjugate with respect to

a chain if they are inverse with respect to it.
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It is easily seen that any nondirect circular transformation is a

product of a particular inversion and a direct circular transformatioa

Hence any nondirect transformation may be written in the form

, ai + 6
z = -^

cz + d

We shall return to this subject in § 99.

EXERCISES

1. Construct a set of assumptions for the inversion geometry as a separate

science.*

2. Work out the theorems analogous to those of §§ 71, 90-96 for the

parabolic metric group in a modular space. Thus obtain a modular inversion

geometry. The number of points in a finite inversion plane is ^^ + 1 if the

ntimber of points on a circle is ^ + 1.

3. The double points of an involution leaving a chain invariant are inverse

with respect to the chain.

97. Order relations in the real inversion plane. The more elemen-

tary theorems on order relations in the inversion plane follow readily

from the corresponding theorems for the Euclidean and projective

planes. Suppose we start with a projective plane tt'. By leaving out

a line Z„ of tt', a Euclidean plane ir is determined; and by regarding

L as a point, an inversion plane tt is determined. Any line I of tt'

which is distinct from L determines a circle of the inversion plane tt;

and we now define the order relations on this circle as identical with

the projective order relations of I, the point /„ taking the place of the

point in which I meets l„. The order relations on any circle which

does not contain L are determined by § 20.

Since the correspondence effected between any two circles by an

inversion is projective {Theorem 16), it follows that the order relations

among the points on any circle are unaltered by inversion. Hence

ordc relations on 'circles are unaltered by circular transformations.

On a complex line the order relations in a chain are identical with

the order relations on a real line as developed in §§ 18, 19, 21-24.

The correspondence F (§§ 90, 91) is such that the order relations of

corresponding sets of points on a chain C {Q^Q^Q,^) and the circle

P^P^^ are identical. Since order relations on circles are unaltered by

•This question has been treated for the three-dimensional case by M. Fieri,

(Jiomale di Matejpatiche, Vol. XLIX (1911), p. 49, and Vol t, p. 106.
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circular transformations, and o«der relations on chains are unaltered

by projectivities, it follows that T is such that the order relations

of corresponding sets of points on any chain and the corresponding

circle are identical. Therefore the theory of order in the inversion

plane applies also to the complex line.

Eeturning to the Euclidean plane ir', we know by § 28 that the

points not on an ordinary line I fall into two classes such that any

two points of the same class are joined.by a segment not meeting I,

whereas a line joining two points of different classes always meets I.

By § 64 any circle containing two points of different classes meets

I in two points. We thus have

Theorem 23. Definition. The points of an inversion plane not

on a circle C^ fall into two classes, called the two sides of C, such

that two points on the same side of C'^ are joined ly a segment of a

circle which does not contain any point of C", and such that any circle

containing two points on different sides of C^ contains two points of C\

Since order relations on circles are not altered by inversion, there

follows

:

Corollary 1. If two points are on opposite sides of a circle C^^

the points to which they are transformed hy an inversion 11 are on

opposite sides of H {C).

On a complex line the points ou one side of the chain C {Q^Q^Q^)

are evidently those whose coordinates relative to the scale Q^, Q^, Q„

are x + iy, where x is real and y real and positive, and those on the

other side are those whose coordinates are x — iy. Hence, in general,

Corollary 2. The points D and D' are on opposite sides of a circle

through A, B, O if and only if y and y' are of opposite sign in the

following two equations:

B {AB, CD) = x + iy, B {AB, CD') = x' + iy',

where x, y, sd, y' are all real.

Definition. A throw T [AB, CD) is said to be neutral if B {AB, CD)

is real. Two throws T {AB, CD) and T {A'B', C'D') are similarly or

oppositely sensed according as y and y' are of the same or of opposite

signs in the equations

B {AB, CD) ^ a + ijr and B {A'B', C'D') = a/ -F iy',

». t/, a;', y' being real
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From this definition it is obvious that a direct circular transforma-

tion transforms any non-neutral throw into a similarly sensed thro^\r.

It is also obvious that an inversion which reduces in the Euclidean

plane ir to an orthogonal line reflection changes non-neutral throws

into oppositely sensed throws. Hence we have

Theorem 24. A direct circular transformation carries non-neutral

throws into similarly sensed throws, and a nondirect circular trans-

formation carries them into oppositely sensed throws.

EXERCISES

1. Two circles C, K^ intersecting in two distinct points separate the inver-

sion plane into four classes of points such that two points of the same class are

joined by a segment of a circle containing no points of C^ and K^, whereas

any circle containing points of different classes contains points of C^ and KK
2. Two points which are inverse with respect to a circle are on opposite

sides of it.

3. What is the relation between the sense of throws as defined above and

the sense of noncoUinear point triads in a Euclidean plane as defined in § 30?

4. In a Euclidean plane if a triangle ABC is carried to a triangle A'B'C
by an inversion, the sense S {ABC) is the same as or different from S {A'B'C)

according as the center of the inversion is or is not interior to the circle ABC.
5. In the notation of Ex. 7, § 92, if is interior to a circle C^, then W

is interior to n(C), and every point interior to C^ is transformed by 11 to

a point exterior to O'.

98. Types of circular transformations. By § 5 every projectivity

on a complex line has one or two double points. On account of

the correspondence F the same result holds for the direct circular

transformations of the real inversion plane.

Let us consider first a transformation 11 having but one double

point. In the theory of projectivities such a transformation has been

called parabolic; and it has been proved that there is one and but

one parabolic projectivity leaving a point M invariant and carrying

a point A^ to a point A^. We have also seen that if A_^ is the point

which goes to A^, B {^A^, A^A_^) = — 1. Hence J_i, A„, A^ are on the

same chain through M. Since A_^, A^, iff are transformed into A^, A^,

ilf respectively, this chain is left invariant by 11.

In like manner any other point B^ not on the chain C {A^A^M)

determines a chain which is left invariant by H. These two chains

cannot have another point than M in common, because this point
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would have to be left invariant by 11. Thus 11 leaves invariant a

set of chains througli M no two of which have a point in common,

and such that there is one and only oije chain of the set through

any point except M.

If n be regarded as a transformation of the inversion plane, this

means that 11 leaves invariant each circle of a pencil of circles of

the parabolic type. In the Euclidean plane e, obtained by leaving M
out of the inversion plane, this pencil of circles is a system of parallel

lines and 11 is a direct similarity transformation. Now let us regard

6 from the projective point of view. The transformation 11 leaves all

points of the line at infinity of e invariant, because it leaves each of

the circular points invariant as well as the point at infinity of the

system of parallel lines. Hence 11 is a translation in the Euclidean

plane e.

This result may be expressed in terms of the inversion plane as

follows

:

Theorem 25. Any direct circular transformation with only one

invariant point transforms into itself every pencil of circles of the

parabolic type having this point as hase point. One and only one of

these pencils is such that each circle of the pencil is invariant.

Returning to the Euclidean plane we have

Theoeem 26. Any direct similarity transformation which is not

a translation or the identity leaves invariant one and only one

ordinary point.

Proof. Eegard the Euclidean plane as obtained by omitting one

point from an inversion plane. A direct similarity transformation

effects a transformation of the direct inversion group and leaves this

point invariant. In case it leaves only this point invariant, it has

just been seen to be a translation in the Euclidean plane. If not, by

the first paragraph of tliis section it has one and only one other

invariant point unless it reduces to the ' identity.

A similarity transformation leaving an ordinary point invariant

must transform into itself the pencil of lines through this point and

the pencil of circles having this point as center.

Two important special cases arise, namely, a rotation about and

a dilation with as center. Moreover, since there is one and only

one direct similarity transformation leaving invariant and carrying
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a point P, distinct from 0, to a point P', distinct from 0, any non-

parabolic direct similarity transformation is expressible as a product

of a rotation and a dilation.

A rotation which is not a point reflection leaves all circles with

as center invariant, and changes every line through into another

line through 0. A dilation which is not a point reflection leaves

every line through invariant, and changes every circle with as

center into another such circle. Hence a product of a dilation and a

rotation, neither of which is of period two, leaves invariant no line

through and no circle with as center. Since either a rotation

or a dilation of period two is a point reflection, any direct circular

transformation falls imder one of the three cases just mentioned or

else is a point reflection. Stated in terms of the inversion plane these

results become (cf. fig. 56, p. 158):

Theoeem 27. A direct circular transformation having two fixed

points transforms into itself the pencil of circles through the fixed

points and also the pencils of circles about these points. The trans-

formation either leaves invariant every circle of one pencil and no

circle of the other pencil, or it leaves invariant no circle of either

pencil, or it leaves invariant every circle of both pencils and is of

period two.

Definition. A direct circular transformation is said to be parabolic

if it leaves invariant only one point ; to be hyperbolic if it leaves in-

variant two points and all circles through these points ; to be elliptic

if it leaves invariant two points and all circles about these points;

to be loocodromie if it leaves invariant two points and no circle through

the invariant points or about them.

The theorems above are all valid for the complex line if circles

be replaced by chains and direct circular transformations by projec-

tivities. The definition is to be understood to apply in the same

fashion. Since every nonidentical projectivity on the complex line

has one or two double points, the discussion above gives the theorem

:

Theorem 28. A direct circular transformation {or a projectivity on

a complex line) is either parabolic, hyperbolic, elliptic, or loxodromic.

Corollary. An imvolufion on a complex line is both hyperbolic and

elliptic ; and any projectivity which is both hyperbolic and elliptic is

an involution.
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i;|^ERCISES

1. A projectivity whose double points x^ and x^ are distinct from each

other and from the point P„ of a scale P„, Pj, P™, and whose characteristic

cross ratio (§ 73, Vol. I) is k, may be written

(10) ^lll£l = ;i;£n£l.

If one of the double points is P«, and the other is ^i, the pr'ojectivity may
be written

(11) X' — X^ = lc(x — Xj).

The projectivity is hyperbolic if k is real, elliptic ii k= e", where 6 is real, and

loxodromic if neither of these conditions is satisfied.

2. The parabolic projectivities with x^ as double point may be written

in the form

(12) 73^ = ^3^+°''

or, in case the double point is P™, in the form

x' = X + at.

In either case a subgroup is obtained by requiring t to be real. .The locus of

the points to which an arbitrary point is transformed by the transformation

of this subgroup is a chain, and the set of such chains constitutes a parabolic

pencil of chains.

3. The projectivities (10) and (11) for which

' k= a*,

where a is constant and t a real variable, form a group (a continuous group of

one real parameter, in fact). The locus of the points to which a given point

is carried by the transformations of this group or the group considered in

Ex. 2 is called a path curve. In the nonparabolic cases, if a is real the path

carves are chains through the double points. If a is complex and
|
a

|

= 1,

they are chains about the double points. If a satisfies neither of these con-

ditions, and the double points are Pq and Pa, the path curves are the loci of

X = re*' satisfying the condition

(13) r = ae^,

where a and fi are real constants ; if the double points are not specialized, the

path curves are projectively equivalent to the system (13). Diagrams illus-

trating the three types of path curves will be found in Klein and Fricke's

Elliptische Modulfunktionen, Vol. I, Abschnitt II.

4. From the Euclidean point of view the r and Q in Ex. 3 are polar coordi-

nates, and the loci (13) are logarithmic spirals meeting the lines through the

origin at the angle tan-' (l/)8). (A generalization of the notion of angle

analogous to that in § 93 is here taken for granted.) The path curves of a
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one-parameter group of Euclidean transformations may be a pencil of par-

allel lines or a pencil of concentric circles or a set of logarithmic spirals

congruent to (13).

5. A projectivity having a finite period must be elliptic. A direct similarity

transformation having a finite period must be a rotation.
'

6. A loxodromic projectivity is a product of an elliptic and a hyperbolic

projectivity.

7. A projectivity leaving a chain invariant is either hyperbolic or elliptic.

99. Chains and antiprojectivities. The theory of chains on a com-

plex line has been developed in the sections above by combining the

general theory of one-dimensional projectivities with the Euclidean

theory of circles. It is of course possible, and from some points of

view desirable, to develop the theory of chains entirely independently

of the Euclidean geometry. The reader is referred for the outlines of

such a theory to an article by J. W. Young in the Annals of Mathe-

matics, 2d Series, Vol. XI (1909), p. 33. Many of the properties of

chains may be generalized to n dimensions, an n-dimensional chain

or an n^ehain being defined as a real w-dimensional space contained

in an w-dimensional complex space in such a way that any three

points on a line of the real space are on a line of the complex space.

(This is the relation between S and S' in § § 6 and 70.) A discussion

of the theory of these generalized chains will be found in the articles

by C. Segre and C. Juel referred to below, and also in those by

J. W. Young, Transactions of the American Mathematical Society,

Vol. XI (1910), p. 280, and H. H. MacGregor, Annals of Mathematics,

2d Series, Vol. XIV (1912), p. 1.

The transformations,

, az + h
(14)

cz + d

a h

c d
= 0,

of the complex line which were mentioned at the end of § 96 are

analogous to the following class of transformations of the complex

projective plane

:

(15)

K = ^OoaJo + "Oia^l + ao2«2.
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to coUinear points,* but they 9te not projective coUineations. If a;^,

x[, x'^ be replaced by %[, u[, u^, (15) gives the equation of a non-

projective correlation. The analogous formulas in four homogeneous

variables wiU define nonprojective coUineations and correlations in

space.

Definition. A nonprojective collineation or correlation or a

one-dimensional transformation of the type (14) is called an anti-

projectivity.

The theory of antiprojectivities has been studied by C. Juel, Acta

Mathematica, Vol. XIV (1890), p. 1, and more fully by C. Segre,

Toriuo Atti, Vol. XXV (1890), pp. 276, 430 and Vol. XXVI, pp. 35,

592. Their rSle in projective geometry may be regarded as defined

by the following theorem due to G. Darboux, Mathematische Annalen,

Vol. XVII (1880), p. 55. In this paper Darboux also points out the

connection of tjie geometrical result with the functional equation,

/(«' + y)=/(*)+/(2/)-

Theorem 29. Any one-to-one reciprocal transformation of a real

projective tfne which carries harmonic sets into harmonic sets is

projective^

Proof,- r^^ n be any transformation satisfying the hypotheses of the

theorem. A, B, C any three points of the line, 11 {ABC) =A'B'C', and

n' the projectivity^such that W{A'B'C') =ABC. Then WU (ABC) =
ABC. If we can prove, that II'II is the identity, it will follow that

II =?: n'~S -and hence that 11 is a projectivity.

If n'n were not the identity, it would transform a point P to a

point Q distinct from F, while it left invariant aU points of the net of

rationality R {ABC). Let L^, L^, L^ be points of this net in the order

By Theorem 8, Chap. V, there would exist two real points S, T which

harmonically separate the pairs PL^ and LJ[j^. The transformation

n'n miist carry S and T into two points harmonically separating

the pairs ^^ij and Lj^^- But since the latter two pairs separate each

• Cf. § 28, Vol. I.

, t Von StaudtjGeometrie der Lage (Niirnberg, 1847), § 9, defined a projectivity

of a real line as a transformation having this property. We are using Cremona's

definition of a projectivity as a resultant of perspectivities (cf.Vol. I, § 22).
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other, by Theorem 8, Chap. V, there is no pair separating them both

harmonically. Hence the assumption that II'II is not the identity

leads to a contradiction.

CoEOLLAKY 1. Any eollineation or correlation in a real projective

space is projective.

Proof. Since a eollineation transforms coUinear points into col-

linear points, it transforms nets of rationality into nets of rationality

in such a way that the correspondence between any two homologous

nets is projective (cf. §§ 33-35, Vol. I). Hence, according to the theo-

rem above, the correspondence effected by the eollineation between

any two lines is projective. Hence the eollineation is projective.

A like argument proves that a correlation is projective. The reason-

ing holds without change in a real projective space of n dimensions.

Corollary 2. Any one-to-one reciprocal transformation of the

real inversion plane which carries points into points and circles into

circles is a transformation of the inversion group.

Proof. Regard the inversion plane tr, minus a point ii, as a Euclid-

ean plane tt' ; let H be any transformation satisfying the hypotheses

of the corollary, let H (^) = P', and let H' be an inversion carrying

P' to P^. Then H'H is a transformation satisfying the hypotheses of

the corollary and leaving P^ invariant.

Since H'TI carries circles through P„ into circles, it effects a eollin-

eation in IT. By the first corollary this eollineation is projective. Since

it carries circles into circles, it is a similarity transformation. Hence

n'n is a transformation, say H", of the inversion group in t/. Since

n = n'"^n", n is also iu the inversion group.

Translated into the geometry of the complex projective line the

last corollary states

:

CoBOLLAEY 3. Any transformation which carries chains into chains

is either a projeetvvity or an antiprojectivity.

In the light of Corollary 2 it is clear that the whole theory of the

inversion group can be developed from the definition of a circular

transformation as one which carries points into points and circles

into circles. This is the point of view adopted by Mbbius in his

Theorie der Kreisverwandtschaft, where, however, he used also the

unnecessary assumption that the transformation is continuous.
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e:3Vrcises

1. Derive the formulas for antiprojectivities in a modular geometry.

Cf. O. Veblen, Transactions of the American Mathematical Society, Vol. VIII

(1907), p. 366.

2. Which if any of the following propositions are true? Any one-to-one

and reciprocal transformation of a complex projective line which carries

harmonic sets of points into harmonic sets of points is either projective or

antiprojective. Any one-to-one and reciprocal transformation of a complex

projective line which carries quadrangular sets of points into quadrangular

sets is either projective or antiprojective. Any collineation or correlation of

a complex projective space is either projective or antiprojective.

3. An antiprojectivity carries four collinear points having an imaginary

cross ratio into four points whose cross ratio is the conjugate imaginary.

100. Tetracyclic coordinates. The general equation of a circle in

a Euclidean plane tt with respect to the coordinate system employed

in Chap. IV is

(16) a^{x^ + y^)+2a^x+2a^y + a^ = 0.

Definition. A degenerate circle is either a pair of lines joining an

ordinary point to the circular points at infinity or a pair of lines U„,

where Z„ is the line at infinity.

Thus (16) represents a nondegenerate circle, provided that the

following condition is not satisfied:

a
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between the points of Sg not on the locus (18) and the circles of the

inversion plane ¥ obtained by adjoining i„ (regarded as a point) to tt.

The points of S, which are on the locus (18) and not on «„=

represent pairs of conjugate imaginary lines joining ordinary points

of TT to Jj^ and I^ respectively. There is one such pair of conjugate

imaginary lines of tt through each ordinary point of tt. The points of

Sg on the locus (18) and not on 0;^= may therefore be regarded as

corresponding to the points of tt, with the exception of l„. The only

point of Sj common to «„= and (18) is (0, 0, 0, 1), and this poiat

may be taken to correspond to l„. Thus the points of S, not on (18)

represent circles of the inversion plane it, and the points of Sj on (18)

represent the points of v.

Stated without the intervention of S,, this means that the ordered

set of numbers (a^, a^, a^, a^) taken homogeneously and subject to the

relation (18) may be regarded as coordinates of the points of ¥. When
not subject to the relation (18) they may be regarded as coordinates

of the circles and points in tt.

Definition. The ordered sets of four numbers (a^, a^, a^, a^) subject

to (18) are called tetracyclic coordinates of the points in tt. The same

term is applied to any set of coordinates (/3^, fi^, /S^, jS^) such that

A=X "•>•*'•'
I "*«

I

^ ^- (* = ^' ^' ^' ^)

The circles (real or imaginary or degenerate) represented by (1, 0, 0, 0),

(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) are called the base or fundamental

circles of the coordinate system.

A second particular choice of tetracyclic coordinates is given below.

The points of Sj on (18) evidently constitute the set of aU real

points on the lines of intersection of corresponding planes of the two

projective pencils

(19) ag=a{a^+V^a^) and a^—V^a^=aa^,

where the planes determined by the same value of tr are homologous.

For (18) is obtained by eliminating o- between these two equations.

The lines of intersection of homologous planes are all imaginary, but

each contains one real point. This system of lines is, by § 103, Vol. I,

a regulus, and the set of points on the lines, by § 104, Vol. I, a quad-

ric surface. The locus (18) is therefore a real quadric surface aU of

whose rulers are imaginary (cf. also § 105, Vol. I).
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The correspondence betwee#the points of S, and the circles and

points of the inversion plane tt is such that a range of points corre-

sponds to a pencU of circles. For the points of the line joining

(«o' *i' <^2' "^a)
^^^ (i^o' '^i' ^2> ^s) correspond to the circles given by

the equation

which represents a pencil of circles, together with its limiting points

in case the latter are real.

Any collineation T of S^ which carries the quadric (18) into itself

must correspond to a transformation T of tF wliich carries points into

points, circles into circles, and pencUs of circles into pencils of circles.

r therefore has the property that if a point P of tt is on a circle C^

of ^, then r(P) is on T{Cy By Theorem 29, Cor. 2, T is a circular

transformation. Conversely, any circular transformation of ¥ carries

points to points, circles to circles, and pencils of circles to pencils of

circles, and therefore corresponds to a collineation of Sj which carries

the quadric into itself. By Theorem 29, Cor. 1, this collineation is

projective. In other words.

Theorem 30. The real inversion geometry is equivalent to the

projective geometry of the quadric (18).

Corollary. The projective geometry of the real quadric (18) is

equivalent to the complex projective geometry of a one-dimensional

form.

A one-to-one correspondence between a complex line and the real

quadric (18) may also be set up as follows : Let I be any complex

line in the regulus conjugate to that composed of the lines (19).

Each of these lines contains one real point, P, of the quadric (18)

and one point, Q, of I. The correspondence required is that in which,

Q corresponds to P.

By properly choosing the constants which enter in the equation of

a circle, we may set up the correspondence between the circles of the

inversion plane and the points of an Sg in such a way that the equa-

tion of the quadric surface corresponding to the points of the inversion

plane has a particularly simple form. The equation of a circle in it

may be written

(20) ^^(a?+ f+ l) + ^^(a?+f-l)+2^^x+2^^y=Q.
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The points (^^, ^^, ^^, f^) which correspond to points of the inversion

plane now satisfy the equation

(21) Vo = V.+r.+U,
and the circles corresponding to the four points (1, 0, 0, 0), (0, 1, 0, 0),

(0, 0, 1, 0), and (0, 0, 0, 1) are mutually orthogonal, one of them being

imaginary. The coordinates {!^^, fj, ^^, ^^ are connected with {a^, a^,

*2' ^a) ^y ^^^ equations

which represent a collineation carrying the quadric (18) into the

quadric (21).

If ii/lo) i^/^o' ^s/^o ^''^ regarded as nonhomogeneous coordinates with

respect to a properly chosen frame of reference in a Euclidean space of three

dimensions (cf. Chap. VII), (21) is the equation of a sphere. Hence the real

inversion geometry is equivalent to the projective geometry of a sphere.

The latter equivalence may be established very neatly, with the aid of

theorems of Euclidean three-dimensional geometry, by the method of stereo-

graphic projection. This discussion would naturally come as an exercise in

the next chapter. It is to be found in books on function theory. On the

whole subject of inversion geometry from this point of view, compare Bdcher,

Reihenentwickelungen der Potentialtheorie (Leipzig, 1894), Chap. II.

Definition. A circle C^ is linearis/ dependent on two circles Cf

and C^ if and only if it is in the pencil determined by C^ and C^.

A circle C is linearly dependent on n circles C^, • • • , C^ ii and only

if it is a member of some finite set of circles C^^j, • • •, C^^f. such that

C^^i is linearly dependent on two of C^, , C^+(_i(*= 1, 2, • • -, k).

A set of n circles is linearly independent if no one of them is linearly

dependent on the rest. The set of aU circles linearly dependent on

three linearly independent circles is called a bundle.

EXERCISES

1. The tetracyclic coordinates of a point are proportional to the powers of

the point with respect to four fixed circles. If the four circles are mutually

orthogonal, the identity which they satisfy reduces to (21).

2. A homogeneous equation of the first degree in tetracyclic coordinates

represents a circle.

3. What kind of codrdinates are obtained by taking as the base (a) two

orthogonal circles and the two points in which they meet? (b) four points?

4. Two points of Sj correspond to orthogonal circles if and only if they are

conjugate with regard to the quadric (21).
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5. What set of circles corresponds to the conies in which the quadric (21)

is met by the planes of a self-polar tetrahedron ?

6. The direct circular transformations of tt correspond to collineations of

S3 which leave each imaginary regulus of (21) invariant, while the others

correspond to collineations interchanging the two reguli. The direct circular

transformations of v correspond to direct collineations of Ss in the sense of

§ 31, Chap. II.

7. The circles of a bundle correspond to the points of a plane of Sj.

8. The circles common to two bundles constitute a pencil and hence corre-

spond to a line of 83. Determine the projectively distinct types of pencils of

circles on this basis.

9. All circles are linearly dependent on four linearly independent circles.

10. For any bundle of circles there is a point O which has the same power,

c^, with respect to every circle of the bundle. The radical axes of all pairs

of circles in the bundle pass through 0. In case there is more than one point

O, the radical axes of all pairs of circles of the bundle coincide.

11. A bundle of circles may consist of all circles through a point (the set

of all lines in a Euclidean plane is a special case of this). In every other case

there is a nondegenerate circle orthogonal to all circles of the bundle. This

circle has the point (Ex. 10) as center and consists of the points C such that

Dist (OC) = c. It is real if and only if c is real. In case c is imaginary let

C^ be the real circle consisting of points C" such that Dist (OC) = c; any

circle of the bundle meets C^ in the ends of a diameter.

101 . Involutoric collineations. In view of the isomorphism between

the real inversion group and the projective group of the real quadric

(21), a further consideration of the group of a general quadric will be

found apropos. In this connection we need to define certain particular

types of involutoric collineations in any projective space. The theorems

are all based on Assumptions A, E, P, 13^^.

It is proved in § 29, Vol. I, that if to is any plane and any point

not on to, there exists a homology carrying any point P to a point P',

provided that 0, P, P' are distinct and coUinear and P and P' are not

on ft). It follows by the constructions given in that place that if one

point P is transformed into its harmonic conjugate with regard to

and the point in which the line OP meets «, every point is transformed

in this way. It is also obvious thaJ; a homology is of period two if and

only if it is of this type. Hence we mat? the following definition

:

Definition. A homology of a three-space is said to be harmonic

if and only if it is of period two. A harmonic.homology is also called

a point-plane reflection and is denoted by {Ooo} or {<oO}. where is

the center and a the plane of fixed points-
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Definition. If I and V are two nonintersecting lines of a projective

space Sg, the transformation of S3 leaving each point of I and V inva-

riant, and carrying any other point P to the point P' such that the liae

PP' meets I and V in two points harmonically conjugate with regard

to P and P', is called a shew involution or a line reflection in I and V.

It is denoted by {ZZ'},and I and V are called its ams or directrices.

Theorem 31. A line reflection {W} is a product of two point-plane

reflections {Oa>} {Ptt}, where O and P are any two distinct points of I,

CO is the plane on P and V, and it is the plane on and V.

Proof. Consider any plane through I, and let L be the point in which

it meets V. In this plane {0(o} and {Pit} effect harmonic homologies

whose centers are and P respectively and whose axes are PL and

OL respectively. The product is therefore the harmonic homology

whose center is L and axis I. Hence the product {Oa>} {Pit} satisfies

the definition of a line reflection whose axes are I and V.

CoEOLLABY. A line reflection is a projective collvneation of period

two, and any projective collineation of period two leaving invariant'

the points of two skew lines is a line reflection.

EXERCISES

1. A projective collineation of period two in a plane is a harmonic homology.

2. A projective collineation of period two in a three-space is a point-plane

reflection or a line reflection.

3. Let A, B, C, D be the vertices of a tetrahedron and a, yS, y, S the respec-

tively opposite faces. The transformations obtainable as products of the three

harmonic homologies {Aa}, {BjS}, {Cy} constitute a commutative group of

order 8 consisting of four point-plane reflections, three line reflections, and the

identity. If the transformations other than the identity be denoted by 0, 1, 2,

3, 4, 5, 0, the multiplication table may be indicated by the modular plane

given by the table (1) on p. 3, Vol. I, the rule being that the product of any

two transformations corresponding to points i, J of the modular plane is the

one which,corresponds to the third point on the line joining i and/.

4. Generalize the last exercise to n dimensions. The group of involutoric

transformations carrying n -t- 1 independent points into themselves is commu-

tative, and such that its multiplication table may be represented by means of

a finite projective space of re — 1 dimensions in which there are three points

on each line.

5. A projectivity T of "a complex line such that for one point P which is

not invariant, T" (P) = P is such that F" is the identity. If n is the least

positive integer for which T" - 1, T is said to be cyclic of degree n ; the
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characteristic cross ratio of T is an nth root of unity ; in case n = 3, this

cross ratio is said to be equianharmonic, and a set of four points having this

cross ratio is said to be equianharmonic. As a transformation of the inversion

group, r is equivalent to a rotation of period n.

6. A planar projective collineation of period n (n > 2) is oi Type I and the

set of transforms of any point is on a conic, or else the collineation is a

homology. In the first case, it is projectively equivalent to a rotation ; in the

second case, to a dilation (in general, imaginary). Consider the analogous

problem in three dimensions. (For references on this and the last exercise

cf . Encyclop^die des Sc. Math. Ill 8, § 14. The statements in the Encyclopedia

on the planar case are not strictly correct, since they do not sufficiently take

the existence of homologies of finite period into account.)

102. The projective group of a quadric. AccordiDg to the definition

in § 104, Vol. I, a quadric may be regarded as the set of points of

intersection of the lines of two conjugate reguli. These two reguK

may be improper in the sense of Chap. IX, Vol. I, and in the following

theorems! improper elements are supposed adjoined when needed for

the constructions employed.

Definition. If there are proper lines on a quadric, the quadric is

said to be ruled, otherwise it is said to be unruled.

Theoeem 32. a harmonic homology whose center is the pole of its

plane affixed points with regard to a quadric surface Q^ transforms

(^ into itself in such a way that the two lines of Q^ through any fixed

point are interchanged.

Proof Let be a point not on Q^, and m its polar plane. Any liae

I of Q"^ meets &) in a unique point K. The plane 01 contaius one other

line V of Q^, and (cf. § 104, Vol. I) V passes through K. Anj line join-

ing to a point L oi I other than K must meet I' in a point L' such

that L and L' are harmonically conjugate (§ 104, Vol. I) with regard

to and the point in which OL meets to. Hence {Ooci} interchanges

I and I'. From this result the theorem follows at once.

Comparing Theorems 31 and 32, we have

COKOLLAEY. A line reflection {ab} such that a and b are polar with

respect to a quadric Q^ transforms Q^ into itself in such a way that

each regulus on ^ is transformed into itself.

Theoeem S3. A projective collineation of a quadric which leaves

three points of the quadric invariant, no two of the three points being

on the same ruler, is either the identity or a harmonic homology whose

center and plane affixed points are polar with respect to the quadric.



260 INVEESION GEOMETRY [Chap.vi

P)'oof. Denote the three points by A, B, C, the plane containing

tliem by at, and the pole of m by 0. Since no two of A, B, C are on a

line of Q^, <o contains no line of ^ and hence is not on 0. Since three

points of the conic in which w meets the quadric are invariant, all

such points are invariant, as is also 0. Hence the given coUineation

is either the identity or a homology. In the latter case it must be a

harmonic homology, since any two points of the quadric coUinear with

are harmonically conjugate with respect to and the point in which

the luie joining them meets m.

Theorem 34. There exists one and only one projective coUineation

transforming each line of a reguhis into itself and effecting a given

projectivity on one of these lines. Such a coUineation is a product of

two line reflections whose axes are lines of the conjugate regulus.

Proof. Let R^ be a regulus and li^ the conjugate regulus. A projec-

tivity on a liue, I, of R^ is by § 78, Vol. I, a product of two involutions,

say I and I'. Let {m^^ be a line reflection such that m^ and m^ are

lines of R^ through the double points of I, and let {m^m!^} be a line

reflection such that m^ and TOj are lines of R^ through the double

points of I'. The product of {m[m^} and {m^m^} effects the given

projectivity on I and transforms each line of R^ into itself.

Conversely, any projectivity F leaving all lines of R^ invariant

effects a projectivity on I which is a product of two involutions I

and I'. The line reflections {m^m^} and {m[m!^} being defined as before,

{wii'm^} {m^mj T'^

leaves all points of I invariant and hence leaves all lines of R^ as well

as all lines of R^ invariant. Hence

^^^
{mX} • Wi^J • r-'= 1,

{mX} • {m^m^ = T.

CoEOLLAEY. The group of permutations of the lines of a regulus

effected by the projective eoUineations transforming the regulus into

itself is simply isomorphic with the projective group of a line.

Definition. A coUineation of a quadric which carries each regulus

on the quadric into itself is said to be direct.

Theorem 35. There is, one and but one direct coUineation of a

quadric surface ^ carrying an ordered triad of points of <^, rw two

of which are on a line of (^, to an ordered triad of points of <^ no two

of which are on a line of Q\
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Proof. Let ABC and PQR be the given ordered triads of points, let

a, h, c, p, q, r be the lines of one regulus through the points A, B, C,

P, Q, R respectively, and let a', b', c', p', q', r' respectively be the

lines of the conjugate regulus through the same points. By the last

theorem there is a projective coUineation F carrying a, b, c to p, q, r

respectively while leaving all lines of the conjugate regulus invariant,

and also a projective collineation T' carrying a'b'c' to p'q'r' respec-

tively while leaving all of the lines a, b, c, p, q, r invariant. The product

of r and r' carries A, B, C to P, Q, B respectively. That there is only

one direct collineation having this effect is a corollary of Theorem 33.

Let B^ be the regulus containing the lines a, b, c, and B^ the regulus

containing a', V, c'. The two collineations F and F' which have been

used in the proof above are commutative as transformations of B\

because F' leaves all lines of B'l invariant, and are commutative as

transformations of B'l because F leaves all lines of Bl invariant. Hence

rr'=FT.

By Theorem 34, FF' = {Zm} • {rs} • {^'m'} • {r's'},

where I, m, r, s are lines of B^, and I', m', r', s' are lines of B^. The

collineations {rs} and {I'm'} are commutative for the same reason that

F and F' are commutative. Hence

FF'= {Im} {I'm'} {rs} {r's'}.

The pairs Im and I'm' are two pairs of opposite edges of a tetra-

hedron the other two edges of which may be denoted by a and b. The

product {Im} • {I'm'} leaves each point of a and b invariant and is

involutoric on each of the lines I, I', m, m'. Hence

{Im} {I'm'} = {ab}.

The lines a and b are polar with respect to B^ because one of them is

the line joining the point W to the point mm', and the other the line

of intersection of the plane W with the plane mm' (cf. § 104, VoL I).

In like manner
^^^y .

^pi^ty ^ ^^^y ^

where c and d are polar with respect to B^. Hence we have

Theorem 36. Any direct projective collineation T of a quadric

surface is expressible in the form

T={ab}-{cd},

where the line a ispolar to the line b, and the line c is polar to the line d.
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Since any line reflection whose axes are polar with respect to a

quadric is a product of two harmonic homologies whose centers

are polar to their planes of fixed points (cf. Theorem 31), the last

theorem implies

CoROLLAKY 1. Any direct projective collineation of a quadric is a

product offour harmonic homologies whose centers are polar to their

respective planes offixed points.

CoROLLAKY 2. Any nondirect projective collineation of a quadric

is a product of an odd number of harmonic homologies whose centers

are polar to their respective planes offixed points.

Proof. If a projective coUineation F interchanges the two regtili,

and A is a harmonic homology of the sort described in the statement

of the corollary, then rA=A is a projective collineation leaving each

regulus invariant. By Cor. 1, A is a product of an even number of

harmonic homologies of the required sort, and hence r=AA is a

product of an odd number.

103. Real quadrics. The isomorphism between the real inversion

group and the projective collineation group of the real quadric (or

sphere) (21) may now be studied more in detail. Since a circular

transformation leaving three given points of the inversion plane tF

invariant is the identity or an inversion (Theorem 21), and since a

collineation of S, leaving three points of the quadric (21) invariant

is the identity or a harmonic homology whose center is polar to its

plane of fixed points, it follows that inversions in tF correspond to

homologies of Sj. Hence the direct circular transformations of t? cor-

respond to the direct coUineations of Sg transforming (21) into itself.

An involution in w- is a product of two inversions whose invariant

circles intersect and are perpendicular. To say that the invariant

circles intersect and are perpendicular is to say that they intersect in

such a way that one of the circles is transformed into itself by the

inversion with respect to the other. Now suppose that {Oa)} and

{Ptt} are the harmonic homologies corresponding to the two inver-

sions. If the points of the quadric on the plane <b are to be trans-

formed among themselves by {Ptt}, w must pass through P. In like

manner tt must pass through 0. Hence

{Oo,}. {Ptt} = {«'},
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where I is the line OP, V thejine wtt, and the lines I and V are

polar with respect to the quadric. Hence the involutions in the group

of direct circular transformations correspond to the line reflections

whose axes are polar with respect to (21).

Thus the theorem that any direct circular transformation of v is

a product of two involutions is equivalent to Theorem 36 applied to

the quadric (21). Since an involution in tF always has two double

points, we have the additional information, not contained in § 102,

that every line reflection transforming the quadric (21) into itself has

two and only two fixed points on the quadric. The line joining these

two points is obviously one of the axes of the line reflection. Hence

the line reflection has two real axes one of which meets the quadric

(21) and the other of which does not.

These remarks are enough to show how the real inversion geometry

can be made effective in obtaining the theory of the real quadric (21).

We shall now show that any real nonruled quadric is projectively

equivalent to the quadric (21), from which it follows that the real

inversion geometry is equivalent to the projective geometry of any

real nonruled quadric.

A nonruled quadric is obviously nondegenerate. In the complex

space any two nondegenerate quadrics are projectively equivalent,

because any two reguli are projectively equivalent. Since (18) repre-

sents a quadric, it therefore follows that every nondegenerate quadric

may be represented by an equation of the second degree.

Now let Q^ be any quadric whose polar system transforms real

points into real planes, and let the frame of reference be chosen so

that (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) are vertices of a

real self-polar tetrahedron. The plane section by the plane a!„=0

must be a conic whose equation is of the form

and similar remarks can be made about the sections by the planes

a; = 0, a; = 0, and x^ = 0. From this it follows that §" has the equation

(22) a^x^ + a^x^ + a^x^ + a^x^=0,

where a^, a^, a^, a^ are real. The projective collineation

(23) x', = VlXl ^o> '^i = V^^i, K = VKia^j. <^z= -v^a:,

transforms Q^ into a quadric having one of the following equations

x^'±x^'±x^'±x^'=0.
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Any one of the eight quadrics thus represented is obviously equiva-

lent projectively to one of the following three:

(24) x^ + x^ + xi + x^ = 0,

(25) -x^ + x^ + x^ + x,' = 0,

(26) -x^-x^ + xi + x^=0.

It is also obvious that (24) is imaginary, that (26) has real rulers,

and that (25) is equivalent to (21).

EXERCISES

1. Determine the types of coUineations transforming into itself (1) a real

unruled quadric, (2) a real ruled quadric, (3) an imaginary quadric having a

real polar- system.

2. Discuss the projective groups of the three types of quadrics enumerated

in the last exercise.

104. The complex inversion plane. A projective plane may be

obtained from a Euclidean plane (cf. Introduction, VoL I) by adjoining

ideal points and an ideal hne in such a way as to make it possible to

regard every collineation as a one-to-one reciprocal transformation of

all points in the plane. In like manner the real inversion plane has

been obtained from the real Euclidean plane by adjoining a single

ideal point which serves as the correspondent of the center of each

inversion. Similar considerations will now be adduced showing that

an inversion in the complex plane may be rendered one to one and

reciprocal by introducing two intersecting ideal lines.

In the complex projective plane an inversion has been seen (§ 94)

to be a one-to-one reciprocal transformation of all points not on the

sides of the singular triangle OI^I^, and to effect a projective transfor-

mation interchanging the pencil of lines on I^ with the pencil of lines

on I^. In this projectivity the line I^I^ is homologous both with 01^

and with 01^

In the Euclidean plane obtained by omitting the line /ji^ from the

projective plane, it follows that the inversion is one to one and recip-

rocal except for points on the two minimal lines, jj^ and m^, through 0.

Moreover, it effects a projective correspondence between the set of

minimal lines [p] parallel with and distinct from p^ and the set of

minimal lines [m] parallel with and distinct from m^.
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The correspondence between *ny line ip and the homologous line

m is incomplete because there is no point on jp corresponding to the

intersection of m with 'p^ and no point on m corresponding to the

intersection of 'p with m^. This correspondence, however, may be made
completely one to one and reciprocal by introducing an ideal point

ilf„ on fii as the correspondent of the point pm^ and an ideal point

ii on ^ as the correspondent of the point m'p^. In order to treat

all the minimal lines symmetrically, ideal points Fl and ML must

be introduced on p^ and m,^ respectively, as mutually correspond-

ing points. Also one other ideal point 0„ is introduced as the

correspondent of 0.

According to these conventions the line p^ together with its ideal

point Pi is transformed into a set of points consisting of 0„, Ml, and

all the points ilf„. This set

of points is therefore called m^^S^CX / >

an ideal line »i„. In like m ~/^7^~^/~^~--Z /

manner the line m„ together "~--72_y/^/Z7\^^-^^
with its ideal point M^ is "^—7^~-/ZZ7/''^^^--t^rT~--~i^
transformed into a set of ''^''~~/--~A-J^~~/~/ —/^$^^^Iir^
points consisting of 0„, Pi, — ^ ,/

,
/^/ / /—r~^7^

and all the points i^ ; and '^p ^p /p„ 'p 'p 'p ^^ "^T^

this set of points is called an Fig. 74

ideal line p„. The Euclidean

plane with the lines p„ and m„ adjoined is called an inversion plane.

Or to state the definition formally and without reference to a partic-

ular inversion

:

Definition. Given a complex Euclidean plane ir and in it two

pencils of minimal lines [p] and [m]. By a complex inversion plane

i- is meant the set of all points of ir (referred to as ordinary points)

together with a set of elements called ideal points of which there is

one, denoted by P^, for each^, and one, denoted byibr„, for each m,

distinct ^'s and m's determining distinct ideal points, and also one

other ideal point which shaU be denoted by 0„. By a minimal line

of TV is meant (1) the set of points on & p together with the corres-

ponding P„, or (2) the set of points on an m together with the cor-

responding ilf„, or (3) the set of all Pjs together with 0„, or (4) the

set of all Mj& together with 0„. The minimal lines of Types (1)

and (2) are called ordinary, and the lines (3) and (4) are called ideal.
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A minimal line of Type (1) or (4) wiU be denoted by p, of Type (2)

or (3) by m ; the minimal lines of Types (3) and (4) are denoted by

m. and_p„ respectively.

This definition is evidently such that each point of if is on a miique

p and on a unique m.

Definition. By an inversion I of i- is meant a transformation

defined as follows by an inversion I of tt : T-i p^ and m^ are the singu-

lar lines of I, I interchanges p^ with m„, m^ with p„, and each p con-

taining ap with them containing them to which p is transformed by I.

A point of TT which is the intersection of a ^ and an m is transformed

to the point which is the intersection oiI{p) and I (m). The set of

points of «• left invariant by an inversion is called a nondegenerate

circle of ¥. A pair of minimal lines, one a p and the other an m, is

called a degenerate circle of tt.

By reference to § 94 it is evident that every circle of tt is a subset

of the points on a circle of tt.

The complex inversion plane is perhaps best understood by setting

it in correspondence with a quadric surface, the lines of one regulus

on the quadric being homologous with [p] and those of the other with

\m\ This correspondence may be studied by means of tetracyclic

coordinates as in § 100, but it can also be set up by means of a

geometric construction as follows:

Eegard the complex Euclidean plane ir with which we started as

immersed in a complex Euclidean space. Let Q^ be a quadric surface

such that 01^ is a line of one ruling and 01^ of the other (fig. 74).

Through J^ and I^ there are two other lines of the two rulings which

intersect in a point 0„. Any point P of the Euclidean plane is joined

to 0„ by a line which meets the quadric (^ uib, unique point Q other

than 0„ and, conversely, any point of Q^ which is not on either of

the lines 0„/j or 0^1^ is joined to 0„ by a line which meets the

Euclidean plane in a point P. Thus there is a correspondence T

between the Euclidean plane and the points of (^ not on 0^1^ or

0„ Jj. This correspondence is such that every minimal line in tt of

the pencil on I^ corresponds to a line of the quadric which is in the

same ruling with 01^, and every line of ir of the pencil on J^ corre-

sponds to a line of the quadric which is in the same ruhng with 01^.

From this it is evident that if ideal elements are adjoined to tr as

explained above, the ideal points can be regarded as corresponding to



§104] COMPLEX INVERSION PLANE 267

the points of the lines 0„I^ an4 O^J^ so that there is a one-to-one

reciprocal correspondence between tt and Q\
Now any nondegenerate circle of tt is a conic through I^ and I^.

This is projected from 0„ by a cone of lines having in common with
Q'' the two lines 0„ J^ and 0^1^. It follows that the cone and Q' have

also a conic section iu common. For let Q^, Q^, Q^ be three of the

common points which are not on the lines 0^1^ and 0„I^ ; the plane

Q^Q^Qg meets the cone in a conic K^ and Q" in a conic K^. These two

conies have also in common the points in which they meet the lines

0„/j and O./j (if these points coincide, K^ and K^ have a common tan-

gent at this point), and hence K^ = 7Cf. The conic K^ is nondegenerate,

because a nondegenerate cone through 0„ can have no other line than

0„ Jj and O^/j in common with Q'. Hence every nondegenerate circle

of TT corresponds under T to a section of Q" by a nontangent plane.

Conversely, if K^ is any nondegenerate conic section which is a

plane section of Q', it is projected from 0„ by a cone two of whose

lines are 0„/j and 0„I^. Hence K" corresponds under T to a non-

degenerate circle of tt.

An inversion in tt with respect to a circle C" transforms every

minimal line of the pencil [p] into that one of [m] which meets it on

C^. Let K'^ be the conic section on Q" corresponding under T to C^.

The inversion corresponds under T to a transformation of Q^ by which

every line of one regulus is transformed into the line of the other

regulus which meets it in a point of K". This is the transformation

(Theorem 32) effected by a harmonic homology whose plane of fixed

points contains K^ and whose center is the polar to this plane with

respect to Q^. Hence every inversion in tt corresponds under T to a

colHneation of Q'^ effected by a harmonic homology whose center and

plane of fixed points are polar with regard to Q''. Conversely, every

such coUineation of Q^ evidently corresponds under T to an inversion

in TT. Hence (Theorem 36, Cors. 1 and 2) the inversion group in tt is

isomorphic under T with the group of projective coUineations of Q',

and the direct circular transformations of tt correspond to the projec-

tive coUineations of Q^ which carry each regulus into itself.

EXERCISE

Develop the theory of the modular inversion plane, using improper elements

in the sen.se of Chap. IX, Vol. I.
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105. Function plane, inversion plane, and projective plane. In the

theory of functions of two complex variables

F{xy)

the two variables x and y are thought of as completely independent

of each other. The domain of each is the set of all complex numbers,

including oo. This domain is therefore equivalent to the complex line

or to the real inversion plane. Thus the domain of x may be taken

to be a real unruled quadric (in particular, a sphere) and the domain

of y another real unruled quadric. Or the pair of values {x, y) may be

regarded as an ordered pair ofpoints on the same real unruled quadric.

Now consider a regulus in the complex projective space and, adopt-

ing the notation of the last section (fig. 74), let a scale be established

on the lines p^ and m^ so that is the zero in each scale. I^et x be

the coordinate of any point on p^ and y of any point on m^. Then a

pair of values {x, y) determines a unique point on the quadric, i.e. the

point of intersection of the line m through the point with x as its

coordinate, and the line p through the point with y as its coordinate.

Conversely, the same construction determines a pair of numbers {x, y)

for each point of the quadric.

Definition. The set of all ordered pairs {x, y) where x and y are

complex numbers, including oo, is called a complex function plane, or

the plane of the theory offunctions of complex variables, or the com-

plex plane of analysis. The ordered pairs {x, y) are called points. Any

point for which a; = oo or y = oo is said to be ideal or at infinity, and

all other points are called ordinary.

The points at infinity of the function plane can be represented

conveniently by replacing a; by a pair of homogeneous coordinates

x^, x^ such that xjx^= x, and y by a pair {y^, y^ such that yjy^= y-

Thus the points of the fuiiction plane are represented by

and the ideal points are those satisfying the condition

The set of ordinary points of the function plane obviously forms a

Euclidean plane in which a Mne is the locus of an equation of the form

ax-\-'by + c=Q.
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This is equivalent in homogeneous coordinates to

(27) ax^y^ + hy^x^ + cx^y^ = 0,

an equation which is linear both in the pair of variables x^, x^

and in the pair y^, y^. The most general equation which is linear

in both pairs is

(28) «<^oyo + ^Wi + y^^iVo + ^^'iS'i = 0-

This reduces to (27) if the condition be imposed that the locus

shall contain the point (oo, oo) which in homogeneous coordinates is

(0, 1; 0, 1).

Definition. The set of points of the function plane satisfying (28)

is called a cirele (or a bilinear curve), and any circle of the form (27)

is called a line.

The group of transformations which is indicated as most important

by problems of elementary function theory has the equations

(29)
r^x + Sj

p,y + ?2
y

I _
\y + \

or, in homogeneous coordinates,

Pi
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The parameters x and y which deterimne the points of a regulus

may be connected with the three-dimensional coordinates
(^^j, ^^, ^^, ^

)

by means of the following equations

:

where 1"= — 1. For the set of all points (^^, ^^, ^^, ^^) given by these

equations are the points on the quadric,

(21) ^! = ^! + ^! + ^l

Any plane section of this quadric is given by a linear equation in

?o' ti' ^2' Is'^^^'^^ ^y (^^) reduces to a relation of the form (28)

among the parameters x^, x^; y^, y^. Hence the circles of the func-

tion plane correspond to the plane sections of the quadric (21).

In view of the relation already established between the groups it

follows that the geometry of a quadric in a complex projective

space is identical with that of a complex function plane. In view

of § 104 both these geometries are identical with the complex

inversion geometry.*

The complex projective plane may be contrasted with the complex

inversion plane or function plane in an interesting manner as follows

:

The homogeneous coordinates (a^, a^, a^) may be regarded as the

coefficients of a quadratic equation

(32) aX + «i% + «2«i'=0-

Every such equation determines two and only two values of ejz^,

which may coincide or become infinite (if a^= 0); and, moreover, two

distinct points of the projective plane determine distinct quadratic

equations and hence distinct pairs of values of z^/z^.

•If one were to confine attention to real values, the definition of the plane of

analysis given above vrould determine a set of elements abstractly equivalent to a

real ruled quadric. This is distinct from the real inversion plane, because the latter

is equivalent to a real nonruled quadric. For the purposes of the theory of func-

tions of a real variable, however, it is usually desirable to distinguish between + oo

and —00. If this be done, the function plane is easily seen to be a figure analogous

to a rectangle in a Euclidean plane. The group of transformations of such a func-

tion plane does not seem to be of great interest from the projective point of view.
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The numbers (z^, «J may be j^ken as homogeneous coordinates on

a projective line. Thus there is a one-to-one and reciprocal corre-

spondence between the points of a complex projective plane and the

pairs of points on a complex projective line. It is important to notice

that the pairs of points on the line are not ordered pairs, because a

pair of values of z^/z^ taken in either order would be the pair of roots

of the same quadratic.

Now representing the points of a complex line on a real unruled

quadric (e.g. a sphere), we have that the projective plane is in one-

to-one reciprocal correspondence with the unordered pairs of points of

the quadric. On the other hand, we have already seen that the com-

plex projective plane is in one-to-one reciprocal correspondence with

the ordered pairs of points of the quadric. In either case the points

of a pair may coincide.

For further discussion of the subject of this section see " The

Infinite Eegions of Various Geometries" by M. BScher, Bulletin of the

American Mathematical Society, Vol. XX (1914), p. 185.

106. Projectivities of one-dimensional forms in general. The

theorems of the last four sections' have established and made use of

the fact that the permutations effected among the lines of a regulus by

projective coUineations form a group isomorphic with the projective

group of a line. Now a regulus is a one-dimensional form of the

second degree,* and the notion of one-dimensional projective trans-

formation has been extended to all the other one-dimensional forms

(Chap. VIII, Vol. I, particularly § 76). It is therefore to be expected

that an analogous extension can be made to the regulus. This we

shall now make, but instead of dealing with the regulus in particular,

we shall restate the old definition in a form which includes the cases

where the regulus is in question.

Definition. A correspondence between any two one-dimensional

forms whose elements are of different kinds and not such that all

elements of one form are on every element of the other form is

said to be perspective if it is one-to-one and reciprocal and such

that each element of either form is on the corresponding element

of the other form.

*The one-dimensional forms of the first and second degrees in three-space are

the pencil of points, the flat pencil of lines, the pencil of planes, the point conic,

the line conic, the cone of lines, the cone of planes, and the regulus.
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This covers the notion of perspectivity as defined in VoL I between

a pencil of points and a pencil of lines or between a pencil of lines and

a point conic, etc. It also defines perspectivities between (1) the lines

of a regulus and the points on a line of the conjugate regulus, (2) the

lines of a regulus and the planes on a line of the conjugate regulus,

(3) the lines of a regulus and the points of a conic which is a plane

section of the regulus, (4) the lines of a regulus and the planes of a

cone tangent to the regulus.

Definition. A correspondence between two one-dimensional forms

or among the elements of a single one-dimensional form is projective

if and only if it is the resultant of a sequence of perspectivities.

This definition comprehends that made in § 22, Vol. I, for forms of

the first degree, and extended in § 76, VoL I, so as to include those of

the second degree equivalent under duality to a point conic. In order

to justify the new definition, it is necessary to prove that it does not

lead to any modification of the relation of perspectivity between one-

dimensional forms of the first degree. In other words, we must prove

that any correspondence between two one-dimensional forms of the

first degree is projective according to the new definition only if it is

projective according to the definition of § 22, Vol. I.

To prove this theoiem it is sufficient to show that a sequence of

perspectivities beginning and ending with forms of the first degree

and involving forms of the second degree can be replaced by one

involving only forms of the first degree. This follows directly from

the fact that each one-dimensional form of the second degree is

generated by projective one-dimensional forms of the first degree.

For example, if a pencil of points [P] is perspective with a regulus

\l\ and the regulus with a point conic and the point conic with some-

thing else, it follows by the theorems of § 103, Vol. I, that [P] is

perspective with the pencil of planes \nd\ where m is a line of the

conjugate regulus and [mZ] is perspective with the point conic. Thus

the regulus [Z] in this sequence of perspectivities is replaced by the

pencil of planes [mZ]. In similar fashion it can be shown by a con-

sideration of the finite number of possible cases that however a form

of the second degree may intervene in a sequence of perspectivities,

it can be replaced by a form or forms of the first degree. The

enumeration of the possible cases is left to the reader, the argument

required in each case being obvious.
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From this theorem it follo'ws that the group of projective corre-

spondences of any one-dimensional form with itself is isomorphic with

the projective group of a line. For let T be any projectivity of a one-

dimensional form F'^ of the second degree (e.g. a regulus), and let 11

represent a perspectivity between i^ and a one-dimensional form F^

of the first degree (e.g. a line of the conjugate regulus). Then Iiril"'

is a projectivity of F\ In like manner, if V is a projectivity of -F',

jj-ip/jj
^g ^ projectivity of F^. Hence IT establishes an isomorphism

between the two groups.

*107. Projectivities of a quadric. An involution on a regulus is

the transformation of the lines of the regulus effected by a line

reflection whose axes are the double lines of the involution. Since

any projectivity of a regulus is a product of two involutions, it may

be regarded as effected by a three-dimensional projective coUineation

which transforms the regulus into itself. Conversely, any direct pro-

jective collineation transforming a quadric into itself is a product of

two line reflections (Theorem 36) each of which effects an involution

on each of the reguli on the quadric.

This relation between the theory of one-dimensional projectivities

and the projective group of a quadric may be used to obtain prop-

erties of the quadric analogous to the properties of conic sections

studied in Chap. VIII, Vol. I. The discussion is based on Assump-

tions A, E, P, Hg, improper points being adjoined to the space

whenever this is required for quadratic constructions.

In Chap. VIII, Vol. I, we have seen that any projectivity on a

conic determines a unique point, the center of the projectivity, and

that the axes of any two involutions into which the projectivity

may be resolved pass through its center. If, now, a projectivity

r be given on a regulus, any plane tt meets the regulus in a conic

C^ on which is determined a projectivity V having a point P as

center. This determines a correspondence between the planes tt

and points P of space which is a null system (§ 108, Vol. I), and

hence the axes of the involutions into which the projectivity V
can be resolved form a linear complex. The formal proof of this

.statement follows.

Theorem 37. For any nonidentical projectivity of a regulus there

exists a linear complex of lines [Z] having the property that ifl^ is any

line of the complex not tangent to the regulus, there are three lines l^,
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l^, l^ such that l^ is polar to l^ and l^ to l^ with respect to the regulus, and

such that the collineation

effects the given projectivity on the regulus. Moreover, every line I

having this property belongs to the complex, and so do l^, l^, l^.

Proof. Let B^ be a regulus and F a projectivity of Ii\ If l^l^ and

y^ are pairs of polar lines such that {l^lj {IJ,^ effects the given

projectivity on R^, let ir be any plane containing l^ and not tangent

to R^. The projectivity V on R^ is perspective with a projectivity F'

on the conic C^ in which tt meets R^. Moreover, {IJ,^ and {Ij,^ effect

involutions on R^ which are perspective with involutions V and 1"

on C\ Thus on C^ „,_ ,,,„

But (cf. § 77, Vol. I) ij is the axis of F and hence passes through the

center of F'. A similar argument shows that ^^ {i = 2, 3, 4) passes

through the center of the projectivity perspective with F on the conic

in which J?" is met by any plane containing l^ and not tangent to R"^.

Hence all lines l^, l^, l^, l^ defined as above are contained in the

set [Z] of all lines I such that if ir is any plane on I and not tangent

to R^, I is also on a point P defined as follows : Let C^ be the conic in

which TT meets R^ and F' the projectivity on C^ perspective with the

projectivity F on -B''; then P is the center of F'.

The set [Z] obviously contains all lines tangent to I^ at points of the

double lines (if existent) of F. If l^ is any other line of [Z] let tt be a

plane on l^ and not tangent to R^, let C^ be the conic in which ir meets

R^, and let F' be the projectivity on C^ perspective with F. By § 79,

Vol. I, and the definition of [Z], F' is a product of two involutions

having l^ and another line, l^, as axes. Let l^ and l^ be the polars of /j

and Zg respectively. Then {IJ,^ {IJ,^ effects the perspectivity F' on C

and hence effects F on R\ By the first paragraph of the proof l^, l^, l^

are all lines of [Z]. Hence all lines of \l] have the property enunci-

ated in the theorem. It remains to prove that [Z] is a linear complex

By definition, if tt is a plane not tangent to R^ the lines of [Z] in

TT form a flat pencil. If tt is tangent to R'^ let p be the line of iJ"

on TT and q the line of the conjugate regulus on tt. In case ^ is a

fixed line of F, the lines Z on tt are the tangents to R^, i.e. the

pencil of lines on tt and the point pq. In case p is not a fixed line

of F, y is a tangent to R^ which meets a fixed line of F and hence is
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a line of [l]. Any other line l^oi [l] in tt must have a polar line l^

passing through the point pq. Let F" be the projectivity on q perspec-

tive with r. If r is effected by {l^Q {l^l.}, then T" is the product

of two involutions, I' and I", which are perspective with the involu-

tions effected on B^ by {l^Q and {IJJ respectively. Since l^ must

pass through the point pq, the latter is a double point of I'. But

when r" is expressed as a product of two involutions, one of these

involutions is fully determiued by one of its double points in case

the latter is not a double point of T" (cf. § 78, Vol. I). Hence the

other double point, P, is fixed ; and since l^ must pass through it, it

follows that all lines of [I] on tt pass through P. Moreover, it is

evident that if Z^ is any line (except q) on tt and P, l^ its polar line,

and {Ij,^ any line reflection effecting an involution on R^ which is

perspective with I", the projectivity T is effected by {l^^ • {l^Q.

Hence [Z] contains all lines on tt and P. Hence [Z] is a Knear

complex by Theorem 24, Chap. XI, Vol. I.

Theorem 38. A direct projectivity V of a quadric surface Q^ which

does not leave all lines of either regulus invariant determines a linear

congruence of lines having the property that if a^ is any line of the

congruence not tangent to Q^ there exist lines a^, h^, b^ of the congruence

such that

(33) r = ^aJ.{6^&J.

Moreover, each line a^ having this property belongs to the congruence,

and so do a^, h^, l^.

Proof, r effects a projectivity on each regulus of Q^, and each of

these reguli by the last theorems determines a linear complex of lines.

The two complexes are obviously not identical and hence have a

linear congruence in common. Any Line a^ of this congruence is either

tangent to Q^, or such that there exist lines a^, b^, b^ which are in both

complexes and such that {a^a^ • {b^^ effects the same projectivity

as r on both reguli. Hence {a^a_^} • {b^b^ = T. Moreover, any a^ for

which a^, b^, b^ exist satisfying this condition must, by the last theorem,

belong to both complexes and hence belong to this congruence.

Corollary 1. The congruence referred to in the theorem may be

degenerate and consist of all lines on a point of Q^ and on a plane

tangent to Q^ at this point ; or it may be parabolic and have a line

of the quadric as directrix ; or it may be hyperbolic and have a pair
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of 'polar lines as directrices ; or it may he elliptic and have a pair of

improper polar lines as directrices.

Proof. Let C denote the congruence referred to in the theorem

and let 11 be the polarity by which every point is transformed into

its polar plane with respect to Q"^. This polarity transforms any line

ffij of C into its polar line, and the latter, by the theorem, is in C.

Hence 11 transforms C into itself.

According to § 107, Vol. I, any congruence is either degenerate,

parabolic, hyperbolic, or elliptic. If degenerate, it consists of all lines

on a point -B or a plane p, B being on p. If 11 transforms such a con-

gruence into itself, it must interchange B and p, and henceB must be

on ^ and p tangent to Q^ at B. The congruence C wUl be of this type

if 6j meets a^ in a point of Q^ and does not meet a^.

If C is parabolic, its one directrix must be transformed into itself

by 11, and hence must be a line of Q'^. This case arises if a^, a^, Jj, 6^

all meet the same line of Q^ and do not meet any other line of ^.

If C is hyperbolic, 11 must either leave the two directrices fixed

individually or interchange them. In the first case each directrix

must be a line of Q^, which implies that a^, a^, h^, b^ all meet two

Hues of Q^ and hence that all lines of one regulus are left invariant

by r, contrary to hypothesis. Hence the second case is the only

possible one. It occurs when a^, a^, b^, b^ do not all meet any line of

Q^, but are met by a pair of real hues.

If C is elliptic, it has two improper directrices * and the reasoning

is the same as for the hyperboKc case.

Definition. A line I is said to meet or to be met by a pair of lines

pq if and only if it meets both of them. A pair of lines Im is said to

meet or cross a pair pg if both I and m meet pq.

EXERCISES

1. The lines which cross the distinct pairs of an involution on a regulus

together with the lines tangent to the regulus at points of the double lines

(if existent) of the involution form a nondegenerate linear complex.

2. If two pairs of polar lines, Qj^j and hji^, of a regulus meet each other,

the involutions effected by {a^a^) and {h-J)^} are harmonic (commutative) and

their double lines form a harmonic set.

* This may be proved as follows : Let !j, l^, l^, l^ be lines of C not on the same

regulus. Any plane on l^ meets the regulus R^ containing l,, l^, Ig in a conic, and l^

meets this conic in two improper points Pj, Pj. The two lines of the regulus conju-

gate to E^ which pass through Pj, P^ meet l^, l^, Ig, l^ and hence meet all lines of 0.
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3. Let r be a projectivity on a ipgulus R^. A variable plane meets li^ in a
conic C'2 on which there is a projectivity F perspective with T. The axes of

the projectivities V are lines of a linear congruence.

4. Enumerate the types of collineations leaving invariant a quadric (1) in

the complex space, (2) in a real space, (3) in various modular spaces.

* 108. Products of pairs of involutoric projectivities.

Theorem 39. A direct projective coUineation of a quadric surface

is a line reflection whose axes are polar, if it interchanges two points

of the quadric which are not joined ly a line of the quadric.

Proof. Denote the coUineation by V, the quadric by Q^, the two

reguli on it by Rl and Rl, and the two points which V interchanges by

A and B. Let a and 6 be the lines of Rl on A andB respectively, and

a' and V those of i?| on A and B respectively. Since F interchanges a

and h it effects an involution on Rl, and since it interchanges a' and

V it effects an involution on R'l. Let I, m be the double lines of the

involution on Rl, and p, q those of the involution on Rl. T is evidently

the product of {Im} by {pq} and hence is a line reflection whose axes

are the line joining the points Ip and mq and the line joining the

planes Ip and mq. These two lines are polar with regard to Q^.

Theorem 40. Two lines which are not on a quadric Q^ and do

not meet the same line of Q^ are met hy one and hut one polar pair

of lines.

Proof. Let one of the given lines meet the quadric in A and A'

and the other meet it in B and B'. By Theorem 35 there is a unique

direct projective coUineation of the quadric which carries A to A', A'

to A, and B to B'. By Theorem 39 this is a line reflection {Zm} and

I and m are polar with respect to Q^. Since {?m} transforms A to A',

I and m both meet the line AA', and since {Im} transforms B to B', I

and m both meet the line BB'.

If there were another pair of polar lines V, m' meeting AA' and

BB', {I'm'} would interchange A and A' and B and B'. By Theorem 35

{Im} = {I'm'}.

Corollary. Two lines which are not on a quadric Q^ and do not

meet the same line of Q^ are met by two and only two lines which are

conjugate to them both with regard to Q^.

Proof. This follows directly from the theorem, because two mutu-

ally polar lines a, b meeting two lines I and m are both conjugate to
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I and m and, moreover, if a line a meets and is conjugate to both I

and m its polar line also meets and is conjugate to both I and m.

Theorem 41. If a simple hexagon is inscribed in a quadric sur-

face in such a way that no two of its vertices are on a line of the

quadric, the three pairs of opposite edges are met each by a polar pair

of lines, and these three polar pairs of lines are in the same linear

congruence.

Proof. Let A^B^Cj^A^B^C^ be the simple hexagon. By the last

theorem the pair of opposite edges A^B^, A^B^ is met by a pair of

lines Cj, c^ which are polar with respect to the quadric. In Uke

manner B^C^, B^C^ are met by a polar pair a^, a^, and C^A^, C A
by a polar pair b^, b^. Consider the product of line reflections.

The Hne reflection {a^a^} carries B^ to C^, {bj)^} carries C^ to A^, and

{c^cj carries A^ to B^. Likewise {a^aj carries B^ to C^, {b^b^} carries

Cj to A^, and {CjC^} carries A^ to 5^. Hence F interchanges B^ and B^,

and by Theorem 39 it is a line reflection. Denoting T by {d^dj we have

By Theorem 38 the axes of the four line reflections in this equation

are all lines of the same congruence.

In view of the corollaries of Theorems 38 and 40 this theorem

may be restated in the following forms

:

CoROLLAKY 1. If a simple hexagon is inscribed in a quadric vn

such a way that too two of its vertices are on a line of the quadric, the

three polar pairs of lines which meet the pairs of opposite edges are

met by a polar pair of lines {which may coincide).

Corollary 1. If a simple hexagon is inscribed in a quadric sur-

face in such a way that no two of its vertices are on a line of the

quadric, each pair of opposite edges is met by a unique pair of lines

conjugate to both edges, and the latter three pairs of lines are met by

a pair of lines conjugate to each of them. The lines of the last pai/r

may coincide.*

* Bulletin of the American Mathematical Society, Vol. XVI (1909), pp. 65

and 62. A theorem of non-Euclidean geometry from which this may be obtained

by generalization has been given by F. lilein, Mathematische Annalen, Vol. XXII
(1883), p. 248.
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This theorem is closely analofpus to Pascal's theorem on conic sections

(Chap. V, Vol. I). In the Pascal hexagon the pairs of opposite sides deter-

mine three points A, B, C which are coUinear. In the hexagon inscribed in

a quadric they determine three pairs of lines a-^a^, ii\> CjC^ which are in a

linear congruence. In case the vertices of the hexagon are coplanar, the

theorem on the quadric reduces directly to Pascal's.

The Pascal theorem may be proved by precisely the method used above.

For let A^B^Cj^A^B^Cji be a hexagon inscribed in a conic and let vl be the

point (B1C2, CjBj), B be (Cj^A^, A^C^), and C be (^A^B^, B^A^). Let {Aa},

{Bb}, and { Cc} be the harmonic homologies effecting the involutions having A,

B, C as centers. By construction the projectivity effected by { Cc} • {Bb} • {Aa}

on the conic carries B^ to B^^, and £3 to JSj, and hence is an involution. Denoting

its center and axis by D and d, we have

{Cc}-{Bb}-{Aa} = {Dd}.

This implies {Bb} {Aa} = {Cc} {Dd}.

By the theorems of Chap. VIII, Vol. I, the line AB is the axis of the projec-

tivity effected by {Bb} {Aa} and must contain C and D. Hence A, B, C are

collinear.

Pascal's theorem is thus based on the proposition that the product of three

involutions on a conic is itself an involution if and only if the centers of the

three involutions are collinear, i.e. if and only if their axes are concurrent.

Let us denote an involution whose double points are L and M by {LM}, as

in Ex. 11, § 52. If the involution is represented on a conic, the double points

are joined by the axis of the involution. The proposition above then takes

the form : The product {L^M^} • {L^M^} {ZjAfj} is an involution if and only

if the lines Lj^M^, L^M^, L^M^ concur. The concurrence of the three lines

means either that the three point pairs have a point in common or that they

are themselves pairs of an involution. Thus the theorem on involutions may
be stated as follows

:

Theorem 42. In any one-dimensional form a product of three involutions

{Z/jJ/j}, {ijMj}, {LgM^} is an involution in case the pairs of points Lj^Mj^,

L^^^' ^s^^s '''"'^ '^ point in common or are pairs of an involution; and the

product is not an involution in any other case.

The double points of the involutions may be either proper or improper

(real or imaginary). In order to state the result entirely in terms of proper

elements, the involutions may be represented on a conic and the condition

stated in terms of the concurrence of their axes, as above ; or it may he

expressed by saying that they all belong to the same pencil of involutions, or

by saying that they are all harmonic to the same projectivity.

This theorem on involutions in a one-dimensional form is fundamental

in the theory of those groups of projectivities, in a space of any number of

dimensions, which are products of involutoric projectivities. For example,



280 INVEESION GEOMETRY [Chap.vi

it is essentially tie same as Theorem 8, Chap. IV, which was fundamental in

the theory of the parabolic metric group in the plane. Corresponding theo-

rems in the Euclidean geometry of three dimensions will be found in §§ 114

and 121, Chap. VII. The same principle appears as Theorem 27, Cor. 1,

Chap. Ill, in connection with the equiaffine group.

These groups are all projective and on that account related to the projec-

tive group of a one-dimensional form. But the essential feature which they

have in common is that every transformation of each group is a product of two

involutoric transformations of the same group. On this account, even without

their common projective basis, the geometries corresponding to these groups

must have many features in common. In particular, whenever there is some

class of figures such that if two of the figures are interchanged by a trans-

formation, the transformation is of period tWo, there must exist a theorem

analogous to Pascal's theorem. As examples of this may be cited Theorem 41

above; Ex. 6, § 80, Vol. I; Ex. 1, § 122, below; and in the list of exercises

below, Ex. 4, referring to the group of point reflections and translations,

Exs. 5, 6 referring to the Euclidean group in a plane, Ex. 7 referring to

the equiaffine group. On this subject in particular and also on the general

theory of groups generated by transformations of period two, the reader

should consult a series of articles by H. Wiener in the Berichte der GeseU-

schaft der Wissenschaften zu Leipzig, Vol. XLII (1890), pp. 13, 71, 245;

Vol. XLIII (1891), pp. 424, 644 ; and also the article by Wiener referred

to in § 45, above. Cf. also § 80, Vol. I.

EXERCISES

1. (Converse of Theorem 41.) If the three pairs of opposite edges of a

simple hexagon are met by three pairs of lines a-^a^, b-J)^, c^c^ in pairs of points

which are harmonically conjugate to the pairs of vertices with which they are

oollinear, and if the lines Oj, a^, h^, \, Cj, c, are in the same linear congruence,

then the vertices of the hexagon are on a quadric surface with regard to which

a^a^, l-fii, c-^c^ are polar pairs of lines.

2. Two pairs of lines which are polar with regard to the same regulus

cannot consist of lines of a common regulus.

3. If two lines I and m are met by two pairs of lines which are polar with

respect to a quadric, I and m are polar.

4. In a Euclidean plane let A, B, C be the three points of intersection of

pairs of opposite sides of a simple hexagon. If A and B are mid-points of the

sides containing them, and C is the mid-point of one side containing it, then

C is also a mid-point of the other side containing it.

5. Let A-^B^Cj^A^B-^C^ be a simple hexagon in a Euclidean plane. If the

perpendicular bisector of the point pair A^B^ coincides with that of A^Bi, and

the perpendicular bisector of B^C.^ with that of B^^C^, and the perpendicular

bisector of C^A^ with that of C^A^, then the three perpendicular bisectors

meet in a point.
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6. Let a, h, c, a', V, c' be six con(jjtrrent lines of a Euclidean plane. If there

is a pair of lines bisecting each of the pairs aV and a'h, and a pair bisecting

M and Vc, there is a pair bisecting ea' and c'a.

7. If the pairs of opposite sides of a simple hexagon are parallel, the lines

joining their mid-points are concurrent.

109. Conjugate imaginary lines of the second kind. The theory

of antiprojectivities (§ 99) and the extended theory of projectivities

of one-dimensional forms (§ 106) will now enable us to complete the

theory of conjugate imaginary elements in certain essential details

which we were, not ready to discuss in § 78. Let S' be a complex

projective space and let S be a three-chain of S', i.e. a space related

to S' in the manner described in §§ 6 and 70, and let us use the

definitions and notations of § 70. The simplest type of antiprojective

collineation of S' is given by the equations

(o4) ajj = x^, ajj = x^, x^ = x^, x^ = x^.

The frame of reference is such that the points of S have real coordi-

nates. The transformation changes each point

K+*^o' «i+^/3i. 0^,+ i^,, «,+ i0,),

where the a's and /8's are real, into the point

{a,-i^,, a^-i^,, «^-i^^, ^^-i^s)-

These two points if distinct are joined by the real line

and are the double points of the involution determined by the

transformation of the parameter X,

X.

Comparing with the definition of conjugate imaginary points in § 78,

it is clear thab (34) is the transformation by which every point of S'

goes to its conjugate imaginary point, the points of S being regarded

as real.

From the fact that the transformation (34) leaves no imaginary

point invariant, it follows that it cannot leave any imaginary line or

plane invariant. For the real line through an imaginary point P of

the given line or plane is left invariant by (34), and hence P would

be left invariant by (34). On the other hand, (34) leaves every real
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element invariant and hence leaves every elliptic involution in a real

one-dimensional form invariant. Since (34) cannot leave the double

elements of such an involution invariant, it must interchange them.

Hence (34) interchanges any element of S' with the element which

is its conjugate imaginary according to the definition of § 78.

The definition of § 78 defines the notion of conjugate imagiaary

elements for all one-dimensional forms of the first or second degrees,

and the theorems of that section cover all cases except that of a pair

of conjugate imaginary lines which are the double lines of an elliptic

involution in the lines of a regulus.

Definition. An imaginary line which is a double line of an ellip-

tic involution in a flat pencil is said to be of the first kind, and one

which is a double line of an elliptic involution in a regulus is said to

be of the second kind.

Theorem 43. Any imaginary line is either of the first or of the

second kind.

Froof. Let I be an imaginary ILtie. It cannot contain two real

points, else it would be a real line (§ 70). Hence it contains one or

no real point. In the first case let be the real point on I, P one of

the imaginary points on I, and P the imaginary point conjugate to P.

The line PP is real, and hence the plane OPP is real. Hence by § 78

the lines OP and OP are the double lines of an elliptic involution

in the pencil of real lines on the point and the plane OPP.

In the second case let P, Q and R be three points of I and let P, Q
and B be their respective conjugate imaginary points. The lines PP,

QQ, BB are real and no two of them can intersect, for if they did I

would be on a real plane, and we should have the case considered in

the last paragraph. Hence these lines determine a regulus B^ in S.

On the real line PP there is by § 78 an elliptic involution having

P and P as its imaginary double points. Hence there is an elliptic

involution in the regulus Bl, conjugate to Bl, having I as one double

line and a line I throughP as the other. The lines I and I are conjugate

imaginary lines by definition, and satisfy the definition of imaginary

lines of the second kind. Since (34) transforms each element into its

conjugate element, it is clear that I contains Q and B as well as P.

The system of real lines obtained by joining each point of I to its

conjugate imagiaary point on I is, by the reasoning above, a set of
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lines of the real space S, no twcyjf which intersect. Any four of them

determine a linear congruence (§ 107, VoL I) C in S and also a linear

congruence C of S'. The congruence C has the property that each of

its hues is contained in a line of C, and C evidently is the set of all

lines joining points of I to points of I.. Hence C is an elliptic con-

gruence according to the definition of § 107, Vol. I, and consists of all

real lines meeting I and I. Hence the system of real lines joining

points of I to their conjugate imaginary points is an elliptic congruence

in S, or in other words

:

Theorem 44. An imaginary line of the second kind is a directrix

of an elliptic congruence.

The observation, made in the argument above, that there is one line

of a certain elliptic congruence through each point of an imaginary

line of the second kind, shows that ah elHptic congruence may be

taken as a real image of a complex one-dimensional form. This of

course implies that the whole of the real inversion geometry can be

carried over into the theory of the elliptic congruence and vice versa.

Of. the exercises below.

The relations between the imaginary lines of the second kind and

the regulus and eUiptic congruence are fundamental in the von Staudt

theory of imaginaries which has been referred to in § 6. In addition

to the references given in that place, the reader may consult the Ency-

clopedie des Sciences Mathematiques, III 8, § 19, and III 3, §§ 14, 15.

EXERCISES

1. An elliptic congrueuce in a real space has a pair of conjugate imaginary

lines of the second kind as directrices.

2. The correspondence by which each point of an imaginary line I corre-

sponds to its conjugate imaginary point is an antiprojectivity between I and

its conjugate imaginary line.

3. Under the projective group of a real space any imaginary point is trans-

formable into any other imaginary point, any imaginary line of the first kind

into any imaginary line of the first kind, and any imaginary line of the second

kind into any imaginary line of the second kind; an imaginary line of the

first kind is not transformable into one of the second kind.

4. There is a one-to-one reciprocal correspondence between the points of a

complex line and the lines of an elliptic congruence in a real space in which

the points of a chain correspond to the lines of a regulus. By means of this

correspondence, make a study of the eUiptic congruence and its group.
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5. Let Sj be a three-dimensional complex space. Any five noncoplanar

points of Sj determine a unique three-chain, which is a real Sj. This S. is

related to S3 in the manner described in §§ 6 and 70. Through any point P
of Ss not on S3, there is (§ 78) a unique line which contains a line of S.

(i.e. a chain Cj) as a subset. On this chain Ci there is a unique elliptic invo-

lution having P as a double point. Let P be the other double point of this

involution. P and P are the conjugate imaginary points with regard to the

real space S3, and the transformation of Ss by which each point P not on

Sg goes to P, and each point on S3 is left invariant, may be called a reflec-

tion in the three-chain S3. Any transformation which is a product of an odd

number of reflections in three-chains is an antiprojective coUineation, and

any transformation which is a product of an even number of reflections

in three-chains is a projective coUineation. Every collineation is expressible

in this form.

110. The principle of transference. We have seen how the geometry

of the inversion group in the plane, arising initially as an extension

of the Euclidean group, is equivalent to the projective geometry of

the complex line and also to that of a real quadrio which may be

specialized as a sphere. We have also seen the equivalence of the

projective groups of all one-dimensional forms in any properly pro-

jective space. Since the regulus is a one-dimensional form, this gave

a hold on the group of the general quadric. The latter group in a

complex space has been seen to be isomorphic with the complex

inversion group and also with the fundamental group of the

function plane.

At each step we have helped ourselves forward by transferring

the results of one geometry to another, combining these with easily

obtained theorems of the second geometry, and thus extending our

knowledge of both. This is one of the characteristic methods of

modern geometry. It was perhaps first used with clear understanding

by O. Hesse,* and was formulated as a definite geometrical principle

(Uebertragungsprinzip) by E. Klein in the article referred to in § 34.

This principle of transference or of carrying over the results of one

geometry to another may be stated as follows : Given a set of elements

[«] and a group G of permutations of these elements, and a set of

theorems [T] which state relations left inwariant by G. Let [e'] he

another set of elements, and G' a group of permutations of [«'].

If there is a one-to-one reciprocal correspondence between [e] and [«']

*Gesammelte Werke, p. 531.
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in which G is simply isomorphi^with G', the set of theorems [T] deter-

mines by a mere change of terminology a set of theorems [T'] which

state relations among elements e' which are left invariant by G'.

This principle becomes effective when the method by which [e]

and G are defined is such as to make it easy to derive theorems

which are not so easily seen for [e'] and G'. This has been abundantly

illustrated in the present chapter, but the series of geometries equiv-

alent to the projective geometry on a line could be much extended.

Some of the possible extensions are mentioned in the exercises below.

From the example of the conic and the quadric surface (§ 107) it

is clear that in order to carry results over from the theorj'^ of a set

[c] and a group G^ to a set [e'] and a group G' it is not necessary that

the correspondence be one-to-one. The transference of theorems is,

however, no longer a mere translation from one language, as it were,

to another, but involves a study of the nature of the correspondence.

Definition. Given a set of elements [e] and a group G of permu-

tations of [e], the set of theorems [T] which state relations among

the elements of [«] which are left invariant by G and are not left

invariant by any group of permutations containing G is called a

generalized geometry or a branch of mathematics*

This is, of course, a generalization of the definition of a geometry

employed in §§34 and 39. At the time when the role of groups in

geometry was outlined by Klein, the only sets [e] under consideration

were continuous manifolds, i.e. complex spaces of n dimensions or

loci defined by one or more analytic relations among the coordinates

of points in such spaces. The older writers restrict the term "geometry"

by means of this restriction on the set [e]. But in view of the exist-

ence of modular spaces and other sets of elements determining sets

of theorems more nearly identical with ordinary geometry than some

of those admitted by Klein's original definition, it seems desirable to

state the definition in the form adopted above.

In case the set of theorems [T] is arranged deductively, as explained

in the introduction to Vol. I, it becomes a mathematical science. The

problem of the foundation of such a science is that of determining, if

possible, a finite set of assumptions from which [ T] may be deduced.

* The generalized conception of a geometry is discussed very clearly in the article

by G. Fano in the Encyclopadie der Math. Wiss. Ill AB 46. A number of special

cases are outlined in the latter half of the article.
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EXERCISES

1. If a projective collineation interchanges the two reguli on a quadric,

homologous lines of the two regnli meet in points of a plane.

* 2. Let E^ be a regulus, &> a plane not tangent to R% and the pole of u

(ci) may conveniently be regarded as the plane at infinity of a Euclidean space).

A projectivity T of R" may be effected by a collineation V leaving all lines of

the conjugate regulus invariant. This collineation multiplied by the harmonic

homology { Ota} gives a collineation r" interchanging the two reguli. By Ex. 1,

T" determines a unique plane. Let P be the point polar to T" with regard

to Ji^. The correspondence thus determined between the projectivities T of

Ji^ and the points of space not on R^ is one to one and reciprocal. It is such

that projectivities which are harmonic (§ 80, Vol. I) correspond to conjugate

points with respect to R% and all the involutions correspond to points of m.

*3. The construction of Ex. 2 sets up a correspondence between the pro-

jectivities of a one-dimensional form and the points of a three-dimensional

space which are not on a certain quadric. The same correspondence may be

obtained by letting a projectivity

a^x + oj

correspond to the point (a^, Oj, a^, Og). The relations between the one-dimen-

sional and three-dimensional projective geometries thus obtained have been

studied by C. Stephanos, Mathematische Annalen, Vol. XXII (1883), p. 299.

*4. Develop the theory of the twisted cubic curve in space along tHe fol-

lowing lines : (1) Define it algebraically. (2) Give a geometric definition.

(3) Prove that Definitions (1) and (2) are equivalent. (4) Derive the further

theorems on the cubic as far as possible from the geometric definition. It will

be found that the properties of this cubic can be obtained largely from those of

conic sections and one-dimensional projectivities in view of an isomorphism of

the groups in question. The theorems should be classified according to the

principle laid down in § 83.

* 5. A rational curve in a space of k dimensions is a locus given paramet-

rically as follows ^ _ „ ... ^ _ „ ,,. ^ _ p ^^

where -R^ (t), ,R„(f) are rational functions of t. In case k = n and the locus

is not contained in any space of less than n dimensions, the curve is a normal

curve. Develop the theories of various rational curves along the lines outlined

in Ex. 4. For reference cf. § 28 of the encyclopedia article by Fano referred

to above and articles by several authors in recent volumes of the American

Journal of Mathematics.

* 6. The linear dependence of conic sections may be defined by substituting

"point conic " or « line conic," as the case may be, for "circle " in the definition

given at the end of § 100. Develop the theory of linear families of conies of

one, two, three, and four dimensions, using the principle of correspondence

whenever possible and classifying theorems according to the principle laid

down in § 83. Cf. Encyclop6die des So. Math. Ill 18.



CHAPTER VII

AFFINE AND EUCLIDEAN GEOMETRY OF THREE DIMENSIONS

111. Affine geometry.- Definition. Let 7r„ be an arbitrary but

fixed plane of a projective space S. The set of points of S not on

TToo is called a Euclidean space and 7r„ is called the plane at infinity

of this space. The plane 7r„ and the points and lines on 7r„ are said

to be ideal or at infinity; all other points, lines, and planes of S

are said to be ordinary. When no other indication is given, a point.

Hue, or plane is understood to be ordinary. Any projective coUinea-

tion transforming a Euclidean space into itself is said to be affine;

the group of all such collineations is called the afiine group of

three dimensions, and the corresponding geometry the afilne geometry

of three dimensions.

Definition. Two ordinary lines which have an ideal point in

common are said to be parallel to each other. Two ordinary planes

which have an ideal line in common, or an ordinary line and an

ordinary plane which have an ideal point in common, are said to be

parallel to each other.

In particular, a line or plane is said to be parallel to itself or to any

plane or line which it is on. For ordinary points, lines, and planes we

have as an obvious consequence of the assumptions and definitions of

Chap. I, VoL I, the following theorem

:

Theorem 1. Through a given point there is one and only one line

parallel to a given line. Through a given point there is one and only

one plane parallel to a given plane. If two lines, I and V, are not in

the same plane there is one and only one plane through a given point

parallel to I and V. If I and V are parallel, any plane through I is

parallel to V.

Another obvious though important theorem is the following

:

Theorem 2. The transformations effected in an ordinary plane ir

iy the affine group in space constitute the affine group of the Euclidean

plane consisting of the ordinary points of ir.

287
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In consequence of this theorem we have the whole afi&ne plane

geometry as a part of the affine geometry of three dimensions, and we

shall take all the definitions and theorems of Chap. Ill for granted

without further comment.

This discussion is valid for any space satisfying Assumptions A, E.

The afi&ne geometry of an ordered space (A, E, S) has already been

considered in § 31, and certain additional theorems are given in

Exs. 5-Y below.

EXERCISES

1. The lines joining the mid-points of the pairs of vertices of a tetrahedron

meet in a point.

2. Classify the quadric surfaces from the point of view of real affine

geometry. Develop the theory of diametral lines and planes. The real projec-

tive classification of the nondegenerate quadrics has been given in § 103. The

affine classification is given in the Encyclop^die des Sc. Math. Ill 22, § 19.

*3. Classify the linear congruences from the point of view of the real

affine geometry. Cf. § 107, Vol. I.

*4. Classify the linear complexes from the point of view of real affine

geometry. Cf . § 108, Vol. I.

5. With respect to the coordinate system used in § 31 the points of the

line joining A = (a^, a^, Oj) and B = (h^, \, 6j) are

1 + X ' l + \ /'

B corresponding to A. = 00 and the point at infinity to X = — 1. The segment

A B consists of the points for which A. > and its two prolongations of those

for which X < — 1 and — 1< X < respectively.

6. Two points D and 1/ are on the same side of the plane ABC if and

°^^y ^*
S (ABCD) = S (ABCIT).

7. Using the notation of § 101 and dealing with an ordered Euclidean

space, {0(1)} is an affine collineation which alters sense if or <o is at infinity

and {W} is an affine collineation which does not alter sense if I or l' is at

infinity. In an ordered projective space {W} is, and {0(o] is not, a direct

collineation.

112. Vectors, equivalence of point triads, etc. Definition. Ad

elation having 7r„ as its plane of fixed points is called a translation.

If Z is an ordinary line on the center of the translation, the translation

is said to be parallel to I.

The properties of the group of translations follow in large part

from ^he following evident theorem.

/«! +
\ 1 +
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Theorem 3. The transformat^ns effected in an ordinary plane tr

by the translations leaving ir invariant constitute the group of trans-

lations of the Euclidean plane composed of the ordinary points of ir.

As corollaries of this we have statements about translations in

space wliich are verbally identical with Theorems 3-7, Chap. III.

Theorem 8, Chap. Ill, generalizes as follows

:

Corollary. If OX, Y, and OZ are three noncoplanar lines and

T any translation, there exists a unique triad of translations T^, T^,

T^ parallel to OX, Y, OZ respectively and such that

T = T T T

.

The theory of congruence under translations generalizes to space

without change, and the contents of §§ 39 and 40 may be taken as

applying to the afi&ne geometry in three-space. In like manner the

definition of a field of vectors and of addition of vectors is carried over

to space if the words " Euclidean plane " be replaced by " Euclidean

space." The theorems of § 42 then apply without change.

We arrive at this point on the basis of Assumptions A, E, H^.

Adding Assumption P we take over the theory of the ratio of col-

linear vectors from §§ 43, 44. Some of the theorems to which it

may be applied without essential modifications of the methods used

in the planar case are given in the exercises below.

The definition of equivalence of ordered point triads in §48 is

such that if a plane tt be carried by an atfine collineation to a

plane tt', any two equivalent point triads of tt are carried to two

equivalent point triads of tt'. Moreover, the definition of measure

of ordered point triads in § 49 is such that if two coplanar ordered

point triads ABC, DEF are carried by an affine collineation to

A'B'C, B'E'F' respectively,

m {ABC) _ m (A'B'C)

^ ' m (DEF) ~ m (B'E'F')

'

This result in view of Theorem 39, Chap. Ill, depends on the corre-

sponding theorem about the ratios of coUinear vectors. In (1) the unit

of measure in any plane is regarded as entirely independent of the

unit of measure in every other plane, but nevertheless the ratio of the

measures is an invariant of the affine group. Certain ratios of ratios

of measures are invariants of the projective group (cf. Ex. 17 below).
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The notion of equivalence of ordered point triads may be extended

as follows

:

Definition. Two ordered point triads ABC and A'B'C' are equiva-

lent if and only if ABC may be carried by a translation to an ordered

triad A"B"C" which is equivalent in the sense of § 48, Chap. Ill,

to AlB'C.

The fundamental propositions with regard to equivalence, as devel-

oped in § 48, remain valid under the extended definition. Thus if

ABC^A^Bfi^ and A^Bfi^^A^Bf^, ABC^A^Bf„^ ; if ABC^A^Bfi^,
A^B^C^^ABC, etc.

This extension of the notion of equivalence carries with it a cor-

responding restriction of the idea of measure, i.e. measure is now

defined as in § 49, with the added proviso that the unit triad in any

plane shaU. be equivalent to the unit triad in any parallel plane.

The method by which the theory of equivalence of ordered point

triads was developed in Chap. Ill does not generalize directly to the

case of ordered tetrads in three-dimensional space.* We shall there-

fore give an algebraic definition of the measures of an ordered set of

four points, leaving it to the reader to develop the corresponding

synthetic theory (cf. Ex. 13 below).

Definition. By the measure of an ordered tetrad of points A^, A^,

Ag, A^ relative to an ordered tetrad OPQB as unit is meant the

number ^
1 a„ a,„ a

(2)
1 a a a

21 22 2;

1 a„ a,„ a„
81 82 8

1 a„ a.„ a.

= ^ (AMA)'

where (a^i, a,2, a.-g) are nonhomogeneous coordinates of A^ (i = 1, 2, 3, 4)

in a coordinate system in which 0, P, Q, R are (0, 0, 0), (1, 0, 0),

(0, 1, 0), (0, 0, 1) respectively. Two ordered tetrads are said to be

equivalent if and only if they have the same measure. In real affine

geometry the number ^\m {A^A^A^A^\ is called the volume of the

tetrahedron A^A^A^A^ relative to the unit tetrahedron OPQB and is

denoted by v {A^A^A^A^.

The theory of the equivalence of point pairs, triads, tetrads, etc.

is the most elementary part of vector analysis and the Grassmann

Ausdehnungslehre. This subject in particular, and the affine geometry

» Cf . M. Dehn, Mathematische Annalen, Vol. LV (1902), p. 465.
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of three dimensions in general, is worthy of a much more extensive

treatment than it is receiving nere. We have referred only to that

part of the subject which is essential to the study of the Euclidean

geometry of three dimensions.

In the following exercises the coordinate system is understood to

be that which is described in the definition of measure of ordered

tetrads above. The vectors OP, OQ, OB are taken as units of measure

for the respectively parallel systems of vectors. The ordered point

triads OPQ, OQR, ORP are taken as units of measure for the respec-

tively parallel systems of ordered point triads.

Definition. By the projection of a set of points [X] on the a;-axis

is meant the set of points in which this axis is met by the planes

through the points X and parallel to the plane a; = ; and the

projection on the y- and «-axes have analogous meanings.

By the projection of a set of points [A'] on the plane a; = is

meant the set of poLats in which this plane is met by the lines on

points X and parallel to the a;-axis ; and the projections on the

planes y = and a = have analogous meanings.

EXERCISES

1. The measures of ordered tetrads of points are unaltered by trans-

formations
a;' = \^x + \^y + \^z + \^,

(3) y' = h^ix + b^^y + \^z + 6j„,

z' = \^x + h^^y + 533Z + 630,

subject to the condition A = 1, where

(4)

This group is called the equiaffine group and also the special linear group.

The group for which A'' = 1 leaves volumes invariant.

2. Ratios of measures of ordered tetrads of points are left invariant by

the affine group.

3. In an ordered space two ordered sets of points ABCD and A'B'C'iy

are in the same sense or not according as m (ABCD) and m (A'B'CD') have

the same sign or not.

4. The product of two line reflections {W} and {mm'} (cf. § 101) is a

translation if l' and m' are at infinity and I and m are parallel.

5. Determine the subgroups of the group of translations in space.
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6. The projections of a point pair P^P^ on the x-, y-, and x-axes

respectively have the measures

a = x^-x^, P-y^-Vv y = 22 - H'

and those of the ordered point triad OP^P^ on the planes a; = 0, y = 0, z =
respectively have the measures

1^2 2'2

These numbers satisfy the relation

o\ + /3/i + yv = 0.

Any two points P\P^ of the line P-^P^ such that Vect PjPj = "Vect P{i^ deter-

mine the same six numbers a, /3, y, \, fi, v. These numbers are proportional to

the Pliicker coordinates (of. § 109, Vol. I) of the line P^P^.

7. Using the notations of Ex. 6, A. = m (OPP^P^), n = m (OQP^P,),

V = m (ORP-^P^). If a, P', /, A.', /i', v' are the numbers analogous to a, j8, y,

\, ft,, V determined by an ordered pair -P3P4,

m (PJ>^P^P^) = aX' + Pi>: + yv' + Aa' + /i^ + vy'.

8. The measures of the projections of an ordered point triad PyP^P^ on

the planes x = 0,y = Q,z = Q respectively are

Vi H 1
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and t„ to A'B'C'D'. Develop a theojjy of equivalence as nearly as possible

analogous to that of § 48. Show that two tetrads are equivalent in this sense

if and only if they are equivalent according to the definition in the text.

*14. An elation whose center is at infinity and whose plane of fixed points

is ordinary is called a simple shear. The set of all products of simple shears is

the equiaffine group. Develop the theory of the equiafiine group on this basis.

Is it possible to generalize § 52 to space ?

15. If a plane meets the sides A^A^, A^A^, . . ., A^A^ of a simple polygon

Af^A-j^A^ . . . j1„ in points £„, B^,

.

. ., B„, respectively,

AqBq A^ A„B„ ^ ^
A^Bo A^B-, A„B„

16. If a quadric surface (§ 104, Vol. I) meets the lines j4Di4i, .4 ^.^j, . . .,A„A^

respectively in the pairs of points B^C^,, Bj^C^,---, B„C„, respectively,

-^o-"o Af^C^ A^B^ A^C-i
^
A „B„ A„C„ _ ^

A-iBq AiCi At^Bi A.^C-i AqB^ '"lo^n

*17. Six points of a plane no three of which are collinear satisfy the

following identity

:

m (123) m (456) - m (124) m (563) +.m (125) m (634) - m (126) m (345)= 0.

The ratio of any two terms in this sum is a projective invariant. These

propositions are given by W. K. Clifford in the Proceedings of the London

Mathematical Society, Vol. II (1866), p. 3, as the foundation of the theory of

two-dimensional projectivities. Develop the details of the theory outlined by

Clifford. Cf. also Mobius, Der barycentrische Calcul, § 221.

113. The parabolic metric group. Orthogonal lines and planes.

Definition. Let 2„ be an arbitrary but fixed polar system in the

plane at infinity tt.. This polar system shall be called the absolute

or orthogonal polar system. The conic whose points lie on their polar

lines with respect to 2„ is, if existent, called the circle at infinite/.

The group of all collineations leaving 2„ invariant is called the

parabolic metric group and its transformations are called similarity

transformations. Two figures conjugate under this group are said to

be similar.

Definition. Two ordinary planes or two ordinary lines are orthog-

onal or perpendicular if and only if they meet 7r„ in conjugate lines

or points of the absolute polar system 2„. An ordinary line and plane

are orthogonal or perpendicular if and only if they meet 7r„ in a

point and line which are polar virith regard to 2„. A line perpendic-

ular to itself, i.e. a line through a point of the circle at infinity, is
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called a minimal or isotropic line. A plane perpendicular to itself,

i.e. a plane meeting 7r„ in a tangent to the circle at infinity, is called

a minimal or isotropic plane.

As the analogue of Theorems 2 and 3 we have

Theorem 4. The similarity transformations which leave an ordi-

nary nonminimal plane ir invariant, effect in tt the transformations

of a parabolic metric group in the Euclidean plane consisting of the

ordinary points of ir.

Generalizing Theorem 1, Chap. IV, we have

Theoeem 5. At every point of a Euclidean space the correspond-

ence between the lines and their perpendicular planes is a polar system,

the projection of 2„. All the lines through perpendicular to a given

line are on the plane perpendicular to the given line at 0; and all the

planes through perpendictolar to a given plane are on the line through

perpendicular to this plane. If existent, the isotropic lines through a

point constitute a cone of lines, and the isotropic planes through the

cone of planes tangent to this cone of lines.

Corollary 1. Two perpendicular nonminimal planes meet in a

nonminimal li/ne, and two perpendicular nonminimal lines are par-

allel to a nonminimal plane.

Corollary 2. If a plane 1 is perpendicular to a plane 2, and 2

is parallel to a plane 3, then 1 is perpendicular to 3. If a plane 1 is

perpendicular to a line 2, and 2 is parallel to a line or plane 3, then

1 is perpendicular to 3. If a line 1 is perpendicular to a plane 2,

and 2 is parallel to a line or plane 3, then 1 is perpendicular to 3.

If a line 1 is perpendicular to a line 2, and 2 is parallel to a line

3, then 1 is perpendicular to 3.

Theorem 6. Two nonparallel lines not loth parallel to the same

minimal plane are met by one and only one line perpendicular to

them both; this line is not minimal.

Proof. Let A„ and 5„ be the points in which the given lines

meet 7r„. By hypothesis A^ ^ B„, and the line A„B„ is not tangent

to the circle at infinity. Let C„ be the pole of the line A^B^ with

respect to 2„. The required common intersecting perpendicular is the

line through (7« meeting the two given lines ; this line is obviously

unique and not minimal
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EXERCISE

The planes perpendicular to the edges of a tetrahedron tX the mid-points

of the pairs of vertices meet in a point 0. The line perpendicular to any face

of the tetrahedron at the center of the circle through the three vertices in

this face passes through 0.

114. Orthogonal plane reflections. Definition. A homology of

period two whose center, F, is a point at infinity polar in the absolute

polar system to the line at infinity of its plane of fixed points, tt, is

called an orthogonal reflection in a plane or an orthogonal plane

reflection or a syminetry with respect to a plane, and may be denoted

by {ttP}.* The plane of fixed points is called the plane of symmetry

of any two figures which correspond in the homology.

Since the center and the line at infinity of the plane of fixed points

of an orthogonal reflection in a plane are pole and polar with respect

to 2„, we have

Theorem 7. An orthogonal reflection in a plane is a transforma-

tion of the parabolic metric group.

By a direct generalization of Theorems 3 and 4, Chap. IV, we obtain

the following

:

Theorem 8. (1) If tt and p are two parallel nonminimal planes,

the product {pB} • {ttP} is a translation parallel to any line per-

pendicular to IT and p. (2) If 1 is a translation parallel to a ^ion-

minimal line I, TT any plane perpendicular to I, and p the plane

perpendicular to I passing through the mid-point of the point pair

in which it and T (tt) meet I, then

T = {pB} {ttP};

and if a- is the plane perpendicular to I passing through the mid-point

of the pair in which tt and T~^(7r) meet I,

T = {ttP} • {<tS}.

(3) A translation parallel to a minimal line I is a product offour

orthogonal plane reflections.

Theorem 9. A product A„A„_i • • • Aj of orthogonal plans reflec-

tions is expressible in the form A,'A^_i • • AJT or T'A^A[_j . . . AJ,

where K[, A^, • •, A^ are orthogonal plane reflections whose planes of

* In the rest of this chapter this notation will be used in the sense here defined

and not in the more general senise of § 101,
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fixed points all contain an arbitrary point 0, and T and T' are

translations. In case is left invariant by A^A^_i • • Ay T and T'

reduce to the identity.

Proof. Let A^! (i = 1, 2, . . . n) denote the orthogonal plane reflection

whose plane of fixed points is the plane through parallel to the

plane of fixed points of A;. Then by Theorem 8, A^AJ = T,., T^ being

a translation. Hence A^ = T^A,' and

(5) A„A„_, . . . A,= TXT„_xA: . . . T,Ai.

By the generalization to space of Theorem 11, Cor. 2, Chap. Ill, if 2
is any afi&ne coUineation and T a translation, T2 = IT', where T' is a

translation. By repeated application of this proposition, (5) reduces to

AA-i • • • A, = KK-t • • • AiT = T'A,X-i • • a;.

where T and T' are translations.

In case is a fixed point for the product A„A^_i • • Aj, since

it is also left invariant by each of the reflections A,', it is left invariant

by T and T'. Hence in this case T and T' reduce to the identity.

Theorem 10. If A^, A^, A^ are three orthogonal plane reflections

whose planes of fixed points meet in a line I, ordinary or ideal, the

product AjAjjAj is an orthogonal pla.ne reflection whose plane offixed

points contains I.

Proof. One of the chief results obtained in Chap. VIII, Vol. I, can

be put in the following form :
* If T^, T^, T^ are harmonic homologies

leaving a conic invariant and such that their centers are coUinear,

TjTjTj is a harmonic homology leaving the conic invariant. For by

Theorem 19 of that chapter, and its corollary, the product T^T^ is

expressible in the form T^T, where T is a harmonic homology whose

center and axis are polar with respect to the conic, the axis being

concurrent with those of T^, T^, and T, ; and from 1^^= T^T follows
rp r¥i rri rri rri rri rri

8 2 1 8 3

Now if Aj, Aj, A3 are orthogonal plane reflections whose planes of

fixed points meet in an ordinary line I their centers are collinear.

Hence they effect in 7r„ three harmonic homologies whose centers

are the poles of their axes with respect to the absolute polar

system and whose centers are collinear. Hence A^A^Aj effects a

harmonic homology in the plane at infinity and its axis, ?»„, passes

* Cf . the fine print in § 108.
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through the point at infinity of^. Since I and m„ are both lines of

fixed points of AjA^A^, all points of the plane tr containing^ I and m™
are invariant. Hence AjA^A^ effects a homology having the pole of

m„ with respect to S„ as center. Since this homology is of period

two in 7r« it must be an orthogonal plane reflection.

In case the planes of fixed points of A^, A^, A^ are parallel we have

by Theorem 8 (1) that A^Aj is a translation parallel to a line perpen-

dicular to these planes, i.e. parallel to a nonminimal line. Hence by

Theorem 8 (2) there exists an orthogonal plane reflection, A^, such that

or A3A^A^=A^.

Corollary. If {^.jij and {^£3} ^^^ ^*'"' orthogonal plane reflec-

tions, and Xj is any ordinary nonminimal plane in the same pencil

with X,j and \^, there exists a plane \'^ and points L[ and L'^ such that

{\L,}.{\L,} = {\[L,}-{\[L'^.

Proof. By the theorem, if L[ is the point at infinity, of a line per-

pendicular to \[, there exists an orthogonal plane reflection {^a-^j}

such that
^^^^^^ _ ^^^^^^ _ ^^,^,^ ^ ^^,^,^^

and hence {\L^} {\^l;} = {X'^L'^} {\[L[}.

115. Displacements and symmetries. Congruence. We may now
generalize directly from § 57, Chap. IV

:

Definition. A product of an even number of orthogonal plane

reflections is called a displacement or rigid motion. A product of an

odd number of orthogonal plane reflections is called a symmetry.

Theorem 11. The set of all displacements and symmetries is a

self-conjugate sulgroup of the parabolic metric group and contains

the set of all displacements as a self-conjugate subgroup.

Definition. Two figures such that one can be transformed into

the other by a displacement are said to be congruent. Two figures

such that one can be transformed into the other by a symmetry are

said to be symmetric.

Theorem 12. If a figure F^ is congruent to a figure F^, and F^ to

a figure F^, then F^ is congruent to F^. If F^ is symmetric with F^, and

F^ with F^, then F^ is congruent to F^. If F^ is congruent to F^, and F^

symmetric with F^, then F^ is symmetric with F^.
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Theorem 13. Any displacement leaving an ordinary point inva-

riant is a product of two orthogonal plane reflections whose planes of

fixed points contain 0.

Proof. Consider a product of four orthogonal plane reflections,

whose planes of fixed points pass through 0.

T = {\L^}-{\L^}.{\L^}-{\L^}.

Let I be the line of intersection of X^ and \, m that of X^ and \

,

and let \ be a plane containing I and m, where in case i = m, \ is

chosen so as not to be minimal. If X is nonminimal, by the coroUary

of Theorem 10 there exist orthogonal plane reflections {/iJif}, {vN}

such that
^^^^^^ . ^^^^^^ ^ ^^^j . ^j^^^

and {\L,} {X3L3} = {vN} {\L}.

Hence T = {vJSf} {Xi} • {XX} • {fiM} = {vN} {fiM}.

In case X is minimal* {X^iJ transforms X to the other minimal

plane through I (i.e. the other plane containing / and a tangent to the

circle at infinity), and {\L^ transforms this plane back to X. In like

manner the product {\LJ • {^^3} leaves X invariant. Hence X is

left invariant by T. On the other hand the line I is obviously not

left invariant by T, and therefore F does not leave all points at infin-

ity invariant. Hence T leaves at most two tangents to the circle at

infinity invariant, and thus leaves at most two minimal planes through

O invariant. Let X^ be any plane of the bundle containing X^^ and X^

which does not meet X^ in a line of an invariant minimal plane of T.

By the coroUary of Theorem 10 there exists a plane Xj and points L'^

and L'g such that

{\L,}-{\L,}={KL',}.{\',Li},

and hence such that

r = {\L,} . {KL',} {KL',} . {\L,}.

Now let I be the line of intersection of Xi and X^, m that of X3 and \,

and X' the plane containing I and m. If X' were minimal it would, as

argued above for X, be invariant under T, whereas X^ was so chosen

that I cannot be in such a plane. Hence the argument in the pre-

vious paragraph can be applied to the last expression obtained for T.

* This case obviously does not arise In the real Euclidean geometry (§ 116), so

that this paragraph may be omitted if one is interested only in that case. It is

needed, however, in complex geometry.



§115] DISPLACEMENTS 299

Thus, in any case, a product of four orthogonal plane reflections

whose planes of fixed points pass through reduces to a product

of two such reflections. By Theorem 9 any displacement leaving

invariant is a product of an even number, say 2 w, of. orthogonal

reflections in planes through 0. This may be reduced to a product

of two orthogonal reflections in planes through by w — 1 applica-

tions of the result proved above.

CoEOLLAEY. An Orthogonal plane reflection is not a displacement.

Proof. Let be a point of the plane of fixed points of an orthog-

onal plane reflection A. If A were a displacement it would, by the

theorem, be a product of two orthogonal plane reflections containing

and hence could only have a single line of fixed points.

Definition. A displacement which is a product of two orthogonal

plane reflections whose planes of fixed points have an ordinary line I

in common is caUed a rotation about I, and I is called the axis of

the rotation. If the axis is a minimal line the rotation is said to be

isotropic or minimal.

Theoeem 14. The product of two orthogonal reflections in perpen-

dicular planes is a rotation of period two. It transforms every point

P not on its axis to a point P' such that the axis is perpendicular to

the line PP' at the mid-point of the pair PP'. It leaves invariant

the points of its axis and the points in which any plane perpen-

dicular to its axis meets the plane at inflnity. Its axis cannot be a

minimal line.

Proof. Consider any plane tt perpendicular to the planes of fixed

points of the two orthogonal plane reflections A^ and A^. By the

first corollary of Theorem 5 the axis of A^^A^ is nonminimal and

hence ir is nonminimal. In tt the transformations effected by A^

and A are orthogonal line reflections in the sense of Cliap. IV, and

their product is a point reflection (Theorem 5, Chap. IV) in the

plane. From this the theorem follows in an obvious way.

Definition. The product of two orthogonal reflections in perpen-

dicular planes is called an involutoric rotation or an orthogonal line

reflection or a half turn. If I is its axis and I' the polar with respect

to S» of the point at infinity of I, it may be denoted by {W}.*

• In the rest of this chapter this notation will be used in the sense here defined

and not in the more general sense of § 101.
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Theorem 15. Definition. The product of the orthogonal plane

reflections in three perpendicular planes is a transformation carrying

each point P to a point P' such that the point of intersection of the

three planes is the mid-point of the pair PP'. A transformation of

this sort is called a point reflection or symmetry with respect to the

point as center. It is not a displacement. The points P and P' are

said to he symmetric with respect to 0.

Proof. In the plane at infinity the three orthogonal plane reflec-

tions effect the three harmonic homologies whose centers and axes

are the vertices and respectively opposite sides of a triangle. The

product therefore leaves all points at infinity invariant. It also leaves

invariant and is evidently of period two on the line of intersection

of any two of the planes of fixed points of the orthogonal plane reflec-

tions. Hence it is a homology of period two with as center and 7r„

as plane of fixed points. It is not a displacement, since by Theorem 13

a displacement leaving invariant would have a line of fixed points

passing through 0.

Theorem 16. The transformations effected in a nonminimal plane

TT by the displacements leaving ir invariant constitute the group of

displacements and symmetries of the parabolic metric group whose

absolute involution is that determined by S„ on the line at infinity o/tt.

Proof. Let F be any displacement leaving ir invariant, an

arbitrary point of tt, and T the translation carrying to F (0). Then

T"^ F (0)= 0, and hence, by Theorem 13, T~^ F is a rotation. Moreover,

T~'r leaves tt invariant.

It is obvious from the definition of a rotation that it can leave tt

invariant only in case its axis is perpendicular to tt or in case it is of

period two and its axis is a line of tt. If T~^ F falls under the first

of these cases, it effects a rotation in tt according to the definition of

rotation in Chap. IV, and thus F effects a displacement in tt. If T"' F

falls under the second of these cases it effects, and therefore F also

effects, a symmetry in ir according to the definition in Chap. IV.

Corollary 1. The transformations effected in a nonminimal plane

n- by the displacements and symmetries leaving ir invariant constitute

the group of displacements and symmetries of the parabolic metric

group whose absolute involution is that determined by 2„ on the line

at infinity of ir.
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Corollary 2. If is an atrhitrary point, any displacement T is

expressible in the forms

r = TP and T = FT',

where T, T' are translations and P, P' rotations leaving invariant.

Proof As in the proof of the theorem above, let T be the translation

carrying to T (0). Then T"^ T{0) = and hence, by Theorem 13,

T~^ r is a rotation, P. Hence T = TP. If T' is the translation carry-

ing to r~^ (0), it follows in like manner that rT'(O) is a rotation

P' and hence that V = P'T'-\

Corollary 3. The transformations effected on a nonminimal line

p ty the displacements leaving p invariant constitute the group com-

posed of all parabolic transformations and involutions leaving the

point at infinity ofp invariant.

EXERCISES

1. Two point pairs are congruent if they are symmetric.

2. The set of all point reflections and translations forms a group which,

unlike the analogous group in the plane (§ 45), is not a subgroup of the group

of displacements. The product of two point reflections is a translation, and

any translation is expressible as a product of two point reflections, one of

which is arbitrary.

3. Study the theory of congruence in a minimal plane.

4. A rotation leaves no point invariant which is not on its axis. It leaves

invariant all planes perpendicular to its axis and no others unless it is of

period two, when it is an orthogonal line reflection.

116. Euclidean geometry of three dimensions. The last theorem

may be regarded as the fundamental theorem of the parabolic

metric geometry in space, for by means of it aU the results of

the two-dimensional parabolic metric geometry become immediately

applicable.

Suppose now that we consider a three-space satisfying Assumptions

A, E, H, C, E (or A, E, K), i.e. a real projective space. Suppose also

that 2„ be taken to be an elliptic polar system,* i.e. the polar system

of an imaginary ellipse (§ 79). Then in any plane the parabolic metric

geometry reduces to the Euclidean geometry and the displacements

which leave this plane invariant are Euclidean displacements.

* The existence and properties of an elliptic polar system may be determined

without recourse to imaginaries (in fact, on the basis A, E, P, S), as in § 89.
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A set of assumptions for the Euclidean geometry of three dimen-

sions is composed of I-XVI, given in §§ 29 and 66. We have seen in

§ 29 that I-IX are satisfied by a Euclidean space of three dimensions.

Assumption XI is a consequence of Theorem 12, and Assumptions X,

XII-XVI of Theorems 11 and 16. Hence in a real three-space, if

2„ is an elliptic polar system the parabolic metric geometry is the

Euclidean geometry.

The general remarks in § 66 are applicable to the three-dimensional

case as well as to the two-dimensional one.

It was stated in § 66 that the congruence assumptions are no longer strictly

independent when a full continuity assumption is added, because by intro-

ducing ideal elements and an arbitrary So (as in the present chapter) a

relation of congruence may be defined for which the statements in X-XVI
are theorems which can easily be proved. This view is not accepted by

certain well-known mathematicians, who hold that the arbitrariness in the

definition of the absolute involution somehow conceals a new assumption.*

It may, therefore, be well to restate the matter here.f

Assumptions I-IX, XVII are categorical for the Euclidean space; i.e.

if two sets of objects [P] and [Q] satisfy the conditions laid down for

points in the assumptions, there is a one-to-one reciprocal correspondence

between [P] and [Q] such that the subsets called lines of [P] correspond

to the subsets called lines of [Q]. Thus the internal structure of a

Euclidean space is fully determined by Assumptions I-IX, XVII. The

group leaving invariant the relations described in these assumptions is the

affine group, and all the theorems of the affine geometry are consequences

of these assumptions. The latter may therefore be characterized as the

assumptions of afiine geometry.

Among the theorems of the affine geometry is one which states that

there is an infinity of subgroups, each one conjugate to all the rest and

such that the set of theorems belonging to it constitutes the Euclidean

geometry. Each of these groups is capable of being called the Euclidean

group, and there is no theorem about one of them which is not true about

all of them. The set of theorems stating relations invariant under any one

of these groups is the Euclidean geometry. This set of theorems is the

same whichever Euclidean group be selected, i.e. ihe Euclidean, geometry is a

unique body of theorems.

Each Euclidean group has a self-conjugate subgroup of displacements

which defines a relation called congruence having the properties stated in

* Cf . the remarks on a paper by the writer in the article by Enriques, Enoyolo-

p^die des Sc. Math. Ill 1, § 12.

t This discussion should be read in connection with the remarks on foundations

of geometry in the introduction to Vol. I and in § 13 of this volume ; also in con-

nection with the remarks on the geometry corresponding to a group, §§ 34, 39, 110.
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Assumptions X-XVI. Moreov^ any relation which satisfies these assump-

tions is associated with a group of displacements which is self-conjugate under

a Euclidean group.

Thus Assumptions X-XVI characterize the relation of congruence as com-

pletely as possible, i.e. any relation satisfying these assumptions must be that

determined by one of the infinitely many groups of displacements. The set of

theorems about congruence is unique and is the Euclidean geometry.

The relation between the affine geometry and the Euclidean geometry is

analogous to that between the Euclidean geometry and the geometry belong-

ing to any non-self-conjugate subgroup of a Euclidean group. Consider, for

example, the subgroup obtained by leaving a particular point invariant.

A relation which is left invariant by this group may be defined as follows

:

Definition. A point Pis nearer than a point Q if and only if Dist (OP)
< Dist (OQ). P and Q are equallt/ near if Dist {OP) = Dist (OQ).

There is an element of arbitrary choice in this definition, just as there is

in the choice of an absolute involution to define the notion of congruence.

Moreover, the geometry of nearness is just as truly a geometry as is the

Euclidean geometry.* It would be easy to put down a set of assumptions

(XVIII-iV) in terms of near regarded as an undefined relation, which would

state the abstract properties of this relation, just as X-XVI state the abstract

properties of congruence.

Another non-self-conjugate subgroup of the Euclidean group which gives

rise to an interesting geometry is the group leaving invariant a line and a

plane on this line. In terms of this group the notions of forward and back-

ward and up and down can be defined, and the geometry corresponding to this

group is a set of propositions embodying the abstract theory of this set of

relations.

It is a theorem of Euclidean geometry that the Euclidean group has

subgroups with the properties involved in these geometries, just as it is

a theorem of affine geometry that the affine group has Euclidean subgroups

and a theoi-em of projective geometry that the projective group has affine

subgroups.

Assumptions I-IX, XVII have a different rdle from X-XVI or XVTII-iV,

in that they determine the set of objects (points and lines, etc.) which are

presupposed by all the other assumptions. The choice of these assumptions

is logically arbitrary. The choice of such sets of " assumptions " as X-XVI
is not arbitrary; it must correspond to a properly chosen group of permu-

tations of the objects determined by I-IX, XVII. When independence proofs

are given for Assumptions X-XVI, it is done by giving new interpretations

to the term "congruence," not to "point" or "line."

* It is even possible to give a psychological significance to this geometry. The
normal individual has a certain place, say home, in terms of nearness to which
other places are thought of ; here is the central point of home. In astronomy

stars are regarded as near or the contrary, according to their distance from the

Bun ; here is the center of the sun.
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The point of view of the writer is that if X-XVI or XVIII-iV are to be

regarded as independent assumptions, their independence is of a lower grade

than that of I-IX, XVII. They constitute a definition by postulates of a

relation (congruence or nearness) among objects (points, lines, etc.) already

fully determined. Their significance is that they characterize that subset of

the theorems deducible from I-IX, XVII which corresponds to any Euclidean

group and which therefore is the Euclidean geometry.

EXERCISES

* 1. Develop the geometry corresponding to some non-self-conjugate sub-

group of the Euclidean group. Determine a set of mutually independent

assumptions characterizing this geometry.

2. The identity is the only transformation of the Euclidean group which

leaves fixed two points A and B and two rays (cf . definition in § 16) AC and

AD orthogonal to each other and to the line AB.

3. If a and b are any two rays having a common origin, 0, and on different

lines, there is a unique orthogonal line reflection and a unique orthogonal

plane reflection transforming a into b.

4. It A, B, C, D are any four points no three of which are collinear, there

exists a unique rotation leaving the line AB invariant and transforming C
into a point of the plane ABD on the same side of ^B with D.

5. Any transformation of the Euclidean group which leaves a line point-

wise invariant and preserves sense is a rotation.

6. Any transformation of the Euclidean group which leaves a line point-

wise invariant and alters sense is an orthogonal reflection in a plane

containing this line.

7. There is one and only one displacement which transforms three mutually

orthogonal rays OA, OB, OC into three mutually orthogonal rays C/A', (XB',

O'C, provided that S (OABC) = S{0'A'B'C).

*117. Generalization to n dimensions. The discussion of the Euclid-

ean and afi&ne geometries in §§ 111-116 is so arranged that it will

generalize at once to any number of dimensions. It is recommended

to the reader to carry out this generalization in detail, at least in the

four-dimensional case.

The elementary theorems of alignment for four dimensions are

given in § 12, Vol. I. The definition of a Euclidean four-space is

given in § 28, VoL IL The generalization of § 111 is obvious on

comparing these two sections. A four-dimensional translation may

be defined as a projective collineation leaving invariant all points of

the three-space at infinity and also aU lines through one of these

points. The generalization of § 112 then follows at once.
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A three-dimensional polal* system may be defined as the polar

system of a proper or improper regulus (Chap. XI, Vol. I ; cf. also

§§ 100-108, Vol. II), or it may be studied ah initio by generalizing

Chap. X, Vol. I. The notion of perpendicular lines, planes, and three-

spaces then follows at once and also the theorems generalizing those

of § 113. An orthogonal reflection in an Sj is next defined as a projec-

tive coUineation of period two, leaving invariant a point P at infinity

and each point of a three-space whose plane at infinity is polar to P
in the absolute polar system. All the theorems of §§ 114, 115 up to

Theorem 13 then generalize at once. Theorems 13-15 must be modi-

fied, in view of the fact that there are more than one type of four-

dimensional displacements leaving a point invariant. Theorem 16

holds unchanged.

Finally, it can be proved as in § 116 that in case of a real space

and an elliptic polar system the parabolic metric geometry satisfies

a set of axioms for Euclidean geometry of four dimensions. This

set differs from the one used above, in that VIII is replaced by

VIII'. If A, B, C, D are four noncoplanar points, there exists a

point E not in the same Sj with A, B, C, D, and such that every point

is in the same S^ with A, B, C, D, E.

The introduction of uouhoraogeneous coordinates in a space of

n dimensions may be made by direct generalizations of § 69, Vol. I.

The formulas for the affine group, the group of translations, the

Euclidean group, and the group of displacements are then easily seen

to be identical with those given in the sections below, except that the

summations from or 1 to 3 must in each case be replaced by

summations from or 1 to n.

118. Equations of the affine and Euclidean groups. With respect

to a nonhomogeneous coordinate system in which 7r„ is the singular

plane, the affine group is evidently the set of all projectivities of

the form
x'=a^^x + a^^y + a^^z + a^^,

(6) y=«2i'» + «22y + a2s» + %'

«ll «12 «18

where A = a
,
a^ a^ ^ 0,A =
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and the variables and coefficients are elements of the geometric

number system.

In the system of homogeneous plane coordinates in which the plane

at infinity is represented by [1, 0, 0, 0], this group takes the form

K = &00«0
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In the three-dimensional Jiomogeneous plane coordinates, 7r„ and

the planes tangent to the circle at infinity (10) satisfy the equation

(11) < +< +< = 0.

Any plane

(12) w„ + u^x' + m/ + m/ =

is the transform mider a coUiaeation of the form (6) of the plane

(13) (w„ + a^^u^ + a^u^ + a^u^ + (a^^u^+ a^^u^+ a^u^ x

Hence (11) is the transform of

(14) (fflfi + afa + a's)< + «i + «'2+OK + («8i+ flsj+O <
+ 2 («„«21+ «12«2. + «18«=8) ''A + 2 («n«81+ «12«82+ «18«88) '^l^

+ 2 (a21«81+ «22«82+ «28«83) Va = 0-

In order that (11) and (14) shall represent the same locus, we must have

(15) afi + al^+ al^ = <i + a^a+ «2s = <+ «82+ «88.

«n«21 + «12«22+ «18«28= «11«81 + «12«32+ «18«S3

= «2Ai+«2A2+«23«83=0-

These conditions are equivalent to the equation (cf. § 95, Chap. X,

Vol. I)

(16)

where p = al^ + afa + al^.

If the matrix
(«ii«22«33)

=^ be interpreted as the matrix of a planar

collineation, as in § 95, Vol. I, this states that the product of the

coUiueation by the collineation represented by the transposed matrix

is the identity. Hence the product of the two matrices in the reverse

order is a matrix representing the identity. This means that

«n + «ll + «81 = «12+ "ll + "s'a = «13+ «28 + «88.

and a^^a^^+ a^^a^+ a^^a^^ = a^^a^^ + a^^a^^ + a^^a^^

= a a + a a + a a =0.
12 18 '^ 22 23

'^
32 33

Since the determinants of a matrix and of its transposed matrix are

equrl, we have

A= = />»= (afi + a^, + a^,Y= («A+<+ a^,)'.

'«11
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Definition. A matrix such that its product by a given matrix A
is the identical matrix (§ 95, Vol. I) is called the inverse of A and is

denoted by A~\ A square matrix whose transposed matrix is equal

to its inverse is called orthogonal. A linear transformation,

x' = a^^x + a^^y + a^^,

(17) y' = \x^ + \^y-^%z^>.

whose matrix (o-y^^^ is orthogonal, is said to be orthogonal.

The results at which we have arrived may now be expressed in

part as follows

:

Theorem 17. The transformations of the pai'abolic metric group

can he written in the form

x' = p {a^^x + a^^y + aj. + h^,

(18) y' = p K^^ + \^y + a,s» + ^2).

^ = p(a^^x^-a^^y^-a^^+-k^,

where the matrix {o-y-fl^o^s^ is orthogonal.

From the form of these equations we obtain the following

corollaries

:

Corollary 1. Any transformation (18) of the Euclidean group is

the product of an orthogonal transformation, a translation, and a

homology of the form
x' = px,

(19) y' = py.

z' = pz.

Corollary 2. A homology (19) is commutative with any collinea-

tion leaving the origin invariant.

Since an orthogonal matrix is any matrix satisfying (16) with

/3 = 1, we have

Corollary 3. The product of two orthogonal transformations is

orthogonal. The determinant of an orthogonal transformation is

+ 1 or -I,
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In view of the formula fo^^the inverse of a matrix (§ 95, Vol. I),

we have

CoROLLAEY 4. A matrix {ci'^.^%^ci'^^ w orthogonal if and only if

(20) A,j = A«„, {i = 1, 2, 3 ; / = 1, 2, 3)

where A is the determinant of the matrix and A^j the cofactor of a^.

The matrix of an orthogonal transformation of period two is its

own inverse and hence its own transposed. Hence

CoEOLLAEY 5. A71 orthogonal transformation is of period two if

and only if a^ = o^,.

The double points of any orthogonal transformation (17) must

satisfy the equations

(*u-l)« + «i2y + «i3« = 0,

(21) a^^x + {a^^-l)y + a^^z=0,

The determinant of the' coefficients of these equations is

D, = A- {A^^+ A^^ +AJ + (a^^+ a^^+ aJ - 1.

But since the transformation is orthogonal, ^.i = Aa,.j. Hence the

determinant of (21) reduces to

Another determinant which is of importance in the theory of

orthogonal transformations is that of the equations

{a^^+l)x + a^^y + a^^z=0,

(22) a^^x + {a^+ l)y + a^^z=0,

«3i«' + «32y + («33+l)«^=0-

Any point satisfying these equations is transformed into its symmet-

ric point with respect to the origin. The orthogonal transformation

therefore transforms the line joining these points into itself and

effects an involution with the origin as center on this line. The

determinant of the equations (22) is

^.= ^+ (^11+ A.+ ^33) + («U+ «22+ «8.) + 1.

which reduces to

^,= (l+A)(a„+«^+a,3+l).
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Let us now consider an orthogonal transformation (17) which we
shall denote by 2. If A = — 1 for 2, D^ = 0, and hence there is at

least one point which is carried by 2 into its symmetric point with

respect to the origin. The plane through the origin perpendicular to

the line joining these points is left invariant by 2. On the other

hand, Z>j =#= unless

(23) «U+«..+ «33=l.

and hence 2 leaves no other point than the origin invariant unless

(23) is satisfied. Suppose now that (23) is satisfied. A cofactor of an

element «„ of the main diagonal of D^ is

where i :^j =f= k =^ i. By (20) this reduces to

which vanishes. The cofactor of an element a^ {i ^ j) of D^ is

^i; +«>.-.

and by (20) this vanishes when A = — 1. Thus we have that if

A= — 1 and (23) is satisfied, 2 has a plane of fixed points. Since it

transforms one point into its symmetric point with respect to the ori-

gin, it must be an orthogonal plane reflection. Thus we have proved

Theorem 18. An orthogonal transformation for which A = — 1

always has an invariant plane. It either leaves no point except the

origin invariant or it is an orthogonal plane reflection. The latter

case occurs if and only if a^^+ a^^+ a^^ = 1.

By comparison with Corollary 5 above we have

CoBOLLAEY. An orthogonal transformation for which A= — 1 is an

orthogonal plane reflection if and only if a^^= a , a^= a^, and a^^— a^^.

Let us now consider an orthogonal transformation 2 for which

A= 1. In this case D^= 0, and hence there is always a line of fixed

points passing through the origin. Let A^ be an orthogonal plane

reflection containing a line of fixed points of 2. Then 2Aj is an

orthogonal transformation for which A = — 1 and for which there are

other fixed points than the origin. By the last theorem, therefore,

it is an orthogonal plane reflection A^. From 2Aj = A^ follows

2 = AjAj. We therefore have

Theorem 19. An orthogonal transformation for which A= l is a

rotation.
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CoROLLABY 1. An orthogoiMl transformation for which A = — lis

a symmetry.

Any transformation (18) for which /a = 1 is a product of an orthog-

onal transformation and a translation. It is therefore either a dis-

placement or a symmetry. By Theorem 16, Cor. 1, a homology (19)

for which jO°=jt 1 is not a displacement or a symmetry. Hence we have

CoEOLLAEY 2. The subgroup of (18) for which p = l and A=l
is the group of displacements.

Corollary 3. The subgroup of (18) for which p = l and A^= 1 is

the group of displacements and symmetries.

The cobrdiriate system which has heen employed ahove is such

that the planes x=0,y=0,z = are mutually orthogonal. Moreover,

the displacement ^i^^^ y^^^ ^,^^^

leaves (0, 0, 0) invariant and transforms (1, 0, 0) to (0, 1, 0) and

(0, 1, 0) to (0, 0, 1). Hence the pairs (0, 0, 0) (1, 0, 0), (0, 0, 0)

(0, 1, 0), and (0, 0, 0) (0, 0, 1) are congruent. Coordinates satisfying

these conditions are said to be rectangular.

EXERCISES

1. The group of displacements and symmetries leaves the quadratic form

"i + «2 + "I
ab^lutely invariant.

2. Two point pairs (a,b,c)(a',b',c') and (x,y,z)(y,if,^) are congruent

if and only if (a - a'Y + (6 - h'f + (c - cTf = (x - afy + (y - Z)^ + (« - z')".

3. Two planes
u,x + u,y + u,^ + u, = 0,

v-^x + v^y + WjZ + Ug =

are orthogonal if and only if u^v^ + UjWj + WgUj = 0.

4. Three planes
„.^^ ^ ^_^ ^ „^^^ + „.^ ^0^ ^ . ^ 1^ 2, 3)

the coefficients being such that u^ + «J + uj = 1, (i = 1, 2, 3)

are mutually perpendicular if and only if the matrix (''iiWs2''38) i^ orthogonal.

5. The three ordered triads of numbers (a,i, a,-2, a^), i = 1, 2, 3, are direction

cosines of mutually perpendicular vectors if and only if the matrix (a^j^a^^a^^)

is orthogonal.

119. Distance, area, volume, angular measure. The definition

(§ 67) of distance between two points eztends without modification

to the three-dimensional case. The distance between a point

and a plane w is the distance between and the point P in which
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TT is met by the line through perpendicular to tt. The distance

between two lines l^l^ is Dist (ij-^), where ij and I^ are the points

in which the common intersecting perpendicular line meets l^ and

l^ respectively.

If the notion of equivalence of ordered point triads (§ 112) be

extended by regarding two ordered triads as equivalent whenever

they are congruent, it is obvious that any triad is equivalent to triads

in any plane whatever and not merely, as in § 112, to triads in a

system of parallel planes. Moreover, if ABC are noncollinear points

such that AB is congruent to AC, the ordered triad ABC is congruent

and therefore equivalent to the ordered triad ACB. Hence

ABC^ BCA ^ CAB ^ACB ^ CBA^BAC,

i.e. according to the extended definition, any ordered triad is equivalent

to any permutation of itself.

Since m(ABC) = — m(ACB), the definition of measure (§49) can-

not be extended to correspond to the new conception of equivalence.

On the other hand, the notion of area (§ 68) of a triangle is directly

applicable. The situation here is entirely analogous to that described

in § 67 with regard to the measure of a vector and the distance

between two points. The formal definition may be made as foUows

:

Definition. Let OPQ be a triangle (called the unit triangle) which

is such that the lines OP and OQ are orthogonal and the point pairs

OP and OQ are congruent to the unit of distance. Then if A'B'C' is

a triangle coplanar with OPQ and congruent to ABC, the positive

number 1 1 ^ (^/^/ c")| = « (ABC),

where m {A'B'C) is the measure (§ 49) of the ordered triad A'B'C rela-

tive to the ordered triad OPQ, is called the area of the triangle ABC.

The definition of the measure of an ordered tetrad and of the vol-

ume of a tetrahedron may be taken from § 112, with the proviso that

the unit tetrad OPQR is such that the lines OP, OQ, OB are mutually

orthogonal and the point pairs OP, OQ, OB congruent to the unit of

distance.

The definition of the measure of angle may be taken over literally

from § 69. Since, however, any symmetry in a plane can be effected

by a three-dimensional displacement, the indetermination in the meas-

ure of an angle is such that any angle whose measure is /3 also has

the measure Tctt + fi, where ^ is a positive or negative integer. The
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measure of an angle may tijgrefore be subjected to the condition

=s /3< TT or - 7r/2 </3s 7r/2.

Definition. The angular measure of a pair of intersecting lines ah

is the smallest value between and 2 tt, inclusive, of the measures

of the four angles 4-O'fii formed by a ray a^ of a and a ray l^ of I.

It is denoted by m{ab). If a and 6 do not intersect, m{ab) denotes

m (a'h), where a' is a line having a point in common with b and parallel

to a. The angular measure of two planes tt, tt' is the angular measure

of two lines I, I' perpendicular to tt and tt' respectively.

The following statements are easily proved and wiU be left to the

reader as exercises (cf. § 72) : In the case where a and 6 do not inter-

sect, the value of m (ab) is independent of the choice of a'. Although in

Euclidean plane geometry =m (ab)< tt, in the three-dimensional case

Q-Sm(ab)<'^-

If l^ and l^ are any two lines parallel to a and 6 respectively, and

ij and i^ are the minimal lines through the intersection of l^ and l^,

m(ab) is the smaller of the two numbers

^1= - 1 log Rx (^A' \S) and 0,=-^ log R, (1,1,, \\),

that determination of the logarithm in each case being chosen for

which S ^j < TT and = ^j,< TT.

The numbers which we have been defining in this section are tome

of the simplest absolute invariants of the group of displacements. The

algebraic formulas for these invariants and some others are stated in

the exercises below. In every case the radical sign indicates a, positive

root. By the angle between two vectors OA and OB is meant the

measure of 4 AOB.

The orthogonal projection of a set of points [P] on a plane ir is the

set of points in which the lines perpendicular to tt through the points P
meet tt. The orthogonal projection of a set of points [P] on a line I is

the set of points in which the planes perpendicular to I through the

points P meet I.

The exercises refer to four distinct noncoplanar points i^= (a;,, y^.z,),

?=(a'2. y-2> 22). ^=(<^s, ys. «s). -^=(«4. Vi' «<). no two of which are

coUinear with the origin. The coordinate system is rectangular, and

0, P, Q, B denote the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

respectively, as in § 112.
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EXERCISES

1. Dist iP,P,) = ^(^^^-x,y + iy,-y,y + iz,-z,)^.

2. The cosines of the angles betwepn a vector OP-^ and the x-, y-, and z-axes

respectively are
Xl Vi

Vxi^ + ^1* + Zi^ V a; 2 + J,
2 + 22 Va; 2 + y^ + z ^

These are referred to as the direction cosines of the vector OPj. If r =
Dist (P^P^), the direction cosines of the vector P^P^ are

3^2 — ^1 1/2 — yi gg — ^1

r r r

3. The equation of a plane perpendicular to the line OP^ is

x^x + y^y A- ZjZ — k.

4. The distance from the point Pj to the plane or + jSj + yz = 8 is

<"! + ^yj + 7^1-8
.

Va2 + /^ + -f

5. If Qj is the orthogonal projection of P^ on the line OP-^, then

x-jX^ + y-iUi + Zi^a

Va;f + y^ + 2=

is Dist(OQi) in case Qj and Pj are on the same side of 0, and — Dist(OQj)

in case Q^ and Pj are not on the same side of 0.

6. m{P.^PJ'J'^ = Dist (PjPj) Dist (PjP^) r • sin ^, where r is the dis-

tance between the lines P1P2 and P3P4, and B the angle between the vectors

PiPj and PJP^.

1. If B denotes the measure of ^P^OP^, and I, m, n the direction cosines of

a vector OK perpendicular to the plane OP^P^ and such that S(OPyP^K)

= S(OPQR), " " = Dist (OPj). Dist (OPa). sin ^-Z,

= Dist (OPi) • Dist (OPj) • sin ^ • m,

= Dist (OPi) • Dist (OP2) • sin e
• n*

8. With respect to the codrdinate system employed in § 118, the angle

between two lines which meet to in (0, a^, a^, 03) and (0, P^, P^, /Sj) is

2°^<4^j+a^,+a3^,-V(aA+ a,/3, + a3;83/-(a2+a|+ a|)(^2+ ^|+^|)

9. If four planes a, P,y, 8 meet on a line,

wi."P>7°;
Bin(a8) 8in(;38)

where (ay) denotes the angular measure of the ordered pair of planes ay.

•Cf. Ex.6, §112.

yi
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120. The sphere and other fuadrics. Definition. A sphere is the

set of all points [P] such that the point pairs OP, where is a fixed

point, are all congruent to a fixed point pair OiJ. In case the line 01]

is minimal, the sphere is said to be degenerate ; otherwise it is nonde-

generate. The point is called the cen,ter of the sphere.

By comparison with the definition in § 60 it is clear that any sec-

tion of a nondegenerate sphere by a nonminimal plane is a circle. In

case the circle at infinity exists, two perpendicular sections C^ and Cl

of a sphere S by nonmiatmal planes constitute with the circle at

infinity three conic sections intersecting one another in pairs of dis-

tinct points. By § 105, VoL I, there is one and but one quadric surface

containing them. A nonminimal plane ir through the center of the

sphere meets this quadric in a conic section which contains at least

two points of the circles Cl and C^ and two points of the circle at

infinity. Tliis conic is therefore a circle containing the points of the

sphere S which are in ir. Hence the sphere S is identical with the

set of all ordinary points of the quadric surface containing C^, C^, and

the circle at infinity. Since is the center of each circle in which S

is met by a nonminimal plane through 0, is the pole of the plane

at infinity with regard to the quadric. Since a circle in a non-

minimal plane contains the ordinary pbints of a nondegenerate conic,

it follows that the quadric surface is nondegenerate, i.e. is a quadric

which contains two proper or improper reguli.

In case the circle at infinity does not exist, improper elements may

be adjoined as explained in § 85, Vol. I, so that the circle at infinity

exists in the resulting improper space. The argument in the para-

graph above thus applies to any space whatever which satisfies

Assumptions A, E, P, H^. Thus we have

Theorem 20. ^ nondegenerate sphere consists of the ordinary points

of a nondegenerate quadric surface S^ such that all pairs of points in

the plane at infinity conjugate with regard to S^ are conjugate with

regard to the absolute polar system. The center of the sphere is the pole

of the plane at infinity relative to this quadric.

Comparing the definition above with Theorem 7, Chap. IV, we have

Corollary. A degenerate sphere with a point as center consists

of all ordinary joints on the cone of minimal lines through 0, except

itself.
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Had a degenerate circle in the plane been defined in the same way that

a degenerate sphere is defined above, it would have been found to consist of

points on only one minimal line through 0, since in the plane the group of

displacements leaves each minimal line invariant.

The Euclidean classification of quadric surfaces may now be made
in a manner entirely analogous to the Euclidean classification of conic

sections in Chap. V. After completing the projective classification

(§ 103) and the affine classification (§ 111, Ex. 2) and obtaining the

properties of diameters and diametral planes, the principal remaining

problem is that of determining the axes, an axis being defined as a

line through the center of the quadric perpendicular to its conjugate

planes.

A line I and a plane tt meet the plane at infinity in a point i„ and a

line p„ respectively. If I and ir are perpendicular, L„ and ^„ are polar

with respect to 2„. If ^ and ir are conjugate with regard to a quadric

Q^, i„ and jj„ are polar with respect to the conic (real, imaginary, or

degenerate) in which Q^ meets ir^.. Hence the problem of finding the

axes is reduced to that of finding the points which have the same

polar lines with respect to two conies. This problem has been treated

in § 101, Vol.1, for the case where both conies are nondegenerate.

In general the two conies have one and but one common self-polar

triangle. Hence, in general, a quadric surface has three axes which are

mutually orthogonal. The determination of the other cases which may

arise is a problem (Ex. 5, below) requiring a comparatively simple

application of methods and theorems which we have already explained.

The classification of point quadrics includes that of cones and

conic sections, the properties of cones and conies in three-dimensional

Euclidean geometry being by no means dual to each other. In con-

nection with this it is of interest to prove the following theorem, which

embodies perhaps the oldest definition of a conic.

Theorem 21. Any nondegenerate real conic is perspective with A

circle.

Proof. Let C be a given conic and K^ a circle in a different plane

having acommon tangent and point of contact with C^. By Theorem 1 1,

Chap. VIII, VoL I, C^ and K^ are sections of the same cone.

CoEOLLAKY. Any cone of lines is a projection of a circle from, a

point.
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BKERCISES

1. The equation of a sphere of center (a, b, c) in rectangular coordinates is

(x - ay + (y - by + (z- cf = k.

2. The set of points on the lines of intersection of homologous planes in

the corresponding pencils,

X^ +V^Xg = X (ij + x^),

is a sphere.

3. A right circular cone is a projection of a circle from a point from which

the extremities of any diameter are projected by a pair of perpendicular lines.

Any conic may be regarded as the plane section of a right circular cone.

*4. Develop the theory of stereographic projection of a sphere on a plane

(cf. § 100).

*5. Classify the quadric surfaces from the point of view of Euclidean

geometry. Having made the classification geometrically, find normal forms

for the equations of the quadrics' of the different classes and the criteria to

determine to which class a given quadric belongs. This is analogous to the

work in Chap. V.

*6. Classify the linear complexes from the point of view of Euclidean

geometry.

*7. Starting with a definition of an inversion with respect to a sphere analo-

gous to that of an inversion with respect to a circle (§ 71), develop the theory

of the inversion group of three-dimensions. This should be done both in the

real and complex cases and the real and complex inversion spaces studied.

121. Resolution of a displacement into orthogonal line reflections.

The properties of the group of displacements are closely boimd up

with the theorem that any displacement is a product of two orthogonal

line reflections. In proving this theorem we shall place no restriction

on the absolute polar system 2„, except that it be nondegenerate, and

shall base our reasoning on Assumptions A, E, H^ only. We are

therefore obliged to consider transformations which do not exist in

the Euclidean geometry, namely those with minimal lines as axes.

Definition. The line at infinity polar in 2„ to the center of a trans-

lation is called the ascis of the translation. If the axis is tangent to

the circle at infinity, the translation is said to be isotropic or minimal.

Theorem 22. A product of two orthogonal line reflections whose

axes I and m are parallel is a translation whose aosis is the liiu at

infinity of any plane perpendicular to the plane of I and m andpar-

allel to I. Conversely, let T be any translation and I any nonminimal

line meeting its axis; then if m is the line containing the mid-points
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of every fair of pomts, L and T (i), for which L is on I, and if I' is

the pole in 2„ of the point at infinity of I,

T: = {ml'}-{U'}.

Proof. If the axes I and m of two orthogonal line reflections {W}

and {mm'} are parallel, they meet tt. in a point H,. Each of the

orthogonal line reflections effects in 7r„ a harmonic homology whose

axis I is the polar of iL in 2„. Hence the product leaves all points

at infinity invariant. In the plane of I and m the product {ml'} {II'}

effects a planar translation parallel to any line perpendicular to I.

Therefore the product {ml'} • {W} is a translation in space parallel

to this Hue. Its axis, therefore, is the line at infinity of any plane

perpendicular to the plane of I and m and parallel to I.

The converse follows directly in the same manner as the analogous

statement in Theorem 4, Chap. IV.

Theorem 23. Any displacement is a product of two orthogonal

line reflections.

Proof. In case the displacement, which we shall denote by A, is a

translation the theorem reduces to Theorem 22. In any other case A
is a product of a rotation and a translation (Theorem 16, Cor. 2), i.e.

A={i2„p}-{^7r}-T,
I

where T is a translation which may be the identity. Thus A effects

in the plane at infinity a product of two harmonic homologies whose

centers and axes are R,p„ and B„, r„ respectively, where p„ is the

line at infinity of tt and r„ that of p.

Let Q be an arbitrary ordinary point and Q'= A (Q). Let I be the

line of intersection of the planes joining Q to p„ and Q' to r„. These

planes cannot be parallel, because p„ and r„ do not coincide ; and I

cannot contain H or B„, because H is not on p„ and R„ is not on r„.

Let be an ordinary point of I such that neither of the lines OQ

and OQ' contains H or B„. (If the lines OQ and OQ' coincide, they

coincide with I.) Let P be the mid-point ot OQ, B the mid-point of

OQ', and let p and r be the lines PH and EB„ respectively. Then

p and r are such that there exist orthogonal line reflections {pp^}

and {rr.} such that
{rr„}{Q') = 0,

{pp.}{0)=Q.

Hence {pp,} {rr„} {Q')= Q.
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Moreover, {pp^} {rr„} effeclS the inverse of the transformation

effected in the plane at infinity by A. Hence {pp^} • {rr„} • A leaves

invariant all points at infinity as well as Q, and hence

{PP"}- {»»«.}• ^=1,

or A= {?'r-„} • {pp.

It is now very easy to enumerate the possible types of displace-

ments. A displacement A being expressed in the form {W} • {mm'},

the following cases can arise :

*

I. The lines I and m intersect in an ordinary point 0. A is a rota-

tion which is the product of the orthogonal reflections in the planes

perpendicular to I and m respectively at 0. Two subcases must be

distinguished

:

(a) The plane containing I and m is not minimal. A is a rotation

about the common intersecting perpendicular of I and m.

(J) The plane containing I and m is minimal. A is an isotropic

rotation about the line joining to the point in which the plane of

* It is to be remembered that neither I nor m can be minimal.
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/ and m touches the circle at infinity. It evidently effects a paraboUc

transformation in the pencil of planes meeting its axis and also effects

an elation in the fixed plane on the axis.

IL The lines I and m are parallel. If we denote their common
point at infinity by ^, and its polar hne with respect to S„ by p„
Theorem 22 states that A is a translation whose axis is the line polar

in S„ to the point in which the plane of I and m meets p^. The latter

point is the center of the translation. Two cases arise

:

(a) The axis of the translation is not tangent to the circle at infinity.

(6) The axis of the translation is tangent to the circle at infinity,

and the translation is isotropic.

IIL The lines I and m do not intersect. Again two cases arise

:

(a) The lines I and m have a common intersecting perpendicular

line a (Theorem 6.) which is not minimal. Let p be the line parallel

to m and passing through the point of intersection of I with a. Then

A= {Zr} {pp'} • {pp'} {mm'}.

Thus A is the product of a rotation {IV} • {pp'} about a by a translation

{pp'} • {mm'} parallel to a.

(b) The lines I and m have no common intersecting perpendicular.

In this case they are (Theorem 6) both parallel to the same minimal

plane a. Let a„ be the line at infinity of a, and A„ its point of con-

tact with the circle at infinity. Then I and m pass through points of a„

distinct from each other and from A„, and V and m' pass through A^.

Therefore A effects a transformation of Type III (§ 40, Vol. I) in the

plane at infinity, with A„ as its fixed point and a„ as its fixed line.

It also effects a parabolic transformation in the pencil of planes with a.

as axris. Thus its only fixed point is A^, its only fixed line a., and its

only fixed plane tt^.

Definition. A displacement of Type Illa, i.e. a product of a non-

isotropic rotation by a translation parallel to its axis, is called a twist or

screw motion. The axis of the rotation is called the axis of the twist.

Theorem 24. A displacement which interchanges two distinct ordi-

nary points is an orthogonal line reflection.

Proof. Denote the given points by A and B. The given displace-

ment A cannot be a translation, because a translation carrying a

point A to a, point B would carry ^ to a point C such that B is the
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mid-point of the pair AC. Noj^can A be a twist or a transformation of

Type Illb, because either of these types effects the same transforma-

tion as a translation on a certain system of parallel planes, and hence

no point can be transformed involutorically. And A cannot be an

isotropic rotation, because in this case it would effect a parabolic trans-

formation in the planes on its axis and an elation iu the one fixed

plane on the axis. Hence A is a nonisotropic rotation. By reference

to § 115 it follows that A must be an orthogonal line reflection.

Theoeem 25. If Aj, Ajj, A^ are three orthogonal line reflections

whose axes are parallel or have a common intersecting perpendicular

I, the product A^A^Aj is an orthogonal line reflection whose axis is

parallel to the other three axes in the first case and is an inter-

secting perpendicular of I in the second case.

Proof In case the three axes are parallel, by Theorem 22, A^A^ is

a translation which is also expressible as the product of A^ by another

orthogonal line reflection A^, so that

and hence A^A^A^= A^.

In case the three axes have a common intersecting perpendicular I,

the orthogonal line reflections effect involutions on I having the point

at infinity of Z as a common double point. Hence (§ 108, Theorem 42)

the product A^A^A^ effects an involution on I whose double points are

the point at infinity and an ordinary point P. Hence, by Theorem 24,

AjAjjAj is an orthogonal line reflection A^. Since P is left invariant

by A^, it is on the axis of A^ ; and this axis is perpendicular to I because

A^ leaves I invariant.

EXERCISE

The product of an isotropic rotation by a translation parallel to its axis is

an isotropic rotation about an axis in the same minimal plane.

122. Rotation, translation, twist. Let us now require the absolute

polar system to be elliptic, as in the real Euclidean geometry. In this

case there are no minimal lines, and hence the possible types of dis-

placement are reduced to la, Ila, Ilia. Thus we have

Theoeem 26. In case the absolute polar system is elliptic any dis-

placement is a rotation or a translation or a tvnst.
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With this assumption about the absolute polar system we have

a particularly simple method for the combiQation of displacements

which depends on Theorem 25. Suppose that we wish to combine

two displacements {IJl^} {V(} and {l^l^} {^^g}. Let a be a common

intersecting perpendicular of l^ and l^, and b of l^ and l^, and let m be

a common intersecting perpendicular of a and b. Then the product A
of the two displacements satisfies the following conditions

:

By the theorem just proved there exist two orthogonal line reflections

{pp'}, {22'} such that

(24) {hl[}-{kQ-{mm'} = {iq'}

and

(25) {m>yn,'}-{kl[}-{lA} = {pp'].

Hence A = {g'g''} • {pp'}.

Another way of phrasing this argument is as follows

:

By (24), {hl[}-M) = {ii'}-{'^rn,'),

and, by (25), {l,V,} {l,l[} = {mm'} {pp'}.

Hence A= {qcf} • {mm'} {mm'} {pp'} = {22'} • {pp'}.

The analogy of this process with that of the composition of vectors is very

striking. A vector is denoted by two points. A displacement is denoted by

A2 . Aj where A2 and Aj are the orthogonal line reflections of which it is the

product. In order to add two vectors AB and CD we choose an arbitrary

point O and determine points P and Q such that

AB = PO and CD = OQ.

Then we have AB + CD = PO+OQ = PQ.

In the case of two displacements A^Aj and A^A, we find an orthogonal line

reflectionA (which is not arbitrary but is determined according to Theorem 25),

for which there are two others, Aj and Aj, such that

AjAj = AAj and A^A, = AjA.

Hence A^AgAjAj = A^AAAj = A^Aj.

Similar remarks can be made with regard to any group of transformations

which are products of pairs of involutoric transformations. See § 108 and,

particularly, the series of articles by H. Wiener which are there referred to,

The resolution of a general displacement into a product of two

rotations of period two is a special solution of the problem to express
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a given displacement A as a pisgduct PA where P and A are rotations,

A being of period two. The general solution of this problem may be

found very simply in terms of the special one as follows

:

Let P be any point of space, and let a, be any line through P
such that A= {66'} •{««'}.

Let 'p be the line through P perpendicular to a and intersecting 6,

and let tt be the plane through P perpendicular to 'p. Then any line I

on P and tt may be taken as the axis of A. This is obvious if / = a.

\il+ a, the product {aa!^ • {W} is a rotation about p, because I and a

are perpendicular to p at P. Hence

A • {W} = {66'} {aa'} {W} = P

is a rotation about an axis through the point of intersection of 6 and p.

Hence

(26) A=PA
where A= {W}.

Moreover, if I be any line through P and not in tt, {aa'} {W} is

a rotation about a line q perpendicular to a and I and hence distinct

from p. Since q is perpendicular to a and not identical with p, it

does not meet 6. Hence the displacement

A • {W} = {66'} • {aa'} {II'}

is not a rotation. Hence the pencil of lines on P and tt is the set of

all lines on P which are axes of the rotations A of period two such

that A = PA where P is a rotation.

This argument applies to any ordinary point P. There is no diffi-

culty in seeing that any point at infinity is also the center of a flat

pencil of lines any one of which may be chosen as the axis' of A in (26).

From this it follows by Theorem 24, Chap. XI, Vol. I, that the set of

all lines which are axes of A's satisfying (26) form a linear complex.

The argimient for the case when P is at infinity is left as an exercise for

the reader (Ex. 7). By another application of Theorem 24, Chap. XI,

Vol. I, it is easy to prove that the axes of the rotations P which

satisfy (26) are the lines of another linear complex. This is also

left as an exercise (Ex. 8). Other instances of the resolution of a

general displacement into displacements of special types are given

in Exs. 9-11. These exercises all connect closely with those given

in the next section.
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Definition. A twist T such that F" is a translation is called a

half twist.

An orthogonal line reflection is a special case of a half twist, and

any half twist is a product of two orthogonal line reflections whose

axes are perpendicular.

EXERCISES

1. If the three common intersecting perpendiculars of the pairs of oppo-

site edges of a simple hexagon are also the lines joining the mid-points

of the pairs of vertices on opposite edges, they have a common intersecting

perpendicular.

2. If the product of three orthogonal line reflections is another line reflec-

tion, the three axes are parallel or are all met by a common perpendicular.

3. For any three congruent figures Fj, F^, F^ there exists a figure F and

three lines l^, l^, Ig such that

F,= {kli}F, F,={lJ',yF, F,= {l^i}F.

(See the note by G. Darboux on p. 351 of Legons de Cin^matique, Paris, 1897,

by G. Koenigs, where the theorem is credited in part to Stephanos.)

4. The axes of two harmonic orthogonal line reflections meet and are

perpendicular.

5. For any pair of orthogonal line reflections there is a third which is

harmonic to both.

6. Under what conditions are two displacements commutative ?

7. For any displacement A there exists a linear complex C of lines such

that every ordinary line of C is an axis of a rotation A of period two such that

A = PA

where P is a rotation. No line not in C is an axis of such a A.

8. If A is a displacement which is not of period two, the axes of the

rotations P determined in Ex. 7 form a linear complex Cj which has in

common with C all the lines perpendicular to the axis of A.

9. Any displacement A can be put in the form

A = AP

where A and P are rotations and A is of period two. The axes of the A's

satisfying this condition constitute the ordinary lines of the complex C(Ex. 7)

and those of the P's the ordinary lines of Cj (Ex. 8).

10. Any displacement A can be put in the form

(27) A = Pa -Pi

where Pj and Pj are rotations or translations. If A is not a rotation or trans-

lation, the axis of Pj or of Pj can be chosen arbitrarily. The axes of the Pj's

which satisfy (27) are carried into the axes of the corresponding Pj's by »

correlation T.
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11. Any displacement A can be put in the form

(28) A = PH

where P is a rotation or translation and H a half twist. The axis either of

P or of H can be chosen arbitrarily. For any P and H satisfying (28) there

exists a rotation or translation P' and a half twist H' such that

A = HP' and A = H'P.

12. Every symmetry is expressible as a product in either order of an

orthogonal reflection in a plane ir and a rotation about a line I perpendicular

to jr.

13. The mid-points of pairs of points which correspond under a symmetry

are the points of the plane ir (Ex. 12) or else coincide with the point lir. The
planes perpendicular to the lines joining these pairs at their mid-points pass

through the point lir.

14. Every symmetry transformation is expressible as a product in either

order of an orthogonal plane reflection and an orthogonal line reflection.

15. Determine the types of symmetry transformations which are distinct

under the Euclidean group.

123. Properties of displacements. The main properties of displace-

ments which we have found may be stated as follows for the real

Euclidean geometry:

Any displacement A has a unique

axis a which is a line at infinity only

in case A is a translation. The displace-

ment is a product of two orthogonal

line reflections, i.e.

A = M}-M}.
The lines Z^ and l^ meet a in two points

A^ and A^ and are perpendicular to it.

Let the measure of the angle between

l^ and Zj be 6 and the distance between

A^ and A^ be d.

A

Fig. 76
Then A is the result-

ant of a translation T parallel to a which carries every point X
to a point X' such that

'D\&t{XX')=2d,

and a rotation P with a as axis which carries each plane tt on d to

a plane ir' such that the angular measure of tt and nr' is 2 6.

Definition. The numbers 2 and 2 d respectively are called the

angle of rotation and distance of translation respectively of A.
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The rotation P such that A= TP= PT is

where l^ is the line through A^ parallel to l^. Let 5^ and B be two

points of l^ and ^^ respectively, so chosen that the measure ot4.B AB
is ^(and not ir — ff).* Let one of the two sense-classes (§ 31) in the

EucHdean space be designated as positive.

If ^ #= •-, there are two points Bg, B'g on a such that

Dist (A^B^) = Dist (A^Bl,) = tan 0.

These points are on opposite sides of the plane A^B^B^ and hence

S{A^B^B^B^ ^ SiA^B^B^B^). Let Bg be that one of these points for

which S{AyB^B^B^) is positive. If ^ = 0, let B^= A^. It is easily seen

that this determination of B^ is the same for any choice of B^ and B^

subject to the conditions imposed above. Hence any displacement A
TT

for which S ^ -^ determines uniquely a line a and two vectors A^A

and AjB^, which are parallel to a if a is ordinary. If a is ideal, A
is a translation and A^B^ zero.

Conversely, an ordinary line a and two vectors parallel to a deter-

mine a Unique displacement A. For let A^ be any point of a, and I

any line through A^^ and perpendicular to a. Then the first vector

determines a unique point A^ and the second a imique point B^.

There are two lines l^, l^ through A^^ perpendicular to a and such that

^ (Va)~ ^ (
W ~ ^ ^liere tan = Dist B^B^. Let -B^ be an arbitrary

point of l^, and B^, B^ points of l^, l^ respectively, such that is the

measure of 4.B^A^B^ and 4.B:^A^B^. Then let B^ be that one of B^

and B^ such that S{A^B^B^B^ is positive, and let l^ be the line through

A^ parallel to A^B^. The displacement determined is

Hence any displacement A which is not a half twist determines and

is determined by a line a and two vectors A^A^ and AJB^. From this

it is plain that if it be desired to specify a displacement by means of

parameters or coordinates, it is necessary to give a set of numbers

which will determine the line a (e.g. the Pliicker coordinates of

* The measure of any pair of lines in three-dimensional Euclidean geometry

satisfies the condition = ^- Cf. § 119.
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the line) and two additional numbers which will specify the vectors

A^A^ and A^B^. This question is considered from various points of

view in the following sections.

For a treatment of the general problem of parameter representations

of displacements and, indeed, of the whole theory of displacements, see

the articles by E. Study, Mathematische Annalen, Vol. XXXIX (1891),

p. 441, and Sitzungsberichte der Berliner Mathematischen Gesellschaft,

Vol. XII (1913), p. 36. The exercises in this section and the last one

are largely drawn from the first of these articles and from the articles

by Wiener, referred to above.

EXERCISES

1. Let I be the axis of a twist, a any ray perpendicular to and intersecting /,

and b the ray into which a is displaced. , Let c be the ray with origin at the

mid-point of the segment joining the origin of a and b and bisecting the angle

between the rays through this point parallel to o and 6 respectively. (Two rays

are parallel if they are on parallel lines and on the same side of the line joining

their origins.) The given twist is the produdt of the line reflection whose axis

contains a by the line reflection whose axis contains c.

2. The product of three rotations whose axes have a point in common and

whose angles of rotation are respectively double the angles between the ordered

pairs of planes determined by the pairs of axes in a definite order, is the identity.

3. The rotations P and P' described in Ex. 11, § 122, have the same angle

ofrotation, and the half twists H and H' described in the same exercise have the

same distance of translation.

4. There exists an orthogonal line reflection interchanging two congruent

ordered pairs of points Aj^B^ and A^B^ if and only if Aj^B^ is congruent to A^By

5. There is a unique orthogonal line reflection carrying a given sense-class

on a line Z to a given sense-class on a line l'. The axes of the two orthogonal

line reflections carrying a line i to a line I' are perpendicular to each other and

to the common intersecting perpendicular of I and l' at the mid-point of the

pair of points in which the latter meets I and V.

6. If an ordered triad of noncollinear points Aj^Bj^C^ is congrueat to

an ordered triad A^B^C^, the axis of the displacement carrying A^, B^, Cj

to ^2, Sj, Cj respectively meets orthogonally the axis of the orthogonal line

reflection which carries A^ and B^ to two points A{ and Bi of the line A^B^

such that S(AiBi) ^ ^(^jSj).

7. If three noncollinear points A-^, A^, A^ are displaced into A^, A^, A^
respectively, the axis of the displacement is the common intersecting per-

pendicular of the line joining A^ to the mid-point of A^A^ and the line

joining A^ to the mid-point of A^A^.

8. Show how to construct the axis of the displacement carrying an ordered

point triad A^B-^C^ to a congruent ordered triad A^B^C^.
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9. If a line I be displaced to a line I', the mid-points of pairs of congruent

points are the points of a line / or are identical ; the planes perpendicular to

the lines joining the pairs of congruent points at their mid-points meet on a

line I or are parallel or coincide. Under what circumstances do the different

cases arise?

10. If a plane a be displaced to a plane a, the mid-points of the pairs of

congruent points are the points of a plane a or the points of a line or coincide

;

the planes perpendicular to the lines joining the pairs of congruent points

at their mid-points pass through a point A or all meet on a line or coincide.

Under what circumstances do the different cases arise ?

1 1 . Let A be a displacement, P a variable point of space, P' = A (P), P the

mid-point of the pair PP', and ir the plane through P perpendicular to the

line PP' if P ^s P'. Then if A is not a half twist, the transformations Tj such

that Ti (P) = P and Tj such that Tj (P) = P' are affine coUineations and

T2T, = A = TiT2.

If A is not a rotation, the transformation T such that V (P) = ir is a projective

correlation such that V (tt) = P' ; i.e. such that

r''=A.

If A is not a rotation or a half twist, the transformation N such thatN (P) = ir

is a projective correlation, and in fact is the null-system of the complex C
referred to in Ex. 7, § 122. These transformations also satisfy the equations

Ti=Nr, T2 = rN, NA = AN.

18. Using the notations of Ex. 11, if o is any plane, A (a) = a, and Tj (a) = o,

then a bisects the pair of planes a and a', and Tj (a) = a.

13. In the correlation N the lines I and I defined by Ex. 9 correspond.

The plane a and the point A defined in Ex. 10 also correspond in N.

.14. The linear complex C(Ex. 7, § 122) contains every line I which coin-

cides with the, line -7 determined by the same line I (Em. 9). Hence it is the

set of those lines /which are perpendicular to the lines joining corresponding

points of / and I', and it is also the set of lines 7 which intersect the lines join-

ing corresponding points of I and I'.

15. The affine coUineation Tj (Ex. 11) carries the axis of P (Ex. 11, § 122)

tp that of H'.

16. The correlation V (Ex. 11) carries the axis of P^ (Ex. 10, § 122) to that

of Pj.

17. The transformations T-^, T^, V, P-^ all carry C (Ex. 7, § 122) into C^^

(Ex. 8, §122).

124. Correspondence between the rotations and the points of space.

If we confine attention to the rotations leaving a point invariant,*

• By the reasonirig in § 90 it is clear that this amounts to considering the effect

of all displacements on the field of vectors,
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the considerations of the lastf section siinplify_ (jopsiderably. The

points A^ and A^ may be taken as coincident with.O, and the point

B^ shall be denoted by E. Then every noninyolutoric rotation P
corresponds to a definite point E on its axis. An involutoric rotation

(orthogonal line reflection) may be taken to correspond to the point

at infinity of its axis. Hence the rotations leaving invariant cor-

respond in a one-to-one and reciprocal way to the points of the real

projective space consisting of the given Euclidean space and its

points at infinity.

Let OX, Y, OZ be axes of a rectangular cobrdinate system with

as center such that S{OXYZ) is the positive sense-class. Whenever

R is distinct from the origin, denote the measures of 4- BOX, 4- ROY,
AROZ by a, /3, 7 respectively. Then the coordinates of R are

X = tan 6 cos a,

y = tan 6 cos y8,

s = tan 6 cos 7.

Let {a^, a^, a^, a^) be the homogeneous coordinates of B, so chosen

that if B is ordinary, ,r ^ rr

^x=^, r=^. z=%
^o «0 «0

and if B is at infinity, a^= 0. In either case we may take

a^=cos^, aj=sin^cosa, 0;^= sin^ cos/3, ag=sin^cos7.

According to Theorem 23 any rotation (a^, a^, a^, arj is expressible

as a product of two involutoric rotations (0, X^, X^, \) and (0, m^, fi^, /x^).

According to the convention just introduced, the X's and fi's may

be regarded as direction cosines. Hence, by Exs. 5 and 7, § 119,

(29) «o=Vi+V2+V3' «^i=
'^" ^'

M, /^,

\

Two fundamental problems now arise: (1) to express the coordi-

nates of the point representing the resultant of two rotations in

terms of the coordinates of the points representing the rotations, and

(2) to write the equations of a rotation in terms of the parameters

The formulas (29) are a special case of the formulas which furnish

the solution of the first of these problems. The formulas for the

general case may be found by an application of the method for
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compounding rotations described in § 122. Let the two rotations

correspond to A= (a^, a^, a^, a,) and S= {^„, 0^, ^^, /3,) respectively.

Let IXJ, ^j, /*j be direction cosines of a line perpendicular to OA and

OB. Then the rotation (a^, a^, a^, a^) is expressible by means of

the formulas (29) and (y9„, 0, 0^, /8,) by the following:

(30) ^0=^1", +/*,", +/*,"., ^x=
t^2 /^8 ^ /*i ^»= M, /*s

"2 "8



§124] ROTATIONS 331

invariant, (3) tha matrix is symmetric and hence corresponds to a

transformation of period two.

To obtain the equations of the transformation corresponding to

(ojj, ctj, tt^, a^ it would be sufficient to take the product of (33) and

the corresponding transformation in terms of /i^, /i^, /i^ and compare

with equations (29). The algebraic computations involved would,

however, be more complicated than in the following method, which

is based on a simple observation with regard to coUineations whose

equations are of the form

(34) a^y = -a^^-a^^-a-z,

If P= (i, y, z) and P= (x, y, z), then the vector OP is perpendicular

to the vector PP, because

(35) x{x—x) + y{y — y) + z{z — z)=Q.

The transformation (34) also has the obvious property of leaving

invariant all points on the line joining the origin to (a^, a^, a,).

Conversely, if a collineation

px = a^^x + aj+aj,

(36) py =V + aJ + aJ,

has the property that whenever P= (x, y, z) is distinct from P= (x, y, z),

OP is perpendicular to PP, the relation (35) requires that »(,- =— a,.j

whenever i^j and that p= a^^= a^= a^^. If, moreover, (36) leaves

all points of the line joining the origin to (a^, a^, a^ invariant, it must

be either of the form (34) or of the form

(34') a^ = a^x + a^-a^z,

It is also to be observed that the determinant of Transformations

(34) and (34') is a^A, where

(37) ^= < +< + «» + «».

This determinant can vanish for real a's only if a^= 0.
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Now consider an - orthogonal transformation (17) representing a

rotation P which is not of period two. Let P be an arbitrary point,

P' = P (P), and P the mid-point of P and P'. The relation between P
and P is.given by the equations*

2x = (a^^+l)x+ a^^y + a^^,

(38) 1y = a^^x + (a^+V)y + a^,

The line PP is perpendicular to OP and (38) must have the same

invariant points as P. Hence if P is the rotation corresponding to

(a^,oc^, a^, a^), the equations of the transformation from P to P must

be of the form (34) or (34').

Forming the determinants analogous to (19) in § 31, we see that

S{OPPR), where B = {a^, a^, a^, a^, is positive if P is given by (34)

and negative if P is given.by (34'). Hence (38) must be the inverse

of (34). Solving the equations (34) we have

< +< a,a^-a„a a,a, + a^a^ ^x--^—x+ - y+
J

z,

(39)
-^«.«. + «o«a^ + < + <y^«A-«'.«x,^

j^ .A. .A.

A A " A '

Since (38) and (39) must be the same transformation, we have

*n-^ '2 ' '^is"^ '2 ' "'w-'^ 2

(40) a^=2^l^±^^, a^=2<±^-l, a^=2'^&^^^,

31 ^ 32 ^ 33 ^

These are the formulas, due to Euler, for expressing the coefficients of

an orthogonal transformation in terms of the homogeneous parameters

%' '^1' %' «8-

* The transformation from P to P is tiiat denoted by Tj in Ex. 11, § 123.
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form by themselves a number system which is isomorphic with the

number system of the geometry. Such a matrix may be called a

scalar and be denoted by x.

Now let us denote the orthogonal matrix of the equations of a

rotation (17) by B, and let the skew symmetric matrix

(XA

\ «0

^

/

be denoted by S. Then the matrix of the transformation (34) is 1 + iS

and the matrix of the transformation (38) is J (1 + R). The comparing

of coefficients of (38) and of (39) amounts to writing

l + i? = 2(l+;S')-^

This equation may be transformed as follows

:

B:=2(l + S)-^-{l + S){l+ 8)-\
,

^ = (1-;S')(1+-;S')-'. '

The last equation, however, states a relation which is obvious

r'rom the point of view of matrices. For if S be any skew symmetric

matrix, the transposed ot S is — S. Since the product of the trans-

posed matrices of the two given matrices is the transposed of the

product, the transposed of

(l_^f)(l+ ^)-i

is {\+ S){l-S)-\

which is also its inverse. Hence, whenever

B = {l-S){l+ 8)-\
B is orthogonal.

This equation may be solved as follows

:

1+B={1+ S){1 + 8)-'+ {l- 8){l+ S)-"-

= 2{\+ 8)-\

{l+ B)-' = l{l+ 8),

2{l+B)-^-l= 8,

2{l+R)-^-il + B){l+E)-^ = S,

{l-B){l+A)-^ = 8,
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which gives the formula for »skew symmetric matrix in tesrms of

an orthogonal matrix.

The operation of taking the inverse of a matrix is defined (cf. § 95,

Vol. I) in case the determiaant of the matrix is distinct from zero.

In the operations above, this is a restriction on the matrix 1 +B and,

by comparison with Equations (22), is seen to mean that no point

must be transformed by the rotation corresponding to B into its

symmetric point with respect to the origin.

The generalization from three-rowed to w-rowed matrices is obvious,

and we thus have the skew symmetric and orthogonal matrices of

n rows connected by the relations

(44) E = {l-S){l+S)-\

(45) S={l-B){l-^B)-\

The equations between the corresponding elements in the matrices

which enter in the first of these two matrix equations are the formu-

las given by Cayley (Collected Works, Cambridge, 1889, Vol. I, p. 332),

expressing the n^ coefficients of an orthogonal transformation as

rational functions of ^ —- parameters.

126. Rotations of an imaginary sphere. The group of rotations

leaving a point invariant may be regarded as a subgroup of the

collineations of a sphere having this point as center. Let us consider

the imaginary sphere

(46) CO,' + x^ + x^ + x^ =

and apply some of the results obtained in § 102. If a coUineation

aij = C-^qXj, + CiiSJi + Cij^a -f- CijiCg,

X^ = C^qX^ -\- Cgl^'l "T ^2i'^2 "<
'^l.i^it

carries each line of one regulus on the sphere into itself, any point

(xj„ «!, scj, Xg) satisfying the condition (46) must be carried into a

point (x^, x[, xl, xl) satisfying the condition

(48) xl' + x[' + 4' + sif,' = 0,

which states that it is on the sphere, and the condition

(49) x^xli + x^x[ -f- x^x'^ + x^x'^ = 0,
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which states that it is on the plane tangent at (x^, Xj, x^, x^. Substi-

tuting (47) in (48) we have, as in § 118,

3

i=0 i=0 1= 1=0

"oi^o,- + CiiCy + "ajCy + C^iC^j =0 if i 4= j.

Substituting (47) in (49) we have

Coo
=



' 7o
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such matrices. Hence the set of all suclj matrices is carried into

itself by the operations of addition and multiplication of matrices

defined in § 125.

Let us introduce the notation
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From (53) it is clear that tlm operation of subtraction can be per-

formed on any two matrices of this form. From (55) it is clear

that (/8gl -I- 0ji + 0J + iSJcy- exists whenever the determinant

/3„ -/3, -/3, -^
^ ^ /3s -/3a
^-^ /3„ /3,

/3b /3, -^1 /3„

= (;8=+A= + /3| + /3eT

is different from zero. This condition is satisfied whenever 0^, /S^,

/3^, /3j are real.

Hence when a^, a^, a^, a^ are real, the matrices of the form (50)

constitute a noncommutative number system in the sense of Chap. VI,

Vol. I. This number system is, in fact, the Hamiltonian system of

quaternions. Compare the references at the end of the next section,

particularly p. 178 of the article in the Encyclopadie and the article

by Dickson in the Bulletin of the American Mathematical Society.

•

EXERCISE

A system of quaternions may be defined as a set of objects \_q\ such that

(1) for every ordered pair of vectors a, h there is a q, which vre shall denote

by
(
^1 ; (2) for every q there is at least one pair of vectors

; (3) two pairs of

vectors OA, OB and OA', OB' correspond to the same q if and only if the

ordered triads OAB and OA'B' are coplanar and directly similar in their

common plane
; (4) the y's are subject to operations of addition and multi-

plication defined by the equations

(*)-^0=("r)' c*-'")

e)x0=(:). (*^o^.)

Prove that a system of y's satisfies the fundamental theorems of a number

system with the exception of the commutative law of multiplication. See

G. Koenigs, Legons de Cin^matique (Paris, 1897), p. 464.

128. Quaternions and the one-dimensional projective group. On

comparing (32) and (55) it is clear that there is a correspondence

between quaternions, taken homogeneously, and the rotations leaving

a point invariant in which if two quaternions q^, q^ correspond to the

rotations P^, P^ respectively, the product q^q^ corresponds to P^Pi- The

group of rotations is isomorphic with the group of projective trans-

formations of the circle at infinity and hence with the projective group
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of any complex one-dimensional form. There must, therefore, be a

relation between quaternions and the one-dimensional projectivities,

, _ ajc + yS

'YX+ S

The simplest way to obtain a number system corresponding to

these transformations is to apply the operations of addition and

multiplication as defined above to two-rowed matrices, i.e.

K ^x\ .K /3A ^K% + ^% «A + ^rK\
Wt V U sj Wa + 8,7, 7A + VJ'

If we write

^i=(o 0} *^=(o 0} '"^^l 0} ''* = (o 1)'

we have /
*
^ J

= ae^ -f- fie^ + <ye^ + Se^.

The units e^, e^, e^, e^ satisfy the multiplication table
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where 1, i, j,k satisfy the m»ltipUcation table (52) of quaternions.

The elements (56) are quaternions, properly so called, only when

a, b, c, d are real. Wlien a, b, c, d are ordinary complex numbers, the

elements (56) do not form a nuinber system in the sense of Chap. VI,

Vol. I, because there can be elements x, y both different from such

that ajy = 0.

It is interesting to note that 1, i,j, h are the matrices

/I o\ /V3I \ / i\ / VrT\

which represent the identity, and three mutually harmonic involutions

, ; 1 ^ 1/yt' — /yi /y>' —m />>' ^-^
JU — ^^ ut/. tAJ — ^^

J t*/ ^^ •

X X

If the projectivities are represented on a conic, these three involutions

dave the vertices of a self-polar triangle as centers.

The matrix represented by

a^l + a^i + aj+ a^k

a,eA its determinant is

< + < +< + <

.

The geometric significance of this remark is obvious on comparison

with the exercise in § 126.

The relation between quaternions and the one-dimensional projec-

tive group was discovered by B. Peirce (cf. Chap. VI by A. Cayley in

Tait's Quaternions, 3d edition, Cambridge, 1890). It is an instance of a

general relation, noted by H. Poincar^, between any linear associative

algebra and a corresponding linear group. On this subject see E. Study,

Mathematical Papers from the Chicago Congress (New York, 1896),

p. 376, and Encyclopadie der Math. Wiss., IA 4, § 12 ; Lie-Sheffers,

KontinuierKche Gruppen (Leipzig, 1893), Chap. XXI ; and L. E. Dick-

son, Bulletin of the American Mathematical Society, Vol. XXII

(1915), p. 53. On the general subject of linear associative algebra see

L. E. Dickson, Linear Algebras, Cambridge Tracts in Mathematics,

No. 16, 1914; and the article by E. Study and E. Cartan in the

Encyclopedia des Sciences Mathematiques, 1 5.
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* 129. Representation of rotations and one-dimensional projectivities

by points. The parameter representation of the rotations about a

point which we based in § 124 on a Euclidean construction has now

been seen to be connected in the closest way with the theory of the

one-dimensional projective group. It is therefore of interest to set up

the correspondence between the points of space and the rotations

about a point in a form which puts in evidence also the correspond-

ence between the points of space and the one-dimensional projec-

tivities. This has been studied in detail in the memoir by Stephanos

referred to in Ex. 3, §110. It will be merely outlined here, because

the proofs are all simple applications of theorems which should by

this time be familiar to the reader. The construction given below

has the advantage over the one given in § 123 of being valid in a

general projective space.

Let S" be an arbitrary sphere. (In order to connect with our pre-

vious work iS^may be taken as the imaginary sphere x^+y^+z^+l
= 0). Let ^1 and S^ be the two reguli on S^, the center of S^,

and CS the circle at infinity.

An arbitrary rotation P leaving O invariant determines and is fully

determined by a projectivity F of Cl, and hence is fully determined

by its effect on three points ^, I^, ij of CJ. If l^, 'l^, l^ are the lines

of Bl on JJ, P^, -^ respectively, and m^, m^, m^ the lines of Bl on the

points P (ij), P (-^), P (i^) respectively, the planes l^m^, l^m^, l^m^

meet in a point B. Let B correspond to P and to V (cf. Ex. 2, § 110).

The following propositions are now easily established by reference

to theorems on one-dimensional forms

:

The point B is on the axis of P and is independent of the choice

of ij, ^, ^.

If the line OB meets S^ in two points Q^Q^, 'B {QiQ^t OB) is the

cross ratio of T.

The involutions correspond to points of the plane at infinity.

Pairs of inverse projectivities correspond to pairs of points having

as mid-point.

Harmonic projectivities (§ 80, Vol. I) of Ci correspond to points

which are conjugate with respect to S^.

The projectivities of Cl harmonic to a given projectivity corre-

spond to the points of a plane. Such a set of projectivities may be

called a hmdU of projectivities,
'
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The projectivities commoii It) two bundles correspond to the points

of a line and may be called a pencil of projectivities.

A pencil of involutions according to this definition is the same as

a pencil of involutions according to the definition in § 78, Vol. I.

The product of the projectivities corresponding to points R^ and R^,

not coUinear with 0, corresponds to a point R^ obtained by the fol-

lowing construction : Let V, I" be the lines of Rl through the points

in which O-B^ meets (S^ and let m', m" be the Hnes of Rl through

the points in which OR^ meets S^. The line through B^ meeting

m' and m" intersects the line through R^ meeting V and I" in the

point R^. If V and I" coincide, the line meeting them is understood

to be tangent to *S"', and a similar convention is adopted in case m'

and m" coincide.

If R^ be regarded as fixed and R^ as variable, R^ is connected with

jB„ by the relation

where A is a projective collineation leaving the lines V, I" pointwise

invariant. In case V = I", A is a collineation of the type in which all

points and planes on V are invariant and each plane on V is trans-

formed by an elation whose center is the point of contact of this

plane with S^.

If R^ be regarded as fixed and R^ as variable, the transformation

defined by the relation

is a collineation interchanging the reguli Rl and R^, and carrying

each line loi R^ into the line m of Rl in the plane RJ,, and each

line m of Rl into the line I of Rl in the plane Om.

The propositions above are derivable from Assumptions A, E, P.

In a real space we have

The rotations represented by points of a line all carry a certain

ray with as origin to a certain other ray with as origin. Con-

versely, aU rotations carrying a given ray with as origin to a

second ray with as origin are represented by points of a line.

The necessary and sufficient condition that two rotations P^, P^^ be

harmonic is that there exists a ray r such that Pj(?') is opposite to ^Jr).

The representation of rotations by points given in § 124 is identical

with the one given in this section, in case /S" is imaginary. In case

^ is real, the real points of space represent imaginary rotations.
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If S' is a ruled quadric and CI a real conic, the construction above

gives a representation of the real projectivities of a one-dimensional

form by the points of space not on S^. The sets of points [I>] and

[0] representing the direct and opposite projectivities respectively

are such that any two points of the same set can be joined by a

segment consisting of points of this set, whereas any segment joining

a i> to an contains a point of S^. The sets [D] and [0] are called

the two sides of S\

EXERCISES

1. Study the confignration formed by the points representing the rotations

which carry into itself (o) a regular tetrahedron
;

(S) a cube
;

(c) a regular

icosahedron. (Cf. Stephanos, loc. cit., p. 348.)

2. A real quadric (ruled or not) determines two sets of points, its sides,

such that two points of the same side can be joined by a segment consisting

entirely of points of this side and such that any segment joining two points

of different sides contains one point of the quadric. If the quadric is not

ruled, one and only one of its sides contains all points of a plane. This side

is called the outside or exterior, and the other the inside or interior.

130. Parameter representation of displacements. Simple algebraic

considerations will enable us to extend the parameter representation

of rotations considered in the sections above so as to cover the case

of displacements in general. We wiU suppose the general displace-

ment given ia the form

<= «30^0+ «8A+ «82*2+ «8a*8'

where the matrix (O'ljC'^^'^g^ is orthogonal. According to § 126, if

Uj^— a^= a^= 0, the matrix of (57) is expressible in the form AA,

A and A being defined at the bottom of page 336.

Now observe that if

/2)S„ 0\

^58) 5 = P^i ° M
\2yS3 000/

and C is any four-rowed matrix, C • ^ is a matrix in which all

elements except those of the first column are zero. From this it
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follows th&t A (A— JB) will be tf the form (57). In fact, if we require

also that

(59) a^^^+a^^^+a^^^+a^^=0,

we have " *i *o " «3 «= .ri-2A

K+ai=+<+«,=

\2K^„+«A-«A-«„/3s) 2 («,«,- «„«;^)

2 K«, -«„«,) 2(a^<z^+a^a^)

«o + «! - «i - «l 2 {a^a^- a^a^

2(«A+«„«^i) <+<-ai=-<

Hence the coefficients of (57) are given in terms of two sets of homo-

geneous parameters a^, a^, a^, a^
; /3^, /8j, ^^, ^^ by the equations (40),

together with a^=l and

%= 2 K^o- «o^i+ «A- «A)^'
(60) «,„= 2 («,/3„- «,/3^- «„/3^+ «^^3) J,

«30= 2 K^o+ «.^i- «/.- ^o/^a)^.

provided that the a's and yS's are connected by the relation (59).

Conversely, the a's and yS's are determined by the coefficients of (57)

according to the equations (41) and the following

:

(61) ^,:^,:0,: ^,= aja^„- aj+aja^^- aJ + aja^^- aJ:

«loKl- «12)- %(l+«li+«22+«8s)-«So(«a2-«23) =

- «lo(«13- «3l) + «20 («82- «23)" «3o(l + «11+ «22+ «38)-

The last equations are obtained by solving (59) and (60) simultaneously

for the jS's and substituting the values of the a's given by (41).

It remains to find the formulas for the parameters (a'J, a[', a'^, a,';

/3", /S;', /3.^', /3^') of a displacement A" which is such that A"= A' • A,

where A has the parameters (a^, a^, a^, a^; ^^, /8^, yS^, yS^) and A' th^

parameters (a^, a[, a[, a[; /3^, ^[, /S^, /3^).
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We have seen that the matrix of A is of the form A{A — B), where

A and A are of the form given at the bottom of page 336 and B is

given by (58). In like manner A' can be expressed in the analogous

form A'{A'-B') and A" in the form A"(A"-B"). Since the /3's do

not enter into any coefficients of (57) except a^^, a^^, a^, it is clear

that a", a", a'J, a'^ are given by the formulas (32), or, in other words,

that A"= A'A. By definition,

A"(A"- B") = A'(A'- B')A{A- B)

= A'A'AA-A'A'AB - A'B'AA+ A'B'AB.

In view of (59), the elements of the first row of AB are all zero.

Hence all the ele^ments of B'AB are zeros. Hence

A'B'AB= 0.

Since A and A' are the matrices of transformations of two conjugate

reguli, each transformation leaving all the lines of the other regulus

invariant, they are commutative. Hence

A!'(A!'- B")= A'AA'A- A'AA'B - A'AA-^B'AA.

But A-^= A'^
^

where A* = I

and B'AA= B' « + a^ + a^ + a^).

Hence

(62) A"(A" + B") =A'A {All- A'B- A*B').

Since A" = A'A and A"=A'A, it follows that

(63) B" = A'B+ A*B'.

Hence

^o=«'A- <^i- «'A- oi',0,+ a,0i- a,^[-a,^'^-a,P[,

t
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Rewriting (32) in our present notation, we also have

«d'= «>o- "''tP^^- "''^"i~ '^s'^s.

,gg> < = oc[a^-\- "[%-\- "'^«'i- «a«2>

al = aX- «[as+ K<Xo-\- aX.

«8 = «o«s+ «i«2- a2«i+ «X-

The formulas (64) and (65) can be put into a very convenient form

by means of the notation of biquaternions.* Let us define a bi-

quatemion as any element of a number system whose elements are

expressions of the form

(66) s = («„+ a^i + aJ + a^h) + e (^„+ /3^i +^J+ /3,A),

where the a's and /S's are numbers of the geometric number system,

i,j, h are subject to the multiplication table (52), and e is subject to

where x is any other element, and where the elements (66) are added

and multiplied according to the usual rules for addition and multipli-

cation of polynomials.

If the product of s and s', where

s'= {a[+ a[i + a'J + a'Jc)+ e (/3^+ ^[i +P'J+ P[h),

be denoted by

s" = s'.s =«+ a'li + a<>j+ a'ik) + e {^'^+ 0['i + /3','j+ /SJ'A),

the «„', • • •, ySj' are given by the formulas (64) and (65).

Tor a more complete study of the parameter representation of dis-

placements, see E. Study, Geometrie der Dynamen (particularly II,

§ 21), Leipzig, 1903. .

EXERCISES

1. The parameters of a twist may be taken so that aj, a^, a^ are the

direction cosines of the axis of the twist ; a^ — cot 6, where 2 is the aingle

of rotation ; and jig = d, where 2dia the distance of translation.

2. Find the equations of Tj, T^, T, N, etc. as defined in the exercises

of § 123.

* 3. Find a parameter representation for the displacements in a plane which

is analogous to the one studied above (cf. Study, Leipziger Berichte, Vol. XLI
(1889), p. 222).

* W. K. Clifford, Preliminary Sketch of Biquaternions, Mathematical Papers

(London, 1882), p. 181. The system of biquaternions here used is one of the three

systems of hypercomplex numbers known by this name. See § 146, below.
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GEITERAL EXERCISES

Classify each theorem in this list of exercises according to the type ofprojective

space in which it may be valid and according to the geometry to which it belongs.

1. A homology whose plane of fixed points is ideal is called a dilation or

expansion. Any transformation of the Euclidean group is either a displace-

ment or a dilation or the product of a rotation by a dilation.

2. Any transformation of the Euclidean group leaves at least one line

invariant.

3. Any transformation of the Euclidean group is either a displacement or

a dilation or the product of a displacement by a dilation whose center is on a

fixed line of the displacement.

4. Let Z be a line which is invariant under a transformation T of the

Euclidean group, and let k be the characteristic cross ratio (§ 73, Vol. I) of

the projectivity effected by T on I. F is a displacement or symmetry if and

only a k = ±1.

5. Any transformation of the Euclidean group which alters sense can

be expressed as a product APA, where A is a dilation or the identity,

P an orthogonal plane reflection, A an orthogonal line reflection or the

identity.

6. If two triangles in different planes are perspective, and the plane of one

be rotated about the axis of perspectivity, the center of perspectivity will de-

scribe a circle in a plane perpendicular to the axis of perspectivity (Cremona,

Projective Geometry, Chap. XI).

7. The planes tangent to the circle at infinity constitute a degenerate plane

quadric. With any real nondegenerate quadric this determines a range of

quadrics, i.e. a family of qnadrics of the form

/(Ml, «2, Mg) -f k(ul+ m| + «|) = 0,

where /(«i, u^, Ug) is the equation in plane coordinates of the given quadric.

This is Called a confocal system of quadrics. Besides the circle at infinity this

range contains three other degenerate quadrics, an imaginary ellipse, a real

ellipse, and a hyperbola. There is one quadric of the range tangent to any

plane of space. There are three quadrics of the range through any point of

space, and their tangent planes at this point are mutually orthogonal.

8. Let [/] and [m] be two bundles of lines related by a projective trans-

formation r. There is one and, in general, only one set of three mutually

perpendicular lines Zj, l^, Ig transformed by P. to three mutually perpendicular

lines TOj, TOj, mg. There are two real pencils of lines in [Z] which are transformed

by r into congruent pencils of [jn]. What special cases arise ? Cf. EnCyclop6die

des Sc. Math., Ill, 8, § 9. •

•

9. Let P be a coUineation of space. The planes r(5r„) arid r-i(ir„) are

called the vanishing planes of P. Through each point of space there is a pair

pf lines each of which is transformed by P into a congruent line (i. e. pairs of

points go into congruent pairs). These lines are all parallel to P~i(*;„).
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10. A collineatiou T which doge not leave the plane at infinity invariant

determines two systems of confocal quadrics such that the one system is

carried by T into the other. Cf. § 84 and the references given there.

11. Let T be a direct-similarity transformation of a plane, A^^ a variable

point of this plane, ^j = T {A^), and A^a, point such that the variable triangle

A-^A^A g^is directly similar to a fixed triangle B^B^B^. Then the transformations

from A-^ to ^3 and from A^ to jI, are direct-similarity transformations. Both

of these transformations have the same finite fixed elements as T.*

12. Let T be an afiine transformation, A^ a variable point, A2 = T(^A{),

and Ag a point such that the ratio Af^A-i/A^A^ is constant. The transformation

P from A^io Agis directly similar and has the same fixed elements as T. If

T is a similarity transformation, so is P.

13. If Tj and Tj are affine transformations, ^„ a variable point, A-^ = Tj (Ag),

A^ = Tj (^q), and Ag a point such that A^A^Aj^A^ is a parallelogram, the trans-

formation from yl„ to Ag is affine.

* On this and the following exercises cf . Enoyclopadie der Math. Wiss. IllAB 9,

pp. 914-916.



CHAPTER VIII

NON-EUCLIDEAN GEOMETRIES

131, Hyperbolic metric geometry in the plane. According to the

point of view explained in § 34 there must be a geometry corre-

sponding to the projective group of a conic section. The case of a

real conic in a real plane is one of extreme interest because of its

close analogy with the Euclidean geometry, as will be seen at once.

Definition. An arbitrary but fixed conic of a plane ir is called

(he absolute conic or the absolute. The interior of this conic is called

the hyperbolic plane. Points interior to the conic are called ordinary

points or hyperbolic points, and those on the conic or exterior to it are

called ideal points. A line consisting entirely of ideal points is called

an ideal line, and the set of ordinary points on any other line,is called

an ordinary line or a hyperbolic line. The group of all projective

collineations leaving the absolute conic invariant is called the hyper-

bolic (metric) group of the plane, and the corresponding geometry is

called the hyperbolic plane geometry.

Let us at first assume only that the plane ir is ordered {A, E, S, P).

On this basis we have as a consequence the theorems in §§ 74, 75

on the interior of a conic, that the points of an ordinary line satisfy

the definition in § 23 of a linear convex region. This determines the

meaning of the terms " segment," " ray," " between," " precede," etc.

as applied to collinear ordinary points and sets of points in the hyper-

bolic plane. The ordinal properties of the hyperbolic plane may be

summarized as follo^rs

:

Theorem 1. The hyperbolic plane satisfies Assumptions I— VI given

for the Huclidean plane in § 29.

Proof. Assumptions I, II, III, V are direct consequences of the

proposition that the points of an ordinary line constitute a linear

convex region. Assumption VI, that the interior of a conic con-

tains at least three noncoUinear points, is an obvious consequence

of §§ 74, 75.

850
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The hypothesis of Assumptibii IV is that three points A, B, C are

noncoUinear and that two other points D and E satisfy the order

relations {BCD} and {CEA}. The conclusion is that there exists a

point F on the line DE and between A and B. To prove this it is

necessary to show (1) that the point of intersection F of the projective

lines DE and AB is interior

to the absolute conic and (2) /"'''rv^
that F is between A and B. / j/\

\

Let Z be a linci exterior to / /f ^^^ /

the conic, and let its points I r^^]^ /^
of intersection with the lines -^'xP/^^'^^ \
AB, BC, CA respectively be _ Sr^'^ Ie^ \J^-

F^, Z)., E„. By hypothesis
^^^^ ^^

and §75, the pair DD^ is

not separated hy BC and the pair EE„ is separated by AC. Hence,

by § 26, the pair FF^ is separated by AB. Since F^ is exterior to

the conic, F is interior (§75) and between A and B.

Theorem 2. The hyperbolic plane does not satisfy Assumption IX,

§29. On the contrary, if a is any line and A any point not on a

there are infinitely many liries on A and coplanar with a which do

7wt meet a.

Proof. By § 75 the projective line containing a also contains an

infinity of points exterior to the absolute. Any line of the hyperbolic

plane contained in the projective Hne joining^ to one of these

points fails to meet a.

Definition. If a projective line containing a line a of a hyperboHc

plane meets the absolute conic in two points B^, C„, and A is any

ordinary point not on a, the ordinary lines contained in the projective

lines AB„ and AC^ are said to be parallel to a. The segments AB„
and AC„, consisting entirely of points interior to the absolute, consti-

tute, together with A, two rays which are also said to be parallel to a.

If the projective plane ir be supposed real, the points B„ and C„

exist for every line a, and hence we have

Theorem 3. In the real hyperbolic plane there are two and only

two lines which pass through any point A and which are parallel to

a line a not on A. There are two and only two rays with A as end

parallel to a.
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This theorem of course does not require full use of continuity

assumptions. It would also be valid if we assumed merely that any

line through an interior point of a conic meets the conic (cf. § 76).

Definition. The points on the absolute are sometimes called points

at infinity or infinite points ; and the points exterior to the absolute,

ultra-infinite points.

132. Orthogonal lines, displacements, and congruence.

Definition. Two lines (or two points) are said to be orthogonal or

perpendicular to each other if they are conjugate with respect to the

absolute.

Of two perpendicular points one is, of course, always ultra-infinite,

but no analogous statement holds for perpendicular lines. From the

corresponding theorems on conies we deduce at once

Theorem 4. The pairs of perpendicular lines on an ordinary point

are pairs of a direct involution. Through an ordinary point there is

one and but one line perpendicular to a given ordinary line.

Definition. A transformation of ir which effects an involution

on the absolute conic whose axis contains ordinary points is called

an orthogonal line reflection. A transformation of tt which effects an

involution on the absolute conic whose center is an ordinary point is

called a point reflection. A product of two orthogonal line reflections

is called a displacement. A product of an odd number of orthogonal

line reflections is called a symmetry. Two figures such that one can

be carried to the other by a displacement are said to be congruent, and

two figures such that one can be carried to the other by a symmetry

are said to be symmetric.

An orthogonal line reflection is a harmonic homology whose center

and axis are pole and polar with respect to the absolute conic. Since

the axis contains an interior point, the center is exterior and the

involution effected on the absolute alters sense (§ 74). Conversely,

it follows from § 74 that an involution on the absolute.conic which

alters sense is effected by a harmonic homology whose center is

exterior to the absolute conic,— i.e. by an orthogonal line reflection.

Since any direct projectivity is a product of two opposite involu-

tions (§ 74), the displacements as defined above are identical with

the projective collineations which transform the absolute conic into it-

self with preservation of sense. In particular, a point reflection is a
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displacement. On the other h^pd, the symmetries are the projective

collineations which carry the absolute into itself and interchange

the two sense-classes on the absolute.

From these remarks it is evident that the theory of displacements

can be obtained from the theorems on projectivities of a conic iu

Chap. VIII, Vol. I, and in Chap. V, Vol. II. Some of the theorems

may also be obtained very easily as projective generalizations of

simple Euclidean theorems.

In proving these theorems we shall suppose that we are dealing

with the real projective plane and not merely with an ordered plane

as in Theorem I. It would be sufficient, however, to assume merely

that every opposite involution is hyperboKc (i.e. that every line through

an interior point of a conic meets it), for this proposition is the only

consequence of the continuity of the real plane which we use in our

arguments.

Let us first prove that Assumption X (§ 66) of the Euclidean

geometry holds for the hyperbolic geometry. It is to be shown

that if A, B are two distinct points, then on any ray c with an

end C there is a unique point D such that AB is congruent to CD.

The points A and C are the centers of elliptic involutions on the

absolute. It is shown in § 76 that one such involution can be trans-

formed into any other by either a direct or an opposite involution.

Hence there is a displacement A carrying A to C
The absolute conic may be regarded as a circle G^ in a Euclidean

plane whose line at infinity is the pole of C with regard to the

absolute. In this case C is the center of the Euclidean circle, and

the hyperbolic displacements are the Euclidean rotations leaving C

invariant. The required theorem now follows from the Euclidean

proposition that there is one and only one rotation carrying B to

a point J9 of a ray having G as end. The point D is interior to

C^' because B is.

Assumption XI, § 66, holds good in the hyperbolic geometry because

the displacements form a group. Assumption XII may be proved for

the hyperbolic geometry by the argument used in § 66 for the Euclid-

ean case. The same is true of Assumption XIII if we understand by

the mid-point of a pair AB the ordinary point which is harmonically

separated by the pair AB from a point conjugate to it with respect

to the absolute.
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Definition. A circle is the set [P] of all points such that the point

pairs OP where is a fixed point are all congruent to a fixed point

pair OP^.

If the absolute be identified, as ia the proof of Assumption X above,

with a Euclidean circle C^, and with its center, it is obvious that

the circles of the hyperbolic plane having as center are identical

with the Euclidean circles interior to and concentric with C^. Hence

we obtain from the properties of a pencU of concentric Euclidean

circles (§71)

Theokem 5. Definition. A circle in the hyperbolic plane is a conic

entirely interior to the absolute. It touches the absolute in two conjugate

imaginary points A, B, and the tangents at these points pass through

the center of the circle. The polar of the center passes through A and B
and is called the axis of the circle. All its real points are exterior to

the absolute conic.

It wUl be proved in § 134 (Theorem 7, Cor. 1) that two circles can

have at most two real points in common. Once this is established,

the proof of Assumption XIV in § 66 applies without change to the

hyperbolic geometry.

Assumption XV is proved in § 134 as Cor. 2 of Theorem 7.

Assumption XVI may be proved as foUows: Let A, B, C be

three points in the order {^5C},and let P. and 6„ be the points

in which the line AB meets the absolute conic, the notation being

assigned so that we have {P,^ABCQ«}. Let B^, B^, B^,--- be points

in the order {RABB^B^B^ • • •} such that AB is congruent to each

of the pairs BB^, B^B^, etc. Choose a scale (Chap. VI, Vol. I) in

which P«,AQ,^ correspond to 0, 1, oo respectively, and let b be the

coordinate of B. By the hypothesis about the order relations, b>\.

The displacement carrying AB to BB^ is a projectivity of the lin*

AB which leaves P. and §„ respectively invariant and transforms

A to B. Hence it has the equation

x' = hx

with respect to the Scale P., A, Q„. The coordinates of B^, B^,

Pj, • are therefore V, b', b*, • respectively. The coordinate of

C is, by the hypothesis that {ABC}, some positive number e

greater than b. There are at most a finite number of values of
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b"{n — l, 2, • • •) between b and c. Hence there are at most a finite

number of the points B^, S^, • • • between B and C. This is what is

stated in Assumption XVI.

We have now seen, taking for granted two results which will

be proved in § 134, that all the assumptions (cf. §§ 29 and 66)

of Euclidean plane geometry except the assumption about paral-

lel lines are satisfied in the real hyperbolic plane, and that the

parallel-line assumption is not satisfied.

EXERCISES

1. If corresponding angles of two triangles are congruent, the correspond-

ing sides are congruent.

2. The absence of a theory of similar triangles in hyperbolic geometry is

due to what fact about the group of the geometry ?

3. The perpendiculars at the mid-points of the sides of a triangle meet in

; (which may be ideal).

* 4. Classify the conic sections from the point of view of hyperbolic geometry.

133. Types of hyperbolic displacements. According to § 77, Vol. I,

any displacement has a center and an axis which it leaves invariant.

If the center is interior, the axis meets the absolute in two conjugate

imaginary points, and the displacement effects an elliptic transfor-

mation on the absolute. If the center is exterior, the axis meets the

absolute in two real points, and the displacement effects a hyper-

bolic transformation on the absolute. If the center is on the absolute,

the axis is tangent, and the displacement effects a parabolic trans-

formation on the absolute.

In the first case, the points into which a displacement and its

powers carry a point distinct from its center are, by definition, on a

circle which is transformed into itself by the given rotation.

In the second case, since the displacement is a product of two

orthogonal line reflections whose axes pass through the center, it is

obvious that the displacement leaves invariant any conic C" which

touches the absolute in the two points in which it is met by the axis

of the displacement. Such a conic is obtained from the absolute by

a homology whose center and axis are the center and axis of the

displacement in question. From this it follows in an obvious way

that C" is entirely interior or entirely exterior to the absolute. We
are interested in the case in which C^ is interior.
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Let the points of contact of C^ with the absolute K^ be P and Q
respectively. Since the center of the displacement and the line PQ
are polar with respect to C, P and Q are the ends of two segments

ff, T of points of C^ which are (in the hyperbolic plane) on opposite

sides of the line PQ. Any line through and a point of the hyper-

boUc plane is perpendicular io PQ and meets <t, PQ, and r in three

points S, M, T respectively. If S', M', T' are the points analogously

determined by another line through 0, let M be the mid-point of

the pair MM'. Then the displacement which is the product of the

orthogonal line reflection with OMaa
axis by that with OM' as axis carries

S, M, T to S', M', T' respectively.

This result may be expressed by

saying that cr is the locus of a point

;S", on a given side of PQ, such that

if Jf is the foot of the perpendicular

from S' to PQ, S'M' is congruent to

SM. For this reason a and t are

called equidistantial curves of PQ.

A point A can be carried into a

point 5 by a displacement leaving

a given line I, not on A, invariant,

if and only if the two points are on

the same equidistantial curve of I. The equidistantial curves have

some of the properties of parallel lines in the Euclidean geometry.

A displacement which effects a parabolic transformation on the

absolute is a product of two orthogonal line reflections whose axes

intersect in the center of the displacement. Hence the displace-

ment leaves invariant any conic which has contact of the third order

(see § 47, Vol. I) with the absolute at 0. And by the same reasoning

as employed in the second case, a point P can be transformed into a

point P' by a displacement which is parabolic on the absolute with

a fixed point at if and only if P and P' are on a conic hasving contact

of the third order with the absolute at 0.

Definition. A conic interior to the absolute and having contact

of the third order with it is called a horocycle.

The circles, equidistantial curves, and horocycles are all path curves

of one-parameter groups of rotations.

Fig. 78
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134. Interpretation of hyperbolic geometry in the inversion plane.

Although the theory of conies touching a fixed conic in pairs of

points has not been taken up explicitly in this book, we have in

the inversion geometry a body of theorems from which the part of

it needed for our present purpose can be obtained by the principle

of transference.

It has been seen in § 94, Theorem 16, that any transformation of

the inversion group which carries a circle K^ into itself effects a

projective transformation of this circle into itself. Moreover, there

is one and only one direct circular transformation which effects a

given projectivity on K^. Hence the group of direct circular trans-

formations leaving a circle of the inversion plane invariant is simply

isomorphic with the hyperbolic metric group, and the geometry of this

subgroup of the inversion group is the hyperbolic geometry.

The circles orthogonal to K^ liave the property that there is one

and only one such circle through each pair of distinct points interior

to K^. Since they also are transformed into themselves by the group

which is here in question, it is to be expected that they correspond

to the lines of the hyperbolic plane. This may be proved as follows

:

Let the inversion plane be represented by a sphere iS" in a Euclid-

ean three-space. Let -ST" be the circle in which S^ is met by a plane tt

through its center, and let us regard the points of tt interior to K^

as a hyperbolic plane. The circles of S^ orthogonal to K^ are those

in which S^ is met by planes perpendicular to tt. Hence if we let

each point P of S^ on one side of K^ correspond to the point P' of tt

such that the line PP' is perpendicular to tt, a correspondence T is

established between the hyperbolic, plane and the points on one side

of a circle 7f^ in the inversion plane in such a way that the lines

of the hyperbolic plane correspond to the circles orthogonal to K^.

Moreover, since the direct circular transformations of the inversion

plane are effected by three-dimensional coUineations leaving S^ in-,

variant, the direct circular transformations leaving K^ invariant cor-

respond under V to displacements and symmetries of the hyperbolic

plane. Thus we have i

Theorem 6. There is a one-to-one reciprocal correspondence V be-

tween the points of a hyperbolic plane as defined in § 131 and the

points on one side of a circle K^ in an inversion plane (or inside a

circle of the Euclidean plane) in which sets of collinear points of the
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hyperbolic plane correspond to sets of points on circles orthogonal to

K}, and in which displacements and symmetries of the hyperbolic plane

correspond to direct circular transformations leaving K^ invariant.

Theorem 7. In the correspondence T the circles of the hyperbolic

plane correspond to circles of the inversion plane which are entirely

on one side of K^.

Proof. Let C" be any circle entirely on one side of K^, and let

and 0' be the two points which are inverse with respect to both

E^ and C^, i.e. the limiting points of the pencil of circles containing

C^ and K^ (§§ 71, 96). In the Euclidean plane obtained by omitting

0' from the inversion plane, is the center of both K^ and C, and

hence the direct circular transformations leaving Z''' and C"" invariant

are the rotations about and the orthogonal line reflections whose

axes are on 0. These correspond under V to the displacements and

symmetries of the hyperbolic plane which leave invariant. Hence

the points of C^ correspond to a circle of the hyperbolic plane.

Since any circle of the hyperboKo plane may be displaced into one

^hose center corresponds under T to 0, the argument just made

shows that every circle of the hyperbolic plane may be obtained as

the correspondent under F of a circle of the inversion plane which is

interior to E^.

This theorem enables us to carry over a large body of theorems on

circles from the Euclidean geometry to the hyperbolic. For example,

we have at once the following corollaries

:

Corollary 1. Two circles in the hyperbolic plane can have at most

two real points in common.

Corollary 2. If the line Joining the centers of two circles in the

hyperbolic plane meets them in pairs of points which separate each

other, the circles meet in two points, one on each side of the line.

The first of these corollaries, on comparison with Theorem 5, yields

the following projective theorem : Two conies interior to a real conic

and toucMng it in pairs of conjugate imaginary points can have

at most two real points in common, and always have two conjugate

imaginary points in common.

Theorem 8. In the correspondence T equidistantial curves of the

hyperbolic plane correspond to those portions of circles intersecting IP,

not orthogonally, which are on one side of K^. Two eqvAdistamtial
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curves which are parts of one <^ic in the hyperbolic plane are parts

of circles inverse to each other with respect to K^.

Proof. A circle K^ of S^ which intersects E^ in two points F, Q
without being perpendicular to it is a section of S^ by a plane not

perpendicular to tt. The correspondence T transforms this circle into

a conic section C"^ in tt which is the projection of K^ from the point

at infinity of a line perpendicular to tt. The tangents to K^ at P and

Q'are transformed into tangents to JT''. Hence C^ touches ^^ atP
and Q.

The portions of K^ on the two sides of K^ on S^ correspond to the

two segments of C^ having P and Q as ends ; but only one of these

portions of K^ is on the side of K^ which is in correspondence with

the hyperbolic plane by means of F. The segment of C^ which is

not in correspondence with this portion of K^ is evidently in corre-

spondence with a portion of the circle into which K^ is transformed

by the three-dimensional orthogonal reflection with tt as plane of

fixed points.

This proves that the part of any circle K^ of the inversion plane

which is on one side of K^ corresponds under T to an equidistantial

curve H^, and that that part of the circle inverse to K^ with respect to

K^ which is on the same side of X^ corresponds to the equidistantial

curve E^ wliich is part of the same conic with E^. That any equi-

distantial curve is in correspondence with a portion of some circle of

the inversion plane is easily proved by an argument like that used in

the last theorem.

Corollary 1. In the correspondence T a circle touching E^ corre-

sponds to a horocycle of the hyperbolic plane.

Since each equidistantial curve corresponds to a portion of a circle

of the inversion plane, it follows that two equidistantial curves can

have at most two real points in common. It must be noted that two

conies containing each an equidistantial curve can have four real

points in common, since each conic accounts for two equidistantial

curves.

In like manner two horocycles can have at most two real points

in common, and, still more generally,

Corollary 2. Two loci each of which is a circle, horocycle, or equv-

distantici'l Qurve can have at most two points in vorriimon.
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EXERCISES

1. Show that r may be extended so that the ultra-infinite lines of the hyper-

bolic plane correspond to imaginary circles of the inversion plane which are

orthogonal to K^.

2. Study the theory of pencils of circles, equidistantial curves, and horo-

cycles in the hyperbolic plane by means of the correspondence V. (A list of the

theorems will be found in an article by E. Ricordi, Giornale di Matematiche,

Vol. XVIII (1880), p. 255, and in Chap. XI of Non-Euclidean Geometry by

J. L. Coolidge, Oxford, 1909.)

3. Develop the theory of conies touching a fixed conic in pairs of points.

135. Significance and history of non-Euclidean geometry. In

proving the two corollaries of Theorem 7 we have completed the

proof (§ 132) that the congruence assumptions of § 66 are satisfied

in the hyperbolic plane. Combining this result with Theorems 1

and 2, we have

Theorem 9. In the real hyperbolic plane geometry, Assumptions

I- VI, VII, X-XVI of the assumptionsfor Euclidean plane geometry

in §§ 29 and 66 are true, arid Assumption IX is false.

Corollary. Assumption XVII of § 29 is true in the hyperbolic

plane geometry.

The existence of the hyperbolic geometry therefore furnishes a proof

of the independence * of Assumption IX as an assumption of Euclidean

geometry. This assumption is equivalent to, though not identical in

form with, Euclid's parallel postulate.! And it is the interest in the

parallel postulate which has been the chief historical reason for the

development of the hyperbolic geometry.

The question whether the postulate of Euclid was independent or

not was raised very early. In fact, the arrangement of propositions in

Euclid's Elements shows that he had worked on the question himself.

The effort to prove the postulate as a theorem continued for centuries,

and in the course of time a considerable number of theorems were

shown to be independent of this assumption. Eventually the question

arose, what sort of theorems could be proved by taking the contrary of

Euclid's assumption as a new assumption.

*Cf. § 2, Vol. I, and § 13, Vol. II.

tCf. Vol. I, p. 202, of Heath, The Thirteen Books of Euclid's Elements,

Cambridge, 1908.
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This question seems to have*l)een taken up systematically for the

first time by G. Saccheri,* who obtained a large, body of theorems

on this basis, but seems to have been restrained from drawing, or at

least publishing, more radical conclusions by the weight of religious

disapproval. The credit for having propounded the body of theorems

based on a contradiction of the parallel postulate as a self-consistent

^mathematical science, i.e. as a non-Euclidean geometry, belongs to

J. Bolyait (1832) and N. I. Lobachevski t (1829), although many of

the ideas involved seem to have been already iu the possession of

C. F. Gauss. § It was not, however, until it had been shown by

Beltrami
II that the hyperbolic plane geometry could be regarded as

the geometry of a pseudospherical surface in Euclidean space, that an

independence proof (cf. Introduction, Vol. I) for the parallel assump-

tion could be said to have been given. The work of Beltrami depends

on the iuvestigation by Eiemannl of the differential geometry ideas

at the basis of geometry (1854). Eiemann seems to deserve the

credit for the discovery of the elliptic geometry (§§ 141-143 below),

though it is not clear that he distinguished between the two types

of elliptic geometry.**

The proof of the existence of a non-Euchdean geometry was made

capable of a simpler form by the discovery of A. Cayley tt (1859) that

a metric geometry can be built up, using a conic as absolute. The

relation of Cayley's work to other branches of geometry and the pre-

vious studies of non-Euclidean geometry was made plain by F. KleinW
in connection with his elucidation of the r61e of groups in geometry.

The representation of the hyperbolic plane by means of the interior

* Euclides ab omni naevo vindicatus, Milan, 1733. German translation in " Die
Theorie der Parallellinien von Euklid bis aiif Gauss," by F. Engel and P. Staeckel,

Leipzig, 1896.

t English translation by G. B. Halsted, under the title "The Science Absolute

of Space," 4th ed., Austin, Texas, 1896.

t German translation by Engel, under the title " Zwei geometrische Abhand-
lungen," Leipzig, 1898. Cf . also a translation by Halsted of another work entitled

"The Theory of Parallels," Austin, Texas, 1892.

§ Werke, Vol. VIII, pp. 167-268.

II
Saggio di interpretazione della geometria non-euclidea, Giornale di Matema-

tiohe, Vol. VI (1868), p. 284.

1 English translation by W. K. Clifford, in Nature, Vol. VIII (1873), and in

Clifford's "Mathematical Papers" (London, 1882), p. 55.

** Cf . F. Klein, Autographierte Vorlesungen liber nicht-euklidische Geometrie,

Vol. I (GSttingen, 1892), p. 287.

tt Collected Works, Vol. II (Cambridge, 1889), p. 583.

tt Mathematische Annalen, Vol. IV (1871), p. 573.
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of a circle (§ 134), and the representation of the elliptic plane given

in Ex. 12, § 141, are due to E. De Paolis* and H. Poincar6.t

For the history of non-Euclidean geometry and an exposition of

parts of it, the reader is referred to E. Bonola, Non-Euclidean

Geometry, English translation by H. S. Carslaw, Chicago, 1912.

Other texts in English are J. L. Coolidge, Non-Euclideaii Geometry,

Oxford, 1909; Manning, Non-Euclidean Geometry, Boston, 1901;

D. M. Y. Sommerville, The Elements of Non-Euclidean Geometry,

London, 1914; H. S. Carslaw, The Elements of Non-Euclidean

Plane Geometry and Trigonometry, London, 1916. Besides these we

may mention D. M. Y. Sommerville's Bibliography of Non-Euclidean

Geometry, London, 1911.

There are numerous other geometries closely related to the non-

Euclidean geometries touched on in this chapter. Of particular

interest are the geometries associated with Hermitian forms in-

vestigated by G. Pubini (Atti del Eeale Istituto Veneto, Vol. LXIII

(1904), p. 501) and E. Study, t and the geometry of the Physical

Theory of Eelativity.§

136. Angular measure. The measure of angles may be defined

precisely as in the Euclidean geometry, and we carry over the defi-

nitions and theorems of § 69 without modification. If we represent

the absolute and an arbitrary point by a Euclidean circle C^ and

its center, the Euchdean rotations about are identical with the
,

hyperbolic rotations about 0, and hence the two angular measures as

determined by the method of § 69 are identical. By § 72, if a and b

are two Hnes intersecting in 0, and is the measure of the smallest

angle 4 AOB for which ^ is a point of a and B a point of b,

(1) = -^logniab,i,i^),

where \ and i^ are the minimal lines through 0. Since \ and i^ are

the tangents to C^ through 0, it follows that (1) may be taken as

the formula for the measure of any ordered pair of lines a, b in. the

* Atti della R. Accademia del Linoei, Ser. 3, Vol. II (1877-1878), p. 31.

t Acta Mathematloa, Vol. I (1882), p. 8, and Bulletin de la Soci^t^ math^matique

de France, Vol. XV (1887), p. 203.

t Mathematische Annalen, Vol. LX (1905), p. 321.

§ Cf. F. Klein, JahresberichtderDeuteohenMathematiker-Vereinigung,Vol. XIX
(1910), p. 281, and the article by Wilson and Lewis referred to in § 48 above.
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hyperbolic plane if i^ and i^ are^iunderstood to be the tangents to the

absolute through the point of intersection of a and h.

If the hyperbolic plane is represented as in § 134 by the interior

of a circle C, the angular measure of any two hyperbolic lines is

identical with the Euclidean measure of the angle (§ 93) between the

two circles orthogonal to C^ which represent them. This has just

been seen for the case where the two circles are lines through the

center of C. In the general case a point A of intersection of the two

circles orthogonal to C^ may be transformed to the center of C" by a

direct circular transformation A. The transformation A as a direct

circular transformation leaves Euclidean anstilar measure invariant

(§ 93), and as a displacement of the hyperbolic plane leaves hyper-

bolic angular measure invariant. Since the two measures are identical

at the center of C^, they must also be identical at A.

As an application of this' result we may^ prove the following

remarkable theorem:

Theorem 10. The sum of the angles of a triangle is less than v.

Proof. Let the triangle, be ABC, and let the absolute and the

point A be represented by a Euclidean circle C° and its center. Then

the hyperbolic lines AB ajidAC are represented by Euclidean lines

through the center of C, and the hyperbolic

line ^C is represented by a circle K' through

^ and C orthogonal to C" (fig. 79).

The hyperbolic measures of the angles at A,

B, and C respectively are equal to the Euclidean

measures of 4.BAC and two angles formed by

AB and AC with the tangents to K^ at B and C 1^79
respectively. The sum of these three angles is

easily seen to be less than that of the angles of the EucUdean

(rectilineal) triangle ABC. Hence it is less than tt.

The theorem that the sum of the angles of a triangle is tt may

be substituted for Assumption IX as an assumption of Euchdean

geometry;* the proposition just proved can be taken as the corre-

sponding assumption of hyperbohc geometry; and the proposition

that the sum of the angles of a triangle is greater than tt can be

taken as an assumption for elliptic geometry.

* On the history of this theorem cf . Bonola, loo. cit., Chap. II. This reference

will also be found useful in connection with the exercises.
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EXERCISES

* 1. Prove from Assumptions I-VI, X-XVI that if the sum of the angles

of one triangle is greater than, equal to, or less than tt, the corresponding

statement also holds for all other triangles.

*2. Prove from Assumptions I-VI, X-XVI that the sum of the angles of

a triangle is less than or equal to ir.

137. Distance. Since the conic section is a self-dual figure, it is to

be expected that the formula for the measure of point-pairs is analo-

gous to (1). As a matter of fact, we shall only modify the factor

— i/2. If A and B are two ordinary points, let A„, B„ be the points

in which the line AB meets the absolute, the notation being assigned

so that the points are in the order {A„ABB^}. Then B(^5,^.Z?„)

is positive (§ 24), and hence log K {AB, A«,B«,) has a real value. We
define the distance between A and B by means of the equation

(2) Dist (AB) = 7 log B (AB, A„B„),

where y is an arbitrary constant and the real determination of the

logarithm is taken.

It is seen at once that

Diat(AB)^'Dist(BA),

because '^ (AB, A„ B„) = E (BA, B„ J.),

and that if A, B, C are collinear points in the order {ABC},

'D\Bt(AB) -t- l5ist(5C) = Dist(^ C),

because R(^B, A„B„) B(BC, J«5,)= B(^C, A„B„).

Moreover, it is evident from the properties of the collineations

transforming a conic into itself that a necessary and sufi&cient con-

dition for the congruence of two point-pairs AB, CD is

^(AB, A^BJ)=-Si(CD, C^D^),

where A„, B„ are chosen as above and C„, i)„ are chosen analogously.

Hence a necessary and sufficient condition for the congruence of AB

and CI> is pig^ (^^^ ^ jy^^^
( ^jyy

Hence the distance function defined above is fully analogous to that

used in Euclidean geometry (§ 67). The constant y may be determined

by choosing a fixed point-pair OP as the unit of distance. We then have

(3) - = log R (OP, O.iJL).

7
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138. Algebraic formulas for^istance and angle. Let us consider

the symmetric bilinear form

+ Uf^2'^2 ""o ~l ^li'^S'^l I ^22'^2'^a

and the covariant form

F{U, U') = A.^UX + Al^O^i+ ^02^0^2

+ A„^uX + ^jjWjMI+ ^ijMiMj

where the A^^'s are defined as in § 85. With respect to homogeneous

coordinates,/(X, X) = is the equation of a point conic, and F{u, u)=0

of the line conic composed of the tangents to /(X, X) = 0. Let us

take this conic as the absolute and derive the formulas for the

measure of distance and of angle.

Let Y={y^, y^, yj and Z={z^, e^, z^ be two distinct points. The

points of the line joining them are

\Y+tiZ = (\y„+ iiz^, \y^ + fiz^, \y^+ fiz^),

and the points in which this line meets f{X, X) = are determined

by the values of X/fi satisfying the equation

=fi\Y+ fiZ, XY+ iiZ)= \y{Y, Y)+2 Xm/( Y, Z) + ,j?f{Z, Z).

These values are

\_ -f{Y, Z)+^f{Y, Z)-f{Y, Y)f{Z, Z)

Ml f{Y, Y)

\_ -f{Y, Z)-y/f{Y, Z)-f{Y, Y)f{Z, Z)

Let us denote the two points of the absolute corresponding to (X^, /i^

and {\, jM^ by I^ and I^ respectively. Then

Dist(rZ)=7logK(r^, //,).

Since (\, /t) is (1, 0) for Y and (0, 1) for Z, we have (§ 65, VoL I)

^iYZ,IJ^) = f^.

(4) Dist(r^)=7log^(^^^)±:^^^^^S
^
f{Y, Z)-y/f{Y, Z)-f{Y, Y)f{Z, Z)

^ „ , {f{Y, Z) + y/r{Y, Z)-f{Y, Y)f{Z, Z)f
^ ^ f{Y,Y)f{Z,Z)
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By precisely the same reasoning applied to the dual case we have

for the measure of a pair of lines u = {u^, u^, u^, v = {v^, v^, v^.

(5) m(u,v) = — -log -^
,

' ^
' '• ^ :^=1

2 F{u,v)-\'F'{u,v)--F{u,u)F{v,v)

__£-, (f{u, v) + Vi^' {u, v) - F{u, u) F(v, v))"

~ 2
°^

F{u,u)F(v,v)

Denoting Dist(r, Z) by d, we obtain

V/(r, Y}f(Z, z)

and hence

and d d

/8^ "inh
^ ^

^'^-^"'^ ^ l/'(r,^)-/(r,r)/(z,^)
^^

2 7 2 N /(r, F)/(^, Z)

In like manner, if ^ = m [uv),

gM ^ J'Cm, v)+yfF^{u, v)-F(u, u)F{v, v)

Vi?'(M, U)F{V, V)

(10) cos^=^P^KlL
V)

(11) sin^ =^-#^^|^^P?^^ ' \ F(u,u)F{v,v)

'4

F{u, u)F(v,v)

^

F{u, u)F{v,v)~F^{u^
F{u, u)F{v, v)

For a further discussion of these formulas see Clebsch-Iindemann,

Vorlesungen uber Geometric, Vol. II, Part III, Leipzig, 1891.

*139. Differential of arc. The homogeneous coordinates of all

points not on the absolute,

(12) f(X,Z) = 0,

may be subjected to the relation

(13) f(X,X)=G,

where C is a constant. Since f{X, X) is quadratic, this determines

two sets of coordinates (a!^, x^, x^ for each point of the hyperbolic
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plane instead of an infinity o* sets as in unrestricted homogeneous

coordinates.*

Some definite determination of the values of each of the homogeneous
coordinates is manifestly necessary in order to apply the processes of differen-

tial calculus to formulas in homogeneous coordinates. The particular relation

f{X,X) = C has the advantage, among others, of not being singular for any
point not on the absolute.

Suppose now that (x^, x^, x^) describes a locus determined by the

condition that x^, x^, x^ are functions of a parameter t. Then, in the

familiar notation,!

ds^^ ^ Dist(X,X+Ajr)

dt A(^=a A^

2 7 sinh r— Dist (X, X+ AX)
= L

^^
At

A«=oA< \
|
/'(X, X+AX) -/{X, X)f(X+AX, X+AX)

f{X, X)f{X+ AX, X+ AX)

by (8). Smcef{Y+ Y', Z) =/{Y, Z) +f{Y', Z), this reduces to

\dt)
L

4^"

{Atf

{f(X,X) +f{X,AX)Y-f{X,X){f{X,X)+2f{X,AX)+f{AX,AX))
f{X,X) {/{X, X)+ 2f{X, AX) +f{AX, AX))

f
= i 4y

(-.f)-/(-.->/(^-f)
^,=0 ' f{X, X) (f{X, X) + 2/{X, AX) +f{AX, AX))

^(-f)-/«-)/(f'f)
= 47'

f\X, X)

* If (Sj, a;,, Xj) are interpreted as rectangular coordinates in a Euclidean space

of three dimensions, f(X, X) = is the equation of a quadric surface, and we have
a correspondence in which each point of the hyperbolic plane corresponds to a pair

of points of the quadric surface. By properly choosing f{X, X), this correspond-

ence can be reduced to that given in § 134 between the hyperbolic plane and the

surface of a sphere. *

t We are applying theorems of calculus here on the same baisis that we have
employed algebraic theorems in other parts of the work.
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AyC /(mST nv (j^ \
in which -— represents (-r"' —r^> -r^l* In differential notation this

at \dt at at I

formula is

By duality we have a corresponding formula for the differential of

angle,

^_ j„2_ F^ju, du) — F{u, u) F{du, du)

^ '

~
F''{u,u)

These formulas are independent of the particular determination of

our coordinates by means of the relation (13). If we differentiate (13)

^e obtain f{X,dX)=0,

so that for this particular determination of coordLnates

(16) rfs^=_47"=^^^^i^ =-47^'^^^^^.
^ ' ^ f{X,X)

^ C

Let us now choose the homogeneous ccJordinate system so that

f{X,X)=x^ + x^-i'fx^,

and choose (7 =— 4 7^* so that, for points not on the absolute,

(17) x^ + xl-4: rfxl =- 4 7I

If 7 is real and not zero,we are dealing with hyperbolic geometry, and

(18) ds'=f{dX, dX)

= dxl + dxl — 4 •y^dx^.

1x 2x
If we substitute u = -

—

— > v = -——

in the value for ds" given in (18), we obtain

,„ dw^+dv'
(19)

V 167^J.

Eegarding u and v as parameters of a surface in a Euclidean space,

(19) gives the linear element of the surface (cf. Eisenhart, Differential

Geometry, § 30). This is a surface for which, in the usual notation of

differential geometry,E=G and F=Q. The curvature of this surface

is constant and equal to — 1/4 7^ (cf. Clebsch-Lindemann, loc. cit.,

VoL II, p. 525). From this it follows that the hyperbolic plane
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geometry in the neighborhodd of any point is equivalent to the

geometry on a portion of a surface of constant negative curvature.

If we substitute u = xjx^ and v = xjx^ in (18), we obtain

^^i^^ 3 (4 7'- v')du^+ 2 uvdudv + (4 7'- v?)dv'

This is the form of linear element used by Beltrami in the paper

cited above. This form is such that geodesies are given by linear

equations in 11 and v. Hence geodesies of the surface correspond to

lines of the hyperbolic plane.

It is to be noted that the curvature of a surface, while often defined

iu terms of a Euclidean space in which the surface is supposed to be

situated, is a function of E, F, and G and therefore an internal property

of the surface, i.e. a property stated iu terms of curves {u = c and

v = c) in the surface and entirely independent of its being situated

in a space.

Another remark which may save misunderstanding by a beginner

is that the geometries correspondiig to real values of 7 are identical.

The choice of 7 amounts to a determination of the unit of length, as

was shown in § 137.

EXERCISES

1. Express the differential of angle in terms of (a;,), x^, x^ and their deriva-

tives (of. Clebsch-Lindemann, loc. cit., Vol. II, p. 477).

*2. Bevelop the theory of areas in the hyperbolic plane. P"or a treatment

by differential geometry cf. Clebsch-Lindemann, loc. cit., p. 489. For a develop-

ment by elementary geometry of a theory of areas of polygons which is equally

available in hypei-bolic, parabolic, and elliptic geometry, see A. Finzel, Mathe-

matische Annalen, Vol. LXXII (1912), p. 262.

140. Hyperbolic geometry of three dimensions. A hyperbolic space

of three dimensions is the interior (cf. Ex. 2, § 129) of a nonruled

quadric surface, called the absolute quadric, and the hyperbolic geom-

etry of three dimensions is the set of theorems stating properties of

this space which are not disturbed by the projective collineations leav-

ing the quadric invariant. The definitions of the terms "displacement,"

" congruent," " perpendicular," etc. are obtained by direct generaliza-

tion of the definition iu § 132 and the corresponding definitions in the

chapters on Euclidean geometry. They will be taken for granted in

what follows, without being formally written down.
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The fundamental theorems on congruence may be obtained from

the observations (1) that any displacement of space leaving a plane

invariant effects in this plane a displacement or a symmetry in the

sense of § 132, and (2) that no two displacements of space leaving a

plane invariant effect the same displacement or symmetry in this

plane. From this we infer, by reference to § 135,

Theoeem 11. In the real three-dimensional hyperbolic geometry

Assumptions I-XVI of §§ 99 and 66 are all true except Assump-

tion IX, which is false.

By § 100 there is a simple isomorphism between the displacements

of a hyperbolic space and the direct circular transformations of the

inversion plane. Hence the theorems of inversion geometry or of the

theory of projectivities of complex one-dimensional forms can all be

translated into theorems of hyperbolic geometry. The reader who

carries this out in detail will find that many of the theorems of

Chap. VI assume very interesting forms when carried over into the

hyperbolic geometry.

In particular, if an orthogonal line reflection, or half turn, is defined

as a line reflection (§ 101) whose directrices are polar with respect to

the absolute, it follows at once that every displacement is a product

of two orthogonal line reflections. With this basis the theory of dis-

placements is very similar to the corresponding theory in Euclidean

geometry, but many of the proofs are simpler.

The formulas for distance and angle are identical with those of

§ 138, and the differential formulas with those of § 139 if /(X, X')

be understood to be a bilinear form in (a;„, x^, x^, x^) and («„, x[, x'^, x'^).

EXERCISES

1. The product of three half turns is a half turn if and only if their three

ordinary directrices have a common intersecting perpendicular line.

2. If a simple hexagon be inscribed in the absolute, the common inter-

secting perpendicular lines of pairs of opposite edges are met by a common

intersecting perpendicular line (cf. § 108).

3. Determine the projectively distinct types of displacements.

* 4. Defining a horosphere as a real quadric interior to the absolute and trans-

formable into the absolute bymeans of an elation whose center is on the absolute

and whose plane of fixed points is tangent to the absolute, prove that the hyper-

bolic geometry of a horosphere is equivalent to the Euclidean plane geometry.
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*5. Classify the quadric surfaces from the point of view of hyperbolic

geometry.

* 6. Given the existence of a hyperbolic space, define a set of ideal points

such that the extended space is projective. Cf . R. Bonola, Giornale di Mate-

matiche. Vol. XXXVIII (1900), p. 105, and F. W. Owens, Transactions of the

American Mathematical Society, Vol. XI (1910), p. 140.

* 7. Obtain theorems analogous to those in the exercises of §§ 122, 123 with

regard to the hyperbolic displacements.

* 8. Study, the theory of volumes in hyperbolic geometry by methods of

differential geometry.

141. Elliptic plane geometry. Definition. The geometry corre-

sponding to the group of projective coUineations in a real* projective

plane ir which leave an imaginary ellipse E^ invariant is called the

two-dimensional elliptic geometry or elliptic plane geometry. The im-

aginary conic E'' is called the absolute conic oi; the absolute. The

projective plane tt is sometimes referred to as the elliptic plane.

The order relations in this geometry are of course identical with

those of the projective plane (Chap. II). The congruence relations

are defined as in § 132, with suitable modifications corresponding to

the fact that H^ is imaginary. Some of the theorems which run par-

allel to the corresponding theorems of hyperbolic geometry are put

down in the following list of exercises.

The formula for the measure of angle used in hyperbolic geometry

may be taken over without change, i.e.

0=m{l,l,)= -^log-R{l^l^,i^i^),

where l^ and l^ are intersecting lines and i^ and i^ are tangents to

the absolute in the same flat pencil with l^ and l^. The formula for

distance may also be taken from hyperbolic geometry

:

d = Dist {PQ)='y log B (PQ, R g. ).

In order that this shall give a real value for the distance between two

real points, 7 must be a pure imaginary. So we write

M

» This geometry can in large part be developed on the basis of Assumptions A,

E, S, P alone, the imaginary conic being replaced by the corresponding elliptic

polar system, the existence and properties of which are studied in § 89. As a

matter of fact there is considerable interest attached to the elliptic geometry in a

modular plane, but the point of view which we are taking in this chapter puts

order relations in the foreground.
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and in order to have formulas in the simplest possible form, we may
choose A; = 1, so that

d = - ^log-Be (FQ,R,Q^).

The discussion in § 138 is applicable at once to elliptic geometry

if f{X, X') be taken to be a bilinear form in three variables such

that f{X, X) = is the equation of the absolute of elliptic geometry.

Thus we have

(20) ^=Dist(r^)=z^iog^^(^'^)+y(y)-/(^'^)/(^'^)):
^ ' ^ > 2 ^ f{Y,Y)f{Z,Z)

(21) g=^(^.)^^log(^(^'
'^)+^F\u, v)-F(u, u)Fiv, .))'

^ ' .^ ' 2 ^ F{u, u) F{v, V)

f{Y,Z)
(22)

^°^l = Ai/(r,z)/(^^

(23) cosg=:J /'(^> l̂l.
^ ' yF{u,u}F{v,v)

EXERCISES

1. The principle of duality holds good in the elliptic geometry.

2. The elliptic geometry is identical with the set of theorems about the

geometry of the plane at infinity in three-dimensional Euclidean geometry.

3. The pairs of perpendicular lines at any point are pairs of an elliptic

involution.

4. The lines perpendicular to a line I all meet in the pole of I with respect

to the absolute. Through any point except the pole of I there is one and but

one line perpendicular to I.

5. Defining a ray as a segment whose ends are conjugate with respect to

the absolute, prove that Assumption X, § 66, holds in the single elliptic

geometry if the restrictions be added that A and B are on the same ray.

6. Assumptions XI and XIII of § 66 hold for single eUiptio geometry.

7. How may Assumptions XII, XIV, and XV be modified so as to be valid

for single elliptic geometry ?

8. A circle is a conic touching the absolute in two conjugate imaginary

poims.

9. A circle is the locus of a point at a fixed distance from a fixed line.

10. If A, B, C are three coUinear points,

Dist {A, B) + Dist (BC) + Dist (CA) = ir.

In other words, the total length oi a line is tt.

11. The sum of the angles of a triangle is less than w.
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12. Let K^ be a circle in a ^olidean plane, and let [C^] be the set of

circles which meet K^ in pairs of points on its diameters. An elliptic plane is

determined by defining as " elliptic points " all the Euclidean points interior

to K^ and all the pairs of Euclidean points in which K^ is met by its diameters,

and defining as coUinear any set of elliptic points on a circle C^.

142. Elliptic geometry of three dimensions. The three-dimensional

elliptic geometry is the set of theorems about a three-dimensional

projective space which state properties undisturbed by the projective

collineations leaving invariant an arbitrary but fixed projective polar

system, called the absolute polar system, in which no point is on its

polar plane. It is a direct generalization of the elliptic geometry of

the plane and may be based on a similar set of assumptions.

In a real space this polar system is that of an imaginary quadric

(called the absolute quadric) with respect to which each real point

has a real polar plane, and the equation of the absolute quadric may
be taken to be

2 , 2 , 2 , 2 n

A displacement is defined as a direct* projective coUineation

(cf. § 32) which leaves the absolute polar system invariant ; a sym-

metry is defined as a nondirect projective coUineation leaving the

absolute polar system invariant. The definitions of congruence, per-

pendicularity, distance, etc. follow the pattern of the hyperbolic and

parabolic geometries, and the same method may be used, as in those

geometries, to extend the theorems on congruence from the plane

to space.

It can easily be proved by means of the theorems on the quadric in

Chap. VI that any displacement is a product of two line reflections

whose axes are polar with regard to the absolute. From this proposi-

tion a series of theorems on displacements can be derived, just as in

the paraboKc and hyperbolic geometries.

Through a given point not on a given line I there is no line parallel

to Z in the sense in which the term is used in parabolic or hyperbolic

geometry. There is, however, a generalization of the Euclidean notion

of parallelism to elliptic three-dimensional space which preserves

many of the properties of Euclidean parallelism and is, if possible,

more interesting.

* Without appealing to order relations, the direct collineations may be charac-

terized as those which do not interchange the reguli on the absolute quadric.



374 NON-EUCLIDEAN GEOMETRIES [Chap, viii

Any real line I meets the absolute in two conjugate imaginary points,

and through these points there are two lines p^, p^ of one regulus and

two lines
q^^, q^ of the other regulus. The lines p^, p^ are conjugate

imaginary lines of the second kind (§ 109), and I is one line of an

elliptic congruence of which p^, p^ are directrices. A similar remark

applies to the conjugate imaginary lines q^, q^. Any line of the

elliptic congruences having p^, p^ or q^, q^ as directrices is called

a Clifford parallel* of Z or a paratactic^ of I. Thus there are two

Clifford parallels to I through any point not on I, and Hs a Clifford

parallel to itself.

The two Clifford parallels to any line through any point not on it

may be distinguished as follows : Let R^ and B^ be the two reguli on

the absolute. Two real lines I, m meeting two conjugate imaginary

lines p^, p^ of B^ are right-handed Clifford parallels, or paratactics ; and

two real lines V, mJ meeting two conjugate imaginary lines q^, q^ of

Bi are left-handed Clifford parallels, or paratactics. .

The distinction between right-handed and left-handed Clifford paral-

lels may be drawn entirely in terms of real elements by means of

the notion of sense-class (§ 32), and thus connected with the intui-

tive distinction between right and left. This matter will be taken up

again in the next chapter. In the meantime it may be remarked that

the definition in terms of the two reguK on the absolute is inde-

pendent of all question of order relations and is based on Assumptions

A, E, P alone.

From the definition it follows immediately that if Z is a right-handed

Clifford parallel to m, m is a right-handed Clifford parallel to I ; that

if »« is also a right-handed Cliflford parallel to n,l is & right-handed

Clifford parallel to n. In general, two lines have one and only one

common intersecting perpendicular; but if they are right-handed

Clifford parallels, there is a regulus of common intersecting perpen-

diculars, and the latter are all left-handed Clifford parallels.

The product of two orthogonal line reflections whose axes are

Clifford parallels leaves each line of the congruence of Chfford parallels

perpendicular to the axes invariant, and is called a translation. A

•Cf. Clifford, A Preliminary Sketch of Biquatemions, Mathematical Papers

{Lonclon,1882), p.l81,and Klein, AutographierteVorlesungen fiber nicht-euMidische

Geometrie, Vol. II (GOttingen, 1892), p. 246.

t E. Study, Jahresbericht der Deutschen Matbematikerrereimgung, Vol. XI

(1903), p. 319.
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translation is right-handed owieft-handed according as the congruence

of its invariant lines is right-handed or left-handed. Any displace-

ment can be expressed as a product of two translations.

For a discussion of Clifford parallels and related questions see

Appendix II of the book by Bonola referred to above, F. Klein,

Mathematische Annalen, Vol. XXXVII (1890), p. 544, and the other

references given above in this section.

143. Double elliptic geometry. The geometry corresponding to

the group of projective collineations transforming a sphere S^ in a

Euclidean three-space into itself is called spherical or double elliptic

plane geometry. The sphere 8 is called the double elliptic plane. The

circles in which S^ is met by planes through its center are called lines,

and two figures are said to be congruent if conjugate under the group

of direct projective collineations transforming the sphere into itself.

The plane which is called elliptic in § 141 ,is sometimes called

single elliptic to distinguish it from the double elHptic plane here

described. Since the plane at infinity 7r» of a Euclidean space is a

single elliptic plane, and since each line through the center of S'^

meets S^ in two points and ir^ in one point, there is a correspondence

between a single elliptic plane and a double elliptic plane, in which

each point of the first corresponds to a pair of points of the latter.

By means of this correspondence any result of either geometry can

be carried over into the other geometry.

These remarks can all be generalized to w-dimensions. For a set

of assumptions for double elliptic geometry as a separate science, see

J. R. Kline, Annals of Mathematics, 2d Ser., Vol. XIX (1916), p. 31.

144. Euclidean geometry as a limiting case of non-Euclidean. In

the two-dimensional case we have seen that the equation of the abso-

lute may be taken as

(24) xl+xl-4.rf^xl=Q,

or in line coordinates, as

(25) ^^-^ul+ ul)=Q.

The formulas of hyperbolic geometry arise if 7 is real and not zero,

and of elliptic geometry if 7 is imaginary. If we set c = -—^ = 0,
4 7

(25) may be regarded as the equation of the circle at infinity of the
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Euclidean geometry in the form used in § 72. Moreover, if we set

c = in the formulas of §§ 138 and 141, we obtain

uv+uv
cos = ^-^ "-"

and g=-ilogMi±3^ + ^'faA-^^),

which agree with the formulas of Euclidean geometry given in § 72.

In like manner, if we set c = in the formula for the differential of

distance in § 139, we obtain ds" = du'+ dv'. The generalization of

these remarks to three or n dimensions is of course obvious.

If c changes by continuous variation from a positive to a negative

value, it must pass through zero. Since the corresponding geometry

is elKptic while c is positive, parabolic when c is zero, and hyperbolic

while c is negative, the parabolic geometry is often spoken of as a

limiting case both of elliptic and of hyperbolic geometry.

This point of view is reenforced by observing that the formula (10)

makes the measure of a fixed angle a continuous function of e, so that

for a small variation of c the value given by (10) for 6 suffers a

correspondingly small variation. A like remark can be made about

the distance between a fixed pair of points.

This has the consequence that for a given figure F consisting of a

finite number of points and lines, and for a given number e, a num-

ber S can be found such that if c varies between — S and S, the dis-

tance of point-pairs and the angular measure of line-pairs of F do not

vary more than e. Nevertheless, in this interval of variation qi c the

geometry according to which the distances and angles are measured

changes from elliptic through parabolic to hyperbolic.

For example, if F were a triangle, and the sum of the angles were

found by physical measurement to be between ir + e and tt — e, the

geometry according to which the measurements were made might

be either parabolic, hyperbolic, or elliptic. Further refinements of

experimental methods might decrease e, but according to current

physical doctrine could not reduce it to zero. Hence, while experi-

ment might conceivably prove that the geometry at the bottom of

the system of measurements was elliptic or hyperbolic, it could not

prove it to be parabolic.
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For the details of showing that the Euclidean formula for distance is

a limiting case of the non-Euclidean formula, see Clebsch-LLndemann,

loo. cit., Vol. II, p. 530.

145. Parameter representation of elliptic displacements. Suppose

the coordinate system so chosen that the equation of the absolute is

•^0 *!" "^1 "I i^a "I" "^8 ^^ ^'

The projective collineations which leave the lines of a regulus on

the absolute invariant have been proved to have matrices of the form

(50) or (51) in § 126. Let B^ be the regulus on the absolute left in-

variant by the transformations of type (50), and -E| that left invariant

by those of type (51). The transformations of type (50) are the

translations leaving systems of right-handed Clifford parallels in-

variant, and those of type (51) the translations leaving systems of

left-handed Clifford parallels invariant.

Since any transformation leaving the quadric invariant is a product

of one leaving the lioes of H^ invariant by one leaving the lines of

B^ invariant, any displacement is a product of a transformation of

type (50) by one of type (51). Denoting (50) by A and (51) by B,

the matrix A of any displacement can be written

IJo ^r ^

\-^ ^ -^

\-/3,«o-M+^A-^o«s -^8«^i+^A-M-/3„S

M- ^1«3+/3A+ /38«1 ^0^+ ^1«^.-^A+ ^3«o\

If A'= B'A' is the matrix of a second displacement, and B' and J!

are of the types (50) and (51) respectively,

(27) A'- A =B'A'BA= B'B • A'A,

because any displacement leaving aU lines of B^ invariant is com-

mutative with any displacement leaving all lines of -K| invariant.

/3A
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Thus any displacement

<= Vo+ «ii^i+ «iaa:2+ aiaS's,

•"a
'^

'"so'^o "t" *ai'''i "I" *82'^2 "I" *8B'''a

is given parametrically in terms of two sets of homogeneous parameters

a^, a^, a^, a^ and /3^, /S^, yS^, /S^ by means of the formulas obtained

l.y equating a^ to the corresponding element of the last matrix in

Equation (26).

The formulas for the parameters of the product of two displace-

ments are determined by (27), for if A" = 5"^"= A'A, then B"=B'B
and A" = A'A, and hence

«o = «o«o- K<^1- «2«2- «a«8.

< = «X+ «{«2- «2«i+ o^a^o

.

The formulas for the a's are, by § 127, the same as for the multi-

plication of quaternions, and the formulas for the ;8's are given by

the following quaternion formula:

{fi[- ^[i - $'j-m (/3„ - A* - 13
J- /3,^)

=

^':- /S'it - ^','j-^k

Now let\ and \ be two symbols defined by the multiplication table

(31)

and the conditions X^q = q\, X^q = qX^, where q is any quaternion.

If we write

(32) [\{a',+ a!J, + a'J+a'Jc) + X.M-^[i-^'J-^'M
. [\{a,+ a,i + aJ + ajc)+ X,{0,-^i - ^J-^M i

= \,«'+ a'^i + a'^j+ a'^h)+ \,(/3; - ^'^i - /3,"y - ^'^h),

the a"'s and /3"'s are given in terms of the a's, )8's, a''s, and /8"s by

the equations (29) and (30).
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The number system whose elements are \qi+ ^.jS'j,
where g^ and q

are quaternions, is one of the systems of biquaternions referred to in

the footnote of § 130. It is often given a form which may be derived

as follows

:

Let

(33)

«i=\+\> \=

«i—\—\> \=
2

then fij and e^ obey the multiplication table

(34)

and we have
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The 7's and 8's given by (36) may be regarded as a new set of

parameters for the elliptic displacements. Since the a's and /8's are

separate sets of homogeneous variables, they may be subjected to

the relation

(37) < +< + < + < =/8„''+ /8,^+/3,»+y8,^.

By means of (35) the relation (37) becomes

(38) 7„«„+7A+'yA+'y3S»=o.

The formulas for the coefficients of a displacement (28) in terms

of the new parameters are found by substituting

a ='y 4- B . a= ly+S, a= y + S , a= y + S .'0 ' 0' 1 '1 ' 1' S '2 ' 2' S '8^^ 8'

^o='y„-8„, ^x=-7,+ Si. ^,= -7,+ S„ ^3= -7,+ S,

in the formulas for a^ in terms of the a's and /8's. In other words, the

matrix of the displacement corresponding to (7^ 7^, 7;,, 7, ; 8^, 8j, S^, S^) is

7o-7x] \K fa fo ^.

7i 7„' \K-K ^ ^-

7i 7» 7s'

70-7,
78 7„ -7il
7, 7i 7„/

and the formulas for the composition of two displacements are (36).

EXERCISE

The elliptic displacements are orthogonal transformations in four homo-

geneous variables. Work out the parameter representation determined by

the formula R = (1-S)0.+ S)-i

of § 125.

146. Parameter representation of hyperbolic displacements. Let

the equation of the absolute be taken in the form

(39) <

+

fi^ {xl+ x^+ xl)= 0.

If /* is real, the corresponding geometry is elliptic; and if /* is a

pure imaginary, the corresponding geometry is hyperbolic. No gener-

ality is lost by taking /i = 1 (as in the section above) for the elliptic

case and /* =V— 1 in the hyperbolic case. For the sake of the limit-

ing process referred to at the end of the section, we shall, however,

carry out the discussion for an arbitraiy /*.
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By precisely the reasoiiing%sed in § 126 it is seen that any colline-

ation leaving one regulus on the absolute invariant has the matrix

/ :

M^i t^% Ma,

A=

--a

1

1

«8\

and any colliueation leaving the other regulus invariant has the matrix

/S„
/^^i /^^, l^^\

ft I

Hence any displacement has a matrix BA. In other words, if

«0S= /^ (^0*8+^A-^A+ ^8«o)'

«u= -^i«^i+ ^o««+ ^8«^a+ /3A.

«18= -^A+/3o'^2-^8«X-^2«0'

«21=-^2«l-^8«0+^0«8-^A.

a„.=— iS.a.— )8„a„—Ba +Bm,
28 '^2 8 '^8 2 '^0 1 ' '^l 0'

«.0=-^(^.«O+ /32«X-^X«2+ /3„«8).

«81=-/38«i+ ^2«Q-/3ia8-^0«2.

«82=-^8«2-^2«8-^l«0+ ^0«l'

«88= -/38«8+ ^2«2+ /3t«l+ ^0«O'

the transformation (28) is a displacement.
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As we have already seen in the elliptic case, if £ and B' are

matrices analogous to A and B,

B'Al -BA^B'B.A'A.

Hence the product of two displacements BA and B'A' is a displace-

ment 5"^" such that ,„ „ ,A"= A'

A

and B"= B'B.

On multiplying out the two matrix products A'A and B'B, it

is evident that the elements of A" and B" are given by the

formulas (29) and (30) found above for the elliptic case. These

formulas are associated with the biquaternions determined by the

table (31).

The remark must now be made that if /i =V— 1, the parameter

representation above does not give real values of a^ for real values of

the a's and /8's. Suppose, however, that we transform the biquater-

nions
\g'i-|- \q2 ^s foUows

:

e=n(\-\), \=:^?SZL!2.

Then e^ and e^ obey the multiplication table

(41)
,

and we have 2 ft (\q^+ \q^)= (fie^+ e^) q^+ (fie^- e^ q^

or \{a^+ a^i+aJ+ aJc)+\{^-^^i-^J-^Jc)

=
«i (7o+ 7i* + 'ij+ yjc) +e^{S^+ S^i + 8J + SJc).
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The rule for multiplying Mquaternions

= l^^iy'o+ y[i + y'J + <k) + e^ {^ + h[i + s!j+ 8^k)]

• [«i (7o+ 7i» + yj + 78^) +%{K + ^1* +V + ^8*)]»

according to (41), gives the following equations

:

7i'= 7^7o- 7i'7i- 7^72- 7^7=+ H-'iK^- ^i^- S^S.- K^),

7i'= 7^7i+ 7{7o+ 7^7s- y^%+ P'\K^+ ^K+ K^-K^),
7^'= 7^7.- 7i7s+ 7^7o+ 7^7i+ f^'iK^- S'A+ K^+ K^,),

U3)
'^'^ '^»'^»+ 'y^'^»~ ^^'^^+ '^«'^»+ '""(^"^"^ ^^^=~ ^^^^+ ^'^o^'

^ ' S;' = 7^ So - 7{8x - 7^8. - 7^8, + 6i7„- 8(71- Ky.- S^7..

«(' = 7^81 + 7i'So + 7^S, - 7^8, + 8^7,+ S{7„+ 8^73- 8^7,,

«;' = 7^82 - 7{83+ 7i8„ + 7^8, + 8„'7,- 8;73+ 8^7„+ 8^7,,

S;' = 7o'S, + 7.' 8, -7^8, + 7^8„ + 8^73+ 8,'7,- S;,y,+ S^y,.

For (1 = these equations reduce to (64) and (65) of § 1,30, and

for (1^=1 they reduce to (36). For fi'= — l they give the standard

formulas for combining hyperbolic displacements. Thus there are

three essentially distinct systems of biquaternions, determined respec-

tively by the conditions /*''= 1, /x^= — 1, /^ = 0. The first corresponds

to the elliptic, the second to the hyperboKc, and the third to the

parabolic geometry. The geometry in each case is determined by an

absolute whose equation in point coordinates is (39), and in plane

coordinates,

(44) mX + w' + < +< = «.

Since the same geometry corresponds to any two real values of fi,

there must be a simple isomorphism between any two systems of

biquaternions corresponding to positive values of /*"; and a like state-

ment holds with regard to the systems of biquaternions corresponding

to negative values of /*". The biquaternions for which jti = may
be regarded as a limiting case between those for which /i^ is positive

and those for wliich /j? is negative, just as the parabolic geometry is

regarded as a limiting case between the hyperbolic and elliptic (§ 144).

In these remarks it is understood that the coefficients 7^, 7^, 7^, 7^^

K' K> ^2' ^8 ^^® always real. From the geometrical discussion above

it is clear that if these coefficients were taken as complex, the
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biquatemions for which im^=1 would be isomorphic with those for

which /i''= — 1.

The multiplication table (41), in case fi'^= — l,ia satisfied if we take

ej= 1 and e^= ^—l. Hence the biquatemions with real coefficients,

«i(7o+ 7i* + 7^; + 78*)+ «2(So+ Ki+Kj + ^/).

are equivalent, in case fi''= — l, to the quaternions with ordinary-

complex coefficients,

The biquatemions for which /^ = 0, when taken with complex

coefficients, may be regarded as a number system of sixteen units

with real coefficients. This is the number system (§ 130) which

is needed to study the displacements in the complex Euclidean

geometry, and it may be regarded as containing the other systems

of real biquatemions.



CHAPTER IX

THEOREMS ON SENSE AND SEPARATION

147. Plan of the chapter. The theorems and definitions of

Chapter II are for the most part special cases of more general

concepts of Analysis Situs. The present chapter develops these

ideas further, so that the two chapters together lay the founda-

tion for the class of theorems wliich are particularly of use in

the application of geometry to analysis, and vice versa.

In most of the chapter attention is confined to theorems which

can be proved without the use of the continuity assumptions (C, R).

Many of the theorems are proved on the basis of A, E, S alone and

others on the basis of A, E, S, P.

In the first sections (§§ 148-153) of this chapter we prove some

of the general theorems about convex regions. These are followed

(§§ 154-157) by the definitions of some very general concepts, such

as curve, region, continuous group, etc. It will not be necessary (or

possible in the remaining pages) to develop the corresponding gen-

eral theory to any considerable extent. Nevertheless, these general

notions underlie and give unity to the rest of the chapter, which

may in fact be regarded as a study of certain continuous families of

figures by special methods.

In §§ 158-181 the theory of sense-classes is developed in consid-

erable detail for the various cases considered in earlier chapters and

for other cases, the principal idea involved being that of an ele-

mentary transformation. Finally (§§ 182-199), we prove the funda-

mental theorems on the regions determined in a plane by polygons

and in space by polyhedra.

148. Convex regions. Theorem 1. If I is a line coplanar with a

triangular region R and containing a point of R, the points of ^ on I

constitute a segment.

Proof. A line coplanar with a triangle and not containing more

than one vertex meets the sides of the triangle in at least two and

at most three points. These points, by § 22, are the ends of two or

885
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three segments. By Theorem 20, Chap. II, the points of any one

of these segments are in the same one of the triangular regions deter-

mined by the triangle, and two points in different segments are in

different triangular regions.

COEOLLARY. The points common to a tetrahedral region and a line

containing brie of its points constitute a linear segment.

Proof: A line not on one of the planes of a tetrahedron meets

these planes in at least two and at most > four points. The rest

of the argument is the same as for the theorem above, replacing

Theorem 20, Chap. II, by Theorem 21 of the same chapter.

Convex regions on a line have been defined and studied iu § 23.

Definition. A set of points in a plane is said to be a two-dimen-

sional (or planar) convex region if and only if it satisfies the follow-

ing conditions : (1) Any two points of the set are joined by an

interval consisting entirely of points of the set, (2) every poiut of the

set is interior to a triangular region containing no point not in the set,

and (3) there is at least one line coplanar with and not contaiaing

any point of the set.

A triangular region, a Euclidean plane, and the interior of a conic

are examples of planar convex regions.

Theorem 2. If I is a line coplanar with a two-dimensional convex

^region R and containing a point of R, the points of R on I constitute

a linear convex region.

Proof. The definition of a linear convex region is given in § 23.

That the points of R on Z satisfy (1) of that definition follows directly

from (1), of the definition of a planar convex region. To prove (2) that

any point P of R on Z is interior to a segment of points of R on I,

we observe that by (2) of the definition of a planar convex region

P is interior to a triangular region consisting entirely of points of R

and that by Theorem 1 the points common to I and this triangular

region are a linear segment. Condition (3) of the definition of a

linear coiivex region is satisfied by the points of R on ^ because I

contains one point of the line coplanar with R and not Containing,

any point of R.

Definition. A set of points in space is said to be a three-dimen-

sional (or spatial) convex region if and only if it satisfies the foUowing

conditions : (1) Any two points of the set are joined by an interval
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consisting entirely of points of the set, (2) every point of the set is

interior to a tetrahedral region containing no points not in the set,

and (3) there is at least one plane containing no point of the set.

A tetrahedral region, a Euclidean space, and a hyperbolic space are

examples of three-dimensional convex regions.

Theoeei^ S. If a line I contains a point of a three-dimensional

convex region R, the points of R on I constitute a linear convex region.

The proof of this theorem follows the same lines as that of Theo-

rem 2, the corollary of Theorem 1 being used instead of Theorem 1

in showing that the points of i in R satisfy Condition (2) of the

definition of linear convex region.

In consequence of Theorems 2 and 3 the definitions (between,

precede, ray, sense, etc.) and theorems of § 23 are applicable to col-

Unear sets of points in two- and three-dimensional convex regions.

In the rest of this chapter the segment AB where A and B are in a

given convex region R always means the segment AB of points of R.

Theorem 4. If ABC are three noncollinear points of a convex

region R, D a point of R in the order {BCD}, and E a point of R

in the order {CEA), there exists a point F of R in the orders {AFB}

and {DEF}.

Proof Let F be defined as the point of intersection of the lines

DE and AB (fig. 77, p. 351). By (3) of the definition of a two- or

three-dimensional convex region there is a line L coplanar with A, B,

and C and containing no point of R. Hence L does not meet any of

the segments AB, BC, CA. Hence (Theorem 19, Chap, II) the line

DE which meets the segment CA an,d does not meet BC must meet

AB. Hence {^F'-B}.

The line Z„ does not meet any of the segments FB, BD, DF, and

the line ^C meets the segment BD and does not meet the segment

BF. Hence AC meets the segment DF. Hence {DEF}.

Theorem 5. A three-dimensional convex region R satisfies As-

sumptions I-VIII of the set given for a Euclidean space in § 29.

Proof. Assumptions I, II, III, V, VIII are direct consequences of

Theorem 3 and the theorems of § 23. Assumptions VI and VII are

consequences of Condition (2) of the definition of a three-dimensional

convex region. Assumption IV is a consequence of Theorem 4.
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The theory of order relations in convex regions can be based en-

tirely on Theorem 5. This amounts to developing the consequences

of Assumptions I-VIII of § 29. Since both the Euclidean and the

Ivyperbolic spaces satisfy these assumptions, this method of treating

convex regions is of considerable interest from the point of view of

foundations of geometry (cf. references in § 29). The methods required

to prove the theorems on this basis are but little different from those

used in the next section.

Corollary. In a real projective space a convex region also satisfies

Asswmption XVII of § 29.

EXERCISES

1. The set of all points common to a set of convex regions which are all

contained in a single convex region is, if existent, a convex region. (In other

words, the logical product of a set of convex regions contained in a convex

region is a convex region.)

2. Prove on the basis of Assumptions I-VIII of § 29 that for any set of

points Pj, Pj, • •, P„, finite in number, there is a line I such that P^, Pj, • • •, P„

are all on the same side of /.

*3. A set of points in a projective kpace such that any two points of the

set are joined by one and only one segment consisting entirely of points of the

set and such that every point of the set is interior to at least one tetrahedral

region consisting entirely of points of the set, is a convex region.

*4. Study the set of assumptions for projective geometry consisting of

A, E and the assumption that in the projective space there is a set of

points satisfying the Assumptions I-VIII, XVII for a convex region.

149. Further theorems on convex regions. Theorem 6. If A,B,C

are three noncollinear points of a convex region R, they are the

vertices of one and only one triangular region consisting entirely of

points of R. This triangular region consists of all points on the

segments joining A to the points of the segment BC.

Proof. By Theorem 4 a line joining -B to a point of the segment

CA meets a segment joining A to any point A^ of the segment BC;

and by the same theorem any point of the segment AA^ is joined

to 5 by a line meeting the segment CA. Hence the set of points

[P] on the segments joining A to the points of the segment BC
is identical with the set of points of intersection of lines joining A
to points of the segment BC with lines joining B to points of the

segment CA. By similar reasoning [P] is the set of points of inter-

section of lines joining A to points of the segment BO with lines
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joining G to points of the segment AB. The points [P] form a

triangular region because they are all the points not separated from

a particular P by any pair of the three lines AB, BC, CA.

The other three triangular regions having A, B, C as vertices

contain points of the line which by (3) of the definition of a convex

region is coplanar with ABC and contains no point of R. Hence

[P] is the only triangular region satisfying the conditions of the

theorem.

In the rest of this section the triangular region determined by

three noncolUnear points A, B, oi a, convex region R according to

Theorem 6 shall be called the triangular region ABC. It is also

called the interior of the triangle ABC.

Corollary. If ABCD are four noncoplanar points of a convex

region R, they are the vertices of one and only one tetrahedral region

consisting entirely of points of R. This tetrahedral region consists of

the segments of points of R joining A to points of the triangular

region BCD.

Proof. Let [a] be the set of segments joining A to points of the

triangular region BCD and [P] the set of all points on the segments

[a]. Any F is also on a segment joining ^B to a point of the tri-

angular region ACD, as is seen by applying the theorem above to

the figure obtained by taking a section of the tetrahedron ABCD
by the plane ABP. In like manner any P is on a segment joining

C to a point of the triangular region DAB, and on a segment join-

ing Z) to a point of the triangular region ABC.

The same argument shows that any point of intersection of a

line joining ^ to a point of the triangular region BCD with a line

joining 5 to a point of the triangular region CAD is in the set

[P] and that every P is a point of this description. From this it

follows that [P] contains aU points not separated from a particular

P by the faces of the tetrahedron ABCD. Hence by Theorem 21,

Chap. II, [P] is a tetrahedral region.

Any tetrahedral region having ABCD as vertices and distinct

from [P] contains points not in R, because it either contains points

on the segments complementary to [a] or on the lines joining A
to the points of the triangular regions different from BCD in the

plane BCD.
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Theorem 1. If a plane tr contains a point of a three-dimensional

convex region R, the points ,of R on ir constitute a planar convex

region.

Proof. The points of R on tt satisfy Conditions (1) and (3) of

the definition of a planar convex region because R satisfies Con-

ditions (1) and (3) of the definition of a three-dimensional convex

region. To prove that the points of R on tt satisfy (2) of the defini-

tion of a planar convex region, let P be a point of R on tt and I a

line on P and tt. By Theorem 3 there are two points A, A^ of R

on I such that the segment APA^ is composed entirely of points of R.

Let a be a line on A^ and tt but distinct from I. By the same

reasoning as before there are two points P, C of R on a such that

the segment BA^G is composed entirely of points of R. By Theorem 6

the triangular region having A, B, C as vertices and containing P
contains no points not in R. Hence the points of R on tt satisfy

Condition (2) of the definition of a planar convex region.

Theorem 8. If I is any line coplanar with and containing a

point of a planar convex region R, the points of R not on I con-

stitute two convex regions such that the segment joining any point

of one to any point of the other meets the linear convex region which

I has in common with R.

Proof. By definition there is a line m coplanar with R and con-

taining no point of R. By Theorem 18, Cor. 1, Chap. II, all points

of the plane not on I ov m fall into two classes [0] and [P] such

that (1) two points 0, P of different classes are separated by I and

m and (2) two points of the same class are not separated by I and

m. The region R contains points of both of these classes. For let /

be any point of R on I. By Theorem 2 any line through / coplanar

with R and distinct from I contains a segment of points of R of

which I is one point. If A and B are two points of this segment

in the order {AIB}, A and B are separated by I and m and also

are points of R. Hence there exist two mutually exclusive classes

[0'] and [P'], subsets of [0] and [P] respectively, which contain

all points of R not on I.

Since any 0' and any P' are separated by I and m and no

segment (yp' contains a point of m, every segment O'P' contains

a point of I.
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Since two points of the sagne class ([0'] or [P']) are not separated

by / and m, and since the segment joining them does not contain

a point of m, it does not contain a point of I.

It remains to show that any point of either of the classes, say

[0'], is interior to a triangular region consisting entirely of points

of this class. Let p be any line on a point 0' and coplanar with R.

Let 0[ and 0[ be two points of R on ^ in the order {OjO'Cj} and

such that the segment O'^O^^ does not contain a point of I. Let q be

any line distinct from p, coplanar

with R and on 0[, and let 0[, 0[

be two points of R on g' in the

order {0'fi[0'^ and such that the

segment O5O4 does not contain a

point of I. By Theorem 6 there

is a unique triangular region with

0[, 0[, 0\ as vertices consisting

only of points of R and containing

all points of the segment O'^O^.

Since I does not meet any of the

segments Cfp^, 0\0'^, 0\0\, it can-

not meet any segments joining

Oj to a point of the segment 0'^0\ (Theorem 4). Hence the

triangular region 0\0\0\ consists entirely of points of [0'].

CoEOLLAEY 1. If -IT IS any plane containing a point of a three-

dimensional convex region R, the points of R not on nr constitute

two three-dimensional convex regions such that the segment joining

any point of one to any point of the other meets the planar convex

region which ir has in common with R.

Proof. The proof is a strict generalization of that of the theorem

above to space, using the corollary of Theorem 6 instead of

Theorem 6.

CoEOLLAEY 2. For a given line I (or plane tt) and a given convex

region R, there is only one pair of regions of the sort described in

Theorem 8 (or Cor. 1).

Proof. If is any point of R not on I, the class containing must

include all points joined to by segments not meeting I. Hence it

must be identical with one of the classes given by the theorem.

Fig. 80



392 THEOREMS ON SENSE AND SEPARATION [Chap.ix

Definition. The two convex regions determined according to

Theorem 8 by a line in a planar convex region are called the sides

of the line relative to the convex region. The two convex regions

determined according to Cor. 1 by a plane in a convex region are

called the two sides of the plane relative to the convex region.

Definition. Two sets of points [P], [^] in a convex region or

in a projective plane or space are said to be separated by a set [^S] if

every segment of the convex region or of the projective plane or

space which joins a P to a Q contains an S.

EXERCISE

Given two lines containing points of a convex region but intersecting in a

point P outside the region. Construct the line joining P to a point Q in the

region by means of linear constructions involving only points and lines in the

region. Cf. Ex. 4, § 20, Vol. I.

150. Boundary of a convex region. Definition. A point P is a

boundary point of a set of points [P] if every tetrahedral region

containing B contains a point P and a point not in [P]. The set

of all boundary points of [P] is called the boundary of [P].

Theorem 9. All boundary points of a set of points on a line

I are on I. All boimdary points of a set of points on a plane

"TT are on tt.

Proof. If § is a point not on a line I, any tetrahedron one of whose

faces contains I and none of whose faces contains Q wiU determine

a tetrahedral region (§ 26) which contains Q and does not contain

any point of I. Hence Q is not a boundary point of any set of points

on I. A like argument proves the second statement in the theorem.

CoKOLLAEY 1. A boundary point B of a set of points [P] on a

line I is any point such that any segment of I containing B contains

a P and a point not in \P\

Corollary 2. A boundary point B of a set of points [P] on a

plane ir is any point such that any triangular region of tr contain-

ing B contains a P and a point not in [P].

Theorem 10. Let a he the convex region common to a line I and a

planar convex region R and let Rj and R^ be the convex regions

formed by the points of R which are not on cr. The boundaries of R^

and of R contain a and all boundary points of c Each boundary
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,point of R is a bounda^ point of R^ or of R^, and each

boundary point of R^ or of R^ which is not on I is a boundary

point of R.

Proof. If Q is any point of a, and m a line on Q coplanar with

Rj and distinct from I, any segment of m containing Q contains

points both of R^ and of R^. Since any triangular region contain-

ing Q contains a segment of m containing Q, it contains points

both of Rj and of R^. Hence ^ is a boundary point both of R

and of R^. If -B is a boundary point of cr, any triangular region

containing B contains a point Q of a, and hence, by the argument

just given, contains points both of R^ and of R^. Hence ^ is a

boundary point both of R^ and of R^.

Let ^,be a boundary point of R. Any triangular region T con-

taining A contains at least one point not in R^ or R^^, namely, A
itself. Since ^ is a boundary point of R, T contains at least one

point of R, which may be in R^ or in R^ or in <r. In the latter

case T contains points of R^ and R^ both, by the paragraph above.

Hence in every case T contains points of R^ or R^. If every trian-

gular region containing A contains points of R^ and of R^, ^ is a

boundary point of both R^ and R^. If this does not happen, some

triangular region T^ containing A contains points of one of R^ an,d

Rjj (say RJ and not of the other. Any triangular region T contain-

ing A then contains points of R^ because by an easy construction

we obtain a triangular region T' containing A and contained in

both T and T^; and since T' contains A, it contains points of R,

which because they are in T^ must be points of R^. Hence ^ is a

boundary point of R^.

Let C be a boundary point of R^ which is not on I. Any trian-

gular region T containing C contains points of R, because it contains

points of Rj. It also contains points not in R^. One of these points

is not in R unless T consists entirely of points of R^, R^, and .1.

If the latter case should arise, since C is not on Z a triangular

region T' could be constructed containing C, interior to T, and not

containing any point of I. T' then would contain points of both R^

and Rg and hence would contain a segment joining a point of R^ to

a point of R^; which segment, by Theorem 8, would contain a point

of I, contrary to hypothesis. Hence T contains points not in R, and

C is a boundary point of R.
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CoKOLLAEY. Let a be the convex region common to a plane ir and

a three-dimensional convex region R, and let R^ and R^ be the convex

regions formed by the points of R which are not on ir. The boundaries

of Rj and R^ contain a and all boundary points of a. Each boundary

point of R is a boundary point of R^ or of R^, and each botmddry point

of Rj or of Rj which is not on tt is a boundary point of R.

It is to be noted that we have not proved that a convex region

always has a boundary. Of. Ex. 7, below.

EXERCISES

1. Ji A and B are two points of the boundary of a convex region R, one of

the segments joining them consists entirely of points of R or entirely of points

of the boundary of R.

2. A line has no points, one point, two points, or one interval in common
with the boundary of a convex region.

3. If a segment consists of boundary points of a given set, its ends are also

boundary points.

4. Using the notation of Theorem 10, no point of I not in o- or its bound-

ary can be a boundary point of R. Hence if P is a point of a two- or three-

dimensional convex region R, and B a boundary point of R, the points P and

B are joined by a segment consisting entirely of points of R.

5. Using the notation of the corollary of Theorem 10, no point of ir not in

ir or its boundary can be a boundary point of R.

6. Using the notation of Theorem 10, if R and its boundary are contained

in another convex region R', then no point of the boundary of Rj not on o- or

its boundary can be on the boundary of R^.

7. Give an example of a space containing a convex region which has no

boundary.

8. A ray whose origin is in the interior of a triangle meets the boundary

of this triangular region in one and only one point.

*9. Let be an arbitrary point of a Euclidean plane, and R,, an arbitrary

convex region containing and having a boundary which is met in two

points by every line which contains a point of R„. Let any set of points into

which the boundary of R„ can be transformed by a homothetic transforma^

tion (§ 47) be called a circle. Let the point to which O is transformed by the

homothetic transformation which carries the boundary of R^ into any circle

be called the center of this circle. Let two point-pairs AB and A'B' be said

to be congruent if and only if there is a circle with A as center and passing

through B which can be carried by a translation into one with A' as center

and passing through B'. The geometry based on these definitions is analo-

gous to the Euclidean plane geometry. Develop its main theorems. Cf. the

memoir of H. Minkowski by D. Hilbert, Mathematische Annalen, Vol. LXVUI
(1910), p. 445.
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151. Triangular regions, ^he theorems of the last sections can

be used to complete the discussion of the regions determined by a

triangle. We shall continue to use the notation of § 26 and shall

denote the sides AB, BC, CA by c, a, and J respectively. The points

of the plane which are not on a form a convex region, of which a

is the boundary. By Theorem 8 the points not on a or 6 fall into

two convex regions, of each of which a and 6 together (by Theorem 10)

constitute the boundary. The line c meets a and 6 in the points B
and A respectively and hence has the segment 7 in common with

one of the regions and 7 in common with the other. By Theorem 8

the region containing 7 is separated into two convex regions, each

having 7 on its boundary, and the other into two, each having 7 on

its boundary. Thus the three lines a, b, c determine four planar

convex regions which are identical with the four triangular regions

of Theorem 20, Chap. II. Since the lines enter symmetrically, each

of the segments a, yS, 7, a, ^, 7 is on the boundary of two and only

two of the triangular regions.

The three vertices A, B, C are on the boundaries of all four tri-

angular regions, because every point of the plane can be joined to

these three points by segments not meeting the lines a, b, c. No point

not on a, b, or c can be a boundary point of any of the triangular

regions, because such a point is an interior point of one of them.

Since any line m which meets one of the four planar convex regions

meets it in a segment the ends of which are the only points of m
on the boundary, the three segments which bound one of the four

triangular regions cannot be met by the same line. The boundaries

of the four regions therefore consist respectively (cf. fig. 16) of the

vertices of the triangle, together with

a, /3, 7 for Region I,

a, /S, 7 for Region II,

a, 13, 7 for Region III,

a, /3, 7 for Region IV.

In addition to what has already been stated in Theorem 2, the

discussion above gives us the following information:

Theorem 11.-4 triangular region is bounded by the three vertices

of the triangle, together with three segments joining them which cannot

all be met by a line.
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If AOB and AFC are two noncollinear segments they may be

denoted by a and /3. The two segments whose ends are B and C
may be denoted by 7 and y, 7 being the one met by the line OP.

As we have just seen, a, /8, and 7, together with the vertices of the

triangle, are the boundary of a convex region, and there is one and

only one of the four convex regions of whose boundary a and /S

form part. Hence

Theokem 12. For any two noncollinear segments a, /8 having a

common end there is a unique triangular region and a unique seg-

ment 7 such that a, 13, and 7, together with the ends of a and /8, form
the boundary of the triangular region.

Corollary 1. On any point coplanar with but not in a given

triangular region T, there is at least one line composed entirely of

points not in T.

Corollary 2. The triangular region determined according to

Theorem 12 by two noncollinear segments CB'A and CA'B consists

of the points of intersection of the lines joining B to the points of the

first segment with the lines joining A to the points of the second segment.

The complete set of relations among the points, segments, and tri-

angular regions determined by three noncollinear parts A, B, C may
be indicated by the following tables,

H,
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EXERCISES

1. The lines polar (§ 18, Vol. I) with respect to a triangle ABC to the

points of one of the four triangular regions determined by ABC constitute

one of the four sets of lines determined by ABC, according to the dual of

Theorem 20, Chap. II. The points on these lines constitute the set of all points

coplanar with but not on the given triangular region or its boundary.

2. Divide the lines of the plane of a complete quadrangle into classes

according as the point pairs in which they meet the pairs of opposite sides

separate one another or not. Apply the results to the problem ; When can a

real conic be drawn through four given points and tangent to a given line?

Dualize.

152. The tetrahedron. The discussion in § 151 generalizes at once

to space. Let us use the notation of § 26. The points not on a^ con-

stitute a convex region of which a^ is the boundary. By Theorem 8,

Cor. 1, the 'points not on a^ and a^ constitute two convex regions, of

each of which, by Theorem 10, a^ and a^ form the boundary.

The plane a^ has points in each of the three-dimensional convex

regions bounded by a^ and a^ and hence by Theorem 7 has a planar

convex region ia common with each of them. By Theorem 8, Cor. 1,

each of these planar convex regions separates the spatial convex re-

gion in which it lies into two spatial convex regions, of each of which

(Theorem 10, Cor.) it forms part of the boundary. Thus the points

not on a^, a^, a^ form four spatial convex regions. Since any plane

not on A, meets or,, a, and «, in a triangle, it meets each of these

four spatial convex regions in a triangular region. Thus, since the

planes a^, a^, a^ enter symmetrically, we have

Theokem 13. Definition. Three planes a^, a^, a^ meet by pairs

in three lines, and each pair of these lines lounds two planar convex

regions. The points not on a^, a^, and a^ form four spatial convex

regions (called trihedral regions) each hounded hy the three lines and

three of the planar convex regions. The relations among these regions

are fully represented hy the matrices of § 151 if the three lines are

denoted hy A, B, C, the planar convex regions hy a, /8, 7, a, ^, y, and

the three-dimensional regions by I, II, III, IV.

Each of the four spatial convex regions determined by a^, a^, a^

is met by a^ in a triangular region and separated by it into two

convex regions each of which is partially bounded by the triangular

region. Hence the points not on a^, a^, a^, a^ form eight convex
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spatial regions which must be identical with the tetrahedral regions

of Theorem 21, Chap. II. Since the planes a^, a^, a^, a^ enter sym-

metrically, there are sixteen triangular regions each of which is on

the boundary of two and only two three-dimensional regions ; and,

moreover, each tetrahedral region has one and only one triangular

region from each of the four planes on its boundary.

Since any point not on a^, a^, a^, a^ can be joined to any of the

points A^, A^, A^, A^ by a segment not containing any point of

*i' *2' "^3' °^
^i>

*'^® points Jj, A^, A^, A^ are on the boundary of all

eight tetrahedral regions; and by similar reasoning each segment

which bounds a triangular region also boimds each of the tetrahedral

regions bounded by thq triangular region.

Theorem 14. The boundary of a tetrahedral region consists of its

four vertices, together with four triangular regions and the six seg-

ments hounding the four triangular regions and hounded ly the four

vertices.

Corollary. Three noncoplanar segments having a common end are

on the boundary of one and only one of the tetrahedral regions having

their ends as vertices.

The complete set of relations among the points, segments, triangular

regions, and tetrahedral regions (Jeterniined by A^, A^, A^, A^ may be

indicated by three matrices analogoiis to those employed in § 151.

That the points A^ and Aj are ends of the segments o"^ and a-, is

indicated in the first matrix, a "1" in the ith row and yth column

signifying that the point whose name appears at the beginning of

the ith row is an end of the segment whose name appears at the

top of the yth column, and a " " signifying that it is not.

H, :

The four triangular regions in the plane a,.(i = l, 2, 3, 4)

determined by the lines in which the other three planes meet

ttf may be denoted by r^y Tjj, t,.,, t^^. Applying the results of
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§ 151 to each plane we ]p,ve the foliowing matrix, in which a

"1" or a "0" appears in the ith row and yth column according

as the segment whose name is at the beginning of the ith row

is or is not on the boundary of the triangular region whose

name is at the top of the yth column.

H,
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§ 26. Thus, for example, T, is the region on whose boundary are the

segments a^^, a^, <r^^, a^^, a^, <t^.

H,:
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exclusive sets R^, • • -, Rj^^jiuch that any two points of the same set

are joined by a segment of points of the set and that any segment

joining two points not in the same set contains at least one point

on an (n — l)-space of the (n + l)-point. Any one of the sets

Rj) • • *> '^2» is called a simplex or n-dimensional segment.

Thus the simplex is a generalization of the linear segment, trian-

gular region, and tetrahedral region. By replacing triangular and

tetrahedral regions by simplexes throughout §§ 148-152 we obtain

immediately the theory of m-dimensional convex regions. A like proc-

ess applied to §§ 154-157, below, gives the theory of w-dimensional

connected sets, regions, continuous families of sets of points, con-

tinuous families of transformations, continuous groups, etc. "We

leave both series of generalizations to the reader.

154. Curves. Definition. Let [T] be the set of all points on

an interval T^T^ of a line I. A set of points [P] is called a con-

tinuous curve or, more simply, a curve, if it is in such a correspond-

ence r with [T] that

(1) for every T there is one and only one P such that P =T (T)
;

(2) for every P there is at least one 2' such that P=T (T)

;

(3) for every T, say T', and for every tetrahedral region R con-

taining T(T'), there is a segment cr of ^ containing T' and such

that for every Tin o", r(T) is in R.

A curve is said to be closed if T{T^)=T{T^). It is said to be

simple if T can be chosen so as to satisfy (1), (2), (3) and so that if

T'=^T", T{T')-f= T{T") unless the pair T'T" is identical with the

pair 1\T^.

The point T{T) is said to describe the curve as T varies. The

curve is said to join the points ^{T^ and T{T^.

In view of the definition of the geometric number system in Chap. VI, Vol. I,

and the theorems in Chap. I, Vol. II, this definition could also be stated in

the following form: Let (t) be the set of numbers such that = ( = 1. A set

of points [P] is called a curve if it is in such a correspondence V with [(] that

(1) for every t there is one and only one P=T (t), (2) for every P there is at

least one t such that P =V (f), and (3) for every t, say i', and for every tetra-

hedral region R containing V (t') there is a number 8 > such that if

f-S<t<t'+S, T(t) is in R.

In the Euclidean or non-Euclidean spaces (3) may be replaced by the con-

dition : For every t' and every positive number e there is a positive number 8

such that ii i'— 8<t<t'+ 8, the distance between T (t) and V (C) is less than c.
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The most obvious examples of simple closed curves are the

projective line and the point conic. The proof that these are simple

closed curves wiU be given for the planar case, and may be extended

at once to the three-dimensional case by substituting tetrahedral

regions for triangular ones.

Theorem 15. A projective line is a simple closed curve.

Froof. Let [P] be the set of points on a projective line and let

P^, P^, P^, P^ be four particular values of [P] in the order {I\P^P^P^.

Let T^, 2\, T^, Tg, T^ be five coUinear points in the order {T^T^T^TJ},

and let [T] be the set of all points of the interval T^1\T^. If T
is on the interval T^T^T^, let V(T). be the point to which T is

carried by a projective correspondence* which takes the points

T^, T^, T^ into ij, P^, P respectively; and if T is on the inter-

val T^T^T^, let T{T) be the point to which T is carried by a

projectivity which carries the points T^, T^, T^ into P^, I^, P^

respectively.

The. correspondence T is defined so that there is one and only

one point P = T{T) for each T; and also so that T{T')4=T{T"),

unless T'=T", or T' = T and T"= T^, or T'= T^ and T"=l\.

Thus [P] satisfies conditions (1) and (2) of the definition of a curve

and the condition that a curve be simple.

Let R be any triangular region containing a point P'=T{T').

By Theorem 1 there is a segment of the projective line [P] con-

taining P' and contained in R; let P"=T{T") and P"'=T(T"')

be the ends of this segment. This segment is the image either of

the points T between T" and T'" or of the points T not between

T" and T'". Hence if o- be any segment of the line T^T^ con-

taining T' and not containing T" or T'", every point T on o- is such

that r(T) is in R. Hence [P] satisfies Condition (3) of the defini-

tion of a curve.

Theoeem 16. A point conic is a simple closed curve.

Proof. The proof is precisely the same as that of Theorem 15

except that [P] is the set of points on a conic, and the following

lemma is used instead of Theorem 1.

*Thls does not use Assumption P, because it requires only the existence of a

projectivity, and thismay be set up as a series of perspectivities (cf . Chap. Ill, Vol 1)

.
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Lemma. If a point P of a conie C^ is in a triangular region R

coplanar with C", there is a segment <r of C" which contains P and

is contained in R.

Proof. If C^ is entirely in R the conclusion of the theorem is

obvious. If not, let Q be a point of C^ not in R. By § 75 the points

of the line PQ interior to C" constitute a segment having P and Q
as ends. Let jB be a point T

of this segment which is

also on the segment con-

taining P (Theorem 1),

which the line PQ has in

common with R (fig. 81).

Let T be the common
point of the tangents at

P and ^ and let T' and

T" be points of R in the

order {rT'Pr"}. Let ,S'

and S" be the points in

which QT' and QT" meet

TR; so that {TS'BS"}-

Let Sj^ and S^ be points

interior to R, interior to C\ and in the order {TS'S^SS^S"}

(Theorem 1). The lines QS^ and QS^ meet TP in two points T^ and

T^ respectively in the order {TT'T^PT^T"}. Smce these points are

on the segment T'PT" they are in R. Since Q is on the conic C"

the lines QT^ and QT^ meet C^ in two points ij and i^ respectively.

Since S^ is interior and T^ (a point of a tangent) exterior to C^

we have the order {QS^P^T^. But S.^ and T^ are in R and Q is not in R.

Hence by Theorem 1, ij is in R. In like manner i^ is in R.

The segment P^PP^ of the conic C^ is now easily seen to consist

entirely of points of R. For if P is any point of this segment, and

T and S the points in which QP meets PT and BT respectively,

PPPiP^ A PTT^T^ i BSS^S^.

Fig. 81

Hence T is on the segment T^PT^, and S is on the segment S^BS^.

Hence T and S are interior to R, and S interior to Cl Since T is

exterior to C^, it follows that S and T separate P and Q. Therefore,

as Q is not in R, P is in R.
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EXKRCISE

The boundary of a triangular region is a simple closed curve.

155. Connected sets, regions, etc. A set of points is said to be

connected if and only if any two points of the set are joined by a

cur\-e consisting entirely of points of the set. A connected set is

sometimes called a continuous family of points. In a space satis-

fying Assumptions A, E, H, C (or A, E, K or A, E, J) a connected

set is also called a continuum. A connected set in a plane such that

every point of the set is in a triangular region containing no points

not ia the set is called a planar region. A connected set of points

in space such that every point of the set is in a tetrahedral region

containing no points not in the set is called a three-dimensional

region.

A one-to-one transformation T carrying a set of points [X] into a

set of points [Y] is said to be continuous if and only if for every X,

say X', and every tetrahedral region T containing T(X'), there is a

tetrahedral region R containing X' and such that for every X in R,

r(X) is in T.

If a linear interval joining two points A, B is subjected to a con-

tinuous one-to-one reciprocal transformation, it goes into a curve

joining the transforms of A and B (§ 154). The set of points on the

curve, excluding the transforms of A and B, is called a 1-cell.

If a triangular region and its boundary are subjected to a con-

tinuous one-to-one reciprocal transformation, the set of points into

which the triangular region goes is called a simply connected element

of surface, or a 2- cell.

If a tetrahedral region and its boundary are subjected to a con-

tinuous one-to-one reciprocal transformation, the set of points into

which the boundary goes is called a simply connected surface, or simple

surface, and the set of points into which the tetrahedral region goes

is called a simply connected three-dimensional region, or a 3-cell.

EXERCISES

1. A region contains no point of its boundary.

2. li A and B are any two points of a planar region R, there exists a finite

number of triangular regions tj, <j, • , i„ such that t^ has a point in common
with <f+i (J = 1, • • •, « — 1) and t-^ contains A and t„ contains B. This property

could be taken as the definition of a region in a plane.
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3. Given any set of regions all contained in a convex region. The set of

all points in triangular regions whose vertices are in the given regions is a

convex region. This region is contained in every convex region containing the

given set of regions (J. W. Alexander).

4. The set of all points on segments joining pairs of points of an arbitrary

region R contained in a convex region constitutes a convex region R'. The

region R' is contained in every convex region containing R.

5. The boundary (§ 150) of a region in a plane (space) separates (§ 149)

the set of all points in the region from the set of all points of the plane (space)

not in the region.

6. A continuous one-to-one reciprocal transformation of space transforms

any region into a region.

156. Continuous families of sets of points. The notion of con-

tinuous curve has the following direct generalization:

Definition. Let [T] be the set of all points on an interval T^T^

of a Hne I. A set of sets of coplanar points [S] is called a con-

tinuous one-parameter family of sets of points if it is in such a

correspondence F with T that

(1) for every T there is one and only one set S such that S= T{T)
;

(2) for every set S there is at least one T such that S= T(T)
;

(3) for every T, say T', and for every triangular region R includ-

ing a point of the set T{T'), there is a segment a- oi I containing T'

and such that if T is in o- at least one point of the set T{T) is in R.

The definition of a continuous one-parameter family of sets of

points in space is obtained by replacing the triangular region R in

the statements above by a tetrahedral region.

If the sets S are taken to be lines, planes, conies, quadrics, etc.,

this gives the definition of one-parameter continuous families of

lines, planes, conies, quadrics, etc., respectively. Cf. Exs. 1-5, below.

Definition. A connected set of sets of points or a continuous

family of sets of points is a set of sets' of points [S] such that any

two sets S , S are members of a continuous one-parameter family

of sets of [S].

For example, the discussions given below in terms of elementary

transformations establish in each case that a sense-class is a con-

nected set of sets of points. Cf. also Exs. 6-7, below.

The definition of a continuous family may be extended in an obvious way

so as to include sets whose elements are points, sets of points, sets of sets of

points, etc,



406 THEOREMS ON SENSE AND SEPARATION [Chap.ix

EXERCISES

1. Defining an envelope of lines as the plane dual of a curve, prove that an

envelope is a continuous one-parameter family of lines.

2. The space dual of a curve is a continuous one-parameter family of planes.

3. Pencils of lines and planes are continuous one-parameter families.

4. A line conic or a regulus is a continuous one-parameter family of lines.

5. A pencil of point conies is a continuous one-parameter family of curves.

6. The set of all lines in a plane or space or in a linear congruence or a

linear complex is a connected set of sets of points.

7. The set of all planes in space or of all planes tangent to a quadric is a

connected set of sets of points.

157. Continuous families of transformations. Let [T] be the set

of all points on au interval T^T^ of a line I. Let [11J be a set of

transformations of a set of points [P]. If (1) to every T there cor-

responds one and only one transformation Hj., and (2) for every

point P the set of points [ny(P)] is a curve for which the defining

correspondence F (in the notation of § 154) may be taken to be

the correspondence between Tand IIj,(P), then [ITJ is said to be a

continuous one-parameter faitiily of transformations. The curves

[ny(P)] are called thejja^^ curves of [IIJ.

The term " continuous one-parameter family of transformations
"

may also be applied to a set of transformations [IIj,] of a set B of

points P and of sets of points S (e.g. S may be a set of figures as

defined in § 13, Vol. I). In this case (1) and (2) must be satisfied,

and also the following condition : (3) For every set of points S,

[11^,(5)] is a one-parameter continuous family of sets of points for

which the defining correspondence F (in the notation of § 156) may

be taken to be the correspondence between T and nj,(S).

If the set of correspondences [11J is both a group and a continuous

one-parameter family of transformations, it is called a one-parameter

continuous group.

A set of transformations [11] of a set of points and of sets of points,

such that any two transformations of [11] are members of a con-

tinuous one-parameter family of transformations of [11], is caUed a

continuous family of transformations. If [11] is also a group, it is

called a continuous group.

If [IIj,] is a continuous one-parameter family of one-to-one recip-

rocal transformations of a figure F, and if TTt-^j is the identity, then F
is said to be moved, or deformed, to the figure nj,^(P) through the set
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of intermediate positions \^r{^)\ Any one of the transformations

IIj, is called a deformation; if i^ is a set of points and all the

transformations of the family [IIj,] are continuous, the deformation

is said to be a contimious deformation.

158. Affine theorems on sense. Let us recapitulate some of the

main propositions about sense-classes in Euclidean spaces by

enumerating the one-dimensional propositions of which they are

generalizations.

The group of all projectivities x'=ax + b on a Euclidean line

has a subgroup of direct projectivities for which a > 0. This sub-

group is self-conjugate, because if a transformation of the group be

denoted by 2, and any other transformation x' = ax + ^ by T, then

c'=a(a(^x-^\ + b\ + ^,

a transformation in which the coefficient of x is positive.- From

the fact that the subgroup is self-conjugate, it follows as in § 18

that the same subgroup is defined by the condition a > 0, no

matter how the scale is chosen, so long as Poo is the point at

infinity. These statements are generalized to the plane in § 30 and

to spaces of any dimensionality in § 31. The generalization consists

in replacing a by the determinant

«n
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case a nonhomogeneous coordinate system is called positive if

S{OXY) is positive when O = (0, 0), X=(l, 0), and Y= (0, 1). In

the three-dimensional case a nonhomogeneous coordinate system

is called positive or right-handed if S{OXYZ) is positive when

0= (0, 0, 0), X= (1, 0, 0), Y= (0, 1, 0), and Z= (0, 0, 1).

On the Euclidean line two ordered pairs of points AB and A'B'

are in the same sense-class if and only if

1 a

1 h
and

1 a>

1 V

have the same sign, a, b, a', V being the nonhomogeneous coordinates

of A, B, A', B' respectively. Hence, if the coordinate system is posi-

tive, S(AB) is positive or negative according as (b — a) is positive or

negative. Similar criteria for the plane and space are given in

§§ 30, 31. It follows immediately that if the coordinate system

in the plane is positive, S{ABC) is positive or negative according

as the determinant

is positive or negative, where A = (a^, a^), B = {b^, b^, C = (c^, c^).

If the coordinate system in space is positive, S{ABCD) is positive

or negative according as the determinant

b, 6.

\ «2 "s

^1 ^. K
is positive or negative, where A = (a^, a^, a^, B = (b^, b^, b^, C=

In the one-dimensional case B is on one or the other of the rays

having A as origin according as S{AB) is positive or negative.

In a Euclidean plane C is on one side of the line AB or the other

according as S (ABC) is positive or negative (§ 30). In a Euclidean

space D is on one side or the other of the plane ABC according as

S (ABCD) is positive or negative.

The projectivities iid=ax + b of the Euclidean line are in one-to-

one reciprocal correspondence with the points (a, b) of the Euclidean

plane. The direct projectivities correspond to the points on one

side of the line a = and the opposite ones to those on the
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other side. From this it r»dily follows that the set of all direct

projectivities forms a continuous group, whereas the set of all projec-

tivities is a group wliich is not continuous.

In like manner the transformations

x' = OjiX + a-^^y + Oio,

y' = a^jS + 0222/ + a^o

can be set in correspondence with the points of a six-dimensional Euclidean

space, the direct and opposite collineations respectively corresponding to

points of two regions separated by the locus

"ll<'22 ~ «12''21 = 0-

Similarly, the direct and opposite collineations in a Euclidean space of three

dimensions may be represented by points of two regions in a space of twelve

dimensions. In all three cases the set of all direct collineations forms a con-

tinuous group, but the set of all collineations does not.

Another way of coming at the same result is this : Let the ordered pairs

of points AB of a Euclidean line be represented by the points (a, b) of a Euclid-

ean plane, a being the nonhomogeneous coordinate of A, and 6 that of B. Under

this convention the points representing pairs of the positive sense-class are

on one side of the line b— a = and those representing pairs of the negative

sense-class on the other side of this line. The one-dimensional affine projec-

tivities are in one-to-one reciprocal correspondence with the ordered point

pairs to which they carry a fixed ordered point pair PQ. The direct projec-

tivities thus correspond to point pairs represented by points on one side of

the line ft
— a = and the opposite projectivities to point pairs represented

by points on the other side.

159, Elementary transformations on a Euclidean line. Definition.

Given an ordered pair of points AB of a Euclidean line, the oper-

ation of replacing one of the points by a second point not separated

from it by the other point is called an elementary transformation

of the pair AB.*

Thus AB may be transformed into AB' if {ABB'} or {AB'B}. In

other words (cf. § 23) 5 can be transformed to any point B' such

tliat S{AB)= S{AB'), and into no other. Hence it follows that if

AB is transformable to A'B' by any sequence of elementary trans-

formations, S{AB) = S(A'B').

Conversely, if S{AB)=S{A'B'), it is easy to see, as follows, that

by a sequence of elementary transformations AB can be transformed

* The transformations which we have considered heretofore have usually been

transformations of the line, plane, or space as a whole. Here we are considering a

transformation of a single pair of points.
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to ^B'. From the theorems on linear order in Chap. II it follows

that there are two points Al' and 5" "satisfying the order relations

{ABA!'B") and {^'£'^"5"}.

By elementary transformations AB goes to AB"; AB" to A"B"; A"B"

to A'B"; and A'B" to A'B'. Hence we have

Theorem 17. On a Euclidean line the set of all ordered pairs

of points into which an ordered pair of distinct points AB can he

transformed by elementary transformations is the sense-class S{AB).

An elementary transformation may be regarded as a special type of con-

tinuous deformation (§ 157). If AB is carried by an elementary transformation

to AB', the point B may be thought of as moved (§ 157) along the segment

BB' from B to £', and since this segment does not contain A, the motion is

such that the pair of distinct points never degenerates into a coincident pair.

Thus we may say that a sense-class consists of all pairs obtainable from a

fixed pair by deformations in vrhich no pair ever degenerates.

When the ordered point pairs are represented by points in a Euclidean

plane, as explained at the end of the last section, an elementary transforma-

tion corresponds to moving a point (a, b) parallel to the a-axis or the 6-axis

in such a way as not to intersect the line a = b.

Definition. An elementary transformation of a pair of points

AB is said to be restricted with respect to a set of points [P] if and

only if it carries one of the pair, say B, into a point B' such that

the segment BB' does not contain any one of the points F. (Any

one of these points may, however, be an end of the segment BB'.)

It is evident that any elementary transformation can be effected

as a resultant of a sequence of elementary transformations which

are restricted with respect to an arbitrary finite set of points. Hence

Theorem 17 has the following corbllary:

CoROLLAEY. Let P^, P^, • • •, P„ he any finite set of points on a

line I. Two ordered pairs of points are in the same sense-class if and

only if one can he carried into the other hy a sequence of elementary

transformations restricted with respect to P^, P^, • • •, P„.

The concept of a restricted elementary transformation is intimately con-

nected with the idea of a " small motion." In the metric geometry the points

•f1' Pi> '"> Pn "an be chosen so as to be in the order {Pj, P^, • • •, P„} and so

that the segments PjPj+i are arbitrarily small. Any elementary transformar

tion of a pair of points on the interval P^Pj^j will be effected by a small

motion of one of the points in the pair.
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160. Elementary trans^mations in the Euclidean plane and space.

Definition. Given an ordered set of three noneollinear points in

a Euclidean plane, an elementary transformation is the operation

of replacing one of them by a point which is joined to it by a

segment not meeting the line on the other two.

As in the one-dimensional case, an elementary transformation may be

regarded as effected by a continuous deformation of a point triad. A path is

specified along which a point may be moved without allowing the triad to

degenerate into a colljnear one.

Let A, B, C be three noneollinear points and let C" and B' be

points of the segments AB and CA respectively. Then by elemen-

tary transformations (of. fig. 84, p. 423) ABC goes to C'BC; and

this to C'BB'; and this to C'C^'; and this to BCB'; and this to

BCA. In like manner it can be shown that ABC can be carried

to CAB by a sequence of elementary transformations. Hence any

even permutation of three noneollinear points can be effected by

elementary transformations.

By Theorem 27, § 30, an elementary transformation leaves the

sense of an ordered triad invariant. Hence, by Theorem 26, § 30,

no odd permutation can be effected by elementary transformations.

If A', B', C" are any three noneollinear points, ABC can be

carried into some permutation of A'B'C by elementary transforma-

tions. For since at most one side of the triangle A'B'C is parallel

to the line AB, this line meets two of the sides in points which we

may denote by A" and B". By one-dimensional elementary trans-

formations on the line AB, the ordered pair AB can be carried

either to A"B" or to B"A". These one-dimensional elementary

transformations determine a sequence of two-dimensional elemen-

tary transformations leaving C invariant and carrying ABC to

A"B"C or to B"A"C. The point C can be carried by an obvious

elementary transformation to a point C" such that A"C" is not

parallel to any side of A'B'C', and then A"C" can be carried to

two of the points, say A"'C"', in which the line A"G" meets the

sides of the triangle A'B'C. The points A"'B"C"' are on the

sides of the triangle A'B'C, and the one-dimensional elementary

transformations on the sides which carry them into the vertices

determine two-dimensional elementary transformations which carry

A"'B"C" to some permutation of A'B'C.
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Since ABG cannot be carried into A'B'C if S{ABC)=f= S{A'B'C'),

and since all even permutations of A'B'C can be effected by elemen-

tary transformations, it follows that ABO can be carried into A'B'C

by a sequence of elementary transformations if S{ABC) = S(A'B'C).

Hence we have

Theorem 18. In a Euclidean plane S(ABC) = S(A'B'C) if and

only if there exists a finite set of elementary transformations carrying

the noncollinear points A, B, G into the points A', B', C respectively.

Definition. Given an ordered set of four noncoplanar points, an

elementary transformation is the operation of replacing one of them

by another point which is joined to it by a segment containing no

point of the plane on the other three.

Let ABGD be four noncoplanar points. Holding D fixed, ABGinsiy

be subjected to precisely the sequence of elementary transformations

given above in the planar case for carrying ABG into BGA. This

effects the permutation /A B G D\(A B G D\
\B G A dJ'

the symbol for each point being written above that for the point into

which it is transformed. In like manner we obtain the permutations

(ABG I)\ (ABG Z)\ (A B G D\
\B D C a)' \G B D a) \A C D b)'

and it is easily verifiable that any even permutation of ABGD is a

product of these permutations. Hence any even permutation of a

set of four points may be effected by elementary transformations.

By Theorem 23, § 27, an elementary transformation of four points

(«i. %, a^,
(&i. &2. &s). («!> Cj. C3), (d^,'d^, ds) leaves the sign of

1

1

1

1

invariant, and hence leaves their sense-class invariant. Hence (§ 31)

no odd permutations of four noncoplanar points can be effected by

e lementary transformations.

An ordered tetrad ABGD of noncoplanar points can be carried

into some permutation of an ordered tetrad A'B'G'D' of noncoplanar

points. For the line AB is not parallel to more than two planes of

the tetrahedron, and hence bv the one-dimensional case AB can be

a.
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carried into two points A"B^oi the planes of the tetrahedron A'B'C'B'.

By repeating this argument it is easily proved that C and D can also

be carried to points C"D" on these planes. By the two-dimensional

case it follows that the ordered tetrad A"B"C"D" of points on the

planes of the tetrahedron A'B'C'D' can be carried into some permu-

tation of its vertices. Since ABCD cannot be carried into A'B'C'D',

if S{ABCD) ^ S {A'B'C'D') it follows by the last paragraph but one

that it can be carried into A'B'C'D' if S{ABCD) = S {A'B'C'D').

Thus we have

Theorem 19. In a Euclidean space S{ABCD)=^S {A'B'C'D') if and

only if there exists a finite set of elementa,ry transformations carrying

the noncoplanar points A, B, C,Dinto the points A', B', C',Df respectively.

The theorems and definitions of the last two sections can be re-

garded as based on any one of the sets of assumptions A, E, H, C, R
or A, E, K or A, E, P, S. Assumption P is used wherever coordinates

are employed, but it is possible to make the argument without the aid

of coordinates and thus to base it on A, E, S alone (cf. Ex. 2, § 161).

161. Sense in a convex region. Definition. Given a set of three

noncollinear points of a planar convex region R, the operation of

replacing any one of them by any other point of R on the same

side of the line joining the other two is called an elementary

transformation. The set of all ordered triads obtainable by finite

sequences of elementary transformations from one noncollinear

ordered triad of points ABC is called a sense-class and is denoted

by S{ABC).

This definition is in agreement with the propositions about sense

given for the special case of a Euclidean plane. Moreover, if R is any

convex region, and L is any line coplanar with R but containing no

point of R, two triads of points of R are in the same sense with

respect to R if and only if they are in the same sense with respect

to the Euclidean plane containing R and having L as singular line.

Hence the theorems of § 160 may be taken over at once to convex

regions in general. This result may be stated as follows

:

Theorem 20. In a planar convex region there are two and only

two senses. Sense is preserved hy even and altered hy odd permu-

tations of three noncollinear points. Two points C and D are on

opposite sides of a line AB if and only if S{ABC) + S{ABD).
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Definition. Given a set of four noncoplanar points of a three-

dimensional convex region R, the operation of replacing any one of

them by any point of R on the same side of the plane of the other

three is called an elementary transformation. The set of all ordered

tetrads obtainable by finite sequences of elementary transformations

from one noncoplanar ordered tetrad of points ABCD is called a

sense-class and is denoted by S{ABCD).

The theories of sense in a three-dimensional convex region and in

a three-dimensional Euclidean space are related in just the same

way as the corresponding planar theories. Hence we have

Theorem 21. In a three-dimensional convex region there are two

and only two senses. Sense is preserved by even and altered by odd

permutations of four points. Two points B and E are on opposite

sides of a, plane ABC if and only if S{ABCD) ¥= S{ABCE).

EXERCISES

1. The whole theory of order relations can be developed by defining sense-

class on a line by means of elementary transformations instead of as in Chap. II.

*2. Develop the theory of order in two- and three-dimensional convex re-

gions, defining sense-class in terms of elementary transformations and using

Assumptions A, E, S or Assumptions' I-VIII of § 29 (cf. Theorem 5, § 148)

as basis.

3. An elementary transformation of a triad of points ABC is said to

be restricted with respect to a set of points P^, P^, • • •, P„ if it carries a point

of the triad, say C, into a point C such that the segment CC does not

contain any point coUinear with two of the points P^, Pj, • ,P„. Two
ordered triads of points are in the same sense-class if and only if there is a

sequence of restricted elementary transformations carrying the one triad

into the other.

4. Generalize the notion of restricted elementary transformation to space.

162. Euclidean theorems on sense. The involutions which leave

the point at infinity of a Euclidean line invariant may be called

point reflections. The product of two point reflections is a parabolic

projectivity leaving the point at infinity invariant, and may be called

a translation. A point reflection has an equation of the form

(1) x'=-x-\-b,

and a translation has one of the form

(2) x' = x + b.
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The point reflections inter^ange the two sense-classes of the Euclid-

ean line, and the translations leave them invariant.
'

In generalizing these propositions to the plane, tlie point reflec-

tions may be replaced by the orthogonal line reflections (Chap. IV)

or, indeed, by the set of all symmetries, and the one-dimensional

translations by the set of all displacements in the plane. Since an

orthogonal line reflection in the plane interchanges the two sense-

classes, any symmetry interchanges them, but any displacement

leaves each of them invariant. The generalization to three-dimensions

is similar.

The equations of a displacement in two or three (or any number

of) dimensions are a direct generalization of the one-dimensional

equations, namely,

(3) 2!, = i^a^.«,. -1-*.-, (i = 1,2,..., n)

where the matrix {a,^ is orthogonal and the determinant
|
a^

|

is -f- 1.

The equations of a symmetry satisfy the same condition except that

the determinant
|
a^.

|

is — 1 instead of -|- 1.

It is worthy of comment that the distinction between displace-

ments and symmetries holds in the complex space just as well as

in the real, whereas the distinction between direct and opposite

coUineations holds only in the real space. Algebraically, this is

because the distinction of sense depends merely on the sign of the

determinant la^l, whereas the distinction between displacements and

symmetries is between coUineations satisfying the condition |a^.|=-)-l

and |aj,.| =— 1. In the representative spaces of six and twelve dimen-

sions referred to in § 158, |%| = 1 and |a^.| = — 1 are the equations

of nonintersecting loci.

From the point of view of Euclidean geometry, as has been said above,

the two sense-classes are indistinguishable.* In the applications of geometry,

however, a number of extra-geometrical elements enter which make the two

* This does not contradict the existence of a geometry in which one sense-class

is specified absolutely in the assumptions. The group of such a geometry is unlike

the Euclidean group in that it does not include symmetries though it does include

displacements. Its relation to the Euclidean geometry is similar to that of the

geometries mentioned in the fine print in § 116. Those geometries, however, corre-

spond to groups which are not self-conjugate under the Euclidean group, whereas

this one corresponds to a self-conjugate subgroup. On the foundations of geometry

in terms of sense-relations taken either absolutely or relatively, see the article by

Schweitzer referred to in § 16.
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Fig. 82

sense-classes play essentially different rflles. Thus any normal human being

who identifies the abstract Euclidean space with the space in which he views

himself and other material objects may
single out one of the sense-classes as

follows: Let him hold his right hand

in such a way that the index finger is

in line with his arm, his middle finger

at right angles to his index finger, and

his thumb at right angles to the two

fingers ' (fig. 82). Let a point in his palm

be denoted by 0, and the tips of his

thumb, index 'finger, and middle finger

by X, Y, Z respectively. The sense-class

5 {OXYZ") shall be called rigid-handed

or positive, and the other lefl-handed or

negative. This designation is unique be-

cause of the mechanical structure of

the body.

A nonhomogeneous coordinate system

is called right-handed or positive if and

only if S (OXYZ) is jiositive when
O = (0, 0, 0), X=(l, 0, 0) , F= (0, 1, 0),

and Z = (0, 0, 1). The reader will find it convenient whenever an arbitrary

sense-class is called positive to identify it with the intuitively right-handed

sense-class.*

163. Positive and negative displacements. On a Euclidean line,

if a translation carries one point ^ to a point B such that S(AB)

is positive, it carries any point ^ to a point B such that S{AB) is

positive. Such a translation is called positive. Any other translation

is called negative and has the property that if it carries C to D,

S{CI>) is negative. Any translation carries positive translations into

positive translations; i.e. if T' is a positive translation and T any

translation, TT'T~^ is a positive translation. A translation «'=» + &

is positive or negative according as h is positive or negative, provided

that the scale is such that S(P^P^) is positive. The inverse of a

positive translation is negative.

The distinction between positive and negative translations is quite distinct

from that between direct and opposite projectivities, for all translations

are direct.

* An interesting account of the way in which this choice is made in various

branches of mathematics and other sciences is to be found in an article by E. Study,

Arohiv der Mathematik und Physik, 3d series, Vol. XXI (1913), p. 193.
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A like subdivision of ^le Euclidean displacements of a plane

which are neither translations nor point reflections nor the identity-

may be made as follows : A rotation leaving a point fixed and

carrying a point ^ to a point B not coUinear with O and A is said to

be positive if S{OAB) is positive and to be negative if S(OAB) is

negative. It is easily proved that if S{OAB) is positive for one

value of A it is positive for all values of A. The inverse of a positive

rotation is negative. Any displacement transforms a positive rotation

into a positive rotation.

A rotation is a product of two orthogonal line reflections {ZZ„}

and {mJf„} such that the lines I and m intersect in 0. Hence the

ordered pairs of lines which intersect and are not perpendicular fall

into two classes, which we shall call positive and negative respec-

tively, according as the rotations which they determine are positive

or negative.

In a three-dimensional Euclidean space let ^ be a point not on

the axis of a given twist which is not a half-twist, let be the

foot of a perpendicular from A on the axis of the twist, and let A' and

0' be the points to which A and O respectively are carried by the twist.

The twist is said to be positive or right-handed if S{OAO'A') is posi-

tive or right-handeid and to be negative or left-handed if S(OAO'A')

is negative.

It is easily seen that S{0AO'A') is the same for all choices of A, so

that the definition just made is independent of the choice of A. The

inverse of the twist carrying and A to 0' and A' carries 0' and A'

to and A, and thus is positive if and only if S{0'A'OA) is positive.

Since S{0'A'OA) = S(OAO'A'), the inverse of a positive twist is posi-

tive. Any direct similarity transformation carries a positive twist

into a positive twist.

With the choice of the right-handed sense-class described in the fine print

in § 162, the definition here given is such that a right-handed twist is the

displacement suffered by a commercial right-handed screw driven a short

distance into a piece of wood.

Since a twist is a product of two orthogona.^ line reflections,

{IL} • {mm„}, it follows that the pairs of ordinary lines Im which

are not parallel, intersecting, or perpendicular fall into two classes,

according as the twist {mm^} {IL} is positive or negative. We
shall call the line pairs of these two classes positive and right-handed
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or negative and left-handed respectively. Since the inverse of a

positive twist is positive, the ordered pair ml is positive if Im is posi-

tive. Hence a pair of lines is right-handed or left-handed without

regard to the order of its members. Any direct similarity transfor-

mation carries a right-handed pair of lines into a right-handed pair

and a left-handed pair into a left-handed pair.

EXERCISES

1. The coUineations which are commutative with a positive displacement

(or with a negative displacement) are all direct.

2. By the definition in § 69, 0<4.AOB<ir or ir<4 -4 05<2ir according as

S(pAB) is positive or negative, provided that the points 0, Pg, Px are so

chosen that 5(0Pj/'il) is positive.

3. By the definition in § 72, 0<7n(lj^l2)<- or -<m(;iZ2)<'?'' according as the

ordered line pair l^l^ is positive or negative.

4. Let us define an elementary transformation of an ordered line pair Ijl^ in

a plane as being either the operation of replacing Zj or l^ by a line parallel to

itself, or the operation of replacing l^ or Z^, say l^, by a line through the point

IJ^ which is not separated from Z^ by l^ and the line through ZjZj perpendicu-

lar to Zj. Two ordered pairs of nonparallel and nonperpendicular lines are

equivalent under elementary transformations if and only if they are both in

the positive or both in the negative class.

5. Let us define an elementary transformation ot a pair of nonparallel and

nonperpendicular lines l-jl^ in space as the operation of replacing one of the

lines, say Ij^, by a line intersecting Zj and not separated from l^ by the plane

through the point of intersection perpendicular to l^ and the plane through

this point and l^. The pair IJ^ can be transformed into a pair of lines m^m^

by a sequence of elementary transformations if and only if both pairs are

right-handed or both pairs are left-handed.

164. Sense-classes in projective spaces. It has been seen in

Chap. II (cf. §§18 and 32) that the distinction between direct and

opposite collineations can be drawn in any projective space of an

odd number of dimensions which is real or, more generally, which

satisfies A, E, S. This depends (§ 32) on the fact that the sign of

a determinant \a^\ {i,j= 0, 1, • • •, n) cannot be changed by multi-

plying every element by the same factor if n is odd, and can be

changed by multiplying every element by — 1 if «. is even.

In a real projective space of odd dimensionality the direct coUin-

eations form a self-conjugate subgroup of the projective group and

thus give rise to the definitions of sense-class in §§ 19, and 32.

The same remarks are made about the independence of this definition
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of the frame of reference as in the Euclidean cases, and the criteria

for sense in terms of products of determinants are given ia §§ 24

and 32. If one forms the analogous determinant products for the

projective spaces of even dimensionality, it is found that the sign of

the product may be changed by multiplying the coordinates of one

point by — 1, which verifies in a second way that there is only one

sense-class in a projective space of an even number of dimensions.

The projectivity ax + a
X = 11 12

may be represented by means of a point (a^^, a^, a^^, a^J in a pro-

jective space of three dimensions. The points representing direct

projectivities are on one side of the ruled quadric

= 0,

and those representing opposite projectivities on the other side.

This representation of projectivities by points is in fact identical

with that considered in § 129. It can be generalized to any num-
ber of dimensions just as are the analogous representations in § 158.

It readily follows that the group of all projective collineations in

a real space of n dimensions is continuous if n is even, and not

continuous if w is odd. If n is odd the group of direct colHneations

is continuous.

In the following sections (§§ 165-167) we shall discuss the

sense-classes of projective spaces by means of elementary transfor-

mations, the latter term being used as before to designate a particular

type of continuous deformation. After this (§§ 169-181) similar

considerations wiU be applied to other figures.

165. Elementary transformations on a projective line. Definition.

Given a set of three coUinear points A, B, C, an elementary transfor-

maiion is the operation of replacing any one of them, say A, by another

poiot A' such that there is a segment AA' not containing B or C.

Theorem 22. Two ordered triads of points on a real projective

line have the same sense if and only if one is transformable into

the other hy a finite number of elementary transformations.

Proof. Comparing the definitions of elementary transformation

and of segment (§22), it is clear that a single elementary trans-

formation cannot change the sense of a triad of points. Hence two
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triads of points have the same sense if one can be transformed into

the other by a finite number of elementary transformations. The

converse statement, namely, that a triad A, B, C can be transformed

by elementary transformations into any other triad A'B'C' in the

same sense-class, follows at once if we establish (1) that ABC can

be transformed by elementary transformations into BCA and CAB
and (2) that any ordered triad of points A, B, C can be transformed

by elementary transformations into one of the six ordered triads

formed by any three points A', B', C.

(1) Let D be a point in the order {ABCD}. Then by elementary

transformations we can change ABC into ABB, then into ACB,

then into BCD, and then into BCA. By repeating these steps once

more ABC can be transformed into CAB.

(2) If A' does not coincide with one of the points A, B, C, it is

on one of the three mutually exclusive segments (§ 22) of which

they are the ends; and by (1) the points ABC may be transformed

so that the ends of this segment are B and C. Hence we have

{ABA'C}, and by elementary transformations ABC goes successively

into AA'C, BA'C, BA'A, BA'C. If A' does coincide with one of the

points A, B, C, the triad ABC may be transformed according to

(1) so that A'= A. In like manner the three points A'BC can be

transformed into A', B', C in some order, and then ^'^'Cinto A'B'C

iQ some order.

The proof given for this theorem holds good without change on the basis

of Assumptions A, E, S. Cf. § 15.

Definition. An elementary transformation of a triad of points

ABC of a line I is said to be restricted with respect to a set of

points ij, ^, • • •, ^ if it carries one point of the triad, say C, into

a point C such that C and C are not separated by any pair of the

points P^, P^, • • • , P„. {C OT C may coincide with any of the points

It is obvious that any elementary transformation whatever is the

resultant of a finite number of restricted elementary transformations.

Hence Theorem 22 has the following immediate corollary:

CoKOLLAEY. Let P^, I^, • • •, P^le any finite set of points on a line I.

Two ordered triads of points of I have the same sense if and only if

one is transformable into the other iy a finite number of elementary

transformations restricted with respect to JJ, ij, • • •, Jp.
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The concept of " restricted elementary transformation " connects with the

intuitive idea of "small motifs." Let a line be set into projective corre-

spondence with a conic, say a circle. For any « there is a set of points

P^,P^,---, P„ on the circle such that the intervals PxP^t etc. are equal.

By increasing n these intervals can be made arbitrarily small, and thus

the elementary transformations restricted with respect to Pj, Pj, • .
., P„ can

be made arbitrarily small.

166. Elementary transformations in a projective plane. Definition.

Given a set of four points in a projective plane, no three being col-

linear, an elementary transformation is the operation of replacing one

of them by a point of the same plane joined to the point replaced

by a segment not meeting any side of the triangle of the other

three points.

Theorem 23. If ABCD and A'B'C'D' are any two complete quad-

rangles in the same projective plane, there exists a finite set of elemeti-

tary transformations changing the points A, B, C, D into A', B' , C', D'

respectively.

Proof. It can be shown by means of the result for the one-dimen-

sional case, just as in the proof of Theorem 18, first that the ordered

tetrad ABCD can be carried by elementary transformations into an

Tig. 83

ordered tetrad A"B"C"D" of points on the sides of the quadrangle

A'B'C'D' and then that A"B"C"D" can be carried by elementary

transformations into some permutation of A'B'C'D'.
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To complete the proof it is necessary to show that any permuta-

tion of the vertices of a complete quadrangle can be effected by

elementary transformations.

Given a complete quadrangle A^A^A^^, let B^ be the point of

intersection of the lines A^^ and A^A^, and let C^ and D^ be two

points in the order {A^^CJi^A^. Let A^ be the point of intersec-

tion of Afi^ with Afi^ and let C^, D^, B^, C^, C^, D^, B^ be the points

defined by the following perspectivities (fig. 83)

:

icpfi^A^A^^C^A^Ap^P,

By Theorem 7, Chap. II, it follows that no two of the pairs of points

A^A^, A^A^, A^A^, AjA^, and A^^ are separated by the lines joining

the other three of the points A^, A^, A^, A^, A^. Hence there exist

elementary transformations changing each of the following sets of

four points into the one written below it:

-^X ^2 "^8 A
A \ -^s ^6

^4 ^2 -^8 ^5

-^4 -^1 -^S -^5

AAA ^5

Hence the permutation
A A A A

n =/AAAA\
' U.^xAA/

can be effected by elementary transformations. By changing the

notation in H^ it is clear that

n =/AAAA\

can be effected by elementary transformations. Hence the product

Tljli (i.e. the resultant of IIj applied twice and followed by H^,

which IS /AAAA\
VAAAA/'

can also be effected by elementary transformations. Hence any

two vertices of the quadrangle can be interchanged by a sequence
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of elementary transformations, and hence any permutation of the

vertices can be effected by means of elementary transformations.

167. Elementary transformations in a projective space. Definition.

Given a set of five points in a projective space, no four of the points

being coplanar, an elementary transformation is the operation of

replacing any one of them by a point joined to it by a segment not

meeting any plane on three of the other four.

It follows from § 27 that the determinant product (25) of § 32 is

unaltered in sign by any sequence of elementary transformations of

the points whose coordinates are the columns of (21) in § 32. Hence

a sequence of elementary transformations cannot carry an ordered

pentad of points from one sense-class into the other.

Hence the odd permutations of the vertices of a complete five-

point cannot be effected by elementary transformations. That the

even permutations can be thus effected

may be seen as follows: Let the

vertices be denoted by A, B, C, D, E
and let the line BE meet the plane

ABOivi. a point i^. This point is not

on a side of the triangle ABC. Let

a! be the point of intersection of the

Unes FA and BC, B' that of FB and ^^ b,B B'
CA, and C" that of FC and AB. Let ^^J^^
A^ be a pomt in the order {BA^A'C}

(fig. 84) and B^ the point in which the line FA^ meets AC, so that

{AB^B'C}. LetB^ be a point in the order {AB^B^B'C}.

We now can transform ABCDE by elementary transforma-

tions successively into AA^CDE, AA^B^DE, BA^B^BE, BCB^DE,

BCADE. Thus the even permutation

/ABCDE\
\bcadeI

can be effected by elementary transformations. It is easily verifiable

that any even permutation is a product of even permutations of

this type.

It can be proved by the same methods as in Theorems 18 and 19

that any five points no four of which are coplanar can be carried

iiito some permutation of any other such set of five points. The
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details of this proof are left as an exercise to the reader. When this

is combined with the paragraph above, we obtain

Theorem 24. In a realprojective space, S(ABCDE)=S{A'B'C'I>'I!')

if and only if there exists a sequence of elementary transformations

carrying the points A, B, C, D, E into A!, B', C", D', E' respectively.

The proof just outlined for this theorem holds good on the basis

of Assumptions A, E, S, P. Assumption P comes in because of the

use of a coord.inate system. This, however, can be avoided ; and the

construction of a proof on the basis of A, E, S alone is recommended

to the reader as an interesting exercise.

*168. Sense in overlapping convex regions. The discussion of

sense in convex regions by means of elementary transformations

(as made in §§ 159-161) is essentially the same for any number of

dimensions. Now if two regions of the same dimensionaUty have a

point in common, they have at least one convex region of that dimen-

sionality in common. Assigning a positive sense in this region deter-

mines a positive sense in each of the given regions. Thus if we have

a set of convex regions including all points of a space, we should

have, on assigning a positive sense to a tetrad of points in one region,

a positive sense determined for any tetrad of points in any of the

regions. Since, however,. it is in general possible to pass from one

region to another by means of different sets of intermediate regions,

the possibility arises that this determination of sense may not be

unique. In other words, it is logically possible that a given tetrad

in a given region might, according to this definition, have both posi-

tive and negative senses.

The determination of sense by this method is unique in projective

spaces of odd dimensionality and is not unique in projective spaces

of even dimensionality. We shall prove this for the two- and three-

dimensional cases, but since it reduces merely to a question of even

and odd permutations the generalization is obvious.

Theorem 25. There exists a unique determination of sense for

all three-dimensional convex regions in a real projective three-space,

but not for all two-dimensional convex regions in a real projective

plane.

Proof. Consider first the plane and in it a triangle ABC decom-

posing it into four triangular regions, which we shall denote by the
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notation of § 26, Chap. II. ^Lny one of these regions, say Eegion I,

is contained in a convex region, say 1' (e.g., a Euclidean plane with

hne at infinity not meeting Eegion I), which contains the boundary

of the triangular region. So the determination of sense for Eegion I

extends to aU the points of its boundary and also to a portion of

Eegion II.

Let the sense of ABO with respect to Eegion I be positive. The
segment 7, one of the segments AB (fig. 16), is common to the bound-

aries of I and II and hence is contained in Eegion I'. If C" is any

point common to I' and II, C and C" are on opposite sides of the line

AB in Eegion I'. Hence, according to § 29, S{BAC') is positive

in Eegion II. Hence S{BAC) is positive with respect to Eegion II.

Eegions II and IV have in common a segment BC, and thus by

a repetition of this argument S{CAB) is positive with respect to

Eegion IV. The latter region has a segment AC in common with

Eegion I, and hence S(ACB) is .positive with respect to Eegion I.

But by hypothesis S(ABC) is positive with respect to Eegion I.

Hence there is not a unique determination of sense in a real

projective plane.

To show that there is a unique determination of sense for a real

projective three-space, let a given sense-class S(ABCDJS) (cf. §164)

be designated as right-handed, and in any convex region let a sense-

class SIA'B'C'D') be right-handed if S{OA'B'C'D') is positive, where

is interior to the tetrahedron A'B'C'D'. This convention satisfies

the requirements laid down above for overlapping convex regions

and, by § 167, is unique for the projective three-space.

Any two-dimensional region whatever is, by definition (§155), the

set of all points in an infinite set of triangular regions, i.e. in an

infinite set of convex regions. In like manner, any three-dimensional

region is the set of all points in a set of three-dimensional regions.

The method given above may be applied to determine the positive

sense-class in all convex regions in a given region R, and R may be

said to be two-sided or one-sided according as this determination is

or is not unique. Another, slightly diBferent, method of treating this

question is given in § 173.

*169. Oriented points in a plane. By the principles of duality

the lines of a flat pencil or the planes of an axial pencil satisfy

the same theorems on order as the points of a projective line.
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This proposition is valid whether the pencils are considered in a

projective or in a Euclidean space.*

Definition. In a plane any point associated with one of the sense-

classes among the lines on this point is called an oriented paint, and

a line associated with one of the sense-classes among its points is

called an oriented line. Two oriented points are said to be similarly

oriented with respect to a line I if their sense-classes are perspective

with the same sense-class in the points of I. By Ex. 1, § 26, if two

oriented points are similarly oriented with respect to a line I, they are

similarly oriented with respect to a line m if and only if I and m do

not separate the two points.

By § 30 a direct collineation of a Euclidean plane transforms any

oriented point into one which is similarly oriented with respect to

the line at infinity. Hence the oriented points fall into two classes

such that any two oriented points of the same class are equivalent

under direct coUineations and tha,t the two classes are interchanged

by any nondireet collineation. ,

No such statement as this can be made about the oriented lines

in a Euclidean plane, because any oriented line can be carried by a

direct collineation to any other oriented line. This is obvious be-

cause (1) an af&ne collineation exists carrying an arbitrary line to

any other line and (2) the two sense-classes on any line are inter-

changed by a harmonic homology whose center is the point at infinity

of the line.

It is a corollary of the last paragraph that any oriented line of a

projective plane can be carried into any other oriented line of the

projective plane by a direct collineation. By duality the same propo-

sition holds for oriented points in a projective plane.

The oriented points determined by associating the points of a seg-

ment 7 with sense-classes in the flat pencils of which they are centers

fall into two sets, all points of either set being similarly oriented

with respect to any line not meeting 7. These two sets shall be

called segments of oriented points and may be denoted by 7^+' and

Y~\ If A and JB are the ends of 7, the two oriented points deterr

mined by A and S and oriented similarly to 7''''' with respect to a

*In general, the geometry of a Euclidean space or, indeed, of any space of

n dimensions involves the study of the projective geometry of n — 1 dimensions, in

order to describe the relations among the Unes, planes, etc. on a fixed point.
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line I not meeting 7 or eitjipr of its ends are called the ends of 7*+'

and may be denoted by A^'^'> and £^'^\ The other two oriented points

determined by A and JB are the ends of 7^"^ and may be denoted by
^(-' and 5<->.

In terms of these definitions it is clear that each of the two classes

of similarly oriented points determined by a Euclidean plane satisfies

a set of order relations such that it may be regarded as a Euclidean

plane.

The situation in the projective plane is entirely different. Let us

first consider a projective line, and let 7 and 8 be two complementary

segments whose ends are A and B. Let A^'^'>, B^*'>, A^~\ B^~^, y'-'^^, 7'"^

be defined as above, and let S'^^

and S^~' be the two segments

of oriented points determined

by S and oriented similarly to

^^+> and^'~^ respectively with

respect to a line m not meeting

8 or either of its ends. Since A^'^^

and -6'+^ are similarly oriented

with respect to I, and A and B
are separated by I and m, A^'*''> Pjq_ 85

and B^~^ are similarly oriented

with respect to m (cf. Ex. 1, § 26, and fig. 85). Hence the ends of

8<+) are ^^+> and B^-\ and the ends of 8t-> are ^<-> and B^+\ Hence

the oriented points and segments are arranged as follows

:

^(« y(+), 5(+), g(-), A'-\ ^(-), £i->, 8(+), A'^\

the symbols for segments and their ends being written adjacent.

Let A^, B^, A^, B^ be four points in the order {A^B^A^B^} on a pro-

jective line or on a conic. They separate the line (§ 21) into four

mutually exclusive segments 7^, S^, y^, S^ arranged as follows

:

A' yv ^1' ^2' A' y^' -^2' ^1' A>

the symbols for segments and their ends being written adjacent.

Letting A^ correspond to ^^+', y^ to 7^+^ etc., it is obvious that there

is a one-to-one reciprocal correspondence preserving order between

the points of a real projective line or conic and the oriented points

of a real projective line.
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Thus, if an oriented point be moved along a projective line in such

a way that all oriented points of any segment described are similarly

oriented with respect to a line not meeting the segment, the oriented point

must describe the line twice before returning to its first position. A motion

of this sort will obviously carry any oriented point of the projective plane

into any other oriented point. Thus the oriented points either of a pro-

jective line or of a projective plane constitute a continuous family in the

sense of § 156.

Let TT denote the projective plane under consideration here and

let us suppose it contained in a projective space S, and let S' be a

Euclidean space obtained by removing from S a plane different from

T which contains the line AB. Let S'^ be a sphere of S' tangent to tt

at a point P^, let O be the center of ^S"*, and let F^ be the other point

in which the line OP^ meets the sphere. Let P^"*"^ and F^~'> be the

two oriented points of tt determined by P^.

A correspondence V between the points of the sphere S^ and the

oriented points of the projective plane tt may now be set up by the

following rule : Let P^ correspond to P'"*"', and P^ to P^~' ; if X is

any point of tt not on the line at infinity, denote by X^ and X^ the

points in which the line OX meets the sphere, assigning the notation

so that each of the angles AP^OX^ and AP^OX^ is less than a right

angle (i.e. so that the points X^ are all on the same side as P^ of the

plane through parallel to tt, and the points X^ are on the other

side of this plane) ; and denote by X'+' the oriented point of tt deter-

mined by X and joined to P^"*"' by a segment of oriented points con-

taining no point of the Line at infinity AB, and by X'"^ the other

oriented point determined by X. Let X^ correspond to X^"*"', and X^

to X^"^. If Y is any point of the line at infinity AB, and F'*'

one of the oriented points determined by it, F^*' is an end of a

segment o-'+^ of points X'"*"' whose other end is P'"*"' and of a seg-

ment <T^~'> of points JE"^"' whose other end is P'~^ The line Y meets

the sphere in two points one of which, Y^, is an end both of a seg-

ment of points X^ corresponding to o-^+' and of a segment of points

X^ corresponding to o-'~\ Let Y. correspond to F**'- This construc-

tion evidently makes the oriented point other than F^*' which is

determined by Y correspond to the point other than Yf in which Y
meets the sphere.

The correspondence T is one-to-one and reciprocal and makes each

segment of oriented points of tt correspond to a segment of points
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on S\ In view of the COTrespondence between the sphere and the

inversion plane, this result may be stated in the following form

:

Theorem 26. There is a one-to-one reciprocal correspondence pre-

serving order-relations between the oriented points of a real projective

plane and the points of a real inversion plane.

The treatment of oriented points in this section does not generalize directly

to three dimensions, because there is only one sense-class in a projective plane

and, therefore, also only one in a bundle of lines. The discussion of sense in

terms of the set of all lines through a point is therefore possible along these

lines only in spaces of an even number of dimensions.

A discussion which is uniform for spaces of any number of dimensions can,

however, be made in terms of rays. An outline of the theory of pencils and

bundles of rays which may be used for this purpose is given in the next three

sections, and an outline of one way of generalizing the contents of the present

section is given in § 173.

Another type of generalization of the theory of oriented points in the plane

is the theory of doubly oriented lines in three dimensions which is given in

§ 180, below.

*170. Pencils of rays. The term "ray"* is defined in § 23 for

a linear convex region and extended to any convex region in § 148.

The definition of angle in § 28 wUl be carried over to any convex

region.

Definition. The set of all rays with a common origin in a

planar convex region is called a pencil of rays. The common origin

is called the center of the pencil

The order relations in a pencil of rays are essentially the same

as those among the points of a projective line. This can be shown

by setting up a correspondence between the rays through the center

of a circle and the points in which they meet the circle, as in § 69.

It can also be done on the- basis of Assumptions A, E, P alone by

proving Theorems 27-33, below. The proofs of the theorems are not

given, because they are not very different from those of other theo-

rems in this chapter. A third way of deriving these relations is

indicated in Theorems 34, 35, and a fourth in Theorems 37-41.

Theorem 27. If a, b, c are three rays of a pencil, and if any seg-

mentjoining a point of a to a point ofc contains a point of b, then every

segment joining a point of a to a point of c contains a point of b.

• In some books the term " ray " is used as synonymous with " projective line,"

and "pencil of rays" with "penciJ of lines."
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Definition. If a, b, c are three rays of a pencil, b is said to be

between a and c if and only if (1) a and c are not coUinear and (2)

any segment joining a point of a,to a point of c contains a point of b.

Theorem 28. I/bis any ray between two rays a and c, any other

ray between a and c is either between a and b or between b and c.

No ray is both between a and b and between b and c. Any ray

between a and b is between a and e.

Theoeem 29. There is a one-to-one reciprocal correspondence pre-

serving all order relations between the points of a segment of a line

and the rays between two rays of a pencil.

Theorem 30. If three rays a, b, c of a pencil are such that no

two of them are collinear and no one of them is between the other

two, then any other ray of this pencil is between a and b or between

b and c or between c and a.

Definition. Given a set of three distinct rays a, 6, c of a pencil,

by an elementary transformation is meant the operation of replac-

ing one of them, say c, by a ray c' not collinear with c and such

that neither a nor h is between c and c'. The class consisting of all

ordered triads into which abc is transformable by finite sequences

of elementary transformations is called a sense-class and is denoted

by S{dbc). ,

An elementary transformation of abc into abc' is said to be restricted

with respect to a set of rays a^, a^, • • •, a„ of the pencil if none of

the rays a^, a^, • •, a„ is between c and c'.

Theorem 31. Let a^, a^,---,a^ be an arbitrary set of rays of a

pencil. Two ordered triads of rays of the pencil are in th^ same

sense-class if and only if one can^be transformed into the other by a

sequence of elementary transformations which are restricted with

respect to a^, a^, • • •, a„.

Theorem 32. Let a^, a^, a^ be three distinct rays of a pencil such

that no one of the three is between the other two. There esdsts a one-

to-one reciprocal correspondence V between the rays of the pencil and

the points of a projective line such that to each elementary trans-

formation of the rays which is restricted with respect to a^, a^, a^

there corresponds an elementary transformation on the projective

line which is restricted with respect to the points corresponding

to a^, a^, ag.
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The correspondence F inquired in this theorem may be set up as

follows : Let three arbitrary coUinear points A^, A^, A^ be the corre-

spondents of a^, a^, a^ respectively ; let T^ be a projectivity which

carries the lines which contain the rays between a^ and a^ to the

points of the segment, complementary to A^A^A^ and carries the

line containing a^ to A^; for the rays between a^ and a^ let F be

the correspondence in which each ray between a^ and a^ corresponds

to the point to which the line containing it is carried by F^; let

Fj be the projectivity which carries the lines which contain the rays

between a^ and a^ to the points of the segment complementary to

A^A^A^ and carries the Hne containing a^ to A^ ; for the rays between

a.^ and a, let F be the correspondence in which each ray corre-

sponds to the point to which the line containing it is carried by

F ; let Fg be a projectivity which carries the lines which contain

the rays between a^ and a^ to the points of the segment complemen-

tary to A^^A^ and carries the line containing a^ to A^ ; for the rays

between a^ and a^ let F be the correspondence in which each ray

corresponds to the point to which the Hne containing it is carried

COROLLAET. There is a one-to-one reciprocal correspondence between

the points of a projective line and the rays of a pencil such that two

ordered triads of rays of the pencil are in the same sense-class if

and only if the corresponding triads of points are in the same sense-

class on jthe line.

Theorem 33. If a,h, e are three rays of a pencil and a', V, c' are

the respectively opposite rays, S(abc)=S{a'b'c').

Definition. If a and h are any two noncollinear rays of a

pencil, by an elementary transformation of the ordered pair ab is

meant the operation of replacing one of them, say b, by another

ray, b', of the pencil, such that no ray of the line containing a is

between 6 and b' or coincident with b'. The set of all ordered pairs

(i.e. angles) into which an ordered pair of rays ab can be carried

by sequences of elementary transformations is called a sense-class

and is denoted by S (ab).

Theorem Si. If is the center of a pencil of rays and

A, B, C, D are points of rays a, b, c, d respectively of the pencil,

then S(ab)=S{cd) if and only if 8{0AB}= S{OGD).
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Theorem 35. If a and h are any two noncollinear rays of a

pencil, S {ab)i=S{ba). Every ordered pair of noncollinear rays in

the pencil is either in S (ab) or in S (ba). If a' is the ray opposite to

a,S{ab)-hS{a'b).

Theorem 36. If a,b and a', V are two ordered pairs of rays of

a pencil and c and c' are the rays opposite to a and a' respectively,

then S (ah) = S {a'V) if and only if S (abc) = S {a'b'c'). The same

conclusion holds if c is any ray between a and b and c' any ray

between a' and b'.

Theorem 37. Definition. The points not on the sides or vertex

of an angle 4 «& fO'H into two classes having the sides and vertex as

boundary and such that any segment joining a point of one class to

a point of the other contains a point of the sides or the vertex. If the

angle is a straight angle, both of these classes of points are convex

regions. If not, one and only one of them is convex and is called the

interior of the angle ; the other is called the exterior of the angle.

Theorem 38. If A' is any point of the side OA of an angle

4A OB, and B' is any point of the side OB, then S (OAB) = S(OA'B').

If G is any point interior to the angle, S
(
OAB) = S

(
OA C)= S{0 CB),

and any point G satisfying these conditions is interior to the angle.

Theorem 39. Any ray having the vertex of an angle as origin, and

not itself a side of the angle, is entirely in one or the other of the two

classes of points described in Theorem 37. If it is in the interior

it contains one and only one point on each segment joining a point

of one side of the angle to a point on the other side.

Definition. Two rays a, b oi a pencil are said to be separated

by two other rays h, k of the same pencil (or by the angle 4.hk)

if and only if a is in one and b in the other of the classes of

points determined according to Theorem 2>1 hj 4.hk. A set of

rays having a common origin are said to be in the order {a^a^a^a^

• ••«„} if no two of the rays are separated by any of the angles

4 aja^, 4 %%, -, 2i.a„_^a^ 2i a^a^.

Theorem 40. A set of rays in the order {a^a^a^ • • • «„_!«„} are

also in the orders {a^a^ • • • aji^ and {«„«„_ i
• • •

«2«i}.

Corollary. Any two rays a, b having a common origin are in

the orders {ab} and {ba}. Any three rays a, b, c having a common

origin are in the orders {dbc}, {bca}, {cab}, {acb}, {bac}, {cba}.
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Theorem 41. To any;^ite number n "m. 2 of rays having a com-

mon origin may he assigned a notation so that they are in the order

*171. Pencils of segments and directions. The notion of a ray

belongs essentially with, that of a convex region, but the theorems

of the last section may easily be put into a form which is not

limited to convex regions. The proofs are aU omitted for the same

reasons as in the section above.

Definition. A set of aU segments having a common end and

lying in the same plane is called a pencil of segments. The common
end is called the center of the pencil. Two segments or intervals

having a common end A are said to be similarly directed at Ait either

of them is entirely contained in the other. The set of all segments

similarly directed at a given point with a given segment is called a

direction-class or, more simply, a direction.. The set of all directions

of the segments of a pencil at its center is called a pencil of direc-

tions. The directions of two coUinear segments having a common
end A and not similarly directed are said to be opposite, and the

two segments are said to be oppositely directed at A.

Thus if ABCD are four collinear points in the order {ABCJ)} the

segments ABC and ABJ) are similarly directed, while ABC and ADC
are oppositely directed. At a given point on a given line there are

obviously two and only two directions, and these are opposite to

each other. Two noncoUinear segments with a common end are con-

tained in one and only one pencil, namely, the one having the common

end as center and lying in the plane of the two segments.

Definition. A segment o- is said to be between two noncollinear

segments a^, a^ if the three segments are in the same pencil and

ff is similarly directed with a segment which is in the pencil and

contained entirely in the triangular region determined by a^ and o-„

(Theorem 12). A direction d is said to be between two noncollinear

directions d^, d^ if there exist three segments a, a^, a-^ in the direc-

tions d, d^, d^ respectively such that a is between o-^ and &^.

This extension of the notion of betweenness to directions is

justified by the following theorem.

Theoeem 42. If a and ^ are two noTicollinear segments with a

wmmon end 0, and a' and jS' are similarly directed with a and /3
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respectively at 0, the segments between a and ;S are similarly directed

with the segments tetween a' and /J'.

Definition. Let a-^, a^, a^ be three segments of a pencil no two

of them being similarly directed. By an elementary transformation

is meant the operation of replacing one of them, say a-^, by a seg-

ment <r^, which is in the pencil and such that neither tr^ nor <r^ is

between a-^ and er^ or similarly directed with a-^. A class consistmg

of all ordered triads into which o'jO'^o-^ is transformable by finite

sequences of elementary transformations is called a sense-class and

is denoted by S{(T^a-^a-^. If d^, d^, d^ are three directions of a pencil,

and o-j, <T^, o-j three segments in the directions d^, d^, d^ respec-

tively, the sense-class 8{d^d^d^ is the class of all triads of directions

which are the directions of triads of segments in the sense-class

Theorem 43. If a-^, a-^, a-^ are three segments of a pencil, no two

of them being similarly directed, and a'^ is similarly directed with

Theorem 44. There is a one-to-one reciprocal correspondence be-

tween the directions of a pencil and the points of a line such that

two triads of directions are in the same sense if and only if the

corresponding triads of points have the same sense.

We now take from §§ 21-23 of Chap. II the definitions of sepa-

ration, order, etc., and on account of Theorem 44 we have at once

Corollary 1. The Theorems of §§ 21-23 remain valid when

applied to the directions of a pencil instead of to the points of

a line.

Corollary 2. Two pairs of opposite directions separate each other.

Definition. Let o-^ and o-^ be two noncoUinear segments of a

pencil; by an elementary transformation is meant the operation of

replacing one of them, say a-^, by any segment a^ of the pencil such

that no segment coUinear with o-^ is between a-^ and a-^. The set of

all ordered pairs of segments into which a^a^ is transformable by

sequences of elementary transformations is called a sense-class and

is denoted by S{a^a^.

Theorem 45. If a pair of segments a-^ o-^ is transformable by

elementary transformations into a pair <r[tr'^, then a-'^a'^ is transform-

able by elementa,ry transformations into cr a .
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Theorem 46. If a segTrjgnt a^ is similarly directed with a segment

(Tj and not collinear with a segment a^ which has the same origin

Theorem 47. If a-^, a^, a-^, <r^ are segments of a pencil and o- is

not collinear with a-^, nor a^ with a^, then either S{a- a ) = S(cr a) or

'^K°'i)
=

'^("'s""*)- ^{°'i°'2)'^'^(°'i°'i)- V «( *s opposite to o-j, and (t[ to

"^ 'Sf(ff^o-J= ;S(o-,o-J if and only if S{a[<r^a^)=S{<y'^a^a^.

Definition. Let d^ and d^ be two directions of a pencil and let

o-j and ff^ be two segments in the directions d^ and d^ respectively.

By the sense-class S{d^d^ is meant the class of all ordered pairs of

directions which are the directions of ordered pairs of segments

in the sense-class S{(r^a-^.

It is evident that the last two theorems may be restated, without

material change, in terms of directions instead of segments.

*172. Bundles of rays, segments, and directions. Definition. The

set of all rays in a three-dimensional convex region which have a

common origin is called a bundle of rays. The point is called

the center of the bundle.

Let a, I, c be three nonooplanar rays of a bundle. By an elemen-

tary transformation is meant the operation of replacing one of the

rays, say a, by a ray a' such that no ray of the plane containing h

and c is between a and a'. The set of all ordered triads of rays

into which aha can be carried by sequences of elementary trans-

formations is called a sense-class and is denoted by S(ahc).

Theorem 48. If abc and a'b'c' are two ordered triads of non-

coplanar rays having a common origin 0, and A, B, C, A', B', C' are

points of the rays a, b, c, a', b', c' respectively, then S(abc)= S (a'b'c')

if and only if S{OABC) = S{OA'B'C').

Theorem 49. If a, b, c are three noncoplanar rays of a bundle,

S{abc) = S{bca) ¥= S(acb). If a', b', c' are any other three noncoplanar

rays of the bundle, either S (a'b'c') = S(abc) or S(a'Vc') = S(acb).

Theorem 50. If a, b, c are three noncoplanar rays of a bundle

and a' is the ray opposite to a, S(abc) ¥= S(a'bc).

Theorem 51. If abc are three noncoplanar rays of a bundle, the

set [x] of rays of the bundle which satisfy the relation S(xab) =
S (xbc) = S (xca) are in such a one-to-one reciprocal correspondence

r with the points of a triangular region that if rays x^, x^, x^,
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^4' *6' *6 (correspond to points X^, X^, X^, X^, X^, X^ respectively,

S{x^x^xJ = S{x^x^x^) if and only if S{X^X^X;) = S{X^X^X^). If

A, B, C are points of the rays a, b, c respectively, and the triangular,

region is the interior of the triangle ABC, T may he taken as the

correspondence in which each x corresponds to the point in which it

meets the triangular region.

Theorem 52. If a, b, c, d are four rays of a bundle such that any

plane containing two of them contains a ray between the other two,

any other ray of the bundle is between two rays of the set a, b, c, d or

in one offour sets [«], [y], [«], [w] such that [ic] satisfies the condition

S(xbc) =S(xcd) — S{xdb), [y] satisfies S{yac) = S{ycd)= S{yda), [2] sat-

isfies S{zab) = S{zbd) = S{zda), [10] satisfies S{wab) = S(wbc) = S{wca).

CoKOLLARY. Under the conditions of the theorem if A, B, C, D
are points of the rays a, b, c, d respectively, the center of the bundle

is interior to the tetrahedron ABCD.

Definition. A set of all segments having a common end is called

a bundle of segments. The set of all directions of the segments of a

bundle is called a burtdle of directions.

Definition. Let a^, a^, a^ be three segments of the same bundle,

but not in the same pencil ; the operation of replacing any one of

them, say a-^, by a segment a^ of the bundle such that no segment

of the pencil containing o-^ and o-^ is between o-^ and a^ or coincident

with o-^ is called an elementary transformation. A class consisting

of all ordered triads of segments into which <r^<T^a-^ can be carried by

finite sequences of elementary transformations is called a sense-class

and is denoted by S{a^^(T^.

The generalization of Theorems 48-52 to the corresponding

theorems for a bundle of segments presents no difficulty.

*173. One- and two-sided regions. A discussion of the order rela-

tions in projective spaces which is closely analogous both to § 168

and to § 169 may be made according to the following outline. The

details are left as an exercise for the reader.

Let be any point of a planrr region R. Let A, B, C be the

vertices of a triangular region T containing and contained in R,

and let a, yS, 7 be the segments in R joining to A, B, C respec-

tively. Then S{ap) = S{Pi) = Si^/a).

If 0' is any other point of T, and a', /3' the segments of R joining

0' to A and B respectively, S{a^) is said to be like S{a'^'); and
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if 5(a/3) is like S{a'0'), ang S{a'l3) like S{a"l3"), then S{a^) is said

to be like S{a"^"). A region for which a given sense-class at one

point is like the other sense-class at that pomt is said to be one-

sided. Any other region is said to be twchsided.

A convex region is two-sided. A projective plane is a one-sided

region.

Let be any point of a three-dimensional region R. Let A, B,

C, B be the vertices of a tetrahedral region T containing and

contained in R, and let a, /8, 7, 8 be the segments in R joining

to A, B, C, D respectively. Then S{aPi) = S{paB) = <S(S7/3) = S{'yha).

If 0' is any other point of T, and a', /S', 7' are the segments of

R joining 0' to A, B, C respectively, S{a^y) is said to be like

S{a'^'y'); if S{a^y) is like S(a'^'y'), and S{a'^'y') is like S{a"^"y"),

then S{a0y) is said to be like S{a"^"y").

One- and two-sided regions are defined as in the two-dimensional

case.

Any region in a three-dimensional projective space is two-sided.

174. Sense-classes on a sphere. The theorems in § 172 can be

regarded as defining the order relations among the points of a sphere

if carried over to the sphere by letting each point of the sphere

correspond to the ray joining it to the center of the sphere. Another

way of treating the order relations on a sphere and one .which

connects directly with § 97 is as follows

:

Definition. Let A, B, C, D be four points of a sphere not all

on the same circle. By an elementary transformation is meant the

operation of replacing one of them, say A, by a point A' on the

same side of the circle BCD. The set of all ordered tetrads into

wliich ABCD is transformable by sequences of elementary transfor-

mations is called a sense-class and is denoted by S{ABCD).

Theorem 53. There are two and only two sense-classes on a sphere.

S(ABCD)i= S{ABDC).

Theoeem 54. S{ABCD) = S{A'B'C'D') if and only if hV>0,

where Ti{AB, CD) = a -{-
b -^/^ , '&{A'B', C'D')= a' -\-h'^/^, and

a, a', h, V are real.

175. Order relations on complex lines. In view of the isomor-

phism between the geometry of the real sphere and the complex

projective Kne (cf. §§ 91, 95, and 100) the theorems of the section

above and of § 97 determine the order relations on any complex line.



438 THEOEBMS ON SENSE AND SEPARATION [Chap.ix

One very important difference between the situation as to order

in the real and the complex spaces is the following : In a real plane

or space one sense-class on a line is carried by projectivities of a

continuous group into both sense-classes on any other line. So that

fixing a particular sense-class on one line as positive does not deter-

mine a positive sense-class on all other lines. On a complex line,

however, an ordered set of four points ABCD is in one sense-class

or the other according as 6 is positive or negative, where a + l

V— 1= 5 {AB, CD) and a and h are real (Theorem 54). In conse-

quence of the invariance of cross ratios under projection, a given

sense-class on one line goes by projectivities into one and only one

sense-class on any other line. Hence if one sense-class is called

positive on one line, the, positive sense-class can be determined on

every other line as being that sense-class which, is projective with

the positive sense-class on the initial line.

This connects very closely with the convention for purposes of

analytic geometry that by Vc is meant that one of the square roots

of c which takes the form a + iV— 1, where a and h are real and

6 > 0, or if & = 0, a > 0. The symbol V— 1 is taken to represent

that one of the square roots of —1 for which /S(<» iV— l) is

positive.

176. Direct and opposite coUineations in space. From the algebraic

definition of direct collineation in terms of the sign of a determinant,

we obtain at once

Theorem 55. Any collineation of a real three-dimensional pro-

jective space which leaves a Euclidean space invariant is direct if and

only if the collineation which it effects in the Euclidean space is direct.

In a Euclidean space a point D is on the same side of a plane

ABCD with a point E if and only if S{ABCD) = S{ABCE), Hence

a homology whose center is at infinity is direct or opposite according

as a point not on its plane of fixed points is transformed to a point

on the same or the opposite side of this plane. Extending this result

to the projective space by the aid of the theorem iabove we have

Theorem 56. A homology which carries a point A to a point A',

distinct from A, is opposite or direct according as A and A! are

separated or not separated by the center of the homology and the

point in which its plane of fixed points is met hy the line AA'.
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CoROLLAKY 1. A harmmnic homology is opposite.

CoBOLLAKY 2. The inverse of a direct homology is direct.

Since any collineation is expressible as a product of homologies

(§ 29, Vol. I), it foUows that

Corollary 3. The inverse of a direct collineation is direct.

Since an elation is a product of two harmonic homologies having

the same plane of iixed points it follows from Cor. 1 that

Corollary 4. An elation is direct.

Since a line reflection (§ 101) is a product of two harmonic

homologies,

Corollary 5. A line reflection is direct.

Theorem 57. A collineation leaving three sJcew lines invariant

is direct.

Froof. Denote the lines by l^, l^, l^ and the collineation by F.

The projectivity on l^ which is effected by F is a product of two or

three hyperbolic involutions (§ 74). Each involution on l^ is effected

by a line reflection whose directripes are the lines which pass through

the double points of the involution and meet l^ and l^. The product

n of these line reflections leaves Z^, l^, l^ invariant and eSects the same

transformation on l^ as F. Hence II'^F leaves l^, l^ and all points

on Zj invariant. It also leaves invariant any line meeting l^, l^, and

/j, and hence leaves all points on l^ and l^ invariant. Hence H'T
is the identity, and hence F = 11. Since the line reflections are all

direct, F is direct.

Corollary 1. Any collineation leaving all points of two skew

lines invariant is direct.

Proof. Such a coUiueation leaves invariant three skew lines

meeting the given pair of invariant Hnes.

Corollary 2. Any collineation transforming a regulus into itself

is direct.

Proof. Such a collineation is a product of a collineation leaving

all lines of the given regulus invariant by one leaving aU lines of

the conjugate regulus invariant. Hence it is direct, by the theorem.

Corollary 2 is also a direct consequence of Cor. 6, above, and

Theorem 34, Chap. VL
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Corollary 3. Any collineation carrying a regulus into its con-

jugate regulus is opposite.

Proof. The two reguli are interchanged by a harmonic homology

whose center and axis are pole and polar with regard to the regulus.

This harmonic homology is opposite by Cor. 1, Theorem 56, and

since its product by any coUineation F interchanging the two reguli

leaves them both invariant and hence is direct by Cor. 2, it follows

that r is opposite.

Definition. By a doubly oriented line is meant a line / associated

with one sense-class among the points on I and one sense-class

among the planes on I. The doubly oriented line is said to be on

any point, line, or plane on I.

A doubly oriented line may be denoted by the symbol {ABC, a^y)

if A, B, C denote coUinear points and a, /3, 7 planes on the line AB.

For this symbol determines the line AB and the sense-classes S{ABC)

and S((X^i) uniquely. Since there are two sense-classes S{ABC)

and S{ACB) among the points on a Hne AB and two sense-classes

S{a^y) and S(ay0) among the planes on AB, there are four

doubly oriented lines, m^c* aBy)

{ACB, ayl3),

(ABC, ay0),

{ACB, a0y),
into which AB enters.

Theorem 58. The eollineations which transform a doubly oriented

line into itself are all direct.

Proof "Let {ABC, a^y) be a doubly oriented line, T a collineation

leaving it invariant, I any line not meeting AB, and l'= r{l). The

line I' cannot meet AB, because AB is transformed into itself by F-

If I' does not intersect /, let m be the line harmonically separated

from AB by I and I' in the regulus containing AB, I, and I'. If I'

meets I let m be the hne harmonically separated by I and I' from

the point in which the plane W is met by AB. In either case AB
does not intersect m, and if A is the line reflection whose directrices

are AB and m, A{1') = I. Hence AF leaves both AB and m invariant.

Since A and F preserve sense both in the pencil of points AB and

in the pencil of planes a/S, AF preserves sense both on AB and

on m. Hence by § 74, AF effects a projectivity on ^5 which is a
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product of two hyperbolic ^volutions, {-P^Pj} • {P^P^}, and it effects

a projectivity on m which is a product of two hyperbolic involutions,

{QM • i^M- Let
'i. h' h' h be the lines P^Q^, P^Q^, P^Q^, P^Q^

respectively. The product

{W-{VJ-A-r
leaves all points on AB and on m invariant and is therefore direct

by Cor. 1, Theorem 57. All the collineations in this product except

r are direct by Cor. 5, Theorem 56. Hence T is direct.

CoEOLLAEY 1. Ani/ colUneation which reverses both sense-classes

of a doubly oriented line is direct.

Proof. Let r be a collineation reversing both sense-classes of a

doubly oriented line (ABC, a/Sy). Let a and b be two lines meeting

AB but not intersecting each other. The line reflection {ab} reverses

both sense-classes of (ABC, a/87) and is direct. Hence {ab} • T leaves

them both invariant and is direct by the theorem. Hence F is direct.

Corollary 2. Any collineation which transforms each of two skew

lines into itself and effects a direct projectivity on each is direct.

Corollary 3. Any collineation which transforms each of two

skew lines into itself and effects an opposite projectivity on each is

direct.

177. Right- and left-handed figures. The theorems of the last

section can be used in showing that other figures than the ordered

pentads of points may be classified as right-handed and left-handed.

For this purpose the following theorem is fundamental.

Theorem 59. If the collineations carrying a figure F^ into itself

are all direct, the figures equivalent to F^ under the group of all

collineations fall into two classes such that any collineation carrying

a figure of one class into a figure of the same class is direct and any

collineation carrying it into a figure of the other class is opposite.

Proof. Let [F] be the set of all figures into which F^ can be

carried by direct collineations. There is no opposite collineation

carrying F into an F; for suppose T were such an opposite collin-

eation, let P be one of the direct collineations which by definition

of [F] carry F into F; then P~T would be an opposite collineation

carrying F^ into itself. In like manner it follows that any collinea-

tion carrying any F into itself or any other F is direct.
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Let [F'] be the set of all figures into which F^ is carried by oppo-

site collineations. An argument like that above shows (1) that any

collineation carrying F^ into an F' is opposite and (2) that any

coUineation carrying an F' into itself or another F' is direct. It

follows at once that any collineation carrying an F into an F' or

an F' into an F is opposite.

Since the direct collineations form a continuous family of trans-

formations, we have

CoKOLLARY. The figures conjugate to F^ under the group of direct

collineations form a continuous family.

The propositions about the sense-classes of ordered tetrads of non-

collinear points are corollaries of this theorem because the only

collineation carrying an ordered pentad of noncoUinear points into

itself is the identity.

By Theorems 57 and 59 all triads of noncoUinear lines fall into two

classes such that any collineation carrying a triad of one class into

a triad of the same class is direct and any collineation carrying a

triad of one class into a triad of the other class is opposite. It is to

be noted particularly that the triads of lines here considered need not

be ordered triads, since by Cor. 2, Theorem 57, the collineation

effecting any permutation of a set of three noncoUinear lines is direct.

Similar propositions hold with regard to doubly oriented lines,

reguli, congruences, and complexes (cf. § 178).

Let us now suppose that a particular sense-class S{ABCD) in

a EucMean space has been designated as right-handed (cf. § 162).

Any ordered tetrad of points in this sense-class is also caUed right-

handed and any ordered tetrad in the other sense-class is called

left-handed.

Let P be a point interior to the triangular region BCD, Q the

point at infinity of the line AP, /8 the plane APB, 7 the plane APC,

and S the plane APD. AU doubly oriented lines into which {APQ,

J87S) is carried by direct collineations shall be called right-handed

and aU others shaU be called left-handed.

The set of points ABCDQ and the sense-class 8{ABCDQ) in the

projective space ABCD shall be called right-handed and all other

ordered pentads of noncoUinear points and the other sense-class

shaU be called left-handed.
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These conventions giv^ the same determination of right-handed

doubly oriented lines and ordered pentads of points no matter what

point of the triangular region BCD is taken as P, because any col-

Uneation leaving A, B, C, D invariant and carrying one such P into

another is direct. In like manner these conventions are independent

of the choice of ABCD, so long as S{ABCD) is direct.

A triad of skew lines l^, l^, l^ shall be said to be right-handed or

left-handed according as the doubly oriented line {ABC, a^y) is

right-handed or left-handed, provided that m is a line meeting l^,

l^, l^, and A, B, C are the points ml^, ml^, ml^ respectively, and a,

;8, 7 are the planes ml^, ml^, ml^ respectively.

This convention is independent of the choice of m, by Theorems

57 and 58. By the same theorems any coUineation carrying a

right-handed triad of noncollinear lines into a right-handed triad,

of lines is direct, and any coUineation carrying a right-handed

triad of lines into a left-handed triad is opposite.

The reader should verify that a pair of skew lines Im in a Euclid-

ean space is right-handed or left-handed in the sense of § 163

according as Iml^ is right-handed or left-handed, Z„ being the line

at infinity which is the absolute polar of the point at infiuity of I.

If m^ is the absolute polar of the point at infinity of m, Imm^ is

right-handed if and only if Iml^ is right-handed.

Let A\>Q & point of the axis of a twist F in a Euclidean space,

let B = r(^), and let C be the point at infinity of the line AB ; let

a be any plane on the line AB, fi = V{a), and 7 the plane on AB
perpendicular to a. Then F is right-handed in the sense of § 163

if and only if the doubly oriented line {ABC, a/87) is right-handed.

This is easily verified.

178. Right- and left-handed reguli, congruences, and complexes.

By Cor. 2, Theorem 57, every triad of lines in a regulus is right-

handed or every triad is left-handed. In the first case the regulus

shall be said to be right-handed and in the second case to be

l^t^hcinded.

Theorem 60. The coUineations which leave an elliptic linear corir

gruence invariant are all direct.

Proof. An elliptic congruence has a pair of conjugate imaginary

Hnes as its directrices (§109), and there is one real line of the
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congruence through each point of a directrix. Any collineation F
which carries each directrix of the congruence into itself effects a

projectivity on that directrix. This projectivity is a product of two

involutions (§ 78, Vol. I). Each involution may be effected by a

Line reflection whose lines of fixed points are the (real) lines of the

congruence through the (imaginary) double points of the involution

;

since such a line reflection leaves both directrices invariant, it leaves

the congruence invariant. Hence there exist two line reflections

Aj, Ajj, each transforming the congruence into itself, such that

AjA^r leaves all points on a directrix invariant. Hence A^A^r

transforms each line of the congruence into itself. By Theorem 57,

A^AjF is direct, and by Theorem 56, Cor. 5, A^ and A^ are direct.

Hence F is direct.

If I is any real line not in the congruence, the lines of the con-

gruence meeting I form a regulus, and the directrices are double

lines of an involution in the hues of the conjugate regulus. If I'

is the line conjugate to I in this involution, the line reflection {W}

must interchange the two directrices. Hence if F' is any colline-

ation interchanging the directrices, {W} • F' is a collineation which

leaves each of them invariant. Hence by the paragraph above

{W} • V is direct. Hence F' is direct. Hence any real collineation

leaving an eUiptic linear congruence invariant is direct.

CoKOLLAEY 1. The triads of lines of an elliptic linear congruence

are all right-handed or all left-hamded.

For any triad can be carried into any other triad by a direct

collineation.

Corollary 2. If four linearly independent limes are such that

all sets of three of them are right-handed or such that all sets of

three of them are left-handed, the linear congruence which contains

them is elliptic.

An eUiptic congruence shall be said to be right-handed if every triad

of lines in it is right-handed ; otherwise it is said to be left-handed.

A pair of conjugate imaginary lines of the second kind (§ 109)

is said to be right-handed or left-handed according as it is deter-

mined by a right-handed or a left-handed congruence.

A pair of Clifford parallels (§ 142) is said to be right-handed or

left-handed according as the congruence of Clifford parallels to which
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they belong is right-han(J|d or left-handed. This distinction is in

agreement with that introduced in § 142, because according to both

definitions a coUineation carrying a system of right-handed Clifford

parallels into a system of right-handed ones is direct, and a coUinea-

tion carrying a system of right-handed Clifford parallels into a

system of left-handed ones is opposite.

Theorem 61. The collineations which leave a nondegenerate linear

complex invariant are all direct.

Pivof. Let r be a coUineation leaving a complex C invariant,

and let I be any line of C and l'=T (1). Let I" be any Une of C not

meeting I or /'. The lines of C which meet I and I" constitute a

regulus, and three lines of this regulus together with I and I" con-

stitute a set of five linearly independent lines (§ 106, Vol. I) upon

which, therefore, all the lines of C are linearly dependent. Hence

a coUineation V which leaves this regulus invariant and inters

changes I and I" leaves C invariant. Let F" be a coUineation, simi-

larly obtained, which interchanges I" and I' and leaves C invariant.

The product FT'T leaves C and I invariant, and T' and F" are

direct.

Any coUineation leaving C and I invariant leaves invariant the

projectivity 11 between the points on I and the planes corresponding

to them in the null system determined by C. The projectivity 11

transforms an arbitrary sense-class among the points on I into an

arbitrary sense-class among the planes on I. These two sense-classes

determine a doubly oriented line, I. The other sense-class of the

points on I is carried by 11 into the other sense-class of planes on

/, and these two sense-classes determine a doubly oriented line I.

Since any coUineation leaving C and I invariant leaves n invariant,

it either transforms this doubly oriented line into itself or into the

one obtained by reversing both its sense-classes. Hence any such

coUineation is direct by Theorem 58 and its first corollary. In

particular FT'T is direct, and since F' and F" are direct, it foUows

that F is direct.

By Theorem 61 aU the doubly oriented lines analogous to 7 which

are determined by C are aU right-handed or all left-handed. In the

first case C shall be called right-handed, and in the second case C

shall be called left-handed.
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The algebraic criteria in the exercises below are taken from the

article by E. Study referred to in § 162. See also F. Klein, Auto-

graphierte Vorlesungen iiber nicht-Euclidische Geometric, Vol. II,

Chap. I, Gottingen, 1890.

EXERCISES

1. Classify parabolic congruences (§ 107, Vol. I) as right-banded and left-

handed.

2. For two lines p and p' let

iP, P') = P^2Pm + PnP'ii + PuP'^ + PiiP'xi + Pi2P\i + PwP'w

where /)„ are the Plucker coordinates (§ 109, Vol. I) of p, and jo^. those of p'.

Three lines p, p', p" are right-handed or left-handed according as

(p, p') • {p', p") (p", p)
is positive or negative.

3. A pair of conjugate imaginary lines of the second kind whose Plucker

coordinates are p^^ and p^/ respectively are right-handed or left-handed ac-

cording as ^^^
-^^ ^ ^^^ -^^ ^ p^^-^^ ^ ^^^--^^ ^ p^^ -^^ ^ p^^-^^

is positive or negative.

4. The linear Une complex whose equation in Plticker coordinates is

(§110, Vol. I)

"12^12 + "is/'lS + «14^14 + <^3iPu + '^iiPm + «28i'28 = ^

is right-handed or left-handed according as

«X2«84 + °18"42 + "l4''28

is positive or.negative.

5. A twist given by the parameters of § 130 is right-handed if a^^g >
and the coordinate system is right-handed.

6. The linear complex C determined by a twist according to Ex. 7, § 122,

is right-handed or left-handed according as the twist is right-handed or left-

handed.

*179. Elementary transformations of triads of lines. Let F^ be a

figure such that aE the collineations which transform it into itself

are direct, and let [F] be the set of all figures equivalent to F under

direct transformations. From the fact that the group of all direct

collineations is continuous, it can be proved that [i^] is a continuous

family of figures.

This can also be put into evidence by generalizing the notion of

elementary transformation to other figures. This is essentially what

has been done in §§169 and 173. For triads of skew lines the

following theorem is fundamental
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Theorem 62. If l^, Ipl^ are three skew lines, and l^ is a line

coplanar with l^ and such that the points in which l^ and l^ meet the

plane IJ,^ are wo< separated hy the lines l^ and l^, then lj,j,^ can be

carried to l^lj^ by a direct collineation.

Froaf. Let a be a line meeting l^, l^, and l^ (fig. 86) in points

A^, A^, A^ respectively, which are all distinct. Let a be the plane con-

taining l^ and the point £ of intersection of l^ and l^. If A^ is in a,

an elation with A^ as center, a

as plane of fixed points, and • '

carrying A^ to A^ will carry l^, A^y/x
l^, Zj into l^, l^, l^ respectively. JC \ 1/

By Theorem 56, Cor. 4, this ^ti V* \

elation is direct. X~ir "" \~\ \~~

—

a—

7

If A. is not in a, the points X.... "^
, \V _ \ /

A^ and A^ are not separated by / ^^-^^_^^^ /
A^ and the point A in which a ^ -p^^ gg

meets (k ; for by hypothesis A^

and the point in which l^ meets the line BA are not separated by the

lines l^ and l^. Hence the homology with A^ as center and a as plane

of fixed points which carries l^ to l^ is direct (Theorem 56). This

homology carries l^, l^, l^ into l^, l^, l^ respectively.

An elementary transformation of a triad of skew lines IJ,J, may
be defined as the operation of replacing one of them, say l^, by a

line l^ which is coplanar with l^ and such that l^ and l^ do not sepa-

rate the points in which their plane is met by l^ and l^.

By Theorem 62 an elementary transformation may be effected

by a direct collineation. A sequence of elementary transformations

therefore carries a right-handed triad into a right-handed triad and

a left-handed triad into a left-handed triad.

Conversely, it can be proved that any right-handed triad can be

carried into any right-handed triad by a sequence of elementary

transformations and that the two classes of lines determined by a

pair of skew lines ah according to Ex. 2, § 25, are the lines [a;] such

that ahx is right-handed and the lines [y] such that aby is left-handed.

These propositions are left to the reader.

*180. Doubly oriented lines. The theory of sense-classes in three

dimensions could be based entirely on that of doubly oriented lines

(§ 176). We shall prove the earliest theorems of such a theory in
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this section. The proofs are based on Assumptions A, E, S and do

not make use of the preceding discussions of order in three-space.

Definition. Two doubly oriented lines are said to be doubly

perspective if they can be given the notation {ABC, a^y) and

{A'B'C, a'^'y') respectively in such a way that A, S, C, a, 0, y are

on a', /8', 7', A', B', C respectively. Two doubly oriented lines l^

and I are said to be similarly oriented if and only if there exists a

sequence of doubly oriented, lines l^, l^,'",l„ such that l^ is doubly

perspective with l^, l^ with Z^, • •, ^„_i with l„, and l^ with I. Two
doubly oriented lines which; are not similarly oriented are said to

be oppositely oriented.

From the form of this definition it follows immediately that

Theorem 63. If a doubly oriented line l^ is similarly oriented

with a doubly oriented line l^, and l^ with a doubly oriented line l^,

l^ is similarly oriented with l^.

Theorem 64. If three doubly oriented lines m^, m^, m^, no two of

which are coplanar, are such that m^ is doubly perspective with m

,

and m^ with m^, then mi^ is doubly perspective either with m or with

the doubly oriented line obtained by changing both sense-classes on m

.

Proof. Let ABC be an ordered set of points of the sense-class of

points of m^ and let \, l^, l^ be the three lines on A, B, C respectively

which meet m^ and m^. The

sense-class of planes of m^

contains either the ordered

triad of planes l^m^, l^m^, l^m^

or the ordered triad l^m^,

h^o> h^o- ^^ ^^® ^^^^ ^^^^

{Rg. 87) let l^m^= a, l^m^= 0,

l^m^ = y. In the second case

(fig.88)let;„)n„= «,Z^m„=A
l^m^ = y. In both cases let

A^, B^, Cj be the points l^m^,

h^i> h^i I'sspectively, a^, /3^,

7j the planes l^m^, l^m^, l^m^

respectively, A^, B^, C^ the points l^m^, l^m^, l^m^ respectively, and

*2' ^2' % the planes l^m^, \m^, l^m^ respectively.

In the first case {ABC, a^y) is doubly perspective with {A^B^C^,

a^^.yj and this with {A^B^C^, a^^^y^). Since m^ = {ABC, a0y), and

m
-'ttj

H
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m^ is doubly perspective j^ith m^, m^ = (A^B^C^, afy^); and since

»!,j is doubly perspective with m^, m^ = {A^B^C^, a^^y^. But

by construction (A^B^C^,

a^/SjYj) is doubly perspec- Wo w, "?«

tive -with {ABC, a0y),

i.e. m^ is doubly perspec-

tive with m^.

In the second case

(AB C, a/87) is doublyper-

spective with (A^C^B^,

a^^jj^) and this with

iA^A' «.yA)- Since

1)1^ = {ABC, a^y), and

wij is doubly perspective

with m„, m^ = {A^C^B^,

a;,/3j7j); and since m^ is doubly perspective with m^, m^'={A^B^C^,

a^Yjj/Sj). But by construction {A^B^G^, cc^y^) ^ doubly perspective

with {ACB, ay/S) ; i.e. m^ is doubly perspective with the doubly

oriented line obtained by changing both sense-classes of m^.

Theorem 65. A doubly oriented line {ABC, a^y) is similarly

oriented with {ACB, ay^) and oppositely oriented to {ABC, ay^) and

{ACB, aj3y).

Proof. Let l^, l^, l^ be three lines distinct from AB and such that

l^ is on A and a, l^ on B and 7, l^ on C and /8. Let m^ and m^ be

two lines distinct from AB, each of which meets l^, l^, and l^. Let

A^, B^, Cj be the points l^m^, Ijn^, l^m^ respectively and a^, /S^, y^

the planes l^m^, l^m^, l^m^ respectively; let A^, B^, C^ be the points

l^m^, l^m^, \m^ respectively and a^, ^^, y^ the planes l^m^, l^m^, l^m^

respectively. Then by construction (fig. 88) and definition the

oriented line {ABC,a^y) is doubly perspective with {A^C^B^, a^P^y^,

and this with {A^B^C^, a^y^^^, and this with {ACB, 0:7/8). Hence

{ABC, a/87) is similarly oriented with {ACB, ay/3). By a change of

notation it is evident that {ABC, ay^) is similarly oriented with

{ACB, a/87). It remains, therefore, to prove that {ABC, a/87) is not

similarly oriented with {ACB, a/37).

If these two oriented lines were similarly oriented, there would

be a sequence of doubly oriented lines m^, in,^,m^, • • ., »i„ such that
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m^ = {ABC, a^y) and m„ = {ACB, ajSy), and such that each oriented

line of the sequence would be doubly perspective with the next one

in the sequence. Let m be a doubly oriented hne not coplanar with

any of m^, m^, • • -, m„, and doubly perspective with m^; let m be

the doubly oriented line obtained by changing both sense-classes

on m. By Theorem 64 m^ is doubly perspective with m or m. By

a second application of this theorem m^ is doubly perspective with

m or m, and by repeating this process n times we find that wi„ is

doubly perspective with m or m. But this means that m„ is {ABC,

a^i) or {ACB, ay^).

Theorem 66. There are two and only two classes of doubly oriented

lines such that any two doubly oriented lines of the same class are simi-

larly oriented and any two of different classes are oppositely oriented.

Froof. Let {ABC, a^y) be an arbitrary fixed doubly oriented line

and let K be the class of doubly oriented lines similarly oriented to

it. This class contains (Theorem 65) {ACB, ay/S) but not {ACB, a^y)

or {ABC, ay/S). If I is any line and m any line not meeting I or

AB, {ABC, a^y) is doubly perspective with one of the doubly oriented

lines determined by m and this with one of those determined by I.

Hence K contains two of the four doubly oriented lines determined

by any line of space. Let K' be the class of doubly oriented lines

similarly oriented with {ACB, a0y). It also contains two of the four

doubly oriented lines determined by any line of space. K and K'

cannot have a doubly oriented line in common, because this would

imply that {ABC,, a^y) and {ACB, a^y) were similarly oriented.

Hence every doubly oriented line is either in K or in K'.

There can be no other pair of classes of similarly oriented doubly

oriented lines including all doubly oriented lines of space, because

one class of such a pair would contain elements both of ^and of K',

and this would imply, by Theorem 63, that {ABC, a^y) was simi-

larly oriented with {ACB, a^y).

From the construction which determines whether two doubly

oriented lines are similarly oriented or not, it is evident that any col-

Hneation carries any two doubly oriented lines which are similarly

oriented into two which are similarly oriented. Hence, if a collinear

tion carries one doubly oriented line into a similarly oriented one, it

carries every doubly oriented line into a similarly oriented one ; and
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if it carries one into an oppositely oriented one, it carries every doubly

oriented line into an opjjifeitely oriented one.

Any coUineation which carries a doubly oriented line into a simi-

larly oriented one is said to be ddrect, and any collineation which
carries a doubly oriented Mne into an oppositely oriented one is said

to be opposite. This definition of direct and opposite collineations is

easily seen to be equivalent to that in § 32.

*181. More general theory of sense. The theory of sense-classes

in the preceding pages can be extended to analytic transformations

by means of simple limiting considerations. For example, consider

a transformation of a part of a Euclidean plane

*' =f{o^y) = aoo+ «io"' + "'uV + «2o*'+ • • •'

yi =g{xy) = 6^-1- h^x + \^y+ hy+ • •
.,

where both series are convergent for all points in a region including

the point (0, 0). If the determinant

«10 «01

3/(0,0) 8/(0,0)

dx dy

8^(0,0) 85r(0,0)

dx dy

is not zero, it can be shown that there is a region including (0, 0)

which i^ transformed into a region including (a^, b^) in such a way

that all ordered poiut triads of a sense-class in the first region go into

ordered point triads of one sense-class in the second region; and if

(«', y') is in the same plane as (x, y), the two sense-classes will be the

same if and only if tT" > 0.

By a similar limiting process the notions of right- and left-handed-

ness can be extended to curves, ruled surfaces, and other figures

having analytic equations. A discussion of some of the cases which

arise will be found in the article by Study referred to in § 162.

This sort of theory of sense relations belongs essentially to

differential geometry, although the domain to which it applies may
be extended by methods of the type used in §§ 168 and 173.

The theory of sense may, however, be extended in a different

way so as to apply to the geometry of all continuous transforma-

tions instead of merely to the projective geometry or to the geometry

of analytic transformations. The main theorems are as follows:
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Auy one-to-one reciprocal continuous transformation of a curve

into itself transforms each sense-class on the curve either into itself

or into the other sense-class. A transformation of the first kind is

called direct and one of the second kind opposite. A direct trans-

formation is a deformation (§ 157), and an opposite transformation

is not a deformation.

Any simple closed curve consisting of points in or on the

boundary of a 2-cell R (§ 155) is the boundary of a unique 2-cell

which consists entirely of points of R.

A 2-cell can be deformed into itself in such a way as to trans-

form an arbitrary simple closed curve of the cell into an arbitrary

simple closed curve of the cell. Any one-to-one reciprocal contin-

uous transformation of a 2-cell and its boundary into themselves

is a deformation if and only if it effects a deformation on the

boundary; i.e. if and only if it transforms a sense-class on the

boundary into itself.

If the sense-classes on one curve j^ of a 2-cell and its boundary

are designated as positive and negative respectively, any sense-class

on any other curve j^ is called positive or negative according as it

is the transform of the positive or of the negative sense-class on j^

by a deformation of j^ into j through intermediate positions which

are all simple closed curves on the 2-cell and its boundary. By the

theorems above, this gives a unique determination of the positive

and negative sense-classes on any curve of the given convex region.

A curve associated with its positive sense-class is called a positively

oriented curve, and a curve associated with its negative sense-class

is called a negatively oriented curve.

Any transformation of a 2-ceU which is one-to-one, reciprocal,

and continuous either transforms all positively oriented curves into

positively oriented curves or transforms all positively oriented

curves into negatively oriented curves. In the first case the trans-

formation is said to he direct and in the second case to he opposite.

The transformation is a deformation if and only if it is direct.

A 2-cell associated with its positively oriented curves or with its

negatively oriented curves is called an oriented 2-cell.

The oriented 2-ceILs of a simple surface fall into two classes such

that any oriented 2-cell of one class can be carried by a continuous

deformation of the surface into any other oriented 2-ceU of the
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same class, but not into any oriented 2-c6ll of the other class. The

two oriented 2-cells deteiflhined by a given 2-ceR are in different

classes. A simple surface associated with one of these classes of

oriented 2-cells is said to be oriented.

A similar theorem does not hold for the oriented 2-ceUs of a

projective plane. Instead we have the theorem that every contin-

uous one-to-one reciprocal transformation of a projective plane is a

deformation. Consequently any oriented 2-cell can be carried into

any other oriented 2-celI by a deformation.

The oriented simple surfaces in a 3-cell and its boundary fall

into two classes such that any member of either class can be

deformed into any other member of the same class through a set

of intermediate positions which are all oriented simple surfaces, . but

cannot be deformed in this way into any member of the other class.

A continuous one-to-one reciprocal correspondence which carries a

3-cell and its boundary into themselves either interchanges the two

classes of oriented simple surfaces or leaves them invariant. In the

second case the transformation is a deformation and in the first

case it is not. A 3-cell associated with one of its classes of oriented

surfaces is called an oriented 3-cell.

The oriented 3-cells of a projective space fall into two classes

such that any member of one class can be carried by a continuous

deformation of the projective space into any member of the same

class but not into any member of the other class. A continuous

one-to-one reciprocal transformation of the projective space either

transforms each class of oriented 3-cells into itself or into the other

class. In the first case it is a deformation and in the second it is not.

A projective space associated with one of its classes of oriented

3-cells is called an oriented projective space.

The one-dimensional theorems outlined above are easily proved

on the basis of the discussion of the sense-classes on a line in §§ 159

and 165. The two-dimensional ones, though more difi&cult, are conse-

quences of known theorems of analysis situs. They involve, however,

such theorems as that of Jordan, that a simple closed curve separates

a convex region into two regions ; and the theorems of this class do

not belong (§§ 34, 39, 110) to projective geometry. The Jordan

theorem in the special case of a simple closed polygon does, however,

belong to proiective geometry and is proved below (§ 187).
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The three-dimensional propositions outlined here have not all

been proved as yet, but are (in form) direct generalizations of the

one- and two-dimensional ones.

Let us note that an ordered triad of points as treated in § 160 may be

regarded as determining an oriented 2-cell. For the triangular region having

the points as vertices is a 2-cell, and a senset-class is determined on its boundary

by the order of the vertices. This sense-class determines a sense-class on every

curve of the 2-cell and thus determines an oriented 2-cell.

In like manner an ordered tetrad of points as treated in § 160 determines

an oriented 3-cell. For the tetrahedral region having points ABCD as ver-

tices is a 3-cell. The triangular region BCD is a 2-cell which does not contain

A, and is oriented in view of the order of the points on its boundary. This

oriented 2-cell determines an orientation of the boundary of the 3-cell, and

thus of the 3-cell.

Likewise an ordered tetrad ABCD of a projective plane determines a

2-cell, i.e. that one of the triangular regions BCD which contains A ; and

this 2-cell is oriented by the order of the points BCD. Similarly, an ordered

pentadABCDE of points in a projective space determines an oriented 3-oell, i.e.

that one of the tetrahedral regions BCDE which contains A, oriented accord-

ing to the order of the pbints BCDE.

182. Broken lines and polygons. Definition. A set of n points

A^, A^,-", A„, together with a set of n segments joining A^ to A^, A^

to A^, . , -4„_i to A^, is called a broken line joining A^ to A„. The

points A^, • • •, A„ are called the vertices and the segments joining

them the edges of the broken line. If the vertices are all distinct

and no edge contains a vertex or a point on another edge, the broken

line is said to be simple. If A^=A„ the broken line is said to be

closed, otherwise it is said to be open. The set of all points on a

closed broken line is called a polygon. If the vertices 6f a polygon

are all distinct and no edge contains a vertex or a point on another

edge, the polygon is said to be simple.

A broken line whose vertices are A^, A^,---,A^, and whose edges

are the segments joining A^ to A^, A^ to A^, • • ., A^_^ to A„, is called

the broken hne A^A^^ • • A> ^^^^ its edges are denoted by A^A^, AA ,

• • •, A„_^A^ respectively. If A^=A,^ the corresponding polygon is

denoted by A^^A^ • • • A„_.^A^ ; the vertex A^ is sometimes denoted by
A„, A^ by ^„+„ etc.

The following theorem is an obvious consequence of the definition.

Theorem 67. The polygon A^A^ A„A^ is the same as A^A^ .

^n-^iA "'^ ^i^»
•

' • ^a^i- If P is any point of the edge A^A^ of
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a simple polygon A^A^ • • • A^A^, this polygon is the same as a poly-

gon AjPA^ • A„A^ in which the edge A^P, the vertex P, and the

edge PA^ constitute the same set of points as the edge A^A^. If a

simple polygon A^A^A^ • • • A„Aj^ is such that A^A^A^ are collinear

and A^ ¥= A^, this polygon is the same as the polygon A^A^ • • • A^A^

in which all the edges but A^A^ are the same as before and A^A^ is

the segment A^A^A^.

Definition. If A, B, C are any three points on a simple polygon,

an elementary transformation is the operation of replacing any one

of these points, say C, by a point C such that C and C are joined

by a segment consisting of points of the polygon and not containing

either of the other two points. A class consisting of all ordered triads

each of which is transformable by a finite number of elementary

transformations into a fixed triad ABC is called the sense-class ABC
and is denoted by S(ABC).

Theoeem. 68. There exists a one-to-one and reciprocal corresponds

ence between the points of any simple polygon and the points of any

line such that two triads of points on the polygon are in the same

sense-class with respect to the polygon if and only if the correspond-

ing triads of points on tlie line are in the same sense-class.

Proof. Let the vertices of the polygon be denoted by A^, A^,---,

.4„_i and let A^ be also denoted by A„. Let B^, B^, • • •, 5„_i be n

arbitrary points of a line I in the order {B^, B^, • • •, -B„_i} and let

B^ also denote B^. Let /S^ denote that segment B^B^^^, which con-

tains none of the other points B. Let the edge joining Ai to A^^.^

correspond projectively to the segment ySj in such a way that ^,- and

j4,.^i are homologous with B^ and ^^^.j respectively. (In general the

projectivities by which two sides of the polygon correspond to two

segments on the line wiU be different.) If we also let Af correspond

io B^ {i = 1, • •
.
, n — 1), there is evidently determined a one-to-one

and reciprocal correspondence T between the polygon and the line

which is such that each side of the polygon with its two ends

corresponds with preservation of order relations to a segment of the

line and its two ends.
^

Let ij, i^, ij, ij denote points of the polygon and L^, L^, L^, L^

the points of I to which they respectively correspond under T. The

correspondence V is so defined that if P^P^P^ goes into P^P^P^ by an
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elementary transformation with respect to the polygon, then L^Lj^^

goes into L^LJL^ by an elementary transformation restricted with

respect to B^, B^, • • -, ^„(cf. § 165), and conversely. Hence the

theorem follows at once from the corollary of Theorem 22.

Corollary 1. The theorem above remains true if the words

"broken line with distinct ends" be substituted for polygon, and
" interval " for line.

The definitions of separation and order given in § 21 for the

points on a line may now be applied word for word to the points

on a simple polygon, and in view of the correspondence established

in Theorem 68, the theorems about order relations on a line may be

applied without change to polygons.

By comparison with the proof of Theorem 15 we obtain immediately

Corollary 2. A simple polygon is a simple closed curve.

Corollary 3. A simple broken line joining two distinct points

A^, A„ is a simple curve joining A^ and A^.

The order relations on a broken line which is not simple may be

studied by the method given above with the aid of a simple device.

Suppose we associate an integer with each point of a broken line

A^A^ • • • A^ as follows : With A^ and every point of the segment

joining A:^ to A^ the number 1 ; with A^ and every point of the seg-

ment joining A^ to A^ the number 2 ; and so on, and, finally, with A^

the number n.

Definition. The object formed by a point of the broken line and

the number associated with it by the above process shall be caUed

a numbered point ; and the numbered point is said to be on any seg-

ment, line, plane, etc. which the point is on. If A, B, C are ally three

numbered points on a polygon, an elementary transformation is the

operation of replacing any one of these numbered points, say C, by

a point C" such that Cand C" are joined by a segment of numbered

points aU having the same number. A class consisting of all ordered

triads of numbered points each of which is transfoitoable by a finite

sequence of elementary transformations into a fixed triad ABC is

called the sense-class ABC and is denoted by S{ABC).

By the proof given for Theorem 68 we now have

Theorem 69. There exists a one-to-one and reciprocal correspond-

ence between the numbered points of any broken line and the points
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o/ any interval such thahtwo triads of numbered points are in the

same sense-class if and only if the corresponding triads of points

on the interval are in the same sense-class.

We are therefore justified in applying the theorems and defini-

tions about order relations on an interval to the numbered points

of a broken line.

EXERCISE

•Any two points of a reg:ion can be ioined by a broken line consisting

entirely of points of the region.

183. A theorem on simple polygons. In the last section a poly-

gon was defined as the set of points contained in a sequence of

prants and linear segments. This is the most usual definition and

doubtless the most natural. With a view to generalizing so as to

obtain the theory of polyhedra in spaces of three and more dimen-

sions, however, we shall find it more convenient to use the property

of a simple polygon stated in the following theorem.*

Theorem 70. A set of points [P] is a simple polygon if and only

if the following conditions are satisfied : (1) [P] consists of a set of

distinct points, called vertices, and of distinct segments, called edges,

such that the ends of each edge are vertices and each vertex is an end

of an even number of edges; (2) if any points of [P] are omitted,

the remaining subset of [P] does not have the property (1).

Proof. It is obvious that a simple polygon, as defined in § 182,

satisfies Conditions (1) and (2), because no edge has a point in com-

mon with any other edge or vertex and each vertex is an end of

exactly two edges.

Let us now consider a set of points [P] satisfying (1) and (2). If

two or more edges have a point ia common, this point divides each

edge into two segments. Hence the point may be regarded as a

vertex at which an even number of edges meet. In like manner,

if an edge contains a vertex the two segments into which the edge

is divided by the vertex may be regarded as edges. Since there are

originally given only a finite number of vertices and edges, this

process determines a finite number of vertices and edges such that

no edge contains a vertex or any point of another edge.

•This form of the definition of a polygon and a corresponding definition of

a polyhedron are due to N. J. Lennes, American Journal of Mathematics,

Vol. XXXIII (1911), p. 37.
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Now let «j be any edge and ^ one of its ends. Since there are

an even number of segments having P^ as an end, there exists an-

other distinct from e^; let this be denoted by e^. Let ^ be its other

end, and let e^ be a second segment having P^ as an end, and so on.

By this process we obtain a sequence of points and segments

*i» -^' *2' -^' V •

Since the number of vertices is finite, this process must lead by a

finite number of steps to a point ^ which coincides with one of the

previous points, say ij. The set of points included in the points

and segments

satisfies the definition of a simple polygon and has the property that

each ^{j=i, * + !•• P^_^ is an end of two and only two e's.

Hence it satisfies Condition (1). By Condition (2) it must include

all points of the set [P].

CoEOLi/AEY. A set of points satisfying Condition (1) of Theorem

70 consists of a finite number of simple polygons no two of which

have a,ny point in common which is not a vertex.

Proof. In the proof of the second part of the theorem above.

Condition (2) is not used before the last sentence. If Condition (2)

be not satisfied, the set of points remaining when the segments

«i+i> " •> «» (a^d those of the points J?, • • •, i^_i which are not

ends of the remaining segments) are removed continues to satisfy

Condition (1). For on removing two segments from an even num-
ber, an even number remains. Hence the process by which the

simple polygon i?,e<+i, • • -j^.i, e„ was obtained may be repeated and

another simple polygon removed. Since the total number of edges

is finite, this step can be repeated only a finite number of times.

184. Polygons in a plane. In the next three sections we shall

prove that the polygons in a projective plane are of two kinds, a

polygon of the first kind being such that all points not on it con-

stitute two regions, and a polygon of the second kind being such

that all points not on it constitute a single region. The boundary of

a triangular region is a polygon of the first kind, and a projective

line a polygon of the second kind. In proving that the points not on
a polygon constitute one or two regions, we shall need the following:
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Theorem 71. Any po^t coplanar with but not on a polygon p
in a plane a is in a triangular region of a containing no point of p.

Proof. Let the polygon be denoted by A^A^ • • • A^A^ and the

point by F. By an obvious construction (the details of which are

left to the reader ; cf. § 149) a triangular region T^ may be found

containing F and not containing A^ or A^ or any point of the edge

Aj^A^. In like manner a triangular region T^ may be constructed

which contains F, is contained in T^, and does not contain A^ or any

point of the edge A^A^. By repeating this construction we obtain a

sequence of triangular regions T^, T^, • , r„, each contained in all

the preceding ones, containing F, and such that T^ does not con-

tain any point of the broken line A,A^ • • A^.^^. Thus T„ contains

F and contains no point of the polygon A^A^ • • • A^A^.

Corollary. Any point of space not on a polygon p is in a tetra-

hedral region containing no point of p.

Let the set of lines containing the edges of a simple polygon in a

plane be denoted by l^, l^, • • •, l^. Since more than one edge may
be on the same line, n is less than or equal to the number of edges.

According to Theorem 67 we can first suppose that the notation is so

assigned that no two edges having a common end are coUinear except

in the case of a polygon of two sides (which is a projective line), for

two coUinear edges and their common end can be regarded as a single

edge. In the second place, according to the same theorem, we can

introduce as a vertex any point in which an edge is met by one of

the lines l^, l^, • • •, Z„ which does not contain it.

Under these conventions the polygon may be denoted by A^A^ • •

A^A^, where each poiot ^,(i = 1, 2, • • •, m) is a point of intersection

of two of the lines l^, l^, • •, /„, and each edge is a segment join-

ing two vertices and containing points of only one of the lines

In like manner, when two or more simple polygons are under con-

sideration, let us denote the set of lines containing all their edges

by Zj, l^, • , l^. We may first arrange that no two edges of the

same polygon which have an end in common are coUinear, and then

introduce new vertices at every point in which an edge is met by

one of the lines l^, l^, • • -, l„ which is not on it. Thus in this case

also the polygons may be taken to have all their vertices at points
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of intersection of the n lines l^, l^,--', l^ and to have no edge

which contains such a point of intersection.

We are thus led to study the points of intersection of a set of n

coplanar lines and the segments of these lines which join the points

of intersection.

185. Subdivision of a plane by lines. Consider a set of ,n lines

l-i' h''
'

'' ^« ^ ^ *^^ same plane tt. The number a^ of their points

of intersection is subject to the condition

1 = «„ = 2 '

the two extreme cases being the case where all n lines are concur-

rent and the case where no three are concurrent. According to § 22,

Chap. II, and the definition of boundary (§ 150), the points of inter-

section bound a number a^ of linear convex regions upon the lines.

The number a^ is subject to the condition

n S a^^ n(n — 1),

the two extreme cases being the same as before.

Theorem 72. The points of a plane which are not on any one

of a finite set of lines l^, l^, • • •, l„ fall into a number a^ of convex

regions such that any segment joining two points of different regions

contains at least one point of l^, l^, ., Z„. The number a satisfies

the inequality n(n—V)nSa^S -^—i -I- 1.

Proof. The proof may be made by induction. If w = 1 the theorem

follows directly from the definition of a convex region. We suppose

that it is true for n = k, and prove it for n = k + 1.

We are given k + i lines l^, l^, . ., l^^^. The lines l^, l^, • • -, h

determine a number N^., not less than k and not more than ^^-

—

-+ 1,

of convex- regions. The line l,^^^ meets the remaining k lines in at

least one point and not more than k points. The remaining points

of l^.^^ therefore form at least one and at most h linear convex

regions, each of which is the set of all points common to l^^.^, and

one of the planar convex regions (Theorem 3). By Theorem 8 each

convex region which contains points of l^^.^ is divided into two con-

vex regions such that any segment joining two points of different
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regions meets l^.,^ if it does not meet one of the lines I , I , I,

Hence the k + 1 lines determine a number iV"^,^i of convex regions

of the required kind such that N^^+l^ Nf.^j^sNf.+ k. Since

it follows that

Corollary 1. If n lines of a plane pass through a point, they

determine n convex regions in the plane; if roo three of them are

concurrent, they determine —^^ + 1 convex regions.

Let us denote the a^ points of intersection of the lines l^, l^,---,l,, by

or any one of them by a" ; the a^ linear convex regions which these

points determine upon the lines by

or any one of them by a^ ; and the a^ planar convex regions by

or any one of them by a^.

Corollary 2. If the lines l^, l^, • • •, l^ are not concurrent, any

line coplanar with and containing a point of an a? has a segment

of points in common with it. The ends of this segment are on the

boundary of the a\ and no other point of the line is on this boundary.

Proof. The given line, which we shall call I, meets the lines l^,

^j, • -, Z„ in at least two points, and, as seen in the proof of the

theorem, one and only one of the mutually exclusive segments having

these points as ends is composed entirely of points of the a". Let

a denote this segment. Its ends are boundary points of the a° by

Theorem 10. Let ?,. and l^ be lines of the set l^, l^, • • •, l„ such

that l^ contains one end of a and Ij the other. All points of the a^

are separated from the points of the segment complementary to a

by the lines If and ly Hence any point of the complementary seg-

ment is in a triangular region containing no point of the a'' and is

therefore not a boundary point of the a*.
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This argument carries with it the proof of

C0EOLLA.KY 3. Any interval joining a point of an a^ to a point

not in the a^ contains a point of the boundary of the a\

Theorem 73. If the lines l^, l^, • •, l„ are not all concurrent, the

boundary of each a^ is a simple polygon whose vertices are a°'s and

whose edges are a^'s.

Froof. The theorem is a direct consequence of § 151 in case w=3.

Let us prove the general theorem by induction; i.e. we assume it

true for n = k and prove it for w = A + 1.

Let the notation be so assigned that l^, l^, l^ are not concurrent.

Then any one of the convex regions, say R, determined by l^, l^,'- •,

l^ is contained in a triangular region determined by l^, l^, and ^3, be-

cause no two points of R are separated by any two of the lines l^, l^,

Zg. Let m be a line containing no point of this triangular region nor

any of its vertices. The segments AfAj etc. referred to below do not

contain any point of m.

If Zj.^1 contains a point of R, it contaias, by Cor. 2, "above, a seg-

ment of points of R such that the ends of this segment are on the

boundary of R. By Theorem 67, the ends of this segment may be

taken as vertices of the polygon p which by hypothesis bounds R.

Thus we may denote this polygon hj A^A^ • • • Af • • AjA^, where A^

and -4,- are the points in which Zj^j meets the polygon.

There are just, two simple polygons which are composed of the

segment A^^A, and of sides and vertices of p. For any such polygon

which contains A^Af contains A^A^ or A^Aj] if it contains A^A^ it

must contain A^A^ and therefore A^A^, • • •, Ai_^Ai, and since it con-

tains AfA^ it must be the polygon A^A^A^ • • • A^A^ ; if it contains

Aj^Aj it must contain AjAj_.i and therefore Aj_.^Aj_^, • • •, A^_^.^Af, and

since it contains A^A^ it must be A^AjAj_.^ • • • A^A^.

Neither of the lines Zj^j and m meets any edge of the polygon

A^A^A^ • . • AfA^ except ^j^j, which is contained in Z^^j. Hence all

points of this polygon except A^, A^ and those on the edge AiA^ are in

,

one of the. two regions, which we shall call R' and R", bounded by

Ij^j^^ and m. In like manner all points of the polygon Aj^AjAj_^ • • •

AiA^ except A{, A^ and those on the edge A^A^ are in one of the two

regions R' and R"-

The points of R on any line coplanar with R and meeting the

segment J<^j in one point form a segment a (Cor. 2, above) which
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does not contain any p^nt of m. Hence the ends P, Q ot a are

separated by 1,.^^ and m. ButP and Q are boundary points of R

by Cor. 2, above. Hence the boundary of R has points in 'both of the

regions R' and R" bounded by /^^j and m. By the paragraph above,

the points of the boundary of R in the one region, say R', must be

the points, exclusive of the interval A^A^^, of the polygon A^A • • - A^A
;

and those in the other, R", must be the points, exclusive of the interval

AfA^, of the polygon A^Aj • • . A^A^.

Let Rj and R^ be the two convex regions formed by the points of

R not on l,^^^. Since these two regions are separated by l^._^.^ and m,

we may assume that Rj is in R' and R^ in R". Every boundary

point of Rj which is not a point of l^^^ is in R'. For if 5 is a point

of the boundary of R^ it is not on m, by construction, and if it is

not on ^j,^i it can be enclosed in a triangular region containiag no

point of lf.^1 or m. Such a triangular region must contain points of

Rj and hence can contain no point of R", since any segment joining

a point of R' to a point of R" contains a point of Z^^j or of m. Hence

5 is in R'. In like manner any boundary point of R^^ not on Zj.^^ is

in R". But by Theorem 10 every pointy of the boundary of R is

on the boundary of R^ or R^. Hence the boundary of R^ contains all

points of the boundary of R in R'; and by Theorem 10 it contains

no other points not on l^,^^. Hence it is the polygon A^A^ • • • AiA^.

In like manner the polygon A^Aj • • . A^A^ is the boundary of R^.

Hence the boundaries of the two planar convex regions into which

any one of the planar convex regions determined by l^, l^, - • •, l^

is separated by l^^^ are simple polygons. The other planar convex

regions determined by l^, l^,---, ^t+i are identical with regions

determined by l^, l^, • • •, l^.

COROLLABY 1. Uach o^ is on the boundaries of two and only two a^'s.

Corollary 2. In case all the lines l^, l^,---, l„ are concurrent,

there is only one a°, the common point of the lines ; there are n a^'s,

each consisting of all points except a" of one of the lines l^; and

there are n a^'s, each having a pair of the lines as its boundary.

Theorem 74. The numbers a^, a^, a^ satisfy the relation

Proof. We shall make the proof by mathematical induction.

The theorem is obvious if w = 2, for in tMs case «„= 1, a =^ 2, a = 2,
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Let us now assume it to be true ior n=k and prove that it follows

for n=h+l. '

The lines l^, l^, • • , l,^ determine a set of «„ points, a[ Mnear

convex regions, and a^ planar convex regions subject to the rela-

tion a[ — a[ + al=l. The line l^^^ meets a number, say r, of the

planar convex regions and separates each of these into two planar

convex regions. Hence a^ is increased to a'^+r. The number of

one-dimensional convex regions is increased by r for the number

of convex regions on l^^^ and also by a number* s equal to the

number of linear convex regions of the lines ^j, ^j, • • •, 4 which are

met by l^_^.^. The number of points of intersection of l^, l^, • • -, Zj.^j

z'a by s. Hence for l^, l^, • • •, l^^^ the numbers a^,

a.
J,

a^ are a'„ + s, a[+r + s, a^ + r. Hence «„ — «! + a^= (^o + «)

186. The modular equations and matrices. The relations among

the points, linear convex -regions, and planar convex regions may
be described by means of two matrices of which those given in

§ 151 for the triangle are special cases. The first matrix, which

we shall denote by H^, is an array of a^ rows and a^ columns, each

row being associated with an a" and each column with an a\ The

element of the ith. row and yth column is 1 or according as a? is

or is not an end of a
J.

The second matrix, H^, has a^ rows and a

columns associated respectively with the a^'a and w"s. The element

of the ith row and jth column is 1 or according as a} is or is not

on the boundary oi af.

Since every segment a^ has two and only two ends, each column

of Hj contains just two I's; and since each a^ is on the boundary

of two and only two a^'s (Theorem 73, Cor. 1), each row of H con-

tains just two I's.

For each of the a^'s let us introduce a variable which can take

on only the values and 1, these being regarded as marks of the

field obtained by reducing modulo 2. We denote these variables

by x^, x^,- • -yXa^ respectively. There are 2"' sets of values whiuli

can be given to the symbol t {x^, x^, • • • x^).

*The number s is less than r if Zj+i contains points of intersection of \, /j,

• • •, h-
tExcluding the one in which all the variables are zero, these symbols constitute

the points of a finite projective space of aj — 1 dimensions in which there are three

points on every line (cf. § 72, Vol. I);
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Every one of these symbols (aj^, x^,---, x^) corresponds to a way
of labeling each segment a* of the original n lines with a or a 1,

the segment a/ being labeled with the value of x.. We shall

regard the symbol as the notation for the set of edges labeled

with I's. By the sum of two symbols {x^ x^, • • •, x„J and {y^, y^,

•••> V") ^e shall mean {x^+y^, «i^+y^,- • •, aj-r.+ y^,), the addition

being performed modulo 2. According to our convention the sum

represents the set of a} 's which are in either of the sets represented

by {x^, x^,---, x^^) and (y^, y^,---, y^^ but not in both. By a repe-

tition of these considerations it follows that the sum of n symbols

of the form {x^, x^, • • •, a;^^) for sets of edges is the symbol for a set

of edges each of which is in an odd number of the n sets of edges.

In the sequel we shall say that a polygon p is the sum, mod-

ulo 2, of a set of polygons p^, p^,---,p„ if it is represented by a

symbol {x^, x^, • • , x^^ which is the sum of the symbols for p^, p^,

' • •, p„- Let us now inquire what is the condition on a symbol

(ajj, x^, • • ; x^^ that it shall represent a polygon ?

At every vertex of a polygon there meet two and only two edges.

Hence, if we add all the a;'s that correspond to the a^'s meeting in

any point, this sum must be zero, modulo 2. This gives a^ equations,

one for each a", of the form

(4) x^ + x^+... + x^=0 (mod. 2)

(a^, a^, • • •, a^ being the edges which meet at a given vertex), which

must be satisfied by the symbol for any polygon. Obviously the

matrix of the coefficients of these equations is H^. For example, in

the case of the triangle these equations are (cf. § 151)

(5) x^+x^+x^+x^= 0, (mod. 2)

x^+ x^+ x^+ x^= 0.

We shall denote the set of equations (4) by (H^). Since each

column of H^^ gives the notation for a polygon bounding an a", the

columns of H^ are solutions of the equations (H^). For example,

the columns of the matrix H^ in § 151 are solutions of (H^).

Any solution whatever of these equations corresponds to a label-

ing of the a^'s with O's and I's in such a way that there are an

even number of I's on the a^'s meeting at each a". Hence, by the

corollary of Theorem 70 the a'a labeled with I's must constitute
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one or more simple polygons. Hence every solution of the equations

(H ) represents a simple polygon or a set of simple polygons.

Since each column of the matrix H^ contains exactly two I's, any

one of the equations is obtained by adding aU the rest. Since the

only marks of our field are and 1, any linear combination of the

equations (H^) would be merely the sum of a subset of these equa-

tions. Consider such a subset and the points a" which correspond

to the equations in the subset. Every a^ joining two points of the

subset is represented in two equations, and the corresponding vari-

able disappears in the sum. There remain in tliis sum the variables

corresponding to the a"s joining the points of the subset to the

remaining points of the figure. These cannot all pass through the

same point unless the subset consists of all points but one (since

any two of the original n lines have a point in common). Hence

while any one of the equations is linearly dependent* on all the

rest, it is not linearly dependent on any smaller subset. Hence «„— 1

of the equations (H^) are linearly independent.

Since the number of variables is a^, the number of solutions in a

set of linearly independent solutions on which all other solutions are

linearly dependent is a^— oc^+1. By Theorem 74 this number is a^.t

Thus the total number of polygons and sets of polygons is 2"' — 1.

The simple polygons which boimd the regions a^ are a set of solu-

tions, namely, the columns of the matrix H^. Since each row of the

matrix H^^ contains just two I's, it follows that if we add all the

columns we obtain a solution of (H^) in which all the variables are 0,

On the other hand, if we add any subset of the columns of H^ the

sum will be a solution in which not aU the variables are zero. For

consider a segment joining an interior point A of the region a^ cor-

responding to one of the columns in the subset to an interior point

jB of a region a^ corresponding to one of the columns not in the

subset; this segment may be chosen so as not to pass through a

point of intersection of two of the lines l^, l^,---, l„. Hence it

contains a finite number of points on the polygons corresponding to

the columns in the subset. The first one of these in the sense from B

* Since the only coefficients which can enter are and 1, the statement that

one solution is linearly dependent on a set of others is equivalent to saying that it

is a sum of a number of them.
t In the modular space of o^j — 1 dimensions this means that the oTq — 1 inde-

pendent (a^ — 2)-spaoes intersect in an {a^ — l)-space.
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to ^ is on an a^ which k on the boundary of a region in the subset

and a region not in the subset. The variable corresponding to this

interval therefore appears in only one of the a's in the subset and

so does not drop out in the sum. Hence any a^— 1 of the boundaries

of the a^ convex regions correspond to a set of linearly independent

solutions of (4). In other words, 2"'-"'''—
1, or one lesS' than half of

all the solutions of (H^), are linearly dependent on the solutions

corresponding to the columns of H^^. The solutions of H^ are thus

divided into two classes, those linearly dependent on the columns of

H^ and those not so dependent.

Since each of the lines l^, l^, • • •, i„ is a polygon, it corresponds to

a solution of the equations (Hj), but it does not correspond to a solu-

tion which is linearly dependent on the columns of the matrix H .

This is a corollary of the argument used in showing that the sum
of any subset of the columns of H^ is not a solution in which all the

variables are zero. For in that argument we showed that a certain

segment AB contains a point on the polygon represented by the sum

of such a subset. The same argument applies to the complementary

segment. Hence the line AB has two points, at least, in common
with the polygon or polygons represented by the sum of the subset

of columns. Hence this sum cannot represent a line.

Thus, if we take the solution of the equations (HJ corresponding

to any one of the lines l^, l^,'--, l^ together with any a^— 1 of the

columns of the matrix H^^, we have a linearly independent set of

solutions. But since this set contains a^ independent solutions, all

solutions are linearly dependent on this set.

187. Regions determined by a polygon. If p is any polygon it

can, by § 184, be regarded as one whose vertices are a"'s and whose

edges are a^'s of a set of lines l^, l^, • • •, l„-

Two cases arise according as p is represented by a symbol which

is or is not a sum of a subset of the columns of the matrix H^.

In the first case p corresponds also to the sum of all the remain-

ing columns, because the sum of all the columns is (0, 0, • • •, 0).

It cannot correspond to a third set of columns, for the sum of

the columns in the second and third sets, which is also the sum of

the columns not common to these two sets, would be (0, 0, • • , 0).

Hence there would be a linear relation among a subset of the

columns of H contrary to what has been proved above.
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Let us denote the two sets of columns of H^^, whose sums are the

symbol for p, by c^, c^, • -,0^. and c^^^j, • •, c^^ respectively, and sup-

pose the notation so assigned that they represent the boundaries of

al, al, •••, al and a\^^, • • -, al^ respectively. Let the points of

the plane in a^, a\, • •, al, together with such points of the bound-

aries as are not points of p, be denoted by [ii*]. Let the set of the

points analogously related to a^^j, • •, a\ be denoted by {Q\ Clearly,

the sets of points [P], [Q], and p are mutually exclusive and include

all points of the plane.

Consider any point ij of the convex region a^ corresponding to c^.

It is connected by a segment consisting entirely of points P to every

point P in or on the boundary of a^. If h>l, c^ has an edge in

common with at least one of c^, • • •, c^, and the notation may be

assigned so that c^ has an edge in common with c^. Then ij can

be joined to any point ij of the common edge by a segment of

P-points, and ij by another segment of P-points to every P-point of

the region a^ and its boundary. If A>2 there is a solution which

may be called c^, with an edge in common with c^ or c^ ; for if not,

the solution c^+ c^ would be one in which all the I's correspond to the

edges of p, and as no subset of the edges of p forms a polygon, c^+ c^

would correspond to p itself. As before, every point of the region

al and its boundary can be joined to P^ by a broken line of at

most three edges. Since there is no subset of c^, • • •, c^ whose sum

corresponds to tt, this process can be continued till we have any

point B of the convex regions a/, a|, • • , a^ and their boundaries

joined by a broken line I to ij. If i? is on tt the process of con-

structing h is such that all points of 6 except B are in [P], whereas

if B is in [P] all points of 6 are in [P].

Hence any two points of [P] can be joined by a broken line con-

sisting only of such points ; and, since every point of p is on the

boundary of one of a^, a^, • • •, al, any P can be joined to any point

i? of ^ by a broken line every point of which, except B, is in [P].

A precisely similar statement is true of [Q].

Consider now any broken line 6' joining a point P to a point Q.

The points which are on this broken line and also on any a^ and its

ends constitute a finite number of points and segments. Hence V
meets the lines l^, l^, • • •, l„ in a finite number of points and seg-

ments, each of the segments being contained entirely in an a*-
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These points and the n^ds of these segments we shall denote by

A^,A^, • -lA^ taken in the sense on the broken liae from P to Q.

Since P and A^ are within or on the boundary of the same convex

region, A^ is either in [P] or on p. If A^ is in [P] the same con-

sideration shows that A^ is in [P] or on p. If none of the A's were

on p, this process would lead to the result that A^ is in [P], and

hence Q would also be in [P], contrary to hypothesis. Hence one of

the A's is on p, and hence any broken line joining a point P to a

point Q contains a point on p.

It now follows that [P] and [Q] are both regions. For we have

seen that any point P can be joined to any other P by a broken line

consisting entirely of points of P. By Theorem 71 any point P is

contained in a triangular region containing no points of p. This tri-

angular region contains no Q, because if it did a segment joining it

to P would, by the argument just made, contain a point of p. Hence

[P] satisfies the definition of a two-dimensional region given in § 155.

A similar argument applies to [Q]. Hence we have

Theorem 75. Any simple polygon p which corresponds to a sym-

hol (x^, x^,---, Xa^ which is the sum of a set of columns of Yi.^ is

the toundary of two mutually exclusive regions which include all

points of the plane not on p and are such that any two points of

the same region can he joined iy a broken line vjhich is in the region.

Any broken line joining a point of the one region to a point of the

other region contains a point of the polygon.

CoROLLAEY 1. Any point B of p can be joined to any point not

on p by a broken line containing no other point of p.

CoEOLLAEY 2. If a segment ST meets pin a single point which is

not a vertex of p, S and T are in different regions with respect to p.

Proof. Let S' and T' be two points in the order {SS'OT'T} and

such that the segment S'OT' contains no point of l^, l^, • •, l„ ex-

cept 0. By § 185, S' and T' are in two convex regions a^ which

have an edge in common. Since this edge is an edge of p, the

columns of H^^ corresponding to these two a^'s must be one in the

set Cj, Cj, • • •, Cj, and the other in the set c^^^, , c^^. Hence, if S'

and S are in [P], T' and T are in [Q], and vice versa.

Theorem 76. Any simple polygon p which corresponds to a sym-

bol (ajj, x^, ., x^^ which is not the sum of a set of columns of H^
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is the boundary of a region which includes all points of the plane

not on p. Any two points not on p can be joined by a broken line

not meeting p.

Proof. By Theoreni 71 any point not on p can be enclosed in

a triangular region containing no point of p. Hence the theorem

will be proved if we can show that any two points not on p are

joined by a broken line consisting only of such points. If this were

not so, we could let ij be any point not on p and let [P] be the

set of all points not on p which can be joined to F^ by broken

lines not meeting p. As in the proof of Theorem 75, [P] would

have to consist of a number of regions a^, together with those points

of their boundaries which were not on p ; and the boundary of [P]

could consist only of. points of p. But the boundary of [P] must

consist of the polygon or polygon^ whose symbol is obtained by

adding the columns of H^^ corresponding to the a^'s in [P]. By

§ 183 no subset of the points of p can be a simple polygon. Hence

p would be the the boundary of [P] and be expressible linearly in

terms of the boundaries of a"s, contrary to hypothesis.

Every polygon whose edges are on Z^, Z^, • • , /„ corresponds to a

symbol (a;^, x^, • • •, aj^^) which either is or is not expressible linearly

ia terms of the columns of H^. Hence the arbitrary simple polygon

p with which this section starts and which determines the lines

^1. 1^1 • • •. ^n is described either in Theorem 75 or in Theorem 76.

Hence we have

Theorem 77. Definition. The polygons of a plane a fall into

two classes the individuals of which are called odd and even respec-

tively. A polygon of the first class is the boundary of a single region

comprising all points of a not on the polygon. A polygon of the

second class is the boundary of each of two regions which contain all

points of a not on the polygon, have no point in common, and are

such that any broken line Joining a point of one region to a point of

the other contains a point of the polygon.

The odd polygons are also called unicursal, and the even polygons

are also called bounding. A line is an example of an odd polygon,

and the boundary of a triangular region is an example of an even

one. The segments a, /S, y as defined in § 26 are the edges of an

odd polygon.
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Theorem 78. Two po^gons of which one is even and which are

such that neither polygon has a vertex on the other have an even

(or zero) number of points in common.

Proof. Let p^ be an even polygon, let p^ be any other polygon,

and let the points of intersection of the polygons be E^, • -, J?„

in the order {R^ -Kj • • • -ff„} with respect to p^. Ji n—O the theorem

is verified. If n were 1 the edge of p^ containing B^ would have its

ends in different regions with respect to tt^, and hence the broken

line composed of all p^ except the side contaiaing B^ would have

to contain a point of p^, contrary to hypothesis. If ?i > 1 the inter-

val of p^ which has E^ and E^ as ends and contains no other points

iJ is a broken line which belongs (except for its ends) entirely to

one of the two regions [P] and [Q] determined by p^; and by Cor. 2,

Theorem 75, the interval of p^ similarly determined by E^ and E^

belongs entirely to the other of the two regions [P] and [Q]. Thus,

if S^, S^, • , S„ are a set of points of p^ in the order {E^S^E^S^E^

• • iS„_ii2„/SJ, and S"^ is in [P], aU. the (S's with odd subscripts are

in [P] and all the S's with even subscripts are in [Q]. But by

Cor. 2, Theorem 75, (S„ is in [Q] since S^ is in [P]. Hence n is even.

Corollary. A line coplanar with and containing no vertex of

an even polygon meets it in an even {or zero) number of points.

Theorem 79. Two odd polygons such that neither has a vertex on

the other meet in an odd number of points.

Proof. Let the polygons be p^ and p^, let the lines containing

the sides of p^ be l^, , i„_i, and let Z„ be a line containing no

vertex of either polygon. According to the results stated at the end

of the last section, p^ is expressible by addition, modulo 2, as the

sum of l^ and a number of boundaries of a^'s. The latter combine

into a number of even polygons, the edges of which are either

edges of p^ or of ^„. Hence these even polygons have no vertices

on p^ and contain no vertices of p^. Hence by Theorem 78 they

have an even (or zero) number of points in common with^^- Thus

our theorem will follow if we can show that l^ has an odd number

of points in common with p^.

By the argument just used p^ can be expressed as the sum,

modulo 2, of a line m and a number of even polygons which have

no vertices on i„. The latter meet l^ in an even (or zero) number
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of points, and m meets i„ in one point. Hence f^ meets Z„ in an

odd number of points.

COEOLLAJRY 1. Two odd polygons always have at least one point

in common.

CoEOLLABY 2. If p is a simple polygon and there exists an odd

polygon p meeting p in an even {or zero) number of points and such

that neither polygon has a vertex on the other, then p is even.

Since the plane of a convex region always contains at least one

line not having a point in common with the region, the last result

has the following special case, which, on account of its importance,

we shall list as a theorem.

Theorem 80. Any simple polygon lying entirely in a convex

region is even.

To complete the theory of the subdivision of the plane by a

polygon, there are needed a number of other theorems which can

be handled by methods analogous to those already developed. They

are stated below as exercises.

EXERCISES

1. If a simple polygon p lies entirely in a convex region R, the points of R

not on p fall into two regions such that any broken line joining a point of

one region to a point of the other has a point on p. One of these regions,

called the interior of the polygon, has the property that any ray (with respect

to R) whose origin is a point of this region meets p in an odd number of points,

provided it contains no vertex of p. The other region, called the exterior of

the polygon with respect to R, has the property that any ray whose origin is

one of the points of this region meets p in an even (or zero) number of points,

provided it contains no vertex of p.

2. If ^ is any even polygon in a plane a, one of the two regions determined

hj p, according to Theorem 77, contains no odd polygon and is called the

interior of p. The other contains an infinity of odd polygons and is called the

'

exterior of p.

3. If one line coplanar with and not containing a vertex of a simple poly-

gon meets it in an odd (even or zero) number of points, every line not con-

taining a vertex and coplanar with it meets it in an odd (even or zero) number

of points.

4. If the boundary of a convex region consists of a finite number of linear

segments, together with their ends, it is a simple polygon.

5. A simple polygon which is met by every line not containing a vertex in

two or no points is the boundary of a convex region.
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6. For any simple polygog. A^A^--- A„Ai, there exists a set of n — 2 tri-

angular regions such that (1) every point of the interior of the polygon is in

or on the boundary of one of the triangular regions, (2) every vertex of one

of the triangular regions is a vertex of the polygon, and (3) no two of the

triangular regions have a point in common.
*7. By use of convex regions and matrices analogous to Hj and H^, prove

Theorem 77 for any curve made up of analytic pieces (i.e. 1-ceUs which

satisfy analytic equations).

188. Polygonal regions and polyhedra. Definition. A planar

polygonal region is a two-dimensional region R for which there

exists a finite number of points and linear regions such that any

interval joining a point of R to a point not in R, but coplanar with

it, meets one of these poiats or linear regions. A (three-dimensional)

polyhedral region is a three-dimensional region R for which there

exists a finite number of points, linear regions, and planar polygonal

regions such that any interval joining a point of R to a point not in R

meets one of these points, linear regions, or planar polygonal regions.

Let R be a planar polygonal region and let l^,l^,---,l„ be a set

of lines coplanar with R and containing all the points and linear

regions such that any interval joining a point in R to a point not

in R meets one of these points or one of these linear regions. Let

us adopt the notation of § 185.

If a point P of one of the two-dimensional convex regions a" is

in R, all points of the a" are in R, for all such points are joined to

P by intervals not meeting l^, l^,---, l„-

Since any point not on l^, l^,---, l^ is interior to a triangular

region containing no points of ^ji ^2> • • •> ^„> no such point can be a

boundary point of R.

Let a?, • • •, a,' be the a^'s which have points in R. As we have

seen, all points of these a^'5 are in R. AH points of their bound-

aries are either in R or on its boundary; for every point of the

boundary of an a/ (r = l, • • •, A) may be joined to a point of a?^,

that is, to a point of R, by a segment of points of R, and hence

is either a point of R or of its boundary.

Any point B of the boundaiy of R is on the boundary of one of

«?,-••, af. For any triangular region T containing B contains

points of R and hence contains a triangular region T' of points of R.

The region T' must have points in common with at least one a'.

If T be chosen so as to contain no points of any a" which does



474 THEOEEMS ON SENSE AND SEPAEATION [Chap.ix

not have B on its boundary, any a^ having a point in common with

T' is one of «?,••, ftj^. Hence every , boundary point of R is on

the boundary of one of a? • • •, a?^. Hence the set of points of R

and its boundary is identical with the set of all points of a* , • • •, a?

and their boundaries. In other words,

Theorem 8 1. For any planar polygonal region R there is a finite

set of convex polygonal regions R^, • • •, R„ such that the set of all

points of R , • •, R„ and their boundaries is identical with R and

its boundary.

As a consequence, any set of points which consists of planar

polygonal regions and their boundaries can be described as a set of

points in a set of convex polygonal regions and their boundaries.

Therefore no generality is lost in the following definition of a

polyhedron by stating it in terms of convex polygonal regions.

Definition. A set of points [P] is called a polyhedron if it sat-

isfies the following conditions and contains no subset which satisfies

them: [P] consists of a set of distinct points a°, a^, •••,«", seg-

ments a\, a\, • •
., al^, and convex planar polygonal regions a\, a\,

• •, a\ such that each a' is bounded by two a°'s and each a* by

a simple polygon whose vertices are a°'s and whose edges are a^'s;

no a^ or a^ contains an a" and no two of the a^'s or a^'a have a

point in common; each a^ is on the boundary of an even number

of a^'s. The points a" are called the vertices, the segments a^ the

edges, and the planar regions a^ the faces of the polyhedron.

Just as any point of a polygon can be regarded as a vertex, so

any point of an edge of a polyhedron can be regarded as a vertex,

and any segment contained in a face and joining two of its vertices

can be regarded as an edge.

The relations among the vertices, edges, and faces of a polyhedron

can be described by means of matrices H^ and H^ analogous to

those of § 186. In the first matrix,

the element
77J

is or 1 according as a° is not or is an end of aj.

In the second matrix, tt / av

the element 17^ is or 1 according as a] is not or is on the bound-

ary of a^. The theory of tlie polyhedron can be derived from a
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discussion of these matrices just as that of the projective plane

(a special polyhedron) has been derived in the sections above.

Thus the polygons which can be formed from the vertices and

edges of the polyhedron are denoted by symbols of the form

(x^, x^, • • •, x„^ as in § 186. They are all expressible as sums,

modulo 2, of the boundaries of the faces together with P — 1 other

polygons. The number P is called the Gonnectivity of the polyhedron

and is the same no matter how the polyhedron is subdivided into

faces, edges, and vertices. It is determined by the following relation

:

EXERCISES

1. Any polygonal region can be regarded as composed of a finite set of

triangular regions together with portions of their boundaries, no two of the

triangular regions having a point in common.

2. If R is a polygonal region, every broken line joining a point of R to a

point not in R has a point on the boundary.

3. For any three-dimensional polyhedral region R there is a finite set of

polyhedral regions Rj, R^, • • •, R„ such that the set of all points of Rj, Rj, • • •,

R„ and their boundaries is identical with R and its boundary. Rj, Rj, • • •, R„

may be so chosen as all to be tetrahedral regions.

4. If a polyhedron is the boundary of a convex region, each edge of the

polyhedron is on the boundaries of two and only two of its faces.

189. Subdivision of space by planes. The theorems of § 185

generalize at once into the following. The proofs (with one excep-

tion) are left to the reader.

Theorem 82. The points of space which are not upon any one of a

finite set ofplanes tTj, tt^, • • •, ""„ fall into a finite number a^ ofconvex

regions such that any segment joining two points of different regions

contains at least one point of tt^, tr^, • • -, ir„. The number a^ satisfies

.X. i: ^ ^n{n-V){n-2) ^
the tneguaUty m S a^ = —

^

-^ + n.

As in § 185, we indicate the a^ points of intersection of n planes

or any one of them by a° ; the a^ linear convex regions determined

by these points upon the lines of intersection, 'by
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or any one of them by a^ ; the a^ planar convex regions determined

by the lines of intersection upon the planes, by

or any one of them by a?; and the a^ spatial convex regions deter-

mined by the planes, by „8 „3 „8

or any one of them by a°.

Theorem 83. If the plaines tTj, tt^, • • -, 7r„ are not all coaxial, the

boundary of each a^ is composed of a finite number of a^'s and of

those a^'s and a°'s which bound the a^'s in question. Each a^ is upon

the boundary of two and only two a^'s.

COEOLLARY 1. If the planes ir^, tTj, • • , w„ are coaxial, a^= 0, or^= 0,

aTid the boundary of each a' is composed of two a^s together with the

common line of the planes.

Corollary 2. If the planes are not all concurrent, any line through

a point I of one of the regions a' meets the boundary in two points

P, Q. The segment PIQ consists entirely of points of the a', and tlie

complementary segment entirely of points not in the a^

Theorem 84. If an a* is on the boundary of an a°, it is on the

boundaries of two and only two a^'s of the boundary of the a'. Any
plane section of an a' is a two-dimensional convex region bounded by

a simple polygon which is a plane section of the boundary of the a\

Corollary. The boundary of each a' is a polyhedron.

Theorem 85. Tlie numbers a^, a^, a^, a^ are subject to the relation

«„-«! + a, - ^3 = 0.

Proof. The proof is made by induction. In the case of two planes,

*o ~^' ''^\~ ^'
"'n
= 2, a, = 2. Assuming that the theorem is true

for n planes, let us see what is the effect of introducing a plane

7r„^i. This plane is divided by the other planes into a number of

convex two-dimensional regions equal to the number of a"s in

which it has points; but it divides each of these a"s into two a^'s.

Hence the adjunction of these new a^'a and a^a increases a and a

by equal amounts. The plane 7r„+i, according to Theorem 8, Cor. 1,

divides in two each a" which it meets ; but it has a new a^ in com-

mon with each such region. Here, therefore, a^ and a^ are increased

by equal amounts. The plane ir^^^ divides in two each a* which it

meets ; but it has a point in common with each such region. Hence,
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in this case, a^ and a^ a^ increased by equal amounts. Hence, if

the formula is true for n planes, it is true for n+1.

CoeollAey. The number of a}'s for tt^, tt^, • • •, 7r„ which are not

on lines of intersection of pairs of the planes v^, tt^, • •, 7r„_i is the

number by which a^ — a^for the planes tt^, tt^, • • •, 7r„ exceeds a^ — a

for the planes tt^, tt^, • •, 7r„_i.

Proof. New a^'a are produced by the introduction of tt^ in two

ways : (1) 7r„ may meet an a^ of tt^, tt^, • •, 7r„_i in a point ; if so, this

a^ is separated into two a^'s and a new a° is introduced
; (2) w„ may

meet an a' of tt^, tt^, • • •, 7r„_i in a new a\ The only new a°'s pro-

duced by the introduction of 7r„ are accounted for under (1). Hence

(2) accounts for the increase of a^ — a^ as stated above.

190. The matrices H^, H^, and H3. The relations among the

convex regions determined by n planes wMch are not coaxial may
be described by means of three matrices, which we shall call H^, H^,

and H.. In the first matrix,
H,=(^^.),

i = 1, 2, • • •, a^
; y = 1, 2, • • •, a^; and 17A = 1 or according as a\ is

or is not an end of aj. In the second matrix,

I = 1, 2, • • •, a^; y = 1, 2, • • •, a^ ; and 97^ = 1 or according as aj is

or is not on the boundary of a|. In the third matrix,

i = 1, 2, • • •, oJjj
; y= 1, 2, . • •, oig ; and 77?. = 1 or according as a\ is

or is not on the boundary of aj. Examples of these three matrices are

those given in § 152 to describe the tetrahedron. It will be noted

that H has two I's in each column, and H^ two I's in each row.

Corresponding to the matrix H^, there is a set of a^^ linear

equations (modulo 2) „,

(H^ %^>j (t = l, 2,....«„).

Let the symbol {x^, x^,- • -, x^), where the x^'s are or 1, be taken

to represent a set of a^'s containing a^ if x^ = l and not containing

it a x^=0. Just as in § 186, this set of a^'s will be the edges of

a polygon or set of polygons if and only if («„, x^,---, x^) is a

solution of (Hj).

Just as in § 186, the sum of two sets of polygons (modulo 2) will be
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taken to be the set of polygons represented by the sum of the symbols

{x^, x^,---, ««,) for the two sets of polygons. The sum, modulo 2, of

two sets of polygons Pj and p,^ is therefore the set of polygons whose

edges appear either in p^ or in p^ but not in both ^^ and pi^.

By the reasoning in § 186, a^— 1 of the equations (H^) are hnearly

independent, and the other one is linearly dependent on these. The

columns of H^ are the symbols (x^, x^,---, x„^ for the boundaries

of the a?'s and hence are solutions of (H^).

Corresponding to the matrix H^^, there is a set of a^ linear

equations (modulo 2)

(HJ ^v%xj (i = l,2,....«>

Let the symbol {x^, x^ • • ., x^y, where the x^'a are or 1, be taken

to represent a set of a^'a containing aj if x,^ = l and not containing

it if Xf. = 0. If this symbol is a solution of (H^), it represents a

set of a^'a such that each a^ is on the boundaries of an even number

(or zero) of them; i.e. it represents the faces of a polyhedron or a

set of polyhedra.

The columns of Hg represent the boundaries of the a"s. By

Theorem 84 any a^ of the boundary of an a' is on the boundaries

of two and only two a'^'a of this boundary. Hence the columns of

Hj are solutions of (H^).

Corresponding to the matrix H^, there is a set of a^ linear

equations (modulo 2)

Let the symbol (a;^, x^, • •, Xa), where the x^'a are or 1, be taken

to represent a set of a"s containing a| if aij = 1 and not containing

it if a;^ = 0. If this symbol is a solution of (H^), it represents a

set of a"s of which there is an even niunber on each a\ It is easily

seen that the only such set of a"s is the set of all a"s in space.

Hence the only solutions of (H^) are (0, 0, • • •, 0) and (1, 1, • • •, 1).

Hence there are oi^ — l linearly independent equations in (H^) on

which all the rest are linearly dependent.

Let the ranks* of the matrices H^, H^^, H^ be r^, r^, r^ respectively.

* The rant of a matrix is the number of rows (or columns) in a set of linearly

independent rows (or columns) on which all the other rows (or columns) are

linearly dependent.
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By wjiat has been seen al»ve

^8=«8-l-

The discussion in the next section will establish that

(z,-%.

191. The rank of Hj. Let us now suppose that tTj, Wj, • • •, 7r„ are

not all on the same point and that the notation is so assigned that

TTj, TTjj, TTj, TT^ are the faces of a tetrahedron. By inspection of

the njatrices given in § 152, it is clear that for the case m = 4,

«o = '*' *i = 12, aj = 16, a^=8, and r^ = 8 (a set of linearly inde-

pendent columns of H^^ upon which the rest depend linearly is the

set of columns corresponding to t^^, t^^, t^,, t^^, t^^, t^^, r^^, and tJ.
The number of solutions of (Hj) in a linearly independent set upon

which all the other solutions depend is a^ — a^ -f- 1 = 9. Hence one

solution which does not depend linearly upon the columns of H^,

together with a set of eight linearly independent columns of H^,

constitute a set of linearly independent solutions of (H^) upon which

all the others depend linearly. Any solution representing a projective

line, e.g. (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), wUl serve this purpose.

In case m >4, the columns of H^ fall into three classes : (1) those

representing the boundaries of a^'s in 7r„
; (2) those representing

the boundaries of a^'a which are not in 7r„ but have an a^ in 7r„;

and (3) those representing the boundaries of a'^'s which have no

a' in 7r„.

Any column of Class (1) is expressible as a sum of columns of

Classes (2) and (3). For the a^ whose boundary it represents is on

the boundary of an a' whose boundary has no other a" in common

with 7r„ (cf. § 150). Since each a* on the boundary of an a' is

on the boundary of two and only two a^'a of the boundary of the

a* (Theorem 84), it follows that the given column is the sum of

the columns which represent the boundaries of the other a"'s on

the boundary of the a". These columns are all of Classes (2) or (8).

Each a' which is not on a Hne of intersection of two of the planes

TTj, TTj, • • •, 7r„_j is the linear segment in which one of the a'^'s

determined by tt^, tt^,- - -, 7r„_i is met by 7r„. Hence the row of H^^

corresponding to this a* contains just two I's in columns of Class

(2), and the sum of these two colunms of Class (2) is the symbol for
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the boundary of one of the a"s determined by tt^, tt^, • • •, 7r,_i.

Moreover, the columns of H^ of Class (2) form a set of pairs of

this sort, since every a^ of 7r„ is either on a line of intersection of

two of the planes tt^, -n-^,---, 7r„_i or is an edge of two and only

two a^'a not in ir„.

No one of such a pair of columns of H^^ can enter into a linear

relation among a set of columns of Classes (2) and (3) unless the

other does. For this column would be the only column of the set

containing a 1 in the row corresponding to the a^ common to the

boundaries of the a^'s represented by the two columns, and hence

the sum of columns could not reduce to (0, 0, • • •, 0).

Let H^ be the matrix consisting of the columns of Class (3) of

Hjj and the sums of the pairs of columns of Class (2) discussed in

the last two paragraphs. According to the last paragraph the rank

of H^ is less than the rank of H^^ by the number of these pairs of

columns; and by the corollary of Theorem 85 this number is the

difference between the values of a^— a^ for tt^, ir^, • • , 7r„ and for

The columns of H^ are the symbols in terms of the a^'s deter-

mined by TTj, TTj, • • •, 7r„ for the boundaries of the a^'a determined

by TTj, TT^, • • •, 7r„_i. Hence any two rows of this matrix which cor-

respond to a pair of a^'a into which an a^ determined by tt^, tt^,

• , •7r„_i is separated by 7r„ must be identical; and if one of each

such pair of rows is omitted, H^ reduces to the H^^ for ir^, ir^,---,

'n-„_y Hence H^ has the same rank as the H^ for tt^, "t^, • • •, •n-^_y

Since the difference in the ranks of H^ for tt^, t^j, • •, 7r„ and of

H^ is the same as the difference between the values of a^ — a^ for

TT^, TTjj, • • • TT^ and for ir^, tt^, • • •, 7r„_j, it follows that the introduc-

tion of 7r„ increases the rank of H^ by the same amount that it

increases a^— a^. Since a^— a^= r^ for » = 4, the same relation holds

for aU values of n. Hence we have

Theorem 86. For a set ofplanes tt^, tt^, • • •, tt, which are not all

concurrent, a-a=r^.

By Theorem 85 this relation is equivalent to

192. Polygons in space. Theorem 87. The symbol (x^, x^, • • •, aj^)

for a line is not linearly dependent on the columns of H
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Froof. Let ir be any ;^kiie not containing any of the points a".

The boundary of any a^ is an even polygon in the sense of § 187
and is met by tt in two points or none, the two points being on
different edges, if existent. The sum, modulo 2, of two sets of poly-

gons p^, p^ each of which is met by tt in an even number (regard-

ing zero as even) of points is a set of polygons p met by tt in an
even number of points ; for if tt meets p^ in 2 \ points and p^ in

2 \ points, and if \ of these points are on edges common to p and

p^, IT must meet p in 2 Ai^-I- 2 ^j— 2 A;^ points. Hence any polygon

which is a sum of the boundaries of the a^'s is met by n- in an

even number of points; i.e. any polygon represented by a symbol

(«!, a^j, • • •, "^a) linearly dependent on the columns of H^^ is met by
TT in an even number of points. Since no line is met by tt in an

even number of points, the symbol representing it cannot be a sum
of any number of columns of H^.

Theobem 88. All solutions of (H^) are linearly dependent on a set

of ^2 (*-^* *i
~

'''o) ^'^'"^"''''h independent columns of H^ and the symbol

(*i) *2> • • •> ''^a^ foT one line.

Proof. It has been shown that the rank of H^ is «„— 1. The

number of variables in the equations (H^) is a^. The number of

linearly independent solutions in a set on which all the rest are

linearly dependent is therefore a^—a^-\-l. Since the rank of H is

a^ — a^, and the columns of H^ are solutions of (H^), there are a^ — a^

linearly independent columns of H^ which are solutions of (HJ ; and

since the solution of (H^) which represents a line is not linearly

dependent on these, the statement in the theorem follows.

In the proof of Theorem 87 it appeared that any polygon which

is a |um, modulo 2, of a set of polygons bounding a^'s is met by a

plane which contains none of its vertices in an even number of

points. Since a line is met by a plane not containing it in one point,

an argument of the same type shows that any polygon which is a

sum, modulo 2, of a line and a number of polygons bounding a^s

is met by a plane containing none of its vertices in an odd number

of points. Thus we have, taking Theorem 88 into account:

Theorem 89. Definition. A polygon which is the sum, modulo 2,

of a number of polygons which bound convex planar regions is met

by any plans not containing a vertex in an even number of points
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and is called an even polygon. A polygon which is the sum, modulo 2,

of a line and a number ofpolygons which hound convex planar regions

is met by any plane not containing a vertex in an odd number of

points and is called an odd polygon. Any polygon is either odd or even.

Suppose a polygon p is the sum, modulo 2, of the boundaries of

a set of convex regions a^, • -, a^. The set of points [P] in a^, .,;••,

a^ or on their boundaries is easily seen (by an argument analogous

to that given in the proof of Theorem 75) to be a connected set.

By an extension of the definition in § 150 j? may be said to be the

boundary of [f]. From this point of view an even polygon is a

bounding polygon and an odd polygon is not.

193. Odd and even polyhedra. It has been seen in § 190 that

the solutions of (H^) represent polyhedra or sets of polyhedra. The

converse is also true, as is obvious on reference to the definition of

a polyhedron. The sum of two symbols (x^, x^,---, x^) which repre-

sent sets of polyhedra is a symbol representing a set of polyhedra.

This is obvious either geometrically or from the algebraic considera-

tion that the sum of two solutions of (HJ is a solution of (H^^).

The set of polyhedra p represented by the symbol which is the

sum of the symbols for two sets of polyhedra p^ and p^ is called the

sum, modulo 2, of p^ and p^. As in the analogous case of polygons,

p is a set of polyhedra whose faces are in p^^ or in p^ but not in both

Pi and p^.

The number of variables in (H^) is a^ and the rank of H^ is

a^ — ffj by Theorems 86 and 85. Hence the solutions of (H^) are

linearly dependent on a set of a^ linearly independent solutions.

Since any a^ — 1 of the columns of H^, are linearly independent,; such

a set of columns, together with one other solution Mnearly indepeiident

of them, will furnish a set of linearly independent solutions of (R^.

The symbol for any plane is a solution of (H.) linearly inde-

pendent of the columns of H^. For let I be any line meeting no a°

or a\ Any column of H^ represents the polyhedron bounding an a',

and such a polyhedron is met by I in two points or none. By
reasoning analogous to that used in the proof of Theorem 87, it fol-

lows that I meets the sum, modulo 2, of the boundaries of any nuihber

of a"s in an even number of points or none. Since I meets each plane

TTj in one point, the symbol for ir- is not linearly dependent on the

columns of H^. By the last paragraph we now have
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Theorem 90. Any solution of (H^) is linearly dependent on a —1
columns of H^ and the symbol for any one of the planes tt , tt , •

, 7r„.

CoEOLLAEY 1. Any polyhedron is the sum, modulo 2, of a subset

of a set of polyhedra consisting of one plane and all polyhedra which
hound convex regions.

Proof Let tt^, tt^, • • -, '7r„ be a set of planes containing all vertices,

edges, and faces of a given polyhedron and such that ir^, ir^, ir^, tt

are not concurrent. By the theorem the given polyhedron is either

expressible as a sum of the boundaries of some of the a"s deter-

mined by TTj, TTj, . • ., 7r„ or as a sum of one of these planes and
some of the a"s.

In the course of the argument above it was shown that any poly-

hedron expressible in terms of the boundaries of the a^'s was met in

an even number of points by any line not meeting an a" or an a^.

One of the planes tt^, tt^, • • •, tt, is met by such a line in one point.

Hence any polyhedron which is the sum of such a plane and a number
of the boundaries of a^'s is met by this line in an odd number of

points. Hence

Corollary 2. Definition., A polyhedron which is the sum,

modulo 2, of a number of boundaries of convex three-dimensional

regions is met in an even number of points by any line not meeting

a vertex or an edge. Such a polyhedron is said to be even. A poly-

hedron which is the sum, modulo 2, of a plane and a number of

boundaries of convex three-dimensional regions is met in an odd

number of points by any line not meeting a vertex or an edge. Such

a polygon is said to be odd.

EXERCISE

Let ^ be a polygon and tt a polyhedron such that tt contains no vertex of

p and p contains no vertex or edge of tt. Ji p and ir are both odd they have

an odd number of points in common. If one of them is even they have an

even number (or zero) of points in common.

194. Regions bounded by a polyhedron. An even polyhedron p
is the sum of the boundaries of a set of convex three-dimensional

polyhedral regions, and we may^ assign the notation so that these

regions are denoted by «'«, ««, . . ., a|.

The polyhedron p is also the sum of the boundaries of
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because the sum of all the columns of Hj is (0, 0, • • •, 0). There is

no other linear expression for p in terms of the boimdaries of the

a''s, because there is only one linear relation among the colimms

of Ha.

This is all a direct generalization of what is said at the beginning

of § 187. As in § 187, it is easily seen that the points of ai', 02', • • •, a*',

together with those points of their boundaries which are not on p,

constitute a region bounded by p ; and that the points of o*', a*+i',

' >
°'<'a^)

together with those points of their boimdaries which are

not on p, constitute a second region bounded by p. With a few addi-

tional details (which are generalizations of those given in the proof

of Theorem 75) this constitutes the proof of the following theorem

:

Theorem 91. Any even polyhedron is the boundary of each of two

and only two regions which contain all points of space not on the

polyhedron. These regions are such that any broken line joining a

point of one region to a point of the other contains a point of the

polyhedron. Any two points of the same region can be joined by a

broken line consisting entirely of points of the region.

By a similar generalization of Theorem 76, we obtain

Theorem 92. Any odd polyhedron is the boundary of a single

region containing all points not on the polyhedron. Any two points

of this region can be joined by a broken line not containing any point

of the polyhedron.

CoBOLLABY. Any point P on a polyhedron can be joined to any

point not on it by a broken line containing no point of the polyhedron

except P.

195. The matrices Ei and Ej for the projective plane. Definition.

A segment, interval, broken line, polygon, two-dimensional convex

region, or three-dimensional convex region associated with a sense-

class among its points is called an oriented or directed segment,

interval, broken hne, polygon, two-dimensional convex region, or

three-dimensional convex region.

Definition. Let a^ be any segment which, with its ends A and B,

is contained in a segment s, and let s' denote the oriented segment

obtained by associating a^ with one of its sense-classes. The sense-

class of s* is contained in a sense-class of s which is either S (AO)

or S(PA) if is any point of aK In the first case A is said to be
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related to s* and in the second case A is said to be Ti^ga-

tively related to s\

To aid the intuition, we may think of an oriented segment as marked with
an arrow, the head of which is at the end which is positively related to the

oriented segment.

Obviously, if one end of an oriented segment is positively related

to it, the other end is negatively related to it, and vice versa.

Definition. The sense-class S{A^A^^ of a polygon^j^^j • • • A„A,
and the sense-class S {AB) on the edge A^A^ are said to agree in

case of the order {A^ABA^ and to disagree in case of the order

{A^BAA^}.

Eeturniag to the notation of § 185, the segments al, • • -, a^ may
each be associated with two senses. They thus give rise to 2 a

directed segments. Assigning an arbitrary one of the two senses to

each a\ we have a^ oriented segments to which we may assign the

notation Sj, • • -, si^. We shall denote the oriented segment obtained

by changmg the sense-class of s/ by — s/ and call it the negative of s\

The relations of the s^'s to the points a", • • •, a^ may be indicated

by means of a matrix which we shall call E^. In the matrix E^

the element of the ith. row and yth column shall be 1, — 1, or 0,

according as the point a° is positively related to, negatively related

to, or not an end of, the oriented segment sj.

It is clear that the signs 1 and — 1 are interchanged in the yth

column of this matrix if the sense-class of sj is changed. Since the

sense-class of each segment is arbitrary, a matrix equivalent to E^

can be obtained from the matrix H^, § 186, by arbitrarily changing

one and only one 1 in each column to — 1.

In the case of the triangle, by letting the segments a, a, fi, yS, 7,

7

give rise to s^, Sj, • ) Sg respectively, we derive the following matrix

from HjOf §151:

A--

The elements of the matrix E^ may be regarded as the coefficients

of a set of linear equations analogous to the equations (H^) of § 186,
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where, however, the variables and coefficients are not reduced with

respect to any modulus. These equations arise as follows:

Let (ajj, JCj, • • ., x^ be a symbol in which the x's can take on any

integral values, positive, negative, or zero, and let this symbol rep-

resent a set of oriented segments comprising sf counted a;, times if

ajj is positive, — s? counted — a;,, times if aij is negative, and neither

si nor — si if x^ is zero, i taking on the values 1, 2, • • •, a^.

The sense-class of an oriented polygon agrees with a definite sense-

class of each of its sides and thus determines a set of oriented seg-

ments. The symbol {x^, x^, • •, x^ for this set of oriented segments

may also be regarded as a symbol for the oriented polygon. Each

vertex of the polygon is positively related to one of the oriented

segments represented by {x^, x^,---, x^) and negatively related to

another. Thus if s? and s/ meet at a certain vertex to which they

are both positively related according to the matrix E^, we have

that Xi=l and Xj=— 1 or that a;,.=— 1 and Xj= l in the symbol

(a3j, • • ., x^) for any directed polygon containing the sides a,, and a,-.

The a;'s corresponding to the segments not in the polygon must of

course be zero. Hence the symbol (x^, • • •, x^ must satisfy the

linear equation whose coefficients are given by the row of E^ cor-

responding to the vertex in question. If s^ and s,. are oppositely

related to a vertex according to the matrix E^, we must have x^=l

and Xj=l or Xf= —1 and Xj= — 1 in the symbol for any directed

polygon containing the sides a. and a,.. Hence in this case also the

linear equation given by the corresponding row of E^ must be satis-

fied. Finally, the equation given by a row of E^ corresponding to

a point which is not a vertex of the polygon is satisfied because

all the a;,.'s corresponding to edges meeting at that point are zero.

Hence the symbol for a directed polygon must be a solution of the

linear equations whose coefficients are the elements of the rows of the

matrix E^. These equations shall be denoted by (EJ. In the case of

the triangle they are
^.^ + ^.^ + a;^ + ^.^ = 0,

(6) x^ + x^-x^-x^ = Q,

-x^-x^-x^-x^=0.

By reasoning entirely analogous to that of § 186, it follows that

any solution of (E^) in integers represents one or more directed

simple polygons. The situation here differs from that described in
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the modulo 2 case, in tha^the same side may enter into more than

one polygon and the same polygon may be counted any nuniber of

times in a set of polygons.

Since each column of the matrix E^ contains just one 1 and

one — 1, the sum of the left-hand members of the equations (E^)

vanishes identically. There can be no other hnear homogeneous

relation ,among the equations (E^), because the matrix E^ and the

equations (E^) when reduced modulo 2 are the same as H^ and

(Hj), and so any linear relation among the equations (E^) would

imply one among (HJ.* Hence the number of linearly independent

equations of (EJ is «„— 1. The number of variables being a^, the

number of linearly iudependent solutions is a^—a^+1. In view of

Theorem 74, this number is equal to a^.

It will be recalled that in the modulo 2 case one class of solu-

tions of Equations (H^) is given by the columns of the matrix H^.

These columns are the notation for the polygons boundiag the con-

vex regions «!,•••, a^^. If each of these polygons be replaced by

one of the two corresponding directed polygons, a set of solutions is

determined for the equations (E^). These solutions are obtained

directly from the matrix H^ by introducing minus signs so that the

columns become solutions of (EJ. This is possible in just two ways

for each column, because each polygon boimding an a" has two and

only two sense-classes. A matrix so obtained shall be denoted by

E . In the case of the triangle such a matrix is

E

0-1 1\10-10Olio
-1 0-1

1-1
1-1 0/

It is evident on inspection that the rank of this matrix is equal

to the number of columns. That is to say, unlike those of H^^, the

* The coefficients of any linear homogeneous relation among the rows of E^ may
be taken as integers having no common factor. Hence on reducing modulo 2 it

would yield a linear relation among the rows of Hj. But as the only linear relation

among the rows of Hi is that the sum of all the rows is zero, there is no linear rela-

tion among the rows of Ej not involving aU the rows. There could not be two such

relations among all the rows of Ej, because by combining them we could derive a

relation invblving a subset of the rows.



488 THEOREMS ON SENSE AND SEPARATION [Chap. IX

eolumns of E are linearly independent. The same proposition holds

good for the matrix E^ in the general case. This can be proved as

follows

:

By the reascming used above for the rows of E^ and H^, it fol-

lows that any linear relation among the columns of E^ implies one

among the columns of H^. Since the only such relation among the

columns of H^ involves all the columns, we need only investigate

linear homogeneous relations among the columns of E^^ in which all

the coefficients are different from zero. If such a relation existed,

two columns of E^ corresponding to regions having an edge in

common would have numerically equal multipliers in the relation,

else the elements corresponding to the common edge would not

cancel. But since any two of the convex regions a^ can be joioed

by a broken line consisting only of points of these regions and of

the edges of their bounding polygons, it follows that aU the coeffi-

cients in the relation would be numerically equal, i.e. they could all

be taken as -|- 1 or — 1.

Now the n lines ?j, • •, l„ containing all the points and segments

of our figure are not all concurrent ; three of them, say l^, l^, l^, form

a triangle. Let us add together all the terms of the supposed rela-

tion correspondihg to regions a' in one of the four triangular regions

determined by l^, l^, /j. The elements corresponding to edges interior

to this triangular region must all cancel, because they cannot cancel

against terms corresponding to regions a" exterior to the triangular

region. The sum must represent an oriented polygon of which the

edges are all on the boundary of the triangular region. This oriented

polygon, by § 183, must be identical with the boundary of the tri-

angular regions associated with one of its two sense-classes. If we

operate similarly with the other three triangular regions determined

by Zj, l^, l^, we obtain three other oriented polygons. But since the

linear combination of the columns of E^ is supposed to vanish, each

edge of the four triangular regions should appear once with one

sense and once with the opposite sense, and this would imply that

in the case of a triangle there would exist a linear homogeneous

relation among the columns of E^, contrary to the observation above.

Hence in every case the a^ columns of E^ are linearly independent.

Since there are only a^ linearly independent solutions of the equa-

tions (E,), it follows that all the solutions of (Ej) are linearly
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dependent on the columns^ E^. This is in sharp contrast with the

property of the equations (H^) stated at the end of § 186.

196. Odd and even polygons in the projective plane. Let us apply

the results of the section above to the theory of odd and even poly-

gons. Since any polygon is expressible in terms of the columns of

Ej, an odd polygon must be so expressible. Let us write this expres-

sion in the form .-^^

(7) 919 ^XViS-,
1=1

where si, • • •, s^^ represent the columns of E^, p is the symbol for

the given oriented polygon, and p and y^, - • •, y^^ ^^^ integers which

may be taken so as not to have a common factor.

Since the coefficients do not have 2 as a common factor, (7) does

not vanish entirely when reduced modulo 2. But since an odd polygon

is not expressible in terms of the coliunns of H^, p must contain the

factor 2, and (7) must reduce, modulo 2, to an identity among the

columns of H^. The only such identity is the one involving all

the columns of H^^. Hence the y/s are aU odd. But in order that

the edges not on the odd polygon p shall vanish, the i/s correspond-

ing to s^'a having an edge in common must be equal. Since any two

points not on p can be joined by a broken line not meeting p
(Theorem 76), it follows that all the y's are equal If they are all

taken equal to ± k, it is obvious that p = 2k. Hence we have the

theorem

:

Theorem 93. The symbol p for any odd polygon is expressible in

the form „,

(8) 2p^%e,sf,
i=l

where each e^ is + 1 or —1.

This theorem may be verified in a special case by adding the columns of

the matrix E^ given above for a triangle. The sum is (0, 0, 2, - 2, 0, 0), which

represents a line counted twice. The number 2 is called the coefficient of torsion

of the two-sided polygon (cf . Poincarg, Proceedings of the London Mathematical

Society, Vol. XXXII (1900), p. 277. The systematic use of the matrices Ej, Ej,

etc. is due,to Poincar6).

Another form of statement for Theorem 93 is the following: If the

region bounded by an odd polygon p be decomposed into convex regions

each bounded by an even polygon, each edge ofp is on the boundary of

two of these convex regions.
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An even polygon p is also expressible in the form (7). Aside

from a common factor of all the coeflBcients, there is only one ex-

pression for p of the form (7), for if hot, by eliminating p we could

obtain a linear homogeneous relation among the columns of E^.

Let R be one of the two regions bounded (Theorem 75) by p,

which - contains one of the convex regions a? for which the corre-

sponding 2/,. in (7) is not zero. Any two s^'s corresponding to a'^'s

having an edge in common must be, multiplied by numerically

equal y'a in (7) in order that the symbol for the common edge

shall not appear in p. Since any two points of R can be joined by

a broken line consisting entirely of points of R, this implies that

the coefficients y^ corresponding to the a^'s iij R are all numerically

equal to an integer k. From this it follows that the sum of the

terms in the right-hand member of (7) which correspond to a^'s in

R is equal to p, because each edge of p is an edge of one and only

one of the a^'s in R. Since the equality just found is of the form

(7), and (7) is xmique, we have that p and y^, • • •, y^^ are aU numeri-

cally equal to k. Obviously the factor k can be divided out of (7).

Hence we have

Theorem 94. The symbol p for an even polygon is expressible in

the form «^

(9)' :
•; P=Z^.^l

where e^ is or +1 or — 1. The af's such that the e/s with the same

subscripts are not zero are the af's irk one of the regions R referred to

in Theorem 75.

Definition. By the interior (or inside) of an even polygon is meant

that one of the two regions determined according to Theorem 94

which contains the afs having the same subscripts as the non-zero

e/s in (9). The other region is called the exterior of the polygon.

EXERCISE

Identify the interior of a two-sided polygon as defined above with the

interior as defined in § 187..

197. One- and two-sided polygonal regions. Let A^, A^, • • •, A^

be a polygon which is the boundary, of a convex region R for which

there is a convex region R' containing R and its boundary. If and
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0' are any two points of g, then S{OA^A^=S{OfA^A^ (of. § 161) with
respect to R' because and 0' are on the same side of the line A^A in

R'. Agam,
^^^^^^^ ^ S^OA^A^ = . . . = S{OAA^

because A^ and^^ are on opposite sides of the line OA , A and A
are on opposite sides of the line OA^, etc.

A sense-class in R, which we shall call positive, determines a

positive sense-class in any convex region R' containing R, i.e. the

sense-class containing the given sense-class of R. This, in view of

-the paragraph above, determines a unique sense-class on the poly-

gon bounding R, by the rule that if S{OA^A^) is positive, where
is in R, then S(A^A^A^) is positive on the boundary of R ; and if

S{OA^A^) is positive, then S{A^A^A„) is positive on the boundary of R.

From § 161 it follows without difficulty that this determination is

independent of the choice of the convex region R'.

Conversely, it is obvious that by this rule a sense-class on the

boundary of R determines a definite sense-class in R.

Definition. Let a^ be any planar convex region which, with its

boundary, is contained in a convex planar region R, and let a^ be

any segment on the boundary of a^. Let s^ denote the oriented

segment obtained by associating a^ with one of its sense-classes,

and s' denote the oriented region obtained by associating a'^ with

one of its sense-classes. The sense-class of s° is contained in a

certain sense-class of R which may be denoted by S{OAB), where,

is in a^ and A and B are on a\ If S(AB) is the sense-class of

s*, then s' and s^ are said to be positively related ; and if S(AB) is not

the sense-class of s^, they are said to be negatively related.

As pointed out above, this definition is independent of the choice

of R. Let Rj and R^j be two convex regions having no point in com-

mon and bounded by two polygons A^A^A^ • • • -^m ^^^ -^1-^2-^s
' "^m

respectively which have in common only the vertices A^ and A^ and

the points of the edge A^A^. Suppose, also, that R^, R^ and their

boundaries are contained in a convex region R. These conditions are

satisfied if R^ and R^ are a^'s, and A^A^ is an a^ determined by a set

of lines four of which are such that no three are concurrent.

The rule given above for determining positive sense on the

boundaries of R^ and R^ requires that if S (OA^A^) is positive for

a point of R^, then S {A^AA^ must be positive on the boundairy
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of Rj, where ^ is a point of the edge A^A^ If (Z is any point of R^,

it is on the opposite side of the line A^^A^ from in R. Hence

S{0'A^Aj) is positive, and hence S{A^AAj) must be the positive sense-

class on the boundary of R.

Let Rj ^nd H^ be two of the a^'a determined by a set of lineB

^1' ^2> • • •' ^n! Ist the boundary of R^ associated with the positive

sense-class as determined in the last paragraph be denoted by

{x^, x^, • • , Xa^ a,c(jording to the notation of §195; and let the

boundary of R^ associated with the positive sense-class determined

at the same time be {y^, y^- • •, ya)- The notation may be assigned

so that x^ and y^ refer to the edge A^A^ common to the boundaries

of R^and R^. In this case, if x^=l, y^=—l, and if 0;^=— 1, y^=+l;

for the positive sense for the boundary of R^ is S {^^AA^) and for

the boundary of R^j is S (A^AA^. Hence the sum of the two sym-

bols (ajj, a;^, • . ., x^) and {y^, y^, • • •, ya) is the symbol for the botmd-

ary of the region R' composed of R^, R^ and the common edge A^A^,

this boundary being associated with a sense-class S' which agrees

with the positive sense^class on any edge of the boundary of R^ or

Rj which is an edge of the boundary of R'.

By repeated use of these considerations it foUows that if a set of

a^'a with their boundaries constitute a convex region R and its

boundary, the symbol {x^, x^, • • , x^) for the boundary of R asso-

ciated with a sense-class which is designated as positive, is the sum

of the symbols for the boundaries of the a"s, each associated with

its positive sense-class. In other words, the symbol for the boundary

of R associated with its positive sense-class is the sum of a set of

columns of H^, each multiplied by -|- 1 or — 1 so that it shall be the

symbol for the boundary of the corresponding a'^ associated with the

sense-class which is positive relatively to the positive sense-class

of R. By comparison with Theorem 94, it follows (as is obvious

from other considerations alsp) that any polygon which is the

boundary of a convex region is even.

The argument in the paragraph above apphes without essential

modification to any region bounded by a polygon and having a

unique determination of sense according to § 168. Hence any poly-

gon botmding a two-sided region is even.

Moreover the steps of the argument may be reversed as follows

:

If the symbol for any oriented polygon p be expressible in terms
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of the columns of Hz, in the form (7), where the non-zero coefficients

are e,„ Ci,, • • •, e;*, p is the boimdary of the region R consisting of

0*,^ o.jS • • •, di)? and those points of their boundaries which are not

on p. If R' is a convex region contained in R, and its positive

sense-class be determined as agreeing with the positive sense-class of

one of the regions a^^^, at^, • , ait?, it must agree with that of every

o' with which it has a point in common ; for otherwise the symbols

for the common edges of two of the a^'s would not cancel in (7).

If R" is any other convex region contained in R, and its positive

sfense-class is also determined by this rule, the positive sense-classes

of fi' and R" must, by definition, agree in any region common to

R' and R". Hence R is two-sided according to § 168. Thus we

have by comparison with § 196

Theobem 95. The interior of an even polygon is a two-sided region.

198. One- and two-sided polyhedra. Let the vertices of a poly-

hedron be denoted by ai", aj", • • •, Oao", the edges by ai', OzS • • , aai^

and the faces by a^, ai", • , Ua^". Assigning an arbitrary one of its

sense-classes to each edge, there is determined a set of oriented

segments Si\ Sj', • •, Sai^ and a matrix

in which i = 1, 2, • •, ao ; j = 1, 2, • • •, tti ; and €<,' is + 1, — 1, or

0, according as o,° is positively related to, negatively related to, or

not an end of s,'.

Assigning an arbitrary one of its sense-classes to each face, there

is determined a set of oriented planar convex regions Si", st\ • • -, Sa,'

and a matrix j, = Ce-»)

in which i= 1,2, •••,«!; i=l, 2, • • •,a2; and e^^^ is -|- 1, - 1, or 0,

according as Si' is positively related to (cf. § 197), nega,tively related

to, or not on the boundary of s,^. By the last section each column

of Ej is the symbol (Xi, x^, • -, x„,), in the sense explamed in § 195,

for an oriented polygon obtained by associating the polygon bound-

ing one of the a?'s with one of its sense-classes. Changing the sense-

class assigned to any a* to determine the corresponding s'^ amounts to

multiplying all elements of the corresponding column of Ea by — 1.

For simplicity let us at first restrict attention to polyhedra in

which each edge is on the boundaries of two and only two faces.
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In this case there are just two non-zero elements in each row of E^.

Hence the sum of the columns of E^ will reduce to (G, 0, • • •, 0) if

and only if the sense-classes have been assigned to the faces of the

polyhedron in such a way that one of these elements is -)- 1 and

the other — 1 in each row. This means that each s^ is positively

related to one of the s^'s on whose boundary it is and negatively

related to the other. Thus the faces are related as are the a^'s

which constitute a two-sided region bounded by an even polygon

in the plane (§ 197).

Definition. A polyhedron for which the sense-classes can be

assigned to the edges and faces in such a way that each edge is

positively related to one of the faces on whose boundary it is and

negatively related to the other, is said to be two-sided, or bilateral;

and one for which this assignment of sense-classes is not possible is

said to be one-sided, or unilateral.

Changing the assignment of sense-classes on an edge amounts

merely to multiplying the corresponding column of E^ and row of

Ej by — 1, and changing the assignment of sense-classes on a face

amounts to the same operation on a column of E^. Consequently

the polyhedron is two-sided if there is a linear relation whose coeffi-

cients are I's and — I's among all the columns of E^, and it is one-

sided if there is no such relation. It is also obvious from these

considerations that if a polyhedron satisfies the definition of two-

sidedness (or of one-sidedness) for one assignment of sense-classes to

its edges, it does so for all assignments. We therefore infer at once

:

Theorem 96. A polyhedron is one- or two-sided according _as the

rank of E^ is a^ or a^—1.

By reference to § 195 we find

CoEOLLAKY. The projective plane is a one-sided polyhedron.

In the case of any polyhedron in which each edge is on the boundary of

only two faces, it is seen that the only possible linear relation among the

columns of Ej reduces to one in which each coefficient is + 1 or — 1, for any

other relation would imply that a subset of the faces determines a polyhedron.

Theorem 97.-4 polyhedron bounding a convex region R which is

contained with its boundary in a convex region R', is two-sided.

Proof. Let sense-classes be as.signed to the edges in an arbitrary

way, but let sense-classes be assigned to the faces according to the
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following rule: Let a gjjen sense-class S{PQRT) in R' be desig-

nated as positive. Let O be any point of R and A, B, C, three non-

coUinear points of a face of the polyhedron. The sense-class S(ABC)

is assigned to this face if and only if S{OABC) is positive.

There is no difficulty in proving that if C and D are two points

of an edge s/ of the polyhedron bounding R, and E and E' points

of the two faces having this edge on their boundaries, then E and

E' are on opposite sides of the plane OCD. Hence

S{OCDE) -1= S{OCDE').

Hence the sense-classes are assigned according to the rule above to

the two faces haviug the edge s} on their boundaries in such a way

that s/ is positively related to one and negatively related to the other.

Definition. By an oriented polyhedron is meant the set of oriented

two-dimensional convex regions [s'^] obtained by associating each face

of a two-sided polyhedron with a sense-class in such a way that if

sense-classes are assigned arbitrarily to the edges to determine directed

"segments, each of these directed segments is positively related to one

of the oriented two-dimensional convex regions on whose boundary

it is and negatively related to the other. The s^'s are called the

oriented faces of the oriented polyhedron, and the s^'s its oriented

edges.

Corollary. A given two-sided polyhedron determines two and only

two oriented polyhedra according to the definition above.

Definition. Let a* be a three-dimensional convex region which

is contained with its boundary in a convex region R, and a^ a two-

dimensional convex region on the boundary of a°. Let s° denote a"

associated with one of its sense-classes, and let s'^ denote a^ associated

with one of its sense-classes. The sense-class of s" is contained in

one of the sense-classes, say aS", of R. Let be a point of a", and

A, B, C three points of a\ such that S{OABC) is S. Then if S(ABC)

is the sense-class associated with a^ to form s^, s'' and s' are said to

he positively related. Otherwise they are said to be negatively related.

, By § 161 this definition is independent of any particular choice

of the convex region R containing a° and its boundary. From what

has been proved above it follows that if each a' on the boundary

of an a' is associated with a sense-class in such a way as to be posi-

tively related to the oriented region determined by a' and one of its
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sense-classes, this set of oriented two-dimensional convex regions is

an oriented polyhedron.

The definitions made in this section are extended to polyhedra

in which each edge is on an even number of faces (instead of only

two, as we have been supposing) as follows

:

Definition. A polyhedron is said to be two-sided if sense-classes

can be assigned to the edges and faces in such a way that each

resulting oriented edge is positively related and negatively related to

equal numbers of the resulting oriented faces.

EXERCISES

1. An odd polyhedron is one-sided and an even polyhedron is two-sided.

2. Make a discussion of one- and two-sided polyhedral regions in space

analogous to the discussion for the two-dimensional case in § 197.

199. Orientation of space. The matrices of § 195 can be general-

ized to the three-dimensional case. Let si, s^,- , sl^, be the oriented

segments obtained by associating each of the segments a}, aj , • • •, aj

with an arbitrary one of its sense-classes. In the first matrix,

i = l, 2, • •, «o'
j'~ 1' 2, • • •, a^; and e^. is -f 1, — 1, or according

as a? is positively related to, negatively related to, or not an end

of sj. Ej can be formed from Hj by changing one 1 to a — 1 in

each column. The choice of the — 1 in the jth. column amounts to

the choice of the sense-class on aj which determines sj. As an

exercise, the reader should form Ej from the H^ given for a tetra-

hedron in § 152.

Sets of oriented segments s* are represented as in § 195 by sym-

bols of the form (x^, x^, • • •, Xa ), where the x's are positive or

negative integers. By the same argument as in § 195, if this symbol

represents a set of oriented segments each of which is an edge of a

polygon associated with that one of its sense-classes which agrees with

a fixed sense-class of the polygon, it is a solution of the equations,

(EJ %\^j=^. (i= l,2,...,«„)

and, conversely, any solution of these equations is the symbol for one

or more such sets of oriented segments. Thus any solution of (Ej)

may be regarded as representing one or more oriented polygons.
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let «!, 82", • •
., Sa^ be tl|g oriented two-dimensional convex regions

obtained by associating each a^ with an arbitrary one of its sense-

classes. The oriented two-dimensional regions obtained by associating

the s^'s with the opposite sense-classes may be denoted by -- sf,

— S2 » • •> ~ *<?, respectively. In the second matrix,

* = 1) 2, • • -, Wj
; y = 1, 2, . ., a^j ; and e^ is 1, — 1, or according as sj

is positively related to, negatively related to, or not on the boundary

of Sj. Ej can be formed from H^ by changing some of the I's in

each column of H^^ to —I's in such a way that each column shaU

be a symbol {x^, x^, • , x^J for a set of s^'s whose sense-classes all

agree with that of the oriented polygon determined by associating

the boundary of s'' with one of its sense-classes. This is possible

by the argument at the beginning of § 197, since each column

of H^ is the symbol for the boundary of one and only one al As an

exercise, the reader should form E^ from the H^ given for a tetra-

hedron in § 152.

A symbol of the form (x^, x^,---, a;„J in which each a; is a posi-

tive or negative integer or zero may be taken to represent a set of

oriented two-dimensional convex regions which includes s? counted

aj; times if x^ is positive, — s? counted — a-,- times if x^ is negative,

and does not include s? if a;,, is zero. If tliis sj^mbol represents an

oriented polyhedron (§ 197), it is a solution of the equations

(E,) :S4^.=o. (i=i,2,...,«j.

For consider the ith of these equations

:

If an oriented face of the oriented polyhedron is positively related

to sJ, it contributes a term -fl to the left-hand member of this

equation ; for if si is this oriented face, x^.-= 1 and 4;= 1 5 and if — s^

is this oriented face, x^= — \ and ^y = — \. An oriented face which

is negatively related to sJ contributes a term —1 to the left-hand

member of this equation; for if si is this oriented face, x^=\ and

4.=— 1 ; and if — si is this oriented face, x^= — 1 and 6,.^= 1. Hence

there are as many terms equal to -f I as there are oriented faces

positively related to s\, and as many terms equal to — 1 as there are
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oriented faces negatively related to s]. If neither s^ nor — s^ is in

the oriented polyhedron, or if s^ does not have s} on its boundary,

the ^th term of this equation is zero, for in the first case sc^.— and

in the second case e?t= 0. Hence by the definition of an oriented

polyhedron, each of the equations (fi^) is satisfied if {x^, x^,- • •, Xa)

represents an oriented polyhedron. In particular (Theorem 97) the

symbol for either oriented polyhedron determined by the boundary

of an a' is a solution of (E^.

One-sided polyhedra do not give rise to solutions of (EJ.

Let Sj and — s^, s^ and — s^,- •, sj^ and — s^^ be the pairs of

oriented three-dimensional convex regions determined by a', a|, • • , «J^

respectively according to the definition in § 197. In the third matrix,

E3=(4),

i = l, 2, •, a^;j = 1,2, ••, a^; and e?. is -|- 1, — 1, or according

as sf is positively related to, negatively related to, or not on the

boundary of s/. The matrix E^ can be formed from H^ by changing

I's to — I's in the columns of H^, in such a way that the resulting

columns are the symbols for oriented polyhedra and therefore solu-

tions of (Ej). This is possible by Theorem 96, As an exercise, the

reader should form E^ from the H^ given for a tetrahedron in § 152.

The sum of the columns of E^ is (0, 0, • • •, 0) because each row

of Ej contains one -|- 1 and one — 1. There can be no other linear

relation among the columns of E^, because this would imply, on

reducing modulo 2, more than one Hnear relation among the columns

of H^. Hence the rank of E^ is «„— 1, and the number of solu-

tions of Ej in a linearly independent set on which all the solutions

are linearly dependent is a^— a^-\-\.

Since the rank of H^ is a^ — a^, and since every homogeneous linear

relation among the columns of E^ implies one among the /Columns

of H^, the rank of E^ is at least a^ — a^. It is, in fact, at least

a^ — a^ + l because, by Theorem 93, the symbols for a set of columns

^1' "a'
' "* wliich represent oriented polygons bounding all the s^'s

of a projective plane satisfy a relation of the form

(10) e^c^ + e^c^+...+e,c,= 2l,

where I is the symbol for a line in this plane and e^, e^,-'-,e^ are

-f-l or — 1. Reducing modulo 2, this gives rise to a homogeneous

linear relation among the columns of H^ which is not one of those
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obtained by reducing the homogeneous linear relations among the

columns of E„.

Thus there are at least a^ — a^ + 1 linearly independent columns

of Ej. These are all solutions of (EJ, and as there are not more than

a^ — a^ + 1 linearly independent solutions of (EJ, there are not more

than a^ — a^ + 1 linearly independent columns of E^. Hence the

rank of E^ is a^ — a^ + 1, which by Theorem 85 is the same as

In consequence, the symbol (aj^, «2' • •> ^« ) f^^' ^^7 oriented poly-

gon is linearly expressible in terms of the symbols for oriented poly-

gons which bound convex planar regions. It can easily be proved

that in case of an odd polygon this expression takes the form (10)

where, however, the polygons denoted by c^, c^, • • •, c,. are not neces-

sarily all in the same plane.

Since the number of variables iu the equations (E^) is a^ and the

rank of E^ is *2 — *3 + ^' *'^® number of solutions in a linearly inde- '

pendent set on which all solutions are linearly dependent is a^ — 1.

The columns of E^ are all solutions of (E^). Hence the rank of E^

cannot be greater than a^ — 1. It cannot be less than a^ — 1, because,
^

on reducing modulo 2, this would imply that the rank of H^ was

less than a^ — 1. Hence the rank of E^ is a^ — 1. Since the symbol

for any oriented polyhedron whose oriented faces are s^s or — s^'s is

a solution of (E^), it follows that it is expressible linearly in terms

of the symbols for oriented polyhedra which boimd convex three-

dimensional regions.

Since the rank of Eg is a^ — 1, the set of equations

(Eg) |;e>, = (i = l, 2,...,«,)

must have one solution distinct from (0, 0, • • •, 0). When reduced

modulo (2) this solution must satisfy (H^) and therefore, by § 190,

reduce to (1, 1, • • •, 1). Since each equation in the set (E^) has

only two coefficients different from zero, and these coefficients are

± 1, it follows that aU the x's are numerically equal in a solution

(«i, «j, • • •, a;^,) of (Eg). Since the equations are homogeneous, all

the sfs may be taken to be +1 or —1.

The ith of these equations is of the form



500 THEOEEMS ON SENSE AND SEPARATION [Chap.k

€^.j being +1 or —1 according as sf is positively or negatively

related to sj^, and c?.^ being +1 or — 1 according as sf is positively

or negatively related to s,?. Hence, if the set of regions represented

by a solution in which the x's are ± 1 includes that one of sf^ and

—
sf^ to which s? is positively related, it also includes that one of

s/^ and — s|_ to which s? is negatively related ; and if it includes that

one of s? and — s,? to which s? is negatively related, it also includes

that one of s? and — s?' to which s? is positively related.

Hence the existence of a solution of (E^ other than (0, 0, • . •, 0)

implies the existence of a set of s"s and — s's such that each s' is

positively related to one of them and negatively related to another.

Since the notation sf and — s? may be interchanged by multiplying

the yth column of E^ by — 1, the notation may be so arranged that

(1, 1, • • •, 1) is a solution of E^. With the notation so arranged,

each s^ is positively related to one s' and negatively related to another.

We thus have

Theoeem 98. If each of the a^'s determined by a set of planes

TTj, TTj, • • •, 7r„ in a projective space is arbitrarily associated with one

of its sense-classes to determine an oriented planar convex region /,

each of the a"s can be associated with one of its sense-classes to deter-

mine a three-dimensional convex region s' in such a way that each s"

is positively related to one s* and negatively related to another.

The set of s"s described in this theorem is a generalization of an

oriented polyhedron as defiiied in § 198. If the definition of uni-

lateral and bilateral polyhedra be generalized to any number of

dimensions, it is a consequence of this theorem that the three-

dimensional space is a bilateral polyhedron. In general, it can easily

be verified, by generalizing the matrices E^, E^, E^ etc., that projec-

tive spaces of even dimensionality are unilateral polyhedra and

projective spaces of odd dimensionality are bilateral polyhedra.

EXERCISE

An odd two-dimenaional polyhedron in a three-dimensional space is one-sided

and an even one is two-sided.
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About, 159
Absolute conic, 350, 371
Absolute involutions, 119
Absolute polar systems, 293, 373
Absolute quadric, 369, 373
Addition of vectors, 84
Affine classification of conies, 186
Affine collineation, 72, 287
Affine geometry, 72, 147, 287
AfSne groups, 71, 72, 287, 305 ; subgroups

of the, 116
Agree (sense-classes), 485
Alexander, J. W., iii, 405
Algebra of matrices, 333
Algebraic cut, 15
Alignment, assumptions of, 2
Analysis, plane of, 268
Angle, 139, 231, 429, 432
Angles, equal, 165 ; numbered, 154

;

of rotation, 325, 327 ; sum of two,
154

Angular measure, 151, 153, 163, 165,

231, 311, 313, 362, 365
Anomaly, eccentric, 198
Antiprojectivities, 250, 251, 253
Apollonius, 235
Arc, differential of, 366
Area,, 96, 149, 150, 157, 311, 312; of

ellipse, 150
Assumption, Archimedean, 146
Assumption A, 2
Assumption C, 16
Assumption E, 2
Assumption H, 11

Assumption Hg, 2

Assumption H, 33
Assumption I, 30
Assumption J, 7

Assumption K, 3
Assumption P, 2 ; commutative law of

multiplication equivalent to, 3
.gumption Q, 16
Assumption R, 23

Assumption R, 29
Assumption S, 32
Assumptions, of alignment, 2 ; cate-

goricalness of, 23 ; consistency of, 23

;

of continuity, 16 ; for Euclidean geom-
etry, 59, 144, 302; of extension, 2;
independence of, 23 ; of order, 32

;

of projectivity, 2

Asymptotes of a conic, 73
Axis, of a circle, 354 ; of a conic, 191

;

of a line reflection, 258 ; of a parabola,

193 ; of a quadric, 316 ; radical, 159
;

of a rotation, 299 ; of a translation,

317; of a twist, 320

Backward, 303
Barycentric calculus, 40, 104, 292, 293
Baryoentric coordinates, 106, 108, 292
Base circle, 254
Base points of a pencil, 242
Beltrami, E., 361
Bennett, A. A., iii

Between, 16, 47, 48, 60, 350, 387, 430, 433
Bilateral polyhedron, 494
Bilinear curve, 269
Biquatemions, 347, 379, 382
Bisector, exterior, 179 ; interior, 179

;

perpendicular, 123
BOcher, M., 256, 271
Soger, E., 168
Bolyai, J., 361

.Bonola, R., 59, 362, 363, 371, 375
Borel, E., 60
Boundary, 392, 474, 482
Bounding polygons, 470, 482
Broken lines, 454 ; directed, 484 ; ori-

ented, 484
Bundle, of circles, 256 ; center of, 435

;

of directions, 436 ; of projectivities,

342 ; of rays, 435 ; of segments, 436
Burnside, W., 41

Calculus, barycentric, 40, 104, 292, 293
Camot, L. N. M., 90
Carslaw, H. S., 362
Cartan, E., 341

Casey, J., 168
Categoricalness of assumptions, 23
Cayley, A., 163, 335, 341, 361

Cells, 404 ; oriented, 452, 453
Center, of a bundle of rays, 435 ; of a

circle, 131, 394 ; of a conic, 73 ; of

curvature, 201 ; of gravity, 94 ; of a
pencil, 429, 433 ; of a rotation, 122

;

of similitude, 162, 163 ; of a sphere,

315
Center circle, 231
Centers, line of, 159
Ceva, 89

601
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Chain, 17, 21, 222, 229, 250; conjugate
points with respect to, 243; funda-
mental theorem for, 22 ; n-dimen-
sional, 260 ; three-, 284

Circle, 120, 131, 142, 145, 148, 157, 269,

354, 394; axis of, 354; base, 264;
bundle of, 256 ; center, 231 ; center

of, 131, 394 ; circumference of, 148

;

of curvature, 201 ; degenerate, 253,

266 ; director, 200 ; directrix of, 192
;

Feuerbach, 169, 233 ; focus of, 192.;

fundamental, 254 ; imaginary, 187,

229 ; at infinity, 293 ;
intersectional

properties of, 142 ; length of, 148

;

limiting points of pencils of, 159

;

linearly dependent, 256 ; nine-point,

169, 233 ; orthogonal, 161
;
pencils of,

157, 159, 242
;
power of a point with

respect to, 162 ; sides of, 245
Circular cone, 317
Circular points, 120, 155
Circular transformations, 225 ; direct,

225, 452 ; types of direct, 246, 248
Clebsch, A., 366, 368, 369, 377
Clifford, W. K., 293, 347, 361, 374
ClifCord parallel, 374, 375, 377, 444
Clockwise sense, 40
Closed curve, 401
Closed cut, 14
Coble, A. B., iii

Coefficient of torsion, 489
Cole, F. N., 222
CoUinear vectors, 84 ; ratio of, 85
CoUineations, affine, 72, 287; direct, 61,

64, 65, 107, 438, 451 ; direct, of ' a

.

quadric, 260; equiaffine, 106; focal

properties of, 201 ; involutoric, 257

;

opposite, 61, 438, 451 ; in real projec-

tive space, 262
Commutative law of multiplication

equivalent to Assumption P, 3
Complementary segments orintervals, 46
Complex elements, 166
Complex function plane, 268
Complex geometry, 6, 29
Complex inversion plane, 264, 265
Complex line, 8 ; order relations on, 437

;

and real Euclidean plane, correspond-
ence between, 222

Complex plane, 154 ; inversions in, 235
Complex point, 8, 156
Cone, circular, 317
Confocal conies, 192
Confocal system of quadrios, 348
Congruence of lines, 275, 283 ; elliptic,

443 ; right-handed and left-handed
elliptic, 444

' Congruent figures, 79, 80, 94, 124, 134, 139,

144, 297, 303, 352, 369, 373, 375, 394
Conic, 82, 158, 199 ; absolute, 350, 371

;

asymptotes of, 73 ; axis of, 191 ; center
of, 73 ; central, 73 ; confocal, 192

;

diameter of, 73 ; directrix of, 191

;

eccentricity of, 196 ; eleven-point, 82

;

equation of, 202, 208 ; exterior of, 171,

174, 176 ; focus of, 191 ; interior of,

171, 174, 176 ; invariants of, 207 ; latus

rectum of, 198 ; metric properties of,

81 ; nine-point, 82 ; normal to, 173

;

ordinal and metric properties of, 170;
outside of, 171; parameter of, 198;
projective, afSne, and Euclidean clas-

sification of, 186, 210, 212 ; a simple
closed curve, 402 ; vertex of, 191

Conjugacy under a group, 39
Conjugate imaginary elements, 182
Conjugate imaginary lines, 281, 282, 444
Conjugate points with respect to a chain,

243
Connected set, 404 ; of sets of points, 405
Connectivity of a polyhedron, 476
Constructions, ruler and compass, 180
Continuity, assumptions of, 16
Continuous, 404
Continuous curve, 401
Continuous deformation, 406, 407, 410,
452

Continuous family of points, 404
Continuous family of sets of points, 405
Continuous family of transformations,,
406

Continuous group, 406
Continuum, 404
Convex regions, 385-394; linear, 47;

sense in overlapping, 424; oriented
or directed three-dimensional, 484

;

oriented or directed two-dimensional,
484 '

Coolidge, J. L., 229, 360, 362
Coordinate system, positive, 407, 408,
416 ; right-handed, 408, 416

Coordinates, barycentric, 106, 108, 292

;

polar, 249 ; rectangular, 311 ; tetra-

cyclic, 253, 254, 256
Correspondence, between the complex

line and the real Euclidean plane,

222 ; between the real Euclidean
plane and a complex pencil of lines,

238 ; between the rotations and the
points of space, 328

;
perspective,

271
;
projective, 272

Cosines, direction, 314
Cremona, L., 168, 251, 348
Criteria, of sense, 49 ; of separation, 55
Crossings of pairs of lines, 276
Cross ratio, equianharmonic, 259 ; of

points in space, 55
Curvature, center of, 201 ; circle of, 201
Curve, 401 ; bilinear, 269 ; closed, 401

;

a conic a simple closed, 402 ; equi-
distantial, 366 ; normal, 286 ;

path,

249, 356, 406
;

positively or nega-
tively oriented, 452 ; rational, 286

;

simple, 401
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Cut-point, 14, 21
Cuts, open and closed, 14 ; algafcraio, 15
Cyclic projectivity, 258

Darboux, G., 251, 824
Dedekind, E.,60
Deformation, continuous, 406, 407, 410,
452

Degenerate circle, 253, 266
Degenerate sphere, 315
Dehn, M., 290
De Paolis, R., 362
Describe, 401
Diagonals of a quadrangle, 72
Diameter, of a conic, 73 ; end of, 151

;

of a quadrilateral, 81

Dickson, L.E., 35, 339, 341
Differential of arc, 366
Dilation, 95, 348
Direct coUineation, 61, 64, 65, 107, 438,

451 ; of a quadric, 260
Direct projectivities, 37, 38, 407
Direct similarity transformations, 135
Direct transformations, 225, 452
Directed, oppositely, 433 ; similarly, 433
Directed broken line, 484
Directed interval, 484
Directed polygon, 484
Directed segment, 484
Directed three-dimensional convex re-

gion, 484
Directed two-dimensional convex re-

gion, 484
Direction-class, 433
Direction cosines, 314
Directions, bundle of, 436 ;

pencil of, 433
Director circle, 200
Directrices pf a skew involution or line

reflection, 258
Directrix, of a circle, 192; of a conic,

191 ; of a parabola, 198
Disagree (sense-classes), 485
Displacement, 123, 129, 138, 143, 297,

317, 325, 352, 369, 373
;
parameter rep-

resentation of, 344 ;
parameter repre-

sentation of elliptic, 377 ;
parameter

representation of hyperbolic, 380

;

types of hyperbolic, 355
Distence, 147, 157, 811, 864, 373 ; alge-

braic formulas for, 365 ; of transla^

tion, 325, 327 ; unit of, 147
Doehlemann, K., 229, 230
Double elliptic plane, 375
Double elliptic plane geometry, 375
Doublepointsofprojectivities, 5,114,177
Doubly oriented line, 440, 442, 445, 447,

449
Doubly perspective, 448
Down, 303

Eccentric anomaly, 198

Eccentricity of a conic, 196

Edges, of a broken line, 454 ; of a poly-
hedron, oriented, 495

Eisenhart, L. P., 368
Elementary transformations, 409, 411-

414, 418, 419, 421, 423, 430, 431, 434-
487, 447, 455, 456 ; restricted, 410,
414, 420, 430

Elements, complex, 156 ; imaginary, 7,

156, 182 ; ideal, 71, 287 ; improper, 71
Eleven-point conic, 82
Ellipse, 73, 140 ; area of, 150 ; foci of,

189 ; imaginary, 187
Elliptic congruence, 443
Elliptic displacements, parameter rep-

resentation of, 377
Elliptic geometry, double, 375
Elliptic geometry of three dimensions,

373
Elliptic pencils of circles, 242
Elliptic plane, 371 ; double, 375 : single,

871, 375
Elliptic plane geometry, 871
Elliptic points, 378
Elliptic polar systems, 218
Elliptic projectivity, 5, 171
Elliptic transformations, direct circular,

248
Emch, A., 230
End of a diameter, 151
Ends of a segment or interval, 45, 427
Enriques, F., 302
Envelope of lines, 406
Equation of a conic, 202, 208
Equations of the affine and Euclidean

groups, 116, 135, 305 ; linearly inde-
pendent, 466 ; and matrices, modular,
464

Equiafflne coUineations, 105
Equiaffine group, 105, 291
Equianharmonic cross ratio or set of

points, 259
Equidistantial curves, 356
Equilateral hyperbola, 169
Equivalence, of ordered point triads,

96, 288, 290 ; of ordered tetrads, 290;
with respect to a group, 39

Euclid, 360
Euclidean classification of conies, 186,

210
Euclidean geometry, 117, 118, 119, 135,

144, 287, 300, 302 ; assumptions for,

59, 144, 302 ; as a limiting case of

non-Euclidean, 375
Euclidean group, 117, 118, 135, 144;

equations of, 116, 185, 305
Euclidean line, 58
Euclidean plane, 58, 60-63, 71 ; and com-

plex line, correspondence between,
222, 288 ; inversion group in the real,

225
I
sense in, 61

Euclidean spaces, 58, 287 ; sense in, 63
Euler, L., 332, 337
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Even polygons, 470, 482, 489; in the
projective plane, 489

Even polyhedra, 482, 483
Expansion, 348
Extension, assumptions of, 2
Exterior, of an angle, 432 ; of a conic,

171, 174, 176 ; of a polygon, 472 ; of an
even polygon, 490 ; of a quadric, 344

Exterior bisector, 179

Faces of a polyhedron, 474 ; oriented,
495

Family of points, continuous, 404
Family of sets of points, continuous, 405
Family of transformations, continuous,
406

Fano, G., 11, 285, 286
Feuerbach, 169, 233
Field, Galois, 35
Fine, H.B., 3, 18
Finzel, A., 369
Focal involution, 195
Focal properties of coUineations, 201
Foci of an ellipse or hyperbola, 189
Focus, of a circle, 192 ; of a conic, 191

;

of a parabola, 193
Follow, 13, 37, 47, 48
Forward, 303
Foundations, of complex geometry, 29

;

of general projective geometry, 1

Fubini, G., 362
Function plane, 268
Functions, trigonometric, 154
Fundamental circles, 254
Fundamental theorem of projectivity

for a chain, 22

Galois field, 35
Gauss, C.F., 40, 361
Generalization, by inversion, 231 ; by

projection, 167, 231
Geometrical order, 46
Geometries, projective, 36
Geometry, affine, 72, 147, 287 ; assump-

tions for Euclidean, 59, 144, 302 ; com-
plex, 6, 29 ; corresponding to a group,

70, 71, 78, 199, 285, 302 ; double ellip-

tic, 375 ; elliptic, 371 ; Euclidean, 117,

118, 119, 135, 144, 287, 300, 302;
Euclidean, as a limiting case of non-
Euclidean, 375 ; foundations of gen-
eral projective, 1 ;

generalized, 285
;

history of non-Euclidean, 360 ; hy-
perbolic plane, 350; inversion, 219;
inversion plane and hyperbolic, 357

;

modular, 253 ; of nearness, 303 ; non-
Euclidean, 350; parabolic metric
group and, 119, 130, 135, 144, 293;
real inversion, 241 ; of reals, 140

;

three-dimensional elliptic, 373 ; three-
dimensional hyperbolic, 369

Grassman, H., 168, 290

Gravity, center of, 94
Group, aflSne, 71, 72, 287, 305; conju-
gacy under, 39; continuous, 406; of
displacements, 129; equiaffine, 105,
291 ; equivalence with respect to, 39

;

Euclidean, 116, 117, 118, 135, 144, 305

;

geometry corresponding to, 70, 71, 78,

199, 285, 302 ; homothetic, 95 ; inver-
sion, in the real Euclidean plane, 225,
226 ; one-parameter continuous, 406

;

parabolic metric, and geometry, 119,

130, 135, 144, 293 ; the projective, Of
a quadric, 259 ; special linear, 291

;

subgroups of the afBne, 116
Groups, algebraic formulas for certain

parabolic metric, 135 ; equations of
the affine and Euclidean, 116, 135,
305

Half turn, 299, 370
Half twist, 324
Halstead, G.B., 361
Hamel, G., 28
Hamilton, W. R., 339
Harmonic homology, 257
Harmonic separation, 45
Harmonic sequence, 10, 33, 34 ; limit

point of, 10
Hatton, J. L. S., 168
Heath, T. L., 360
Heine, E., 60
Hermitian forms, 362
Hesse, O., 284
Hilbert, D., 103, 181, 394
Homology, harmonic, 257
Homothetic group, 95
Homothetic transformations, 95
Horocycle, 356
Horosphere, 370
Huntington, E. V., 3, 33
Hyperbola, 73; equilateral, 169; foci

of, 189 ; rectangular, 169 -

Hyperbolic direct circular transforma-
tions, 248

Hyperbolic displacements, parameter
representation of, 380 ; types of, 355

Hyperbolic geometry, of three dimen-
sions, 369 ; and inversion plane, 357

Hyperbolic lines, 350
Hyperbolic metric geometry in a plane,
350

Hyperbolic pencils of circles, 242
Hyperbolic plane, 350
Hyperbolic points, 350
Hyperbolic projectivity, 5, 171
Hyperbolic space, 369

Ideal elements, 71, 287
Ideal lines, 287, 350
Ideal minimal lines, 265
Ideal plane, 287
Ideal points, 71, 265, 268, 287, 350
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Ideal space, 58 •
Imaginary circle, 187, 229
Imaginary elements, 7, 156, 182 ; con-

jugate, 182
Imaginary ellipse, 187
Imaginary one-dimensional form, 156
Imaginary lines, conjugate, 281, 282, 444
Imaginary points, 8, 156
Imaginary sphere, rotations of, 335
Improper elements, 71
Incomplete symbol, 41
Independence of assumptions, 23: proofs

of, 24-29
Infinity, circle at, 293 ; line at, 58, 71

;

plane at, 287
;
points at, 71, 241, 268,

287, 352 ; space at, 58
Inside, of a conic, 171 ; of a quadric, 344
Interior, of an angle, 432 ; of a conic,

171, 174, 176 ; of an interval or seg-
ment, 45 ; of a polygon, 472 ; of an
even polygon, 490 ; of a quadric, 344

;

of a triangle, 389
Interior bisector, 179
Intermediate positions, 407
Interval, 46, 46, 47, 60, 456 ; directed,

484 ; ends of, 45, 427 ; oriented, 484
Intervals, complementary, 46
Intuitional description of the projective

plane, 67
Invariant subgroup, 39, 78, 106, 124
Invariants of a conic section, 207
Inverse matrix, 308
Inverse points, 162
Inversion, 162, 241, 266 ;

generalization
by, 231 ; in a complex plane, 235

Inversion geometry, 219 ; real, 241, 268
Inversion group in the real Euclidean

plane, 225, 226
Inversion plane, 268; complex, 264, 265;
hyperbolicgeometry and, 357; real, 241

Inversor, Peaucellier, 229
Involution, absolute, 119 ; focal, 195

;

order relations with respect to, 45

;

orthogonal, 119 ; skew, 258 ; axes and
directrices of skew, 258

Involutoric coUineations, 257
Involutoric projectivities, products of

pairs of, 277
Involutoric rotation, 299
Irrational points, 17, 21
Isogonality, 231
Isomorphic, 3
Isotropic lines, 120, 125, 265, 294
Isotropic plane, 294
Isotropic rotation, 299
Isotropic translation, 317

Jordan, C, 453
Juel, C, 250, 251

Klein, F., 71, 249, 278, 284, 285, 361, 362,

374, 375, 446

Kline, J. R., 375
Koenigs, G., 324, 339

Latus rectum of a conic, 198
Left-handed Clifford parallels, 374, 444
Left-handed conjugate imaginary lines,

444
Left-handed doubly oriented lines, 442,
445

Left-handed elliptic congruence, 444
Left-handed ordered pentads of points,
442

Left-handed ordered tetrad of points,
442

Left-handed regulus, 443
Left-handed sense-class, 407, 416
Left-handed triad of skew lines, 443, 447
Left-handed twist, 417, 443
Length of a circle, 148
Lennes, N. J., 18, 457
Lewis, G.N. , 96, 138, 362
Lie, S., 341
Like sense-classes of segments, 436, 437
Limit point of harmonic sequence, 10
Limiting points of pencils of circles, 159
Lindemann, F., 366, 368, 369
Line, of centers, 159 ; complex, 8

;

doubly oriented, 440, 442, 445, 447,
449 ; Euclidean, 58, 60 ; hyperbolic,
350; ideal, 287, 350; imaginary, 156;
at infinity, 58, 71 ; ordinary, 71, 287,
350 ; oriented, 426 ; real, 156 ; sides

of, 59, 392 ; similarly oriented with
respect to, 426 ; translation parallel

to, 288
Line pairs, measure of, 163
Line reflections, 109, 115, 258 ; direc-

trices, or axes of, 258 ; orthogonal,
120, 122, 126, 299, 317, 352, 370

Linear convex regions, 47
Linear group, special, 291
Linearly dependent circles, 256
Linearly dependent solutions of Ej, 488
Linearly independent columns of Ej, 488
Linearly independent equations (H,),

466
Lines, broken, 454 ; congruence of, 275,

383 ; conjugate imaginary, 281, 282,

444 ; crossings of pairs of, 276 ; en-

velope of, 406 ; ideal minimal, 265
;

meetings of pairs of, 276 ; minimal or
isotropic, 120, 125, 265, 294 ; negative
pairs of, 417 ; ordinary minimal, 265

;

orthogonal, 120, 138, 293, 350, 352;
pairs of, 50, 163; parallel, 72, 287,

351 ;
perpendicular, 120, 138, 293, 369,

373; positive pairs of, 417; singular,

235 ; elementary transformations of

triads of skew, 447; right- and left-

handed triads of skew, 443 ; subdi-
vision of a plane by, 51-53, 460-464

;

vanishing, 86
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Lobachevski, N. I., 361
Logarithmic spirals, 249
Lower side of a cut, 14
Loxodromic direct circular transfor-

mations, 248
Lttroth, J., 9

MacGregor, H. H., 250
Magnitude of a vector, 86, 147
Malfatti, G., 235
Manning, H. P., 362
Matrices, algebra of, 338 ; modular

equations and, 464 ; sum of two, 333
Matrices E, and Eg for the projective

plane, 484
Matrices H^, H^, and Hj, 396, 398-400,

477
Matrix, inverse, 308 ; orthogonal, 308

;

rank of, 478 ; scalar, 334
Measure, of angles, 151, 153, 163 ; angu-

lar, 163, 165, 231, 311, 313, 362, 365

;

of line pairs, 163 ; of ordered tetrads,

290 ; of ordered point triads, 99, 312
;

of a simple »i-point, 104 ; of triangles,

99, 149, 312 ; unit of, 99, 140, 319
Median of a triangle, 80
Meetings of pairs of lines, 276
Menelaus, 89
Metric group and geometry, parabolic,

119, 130, 135, 144, 293
Metric properties of conies, 81

Mid-point, 80, 125
Milne, J. J., 168
Minimal lines, 120, 125, 265, 294
Minimal planes, 294
Minimal rotation, 299
Minimal translation, 317
Minkowski, H., 894
M5bius, A. F., 40, 67, 104, 229, 252,

292, 293
Model for projective plane, 67

Modular equations and matrices, 464
Modular spaces, 33, 35, 36, 253
Moore, E. H., 24, 35
Moore, R. L., 59
Morley, F., 222
Motion, rigid, 144, 297 ; screw, 320
Moved, 406

JT-dimensional chain, 250
JV-dimensional segment, 401
iV-dimensional space, 58
JT-dimensions, generalization to, 304
Nearness, geometry of, 303
Negative ordered pairs of lines, 417, 418
Negative of an oriented segment or re-

gion, 485
Negative points, 17

Negative relations between points and
segments, 485

Negative rotations, 417
Negative sense-class, 407, 416

Negative translation, 416
Negative twist, 417 '

Negative of a vector, 84
Negatively oriented curve, 452
Negatively related sense-classes, 485,

491, 495
Net of rationality, 35 ; cuts in, 14

;

order in, 13

Neutral throw, 245
Nine-point circle, 169, 233
Nine-point conic, 82
NoncoUinear points, 96
Nondegenerate circle, 266
Nondegenerate sphere, 315
Non-Euclidean geometry, 350; Euclid-

ean geometry as a limiting case of,

375 ; history of, 360
Nonmodular spaces, 34
Normal to a conic, 173
Normal curve, 286
Null vector, 83
Numbered angle, 184
Numbered point, 456
Numbered ray, 154
Numbers, complex, 219

Odd polygons, in a plane, 470, 482 ; in
the projective plane, 489

Odd polyhedra, 482, 483
On, 440
One-dimensional form, imaginary, 156

;

order in, 46 ; real, 156
One-dimensional projectivities, 156, 170-

173 ; and quaternions, 339 ; repre-

sented by points, 342
One-sided polygonal regions, 490
One-sided polyhedra, 493
One-sided region, 437
Open cut, 14
Opposite, 433
Opposite collineations in space, 438, 451
Opposite projectivities, 37, 38
Opposite to a ray, 48
Opposite sense, 61
Opposite transformations, 452 ; of a

2-cell, 452
Oppositely directed, 433
Oppositely oriented, 448, 450
Oppositely sensed, 245
Order, 40 ; assumptions of, 32

;
geo-

metrical, 46 ; in a linear convex re-

gion, 47 ; in a net of rationality, 13

;

in any one-dimensional form, 46 ; on
a polygon, 456 ; of a set of rays, 432

Order relations, on complex lines, 437

;

in a Euclidean plane, 188 ; in the

real inversion plane, 244 ; with respect

to involutions, 45
Ordered pair, of points, 268, 271 ; of

rays, 139
Ordered projective spaces, 32
Ordinary lines, 71, 287, 850
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Ordinary minimal lines, 265
Ordinary planes, 287 •
Ordinary points, 71, 265, 268, 287, 350
Ordinary space, 58
Orientation of space, 496
Oriented, oppositely, 448,460 ; similarly,

448 ; similarly, with respect to a line,

426
Oriented broken line, 484
Oriented 2-cell, 452
Oriented 3-cell, 453
Oriented curve, 452
Oriented edges of a polyhedron, 495
Oriented faces of a polyhedron, 495
Oriented interval, 484
Oriented line, 426 ; doubly, 440, 442, 445,

447, 449
Oriented points, 426 ; segments of, 426
Oriented polygon, 484
Oriented polyhedron, 495
Oriented projective space, 458
Oriented segment, 484
Oriented segment or region, negative of,

485
Oriented simple surface, 453
Oriented three-dimensional convex re-

gion, 484
Oriented tvfo-dimensional convex re-

gion, 484
Origin of a ray, 48
Orthogonal circles, 161
Orthogonal involutions, 119
Orthogonal line reflections, 120, 122,

126, 299, 317, 352, 370; center of,

122
;
pairs of, 126

Orthogonal lines, 120, 138, 293, 350,

352
Orthogonal matrix, 308
Orthogonal plane reflections, 295
Orthogonal planes, 293
Orthogonal points, 352
Orthogonal polar system, 293
Orthogonal projection, 313
Orthogonal transformations, 308

Outside of a conic, 171

Outside of a quadric, 344
Owens, F. W., 59, 371

Padoa, A., 44
Pairs of lines, 50, 163 ; crossing of, 276

;

measure of, 163 ; meetings of, 276

;

negative, 417 ; negative ordered, 418
;

positive, 417
;
positive ordered, 417

;

separation of plane by, 50

Pairs, of orthogonal line reflections, 126

;

of planes, 50 ; of points, ordered, 268,

271 ; of points, unordered, 271

Paolis, R. De, 362
Pappus, 5, 103, 118
Parabola, 73; axis of, 193; directrix

of, 193 ; focus of, 193 ; Steiner, 196

;

vertex of, 193

Parabolic metric group and geometry,
119, 130, 135, 144, 293

Parabolic pencils of circles, 242
Parabolic projectivities, 5, 171
Parabolic direct circular transforma-

tions, 248
Parallel to a line, translation, 288
Parallel lines, 72, 287, 361
Parallel planes, 287
Parallelogram, 72

Parallels, Clifford, 374, 375, 377, 444
Parameter of a conic, 198 ; continuous

one-parameter family of sets of points,

405 ; continuous one-parameter family
of transformations, 406 ; continuous
one-parameter group, 406

Parameter representation, 344 ; of ellip-

tic displacements, 377 ; of hyperbolic
displacements, 380 ; of parabolic dis-

placements, 344
Paratactic, 374
Pascal, E., 186, 235, 279, 280
Path curve, 249, 356, 406
Peaucellier inversor, 229
Peirce, B., 341
Pencil, base point of, 242; center of,

429, 433 ; of directions, 433 ; of lines,

correspondence between the real

Euclidean plane and a complex, 238

;

of rays, 429 ; of segments, 433
Pencils of circles, 157, 159, 242 ; limiting

points of, .169

Pencils of projectivities, 343
Pentads of noncoUinear points, right-

and left-handed, 442
Permutations, even and odd, 41

Perpendicular bisector, 123 ; foot of a
perpendicular, 123

Perpendicular lines, 120, 138, 293, 369,

373
Perpendicular planes, 293, 369, 373
Perpendicular points, 362, 369, 373
Perspective, doubly, 448
Perspective correspondence, 271

Fieri, M., 244
Pierpont, J., 3

Planar convex regions, 386
Planar region, 404
Plane, of analysis, 268 ; complex, 154

;

complex inversion, 264-268 ; corre-

spondence between a complex line

and the real Euclidean, 222, 238 ;-

double elliptic, 375 ; elliptic, 371

;

Euclidean, 58-63, 71 ; function, 268
;

hyperbolic, 350 ; hyperbolic geometry
and inversion, 367 ; ideal, 287 ; at

infinity, 287 ;. intuitional description

of the projective, 67 ; inversion, 268
;

inversion group in the complex Eu-
clidean, 235 ; inversion group in

the real Euclidean, 225, 236 ; iso-

tropic, 294 ; minimal, 294 ; model for
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projective, 67 ; order relations in a
Euclidean, 138 ; order relations in the

real inversion, 244 ; ordinary, 287
orthogonal, 293 ;

projective, 268 ; real,

140, 156; real inversion, 241, 268
reflections, orthogonal, 295 ; sense in

a Euclidean, 61 ; sides of, 59, 392
single elliptic, 371, 375; subdivision

of a plane by lines, 51, 53, 460-464

of symmetry, 295
Planes, pairs of, 50 ;

parallel, 287 ;
per-

pendicular, 293, 369, 373 ; subdivision

of space by, 50, 54, 475-477; vanish-
ing, 348

I'lucker, J., 292, 326
Polncar^, H., 341, 362, 489
Point pairs, congruence of parallel, 80

;

mid-point of, 80 ; separation of, 44-47
Point-plane reflection, 257
Point reflection, 92, 122, 300, 352, 414
Point triads, measure of ordered, 99

;

equivalence of ordered, 96, 288, 290

;

sum of ordered, 96
Points, complex, 8, 156 ; circular, 120,

155; double, of a projectivity, 5, 114,

177 ; elliptic, 373 ; equianharmonic
set of, 259 ; hyperbolic, 350 ; ideal,

71, 265, 268, 287, 350 ; imaginary, 8,

156; at infinity, 71, 241, 268, 287,

352 ; inverse, 162 ; irrational, 17, 21

;

negative, 17 ; noncollinear, 96 ; num-
bered, 456; one-dimensional projeo-

tivities represented by, 342 ; ordered
pairs of, 268, 271 ; ordinary, 71, 265,

268, 287, 350 ; oriented, 426 ; orthogo-
nal, 352 ; of a pencil, base, 242 ; of

pencils of circles, liroiting, 159 ;
per-

pendicular, 352, 369, 373 ;
positive, 17

;

projection of a set of, 291 ; rational,

17; real, 8, 156; rotations represented
by, 342, 343 ; segments of oriented,

426 ; singular, 235 ; in space, corre-

spondence between the rotations and
the, 328 ; in space, cross ratios of, 55

;

ultra-infinite, 352 ; unordered pairs
of, 271 ; vanishing, 86

Polar coSrdinates, 249
Polar system, 215 ; absolute, 293, 373

;

elliptic, 218 ; orthogonal, 293
Polygon, 454-459, 480, 481 ; bounding,

470, 482; directed, 484; even, 470,
482, 489 ; interior and exterior of,

472, 490; odd, 470, 482, 489; order
on, 456 ; oriented, 484 ; regions deter-

mined by, 467 ; sum modulo 2 of, 481

;

unicursal, 470.

Polygonal regions, 473 ; one- and two-
sided, 490

Polyhedra, odd and even, 482, 483 ; one-
and two-sided, 493 ; oriented, 495

;

oriented edges of, 495 ; oriented faces
of, 496 ; sum modulo 2 of, 482

Polyhedral regions, 473
Polyhedron, 474 ; bilateral, 494 ; con-

nectivity of, 476 ; edges of, 474 ; faces

of, 474 ; one-sided, 494 ; oriented edges
and faces of, 495 ; two-sided, 494, 496

;

unilateral, 494 ; vertices of, 474
Positions, intermediate, 407
Positive coordinate system, 407, 408,

416
Positive ordered pairs of lines, 417
Positive pairs of lines, 417
Positive points, 17
Positive relation between points and

oriented segments, 485
Positive rotation, 417
Positive sense-class, 40, 407, 416, 491
Positive translation, 416
Positive tvrist, 417
Positively oriented curve, 452
Positively related sense-classes, 485, 491,

495
Power, of a point with respect to a circle,

162 ; of a transformation, 87, 230
Precede, 13, 15, 37, 47, 48, 350, 387
Product, of pairs of involutoric projec-

tivities, 277 ; of two vectors, 220
Projection, generalization by, 167, 231

;

orthogonal, 313; of a set of points,

291
Projective classification of conies, 186
Projective correspondence, 272
Projective geometry, 36; foundations

of general, 1

Projective group of a quadric, 259
Projective plane, 268 ; intuitional de-

scription of, 67 ; matrices E, and E,
for, 484

Projective space, collineations in a real,

252 ; sense in, 64
Projective spaces, ordered, 32 ; sense-

classes in, 418
,

Projectivities, bundle of, 342 ; cyclic,

258 ; direct, 37, 38, 407 ; double points
of, 5, 114, 177; elliptic, 5, 171 ; hyper-
bolic, 5, 171; one-dimensional, 170,

171 ; opposite, 37, 38 ;
parabolic, 5,

171
;
pencil of, 343

;
powers of, 87

;

products of pairs of involutoric, 277

;

of a quadric, 273; real, 156, 170-

173 ; representation by points of one-
dimensional, 342 ; representation by
quaternions of one-dimensional, 339

Projectivity, assumption of, 2
Prolongation of a segment, 48
Proofs, independence, 24-29

Quadrangle, diagonals of, 72
Quadrics, absolute, 369, 373 ; axes of,

316 ; confocal system of, 348 ; direct

collineations of, 260 ; interior and
exterior of, 344

;
projective group of.

259
;
projectivities of, 273 ; real, 2C2

;
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ruled, 259 ; sides of, 344 ; sphere and
other, 315 ; unruled, 259 •

Quadrilateral, diameter of, 81
Quaternions, 337-341, 378 ; and the one-
dimensional projective group, 339

Badical axis, 159
Badii, tranrformation by reciprocal,
162

Bank, of H^, 479 ; of a matrix, 478
Bational curve, 286
Eational modular space, 35, 36
Bational points, 17
Eationality, net of, 35 ; order in a net

of, 13

Batios of coUinear vectors, 85
Bays, 48, 60, 143, 350, 372, 387, 429;
bundle of, 435 ; numbered, 154 ; oppo-
site, 48 ; order of a set of, 432

;

ordered pair of, 139 ; origin of, 48
Eeal and imaginary elements and trans-

formations, 156
Eeal inversion geometry, 241
Eeal inversion plane, 241, 268; order

relations in, 244
Beal line, 166
Eeal one-dimensional form, 156
Eeal plane, 140, 156
Beal points, 8, 156
Eeal projective transformations, 156
Eeal quadrics, 262
Eeals, geometry of, 140
Eeciprocal radii, transformation by, 162
Eectangle, 123
Bectangular coordinates, 311
Eectangular hyperbola, 169
Eeflections, axes of line, 268 ; center of

orthogonal line, 122 ; directrices of

line, 258 ; line, 109, 115, 258 ; orthogo-
nal line, 120, 122, 126, 299, 317, 352,

370 ; orthogonal plane, 295
;
pairs of

orthogonal line, 126
;
point, 92, 122,

300, 352, 414
;
point-plane, 257 ; in a

three-chain, 284
Begion, convex, 385-394 ; negative of

an oriented segment or, 485 ; one-
sided, 437 ; order in a linear convex,

47; planar, 404; polygonal, 473;
polyhedral, 473 ; sense in overlapping
convex, 424 ; simply connected three-
dimensional, 404 ; tetrahedral, 54,

398, 399 ; three-dimensional, 404 ; tri-

angular, 63, 389, 395 ; trihedral, 397

;

two-sided region, 437; vertices of a

triangular, 63
Regions, bounded by a polyhedron, 483

;

determined by a polygon, 467
Eegulus, right- and left-handed, 443
Restricted elementary transformations,

410, 414, 420, 430
Reye, T., 168
Rhombus, 125

Eioordi, E., 360
Eiemann, B., 361
Right angles, 153
Eight-handed Clifford parallels, 374, 444
Eight-handed conjugate imaginary lines,

444
Eight-handed coordinate system,408,416
Eight-handed doubly oriented lines, 442,
445

Bight-handed elliptic congruence, 444
Bight-handed ordered pentad of points.
442

Eight-handed ordered tetrad of points,
442

Bight-handed regulus, 443
Eight-handed sense-class, 40, 407, 416,
442

Right-handed triad of skew lines, 443,
447

Bight-handed twist, 417, 443
Eigid motion, 144, 297
Eodrigues, 0., 330
Eotation, angle of, 325, 327; axis of,

299 ; center of a, 122; involutoric, 299

;

isotropic, 299 ; minimal, 299 ; nega-
tive, 417; positive, 417; sense of, 142

Eotations, 122, 128, 141, 299, 321, 328-
337; correspondence between the
points of space and, 328 ; of an imag-
inary sphere, 335 ; represented by
points, 342, 343

Ruled quadric, 259
Ruler-and-compass constructions, 180
Russell, B., 41
Russell, J. W., 168, 201

Saccheri, G., 361
Same sense, 61
Scalar matrix, 334
Schilling, M., 67
Schweitzer, A. R., 32, 415
Screw motion, 320
Segment, 45, 46, 47, 60, 350 ; or inter-

val, complementary, 46 ; directed,

484 ; ends of, 45, 427 ; interiori of

interval or, 45 ; n-dimensional, 401

;

oriented, 484
;
prolongation of, 248

Segments, bundle of, 436 ; of oriented
points, 426

;
pencil of, 433 ; sense-

classes of, 436, 437
Segre, C, 9, 250, 251
Self-conjugate subgroup, 39, 78, 106, 124
Sense, 32, 41, 61, 387, 413 ; clockwise,

40 ; criteria for, 49 ; in a Euclidean
plane, 61 ; in Euclidean spaces, 63

;

in a linear region, 47 ; more general

theory of, 451 ; in a one-dimensional
form, 40, 43 ; opposite, 61 ; in over-

lapping convex regions, 424
;
positive,

40, 407, 416 ; in a projective space,

64 ; right-handed, 40, 407, 416, 442 ;

of rotation, 142 ; same, 61
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Sense-class, 61, 64, 66, 413, 414, 430, 431,

434, 437, 456, 456; of a 2-cell, 452;
of a curve, 452 ; left-handed, 407, 416

;

In a linear region, 47 ; negative, 407,

416, 452 ; on a one-dimensional form,

40, 43; positive, 40, 407, 416, 452,

491 ; right-lianded, 40, 407, 416, 442

Sense-classes, agree or disagree, 485;
negatively related, 485, 491, 495 ;

posi-

tively related, 485, 491, 495 ; in pro-

jective space, 418

Sensed, oppositely, 245 ; similarly, 245
Separated, 392, 432
Separation, algebraic criteria of, 55

;

harmonic, 45 ; by pairs of lines, 51

;

by pairs of planes, 51 ; of point pairs,

44,47
Sequence, harmonic, 10, 33, 34 ; limit

point of, 10
Sets of points, connected, 404, 405;

continuous family of, 405
Shear, simple, 112, 293
ShefEers, G., 341
Sides, of a circle, 245 ; of a line, 59, 392

;

of a plane, 59, 392 ; of a quadric, 344
Similar, 119
Similar and similarly placed, 95
Similar figures, 293
Similar triangles, 134, 139
Similarity Hransformations, 117, 119,

293 ; direct, 135
Similarly directed, 433
Similarly oriented, 448 ; with respect to

a line, 426
Similarly sensed, 245
Similitude, center of, 162, 163
Simple broken line, 454
Simple curve, 401
Simple polygon, 454-457
Simple shear, 112, 293
Simple surface, 404 ; oriented, 453
Simplex, 401
Simply connected element of surface,

404
Simply connected surface, 404
Simply connected three-dimensional re-

gion, 404
Singular lines, 235
Singular points, 235
Singular space, 58
Skew involutions, 258; directrices or

axes of, 258
Skew lines, elementary transformations

of triads of, 447 ; right- and left-

handed triads of, 443
Smith, H.J. S., 201
Sommerville, D. M. Y., 362
Space, assumptions for a Euclidean, 59

;

collineations in a real projective, 252

;

correspondence between the rotation^
and the points of, 328 ; cross ratio
of points in, 55 ; direct collineations

in, 438, 451 ; Euclidean, 68, 287 ; hy-
perbolic, 369 ; ideal, 58 ; at infinity,

58 ; modular and nonmodular, 33, 34,

36, 253 ; ?i-dimensional, 58 ; opposite
collineations in, 438, 451 ; ordered
projective, 32 ; ordinary, 58 ; orienta-

tion of, 496 ; oriented projective, 453 ;

polygons in, 480, 481 ; rational modu-'
lar, 35, 36 ; sense in a Euclidean, 63

;

sense in a projective, 64 ; sense-classes

in projective, 418 ; singular, 58
Spatial convex regions, 386
Special linear group, 291
Sphere, center of, 315 ; degenerate, 315

;

and other quadrics, 316 ; rotations of

an imaginary, 335
Spirals, logarithmic, 249
Square, 125
Statements, vacuoug, 24
Staudt, K. G. C. von, 9, 40, 251, 283
Steiner, J., 196, 229
Steinitz, E., 35, 69
Stephanos, C, 286, 324, 342, 344
Study, E., 40, 327, 341, 347; 362, 374,

416, 446
Sturm, R., 168 ,

Subdivision, of a plane by lines, 51-53,
460-464 ; of a space by planes, 50, 54,
475-477

Subgroup, self-conjugate or invariant,

39, 78, 106, 124
Subgroups of the afSne group, 116
Sum, modulo 2, of polygons, 481

;

modulo 2, of polyhedra, 482 ; of

ordered point-triads, 96 ; of two an-
gles, 154 ; of two matrices, 333 ; of

two vectors, 83
Surface, simple, 404 ; simply connected,
404 ; simply connected element of,

404
Symbol, incomplete, 41
Symmetric, 124, 297, 300, 352
Symmetry, 123, 124, 129, 138, 297, 300,

352, 373
;
plane of, 295 ; with respect

to a point, 300

Tiit, P. G., 341
TElylor, C, 168
Taylor, W. W., 82
Tetracyclic coordinates, 253, 254, 255
Tetrad, measure of an ordered, 290;

of points, right- and left-handed
ordered, 442

Tetrads, equivalence of ordered, 290
Tetrahedral region, 54, 398, 399
Tetrahedron, 52, 397; volume of, 290,

311
Three-dimensional afBne geometry, 287
Three-dimensional convex region, 386
Three-dimensional directed convex re-

gion, 484
Three-dimensional elliptic geometry, 373
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Three-dimensional Euclidean sjiometry,
287

Three-dimensional hyperbolic geometrv,
369

Three-dimensional region, 404 ; simply
connected, 404

Throws, 40 ; heutral, 245 ; similarly or
oppositely sensed, 245

Torsion, coefficient of, 489
Touch, 158
Transference, the principle of, 284
Transformations, of a 2-cell, circular,

225; continuous family of, 406; direct,

225, 452 ; direct similarity, 135 ; ellip-

tic direct circular, 248 ; elementary,
409, 411-414, 418, 419, 421, 423, 430,
431, 434-437, 447, 455, 456 ; homothe-
tic, 95 ; loxodromic direct circular,

248 ; opposite, 452 ; orthogonal, 308
;

parabolic direct circular, 248
;
power

of a projective, 87 ;
power of a circu-

lar, 230 ; real and imaginary, 156 ; by
reciprocal radii, 162 ; restricted ele-

mentary, 410, 414, 420,430 ; similarity,

117, 119, 293
Translation, 74, 117, 122, 288, 321, 374,

414
;
^xis of, 317 ; distance of, 325,

327; isotropic, 317; minimal, 317;
negative, 416 ;

parallel to a line, 288
;

positive, 416
Transposition, 41
Transversals, 91

Triads of lines, elementary transforma-
tions of, 447 ; right-handed and left-

handed, 443
Triangle, area of, 149, 312 ; interior of,

389 ; measure of, 99, 149, 312 ; median
of, 80 ; separation of a plane by, 52

;

unit, 99, 149, 312
Triangles, congruent, 134, 139 ; similar,

134, 139
Triangular region, 53, 389, 395 ; vertices

of, 53
Trigonometric functions, 154
Trihedral regions, 397
Turn, half, 299, 370
Twist, 320, 321 ; axis of, 320 ; half, 324

;

left-handed, 417, 443 ; negative, 417;
positive, 417; right-handed, 417, 443

Two-dimensional convex region, 386

;

directed, 484
Two-sided polygonal regions, 490
Two-sided polyhedra, 493
Two-sided polyhedron, 494, 496
Two-sided region, 437

Ultra^inflnite points, 352
Unicursal polygons, 470
Unilateral polyhedron, 494
Unit of distance, 147
Unit triangle, 99, 149, 312
Unit vector, 220
Unordered pairs of points, 271
Unruled quadric, 259
Up, 303 '

Upper side of a cut, 14

Vacuous statements, 24
Vailati, G., 44
Vanishing lines, 86
Vanishing planes, 348
Vanishing points, 86

' Vector, magnitude of, 86, 147 ; nega-
tive of, 84 ; null, 83 ; unit, 220 ; zero,
83 220

Vectors, 82, 83, 85, 147, 219, 288 ; addi-
tion of, 84 ; coUinear, 84 ;

product of
two, 220 ; ratios of coUinear, 85 ; sum
of, 83

Vertex, of a conic, 191 ; of a parabola,
193

Vertices, of a broken line, 454 ; of a poly-
hedron, 474 ; of a triangular region, 53

Volume, 290, 311

Whitehead, A. N., 32, 41
Wiener, H., 94, 280, 322, 327
Wilson, E. B., 96, 113, 138, 362

Young, J. W., iii, 250
Young, J. W. A., 146

Zermelo, E., 27
Zero vector, 83, 220




















