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PREFACE

The Introduction and Chapter I were printed off in
1931 and some important changes should be supplied from
the Addenda and Corrigenda, which an intending reader
shiould take note of at once. Chapter I, whose completion
has been unavoidably delayed, has now been rewritten.
For help in this I owe an overwhelming debt to Dr. W. W.
Rogosinski, who not only supplied much of the material,
but criticised and corrected my text in the last detail.

I wish also to express my gratitude to the printers
Messrs. C. F. Hodgson & Son for their courtesy and great
forbearance over a difficult 20 years.

June, 1944. J. E. L.
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NOTE

The theorems of the Introduction have numbers
below 100, those of Chapter I begin at 101, those
of Chapter II at 201. Sections are numbered
consecutively.

ERRATUM

p. 163. (i) The upper limit in (A*) is, as in (A)(1), with
respect to { £ z.

(ii) The usual definition of upper-semi-continuity

is (A)(}) and not (as in the text) (A*). This

makes, of course, only a momentary difference.



Introduction.

THE various matters collected in the Introduction agree only in being
more conveniently separated from their applications. It is not, how-
ever, necessary to read it consecutively, and much of it is first required
in Volume 2; the reader may therefore welcome a few words of explana-
tion and advice.

He cannot become familiar too early with the inequalities of Hélder
and Minkowski, and he should read consecutively (but not try to
memorize) to the end of Section 2 if he can do so without becoming
impatient. This section is developed rather more systematically than is
necessary for applications, but the number of distinet forms in Theorems 1
and 2 that are specifically used is surprisingly large ; and if the details are
taken with a judicious lightness the subject is quite an easy one. Sec-
tion 3 is very short. There is a certain field of complex function theory
(the problems of ‘‘boundary-values’’—these are discussed in Volume 2)
which demands a fairly complete ‘‘real-variable’’ technique. Sections 4
and 5 are designed to meet this need, Section 4 dealing with general
theory, and Section 5 with the more special subject of Fourier series.
‘While not exhaustive, the account is sufficiently systematic to be read
for its own sake, but the reader may postpone it if he wishes until he
reaches Volume 2. Section 6 is concerned with an isolated problem of
analysis situs, and may be read when it becomes relevant (in Section 19).
Section 7 presents a fairly complete general theory of harmonic func-
tions; much of it is required later, it is easy, and the subject is apt to
be neglected in Fingland; it should probably be read before Chapter I.
Section 8 comsists of straightforward calculations. It sets out the be-
haviour of certain special functions whose réle is to be illustrative, and
especially to provide '‘Giegenbeispiel’” ’st. It is required hardly at all
in Volume 1.

+ & < (degenbeispicl ”’ for a proposition p is an example which shows that p is false: the
function x-! is a ‘‘ Gegenbeispiel’’ for the proposition ‘‘all functions are bounded in
O0<.<1”. The important examples are those which complete the account of a theorem by
showing that it is ‘ best possible’ (depends on the minimum hypotheses).

R



2 NOTATION.

1. Notation. We use the symbol 4(z, ¥y, ...), or sometimes A, ,, ...-
for a positive constant depending only on the parameters showmn
explicitly ; in particular 4 will denote a positive absolute constant. We
use K for a positive constant depending in general.on all the parameters
of the context. We use & for a number satisfying | 9| << 1. 4’s, K’s, and
9’s are not in general the same from one occurrence to another; if we
wish to preserve their identity in the course of an argument we affect
them with suffixes 1, 2, ....

e(x), €, etc., denote functions tending to 0 as their argument tends
to the limit (finite or infinite) under consideration, The symbol o(1)
is available for such functions, and the ¢ notation is used only to mark
a distinction; we use it for functions that are independent of some
parameter or parameters.

The symbol ¢ without an argument, and also §; denote as usual
positive constants (‘‘arbitrarily small’’).

Certain letters used as indices (exponents) will denote numbers sub-
ject to special conditions. p may be any real comstant, positive or nega-
tive. The remaining letters denote positive constants, and, moreover, are
restricted by the following inequalities :

A>0, k=1 r>1; 1<p<? ¢=>2; 0<k<1, O0<p<<l.

We shall occasionally allow ourselves the licence of extending the
ranges of A, x, pto include 0, those of u, A, k, 7, g to include 4 =, and
that of u to include — o ; but in such cases we shall always indicate the
extension explicitly. [The commonest indices are A and r. p and g
do not occur in Vol. 1. The definitions are repeated from time to time,
and the reader need not memorize them.]

We write t/ = t/(t—1), where t is any one of the special indices
(supposed, however, not to have the value t =1). A dashed letter does
not necessarily belong to the class denoted by the undashed letter : thus
?’ and ¢’ are respectively of types ¢ and p, and X, ¢/, p’ may be negative.

The relation between ¢ and ¥’ may be expressed in two further ways,
with which the reader should make himself familiar :

-—t—-—l—% =1, @@ —1) =1.

The integrals with which we shall be concerned are generally ex-
tended over a bounded set of points. Such a set of points can be reduced
by a trivial transformation to lie within any given interval : we shall
suppose always, unless the contrary is stated (and this does sometimes
happen), that all sets E, ¢, ... are contained in the interval (—=, =),
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which we denote by E,. We write E,  E. for ‘“‘E; is contained in E;”’,
and denote E,—E by CE.

By HK, the ‘“‘product’’ of two sets of points H and K, we mean the
set of points common to H and K.

A function f(6) to be considered in E, is likely to have some natural
relation to the period 2r. On balance it pays to lay down the con-
vention that ‘‘f is continuous in Ko’ shall include the relation
Sf(—=n) = f(®). In theorems about functions not necessarily continuous
it is generally possible to alter arbitrarily the value of the function at
a single point. In such circumstances we shall tacitly suppose that
Sf(—m) = f(z) and that f, defined originally in E,, exists everywhere
and has the period 2=. This convention enables us, for example, to treat
an interval |6—6,| <<k on the same footing when it projects out of E,
as when it does not.

Unless the contrary is stated all given functions are supposed measur-
able : other questions of measurability are generally trivial, and we do
not discuss them.

When | £(6) |* is integrable in the sense of Lebesgue in a set E we
say that f belongs to the class L* in E. We write also for brevity L
in place of L!.

The ‘‘sign of 2z'’, or, in symbols, sgn z; is defined to be 0 if 2 =10
and z/|z| otherwise. % denotes the conjugate of z, 5gn z = sgn 7.

The symbol [ f]y denotes f if |f|<< N, and N sgnf if |f|> N.
[E]x denotes that part of the set E for which the modulus of the variable
does not exceed N.

By a null-set we understand a set of zero measure, by a null-function
a function that is zero except in a null-set. f= ¢, or, in words, “*f
is equivalent to ¢’’, means that f = ¢ except in a null-set, or that
f—¢ is a null-function.

We shall use the following abbreviations :—

p.p. (‘‘presque partout’’) for ‘‘almost everywhere’’ or ‘‘almost
always’ (i.e. ‘‘except in a null-set’’). [“‘a.e.”’ is insufficiently vivid and
is apt to be mistaken for other things] ;

b.v. for ‘‘bounded variation’’ and ‘‘of bounded variation’’ ;

a.c. for ‘‘absolute continuity’’ and ‘‘absolutely continuous’;

u.b.v. and u.a.c. for “‘uniform(ly) b.v.”’

t.v. for ‘‘total variation’’.

By a ‘‘trigonometrical polynomial”’ we understand a finite sum of

type

and ‘“‘uniform(ly) a.c.”’;

1%
¥ (cncosnB-+d, sin n6).

n=

[=]

B2



4 INEQUALITIES OF HOLDER AND MINKOWSKI.

2. The inequalities of Holder and Minkowsksi.

2.1. We suppose until further notice, unless the contrary is stated,
that all letters denote numbers that are positive or zero. The sums with
which we deal are in general taken over an infinity of terms, but in
our proofs we may suppose them finite, and complete the argument by
a trivial passage to the limit. There is a single exception to this rule :
Theorem 4 of §2.82. Here ‘‘convergence’’ is mentioned explicitly
and given a special treatment.

Holder’s inequality is

(H) Zab < EaYPI SN (r>1).
Minkowski’s inequality is
0 (Za+0 ) < @apit =8 (k> 1),

We first prove these results, then develop them at length, and finally
collect everything for reference in Theorems 1 and 2.

2.2. Let U"= Za", V"= Zb", W = Zab. We have

rl
@ + 1’_
a” , b _ _ o z
For (7+—7,—>/ab_t(x)_ 7‘+T’
where 2 = a7 p=1r.

and differentiation shows that t(x) is a minimum (for z > 0) when © = 1,
in which case t = 1.
It follows from (1) that if A is any positive constant

ab =ra A <L +x-*’b

Summing we have

@ W< + a2 T

We may suppose in (H) that U, V > 0, in which case, if we choose A o
that
AN U = )\—r’ Vr’ — O\T U"’)llf()\-"" 'Vr')llr’ —_ UV,

(2) becomes

W< UV+—= Uv,

and this is (H).
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The inequality (M) is trivial when k = 1; supposing then k>1 we
have, by (H),

Tt = Z(a+0bf = S(a+bfta+Z(@+bF1b
3) < {E(a—l—b)k}l”‘ (SakHk 4 {2((1-{-6)“}””(26’”)”"’
= k-1 {(Eak)l[k + (S )[ ’
and the desired result follows.

(M) evidently extends directly (or by induction) to more than two sets
of numbers (a), (b); we have, in fact,

) {2 @4-bF-od ..} (SabPE (o4

Results corresponding to (H) and (M) exist also with integrals in
place of sums, and in (4), where a double summation is involved, there
are also mixed forms. For the most part the proofs are substantially
the same for sums or integrals; where this is so we shall generally give
only the argument for sums; where it is not the integral case is the
more difficult and we consequently select it. In stating results we select
sometimes the sum, sometimes the integral form. We suppose in our
proofs that the range of integration is bounded; extensions to infinite
range are trivial when they are valid, and we do not consider them until
our final summing up. Our integrals are Liebesgue integrals. We
actually require none but elementary integrals in Volume 1, but the
subject is more easily treated in the general field, and the full results are,
in any case, required in Volume 2.

For the ‘‘integral-integral’’ form of (4) the argument transforms as
follows : The case k = 1 is trivial. Supposing then k > 1 we have

T = jdy Gf(x, pis) = Sd:c {j [ (j faz) ""‘dy_}
o <o [ra]"Tf (' a] "} = fal o]
or 7 < [ ([ 7eay) ",

which is the desired result.

2.3. Let now f and g be functions, possibly complex, for which
g = 0. Then

W || soas| < (] 1rrae) " ([ 1o1ra) " = i@

This is, in fact, what may be called the ‘‘mean’ form of (H) (for
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integrals). The 27’s may be retained or omitted at our pleasure, since
they occur to the same power —1 on both sides. We prove now that
the sign of equality in (1) holdst if and only if each of

@ lfIr=clg|”, where c= M;(f)/M(g),
and
® sgnfg=e“=c|g|”, where ais a real constant,

hold in the set of # for which f = 0.

It is easily seen that equality does hold in (1) subject to (2) and (3).
Suppose now that equality holds. Then, in the first place, it continues
to hold when the integrand fg is replaced by | f| |g|. et A" = ¢~
Then (indeed for any A)

@ lfgl< ]—f;l— +27" Lﬁ—'

and equality in (4) happens only if [flm=clg|". If (2) is false there
exists a set, not null, in which (4) holds with inequality, and therefore
a non-null set in which the difference of the two sides exceeds some
positive 31. Then

Jiratae <2 {171 ae+2 [ 191 ae.

Since in any case
5 |fg |46 << A 5 | flr a6+ X—_rlj lg|”dé
En—(‘ g = r Eo—e 7..I Eo—t g b

t The reader will findin Vol. 2 that the conditions for equality (here and in §2.76) can
be important Wea.pons of argument:. it is a mistake to suppose that they are of purely
academic interest.

{ We shall often have to use the principle involved here. which is that if ¢(8) > 0 in
a set of positive measure, then, for some 3, ¢ > & in a set of positive measure. The principle
can be generalized into the following form.

Suppose that with every 6 of a set E of positive measure there are associated h positive

numbers ¢1(6), ¢2(0), ..., ¢1(6); k finite real numbers M, (o), My(6), ..., M(8); and I positive
integers Ny(0), Na(8), ..., Ni(6). Then there exists a positive number a, a finite u, 1 positive
integers vy, va, ..., vy, all independent of 6, and a perfect set E* of positive measure contained in

E, such that for every 0 of E*
(@) >a (n<h), [ M) <pu R<k), N,=uw, n<l).

In fact, let H (p, g; 7y, 73, ..., ) be the set of 6 of E for which Pul(8) >p ' (n << k),
I1M(0) | <q (n< k), Nu=w, (n< ). Every 6 of E belongs to some set H, and E = I, the
summation being taken over all positive integral p, g, 7y, ..., 7. Since X has a denumerable
number of terms, some H has positive measure with E, since mE < ZmH. H contains a
perfect set E* of positive measure, and this satisfies the required conditions, with

a=p-, M =gy Yy = Pp.
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we have by addition

1 A1 - A1 v
e 1o <X L[ (praos 0L 1grran

r 27T

= (++3) m Mg = (D M),

? r

contrary to hypothesis. Thus (2) must hold.
Finally, for equality in (1) we must have

Jm'fg df = e j%ifg | d6

L |fg}(1—e*®sgn fg) d6 = 0.
The real part of the integrand being non-negative, we must have

| fo]{1—3B(c*sgnfg)} =o.

Since the set in which fg = 0 is equivalent, by (2), to the set in which
f =0, we have ]R(e~"¥sgn fg) =1 and so e~#sgn fg =1, except when
f =0. This completes the proof.

The case of sums is much simpler.

Consider now the case of equality in the (M) inequalities, supposing
everything non-negative. There is equality in all cases if k=1. If
k> 1 the condition for equality in the ‘‘integral-integral’’ form is that
flx, y) = F(z)G(y) p.p. in « and p.p. in 9. In fact, for equality in ()
of §2.2 the x-integrands must be equal p.p. in #. By the (H) result
equality requires

p-p. in y, where ¢(z) is independent of y. This proves the result.
In the “ sum-sum’’ form (4) the condition is that &, = can, ¢» = ¢'a,, ...
for all n, where ¢, ¢/, ... are positive constants.

2 .4. The inequality (H) remains valid if the index r is replaced by a
u<<1 and the sign of inequality is reversed, provided only that u =0
[negative values of p are permitted]. Similarly (M) is true if k is
replaced by u << 1 and the sign of inequality is reversed, provided u = 0.

To prove this let us denote the inequality (H) by I(a, b, 7), and the
inequality with reversed sign by I*. If now v = —A <0 and we write
a = a MV b= (aB)A*V, I*(a,b, —N) is equivalent to I(a, B, 14A77),
which is true, If » = p [0 < p < 1] and we write @ = (aB)!'?, b = B¢,
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“then I* (a, b, p) is equivalent to I («, 8, 1/p), which is true. Thus our
assertion about (H) is proved. In the case of (M) we have only to
carry out our former proofs, using I* in place of I.

2.5. LEMMA « Ca) > Eah* (k= 1).
For Ca) = Z{Ea)t.a} > Z{a" . a}.
[The simplest case of the lemma is
A+a)* > 1425 (@ > 0).]
The inequality (H) extends at once to the form
1 [Zabd...| << Ela|™) nE|pmYr=...,

where the r’s are connected by

o 1
(2) > '—T' = 1,
and the a’s, b’s, ... are not necessarily positive. To prove this we write
the product ab ...as a8 and use (H) with r = 7. Tn the sum ZB" we
now write 8 as by and use (H) with r = 75, and so on. We thus obtain

(1).

We observe next that (1) remains true subject only to

(8) '1>1, 7‘2>1, ey Ei}l

In fact, let 21/r =%, or £1(rk) = 1. Then, by Lemma aq,
Zab...t| < CElaVE L] L [T {2 (| @ | O = TT(Z | a |

The inequality (1), subject to (2), may be replaced by the ‘“‘mean’”
form

1 1 « T) 1/r
nzw”‘gn(ngml :

in which n is the number of terms in each set of numbers (a), (b), ....
This inequality does not hold subject to (3). We shall call inequalities
“homogeneous’’t when they are true equally in ‘‘sum (integral)”’ or
“mean’’ form.

We conclude this paragraph by noting some easy variants and con-
sequences of (H). The integrals are all taken over (—a, n), and f, g, ...
are not necessarily positive.

@ || < (&[irg1a0) (& f1g146) " G .

The homogeneity is in the range of summation or integration.
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[Trivial for k =1, otherwise a consequence of (H) with f replaced
by [fg'%|, g by |g1¥¥]

1fr 1 R Yr
®) ’é—;jfgkd() <(§;S|ffh|de) (é;jlg’hlde) > 1).

o [roae| < (& (100 1a0) " (& [171a0) ™ (= 19 1va0) "
it h>1, k>1, htk> ik,
S S L NN Y
(For [fg|=[fg" M. (1 f M. (lgl")”’]
. 1k
@ P= ffde] Slfl"dG) "> 1

This is the special case g =1 of (4). The parallel form is

1 1 ,,) 1k
®) {—;zag (;Elal
(8) is not homogeneous [nor is (7)]. If we suppress the factors 1/n the
inequality becomes false; indeed, when the a’s are mnon-negative, it
becomes true with sign reversed, as is seen at once from Liemma a. (The
result corresponding to this in the theory of integrals has little interest.)

2.6. We prove next (a’s and b’s not necessarily positive) :
W (Elalr—E b7 < Elatb9" < lal) e+ E] 0" (> 1.
2 Slaf—Zbr<Zlat b L Zla|*+E|0]c O,

In each of (1) and (2) the left-hand inequality reduces to the right-
hand one if we replace a by a+b and b by —b. The right-hand inequality
of (1) is (M). To prove that of (2) it is enough to show that
(a+b) < a*+ b for a, b > 0: this reduces to

Q42142 (@®=>0),

which is easily verified by differentiation (since xr—1 << 0).
We can combine (1) and (2) as follows. For A > 0 let

a=a® ={1 (<D
INA=D
Then ‘ .
8 Cla)—CEb M) < Ela+d) < Elal)+E]b]N

or, what is the same thing,

8) |Slatbe—Elale| < Slo -
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The remaining results in this sub-section involve comnstant factors.
Their value lies in application and the precise values of the constants
are without importance. We have first a result roughly equivalent in
application to (3').

@ |Zla+op—Slal| < S0P 4R b (>0,
where
agDh
By (a, b) = < o /A 1—1
A Ela PP E oA EaIAE] DY ) A1),
This is proved [in (2)] if A < 1; suppose then A > 1. The function
{A+2p—1—2 (@22
is bounded in >0 [consider z <}, 3 < <2, © =2 separately]
and non-negative, by Lemma a.
Hence, writing B for 4,, we have for non-negative a, b,
0 < (a+dy—a*—b* < B(@*1b+ab*?h),
0 < S(a+br—3a* < S0+ B (Sa* b+ Zab-Y),
while finally
2 )\—lb <(2ax)1—1],\(2bx)l/A Eaba—l (za/\)ll)\(sz)l—l/)\_

The case a =0, b =0, is therefore disposed of. Consider now the
general case : we have

(5) A =Zla+b*~Z|a]* < Z|b|*+ Ri(a, D)
a fortiors from the positive case. On the other hand, by the same argu-
ment,
6) —A=2Z|a* —Z|a+d]*
= Z|@+0)+(—d)|*—Z|a+bP L | —b*+ By (a+bd, —b).

If A is positive (5) gives us what we want. If, on the other hand,
A is negative, then R,\(a+bd, —b) < Ri(a, b), [since 1—1/A>0] and
(6) gives what we want. This completes the proof.

Next we have two simpler results. For A >0

¥)) Sla+d P < AHAC|aPHZ|b P,
(8) Clat+d M A ]aME BN,
with extensions to more than two sets.

For la4-b* < {2Max(|al, [B)}* < 22 (a0 Y.

Thus (7) is true with 4, = 2*. Further
Zla+d P < 2.2 Max(Elalr, =|b Y,



INEQUALITIES OF HOLDER AND MINKOW SKI. 11

and so Elat-b M L 2+ Max {(Z]a MM, Z]bMA}

< 21+1/,\{(2| a lx)1/A+(zlb.|A)1/A;,
which proves (8).

‘We now prove that, for A >0,

9 if Llf—‘-f,‘["dﬂeo as n—> o, then L[f,,l"deeLlfl"de;

(10) f L]f——fﬂ]*deeo, L[f*——f,,[" d6—0, then f* =f in E.
In fact, by (3)' (for integrals),
(Jlfsra0)— ({1 ao)*|< ([) fumsf 1 a6) >0

provided j.| f1*d0 is finite. If the last integral is not finite we can comn-
clude that for any fixed N
[1£s1*d6 = fI[fulv]* @0 — [1[f1v|* a6

and so J| Jfu|*d0 — o, since the last expression tends to o with ™’

Thus (9) is true whether || #|*d6 is finite or infinite.
It is not difficult to deduce (9) alse from (4).

For (10) we have f*—f = (fu—f)+(f*—f.), and so
Jlf* =71 a6 < 4x {[| fa—f P a0+| fu—s* I a6}

by (7). Since the right-hand side tends to zero the left side is equal to
zero, and the non-negative integrand is equivalent to zero.

2.7. The means M, (f).
2.71. We define, for any finite p == 0,

M) = (5 Lx F1d0) "

A(f) = log M. (f):

For w =+ o we define M = ¢*~ as the greatest number M such
that for every e |f| > M—e in a set of positive measure, or as « if no M
exists. We call this number also Max (|f]) or the maximum of |fI:
equivalent functions have the same maximum, and for any f there exists
on equivalent f*(= [f]y), of which M is the maximum in the ordinary
sense. Similarly we define Min| f|= M _., = ¢*~* as the least m such
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that |f|<<m+-e¢|in a set of positive measure. For a continuous f M
and m are, of course, Max| f| and Min| f| in the usual sense. Finally
we define

1 (" g
A, =log M, = é—;j_rlog[f|d6.

This integral has a definite value (possibly + @ or — o) unless the
integral over the positive values of the integrand and that over the nega-
tive values are both infinite. In the latter case we regard A, as taking
all values from — o to 4 o, and interpret statements about it in the
obvious way (e.g. A, > A, would mean A, = -+®). ux = 0isa genuinely
exceptional suffix, but the gloss enables us to remove those points of
difference that are merely trivial.

‘We observe that

@ AN =—M3) (o <u<+),
a result which enables us to infer propositions about negative p from:
those for positive p.
2.72. We prove next :
(2) A—=>Aiwas u—>+o, A, >A_, as u—>—o.

It is enough, by (1), to prove the first. If M << + o there exists an
J* such that

lfI=I*< M,
and so M.(f) =M. < M.
On the other hand, | f|> M _—¢ in a set E of measure 8> 0,

Yu
M) >t —ep) ",

lim M.>M
oo
Hence M, —>M,. 1f M, = o we have, for an arbitrarily large K,
|f1> K in a set of positive measure &,

5\ .
M,> (k)" ImM,>K lmM =a.

w—¢ lmM, >M_.

w

2.73. We show next : A, is an increasing function of u (in the wide
sense). We have to show that A, > A, if wy>pu;. If w, >0 this
follows from §2.5 (7) [with |f|* for f, k¥ = uy/u,], and (1) above then
shows that it is true also for u; << 0. (Incidentally we see that

M= lim M,

w—>+0
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exists, and similarly for M_,.) It is therefore sufficient to prove
(1) Ay. > A~o (,U- > 0)7 }
and to this end we may suppose A, <+, M, < ®. Then, since

10g | /| = Max (log| f1, 0) << 4,.| F1*,

1 k4
we have Ejgtlgglf}d0< ®,

and a fortior: A= % Slog [fld0 < .

[This means incidentally that A, has a definite value less than .]
Supposing, as we may, that Aj> — . we have now

|f|* = exp (wlog| f]) > 1+wloglfl,
ME > 14uA,,
and so M. = 11m M > lim (14-uA)/* = exp Ay = M,

Since M, is increasing for u > 0 this gives A, > A, (> 0).
2.74. Continuity of A,, M.. We define now (as above)
Ayo= lim A,, M, =lim M,.
> +0

p—>+0
As above we have

1 A< A< Avo, Moo My Moo

We show now: If uy >0 and A, is finite, then A, is continuous for
every pin 0 < p <<, and is continuous on the left at u = u,.

In the first place A, is finite in 0 < u <, since A, < A, <+
and A, = —o gives M, =0, f=0, M,, =0, A, =—x. Let now u
tend to a u,, where 0 < w, < uy, but only from below if wy = ;. Then

we have
[fI* < THfI
a function of class L independent of x. By a well known theorem
[proved below as Theorem 10],
m [[f]*d6 = [lim|f|*d6 = [1 1w a8,

®>

or M, — M,

Suppose now further that A, is finite; we shall show that A, is con-
tinuous in +0 < u < wu—0. It is enough to prove that A, = A, or, on
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account of (1), that Ao <C A,. Suppose first that |f| is bounded be-
low by a positive constant, which we may suppose, on grounds of
homogeneity, to be 1. Then log| f| = 0 and

[fI* < 1+uloglfl4+loglfFD2A+1F1)  (u<< Fuy),
2 M << 14udy+u?,

where J= -21; j(log IFDPA4f])d6 <

since M, < . Hence
lim M, < lim 1+ pAy+420)* = exp A,,
p—>+0
the desired result. Finally, no longer supposing |f| bounded below, let
fo=Max(|f|, n""). Then
Ao(f) < Ao(f)
< Ao/
by the bounded case. This being true for all n we havet

Ao(f) = nl_i_I:l Ao(fn) = A+0(f)-

This completes the proof.
‘We conclude with one or two simple observations.

@ Ifogu<<u, Ay, <o, and A, =—wx, then Ay o=—m>.
For l\-p.-]-ﬁ(,f) < Ap,+0(fn) = Ap.(fn)y
and this tends to —o whether « > 0 or u = 0.

4) The relations A, <o, A,o=-+® are (simultaneously) possible
Jor a p>0.

) —o=A <A <A,o= 4> 45 possible.

The function f= {/0|(log|6|)?} ~¥/* has the property (4), and
f=-exp(|0]"*sgn 6) has the property (5).

The results of the subsection, collected and extended to negative p
by means of (1), are given in (10) to (18) of Theorem 1 below. The facts
are simpler than the arguments, and the best classification involves some
rearrangement, which the reader may profitably verify.

T By Theorem 11 Cor. below, f, being monotonic.
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2.75. Convexity.
Lemva 8. Suppose 0<ae<B<Ly, a<y, and M, ()< ®. Then

1 MB M-’Ml—s, where § = H’ l_s_gf/:z;.

In other language, log(My) is @ convex function of A.t

The result is trivial unless a << 8 <<y, which we suppose.
Then 0 <2< 1, and if » = «/(B%) = (y—a)/(y—B) >1, we have

= e,
@ m=g{ifras (fi700)" (& isra) " =y,

Mp < M/ MYIC = M2 ML,

We show next that equality can oceur in (1), with « < 8 <y, only if
there exists a set E CE, such that | f|=c¢ in E and f=0 in CE, ¢ being
a positive constant, and that in this case (1) is true, with the sign of
equality, for all «, B, y [satisfying 0 <o < B < v]

The last part is evident. If now equality holds in (1) it holds in (2).
Hence |f|*=c|f|*, by (2) of §2.1, and this leads at once to the first
part.

As a corollary of Lemma 8 we have: If \; <Xy, M, (f.) tends to zero-
as n— o, and M,,(f») is bounded, then M,(f.)—=>0 for A <A,

Results parallel to these hold also, of course, for means of sums.
Thus, if S, = (Z|a|)"* and we suppose in the first instance that there-
are n a’s, we have

n~UBSy < (YRS (MY SR,

We may, however, drop the n-factors on account of homogeneity, and
may then suppose the a’s infinite in number by a passage to the limit.
Thus

8 < Ss Sl -9

where 9 is the number in (1). and equality can hold, for « < 8 < v and
S, << o [in which case S, < S. < @ by Lemma a] only if all a’s are
zero except a finite number, and for these |a|= constant. If this
happens, then equality does hold for a, 8, y.

t ¢(xz) is a convex function of & if, for any interval o« < & < 8 o(z) < y(x), where y(z)
is the linear function of z which agrees with ¢(z) at ¢ =« and « = 8. Or, if ¢ the arc lies
below the chord ',
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92 .76. The three-term inequalities in § 2. 75 are homogeneous. We
consider now two-term inequalities; these are non-homogeneous, and
“means’’ and ‘‘sums (integrals)’’ behave differently. We have seen
already that M (<K M,(f) (@<<y), and Lemma a shows that
S,>8, (a<<y). [Thus means and sums are monotonic in opposite
senses. Neither monotony is implied, of course, by the convexity.] We
proceed to consider the conditions for equality in the (non-trivial) case
a<<vy. The results are ;

) If a<y and M, < >, ithen M, = M, if and only if | f|= ¢, where
¢ is a constant, and then equality holds for all a, vy.

@ If a<y and S, < ®, then S.= 8, if and only if all a’s are zero
but one, and then equality holds for all a, y.

Let B=431(at7vy). Then, by Lemma B8, Mg M., Sg<S,, and so
M,= Mg=M,, S,= 8g= 28, (if the extremes are equal). These require
respectively | f|= ¢ when ¢ is everywhere O or ¢; |a|=c¢ for a finite
number v of a’s, the rest being zero. If E is the set in which ¢ = ¢ we

have
c(mE[2m)!* = M, = M, = ¢(mE/[2m)'1,

whence mE = 2 if ¢ 5= 0. Similarly
e =8, = 8, =»»'le,
and v=0or 1if ¢5= 0. These facts establish (1) and (2).

2.77. We conclude by determining the limits to which the monotonic
function S, tends a8 a—>0 and a—> ©.

1) If Sa<< o forall a>0 then S.— o as a—>0 unless there is only
one a different from zero, in which case 8, is the same for all a.

Forif a;, a3 50 |ay|*+|ay|* > 3 for a <a, and S, > @)V o.
(2) If 8.<< © for some sufficiently large a, then S,~>Max|a| as a—>».

Clearly |a|= p = Max|a|> 0 can occur for at most a finite number,
v say, of a’s, otherwise £|a|* would diverge for every a. Hence

S a
j = v+ 202,

where every b,<<1. Further, the last series is convergent for a = aq,
say, otherwise S,= o for every a. But then 30 is uniformly con-
vergent for a == ag, and so tends to Blimb; = 30=0 as a— =. Thus

(Sa/lu,)a»y’ Sa"/u--
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2.81. We now sum up the results obtained so far in a number of
separate theorems. We do not always give the parallel results for both
sums and integrals, and shall treat as sufficient a reference to a ‘‘sum’’
result where the application requires the ‘‘integral’’ one.

In Theorems 1 to 4 we use the index conventions :

nreal, A>0,k>1,r>1; 0<k<1, 0<p<<l; ¢ =¢(E—1).

Other letters denote in general arbitrary complex numbers. We recall
the definitions

= (| 111a0) " k0, Ap =log ),

Ao =5 | rogif1a8

subject to the gloss explained in § 2. 71.
M, = Max|f|, M_. = Min|f|.t
=Z|alr

TeErOREM 1. We have the following inequalities, integrals being
taken from —n to m, unless otherwise stated.

= Jroae|< (g [17va8) " (55 flovae) =mwnano.

More generally

1)

@ 'Q};jfgh...dO'gM,‘(f)Mri(g)... RN

(8) (2) remains true subject to E—f‘— <1

“ |5 [ras|” < (g% [17010) (5% [1g1a6) "
® g fmae|< (5 Jrrmias) " (g flormas)”

© | | < (& 1ret1a8)" (5 17 0a0) " (55 f1g1as)

+ In the medified sense of § 2. 71.
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for any h, k satisfying h =1, k =1, h+k > hk, where

1_1,1 1_, 1 1_,.1
TEwtE~bY v 7w

al” | 1b]"

m PIPIC L

(8) In (1), (2), (4), (5), (6) we may suppress the factors 557; and

suppose the integrals taken over any set E, of finite or infinite measure.
(9) When everything is positive the inequality (1) is true with reversed
sign when r 1s replaced by a non-zero p<<1.

We have further the following results, supposing [in (10) to (18)]
that | f| is not almost everywhere zero or almost everywhere .

(10) A, (f), M,(f) are increasing functions of m (in the wide sense).
In particular M, o(f), M.—o(f) exist.

(11) M.(f)—> M _(f) = Max |f| as p—> ©,
M.()>M_..(/)=Min|f| as u—>—.

(12) If A, A, are finite and p, <pg then A, is conttnuous in
< n < g [Bither u; or w, may, of course, be 0.] Suppose u; 0
and A, is finite, then A, s continwous in the interval (0, u,) taken closed
at uy and open at 0. Further A,—>Ay as u—>0 in (0, py) [but A;may be
+ ®]; n particular, if uy > 0, then M, ©s continuous in 0 < u < wy.

(13) At a fized point p > 0 the alternatives are :
i) —wo <A <o, Aiog=A, A.ioiseither A, or .
@ A=Mp=o, —o<A, .
(14) At @ fized n <O the alternatives are :
i) —o<A, <o, Ayo=A, A._o1iseither A, or —@.
@ A=A j=—o, —0o<<A <.
(15) At u = 0 the alternatives are :
) —o <A <o, Ayy=Ajor +o, Ag=A, or —.
) Ay=Aj=A,0= .
(i) Ao =Aj=A=—.
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(16) In (13) to (15) all possibilities left open can actually occur.
(17) A, cannot have a finite discontinuity at any p.
(18) Except at p =0 one or other of A, .o, A,_, is equal to A,.

(19) Lot 0<a<B<y, My(f) < ®. Then
M, << Vet _— a(y B) — == _____’)’(:3—‘1).
e MM, where S = /3( 1—9 Bly—a

(20) Equality occurs in (19) if and only zf |[fl=c¢ in some set E
and f=0 in CE, and then it occurs for all a, B, y (satisfying
0<a<B<y).

@D If 0<a<<y and M,(f) < ®, then M,= DM, if and only if
[f|=c, and then all M, are equal.

(22) If M <Ay My (f)—>0 as n—>o, and My(f.) ts bounded as
n—>o, then My(f»)—>0 for all A < A,

(23) Sy is a decreasing function of X (in the wide sense).

(24) If Sx<< @ for all A\ >0, then S,— o as A0,
only one a different from zero, in which case Sy is the same for all At

(25) If S\< o for some sufficiently large X\, then Sy—Max|a| as
A—>o.

(26) Let 0<a<fB<y, Sa<®. Then

8s << 828)7%,  where 5=%((l;—_:%’ 9“%%5:3

(27) Equality occurs in (26) only if all a’s are zero except a finite number
for which |a| is constant, and then equality occurs for all a, B, y

@28) If 0<a<<y and S.< o, then S,= S, only if all a’s But one
are zero, and then all S, are equal.}

THEOREM 2.

0 Elat+b < ElalHEHE b9 (k> 1)

t If n is the number of a’s, then #-'* S, —(Ita)": thisresult is theanalogue of ‘¢ My—> M
as A—> 0 (provided some M, < ®)’’.
+ The analogue for integrals (as opposed to means) is: if

([L71ae) = ([ 17rae)”

then f= 0 except in a sub-set of E of measure unity, in which |f|=c.



20 INEQUALITIES OF FIGLDER AND MINEOWSEL

More generally

) (=[zan. )" <2 (Blemal) ™

® (], 27| )1 <z([ 1 Idx) "
@ (5[] fumas|) " <], (211@0)

® ([|[renaa)” <|(firev lkdx)”kdy-

(2) may be generalized to

® (2

2 Ci a'm, n
"

k)llk <§,oml (5 | am,ulk>1”t’

(5) may be generalized to

o ([[Jrewswa|iv@ia)”
<] ([ wiivea) = swia,

and similar extensions may be given to (3) and (4).

(8) Equality occurs in (1) if and only if all b’s are zero or else b = ca,
where ¢ is a positive constant. Equality occurs in (5) if and only if
sgn f(z, y) is constant where it is not zero, and f(z, y) = F(z) G(y),
p.p. in & and p.p. iny.

(9) When everything (but the indez) is positive the inequalities (1) to (3)
are true with the reverse sign if k is replaced by any non-zero p << 1.

(10) (E[al")ll"-—(z]b]")‘/"g(Ela,+b|’°)‘/"<(21a}")1”‘+(2]b]’3‘/k (k>1)

11 lal=Zb < Z]atd[* < Zlal+2[b]* (0Dt
Ne___ @ a jl (x<1)
(12) |ElataPr—Cla|< oy, "= 0o 1

18 Elatbdtot... ) < ElaM+E] b P+ E]e N
14 | Clatbtot .. Pr—Clar | <SP +E e+
15) 2lat+b—Z(alt| < 2|BP+R,

+ For non-negative a, b there exist the following companions to (10) and (11):
3a+ 0F > Zak + 38, {3(a+b)t}E > (Xak) ik + (S0 1R,
The first is an immediate corollary of Lemma «, the second is a case of (9).
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where B =0 if AL 1, and

B=A,(C1aly"AE (b A4(E @ PHAE| b 1)
i A> 1.
(16) Zla+bP < AAE a2 0.
am  Clatb MM A HEZ ] a N (Z 1B INAL,

a9 I L[f—-f,,]"de—w as n—>c, then j\fn{*de—{ |76,
E E
where the right-hand side may be finite or infinite.

19) If jEl f—fu @90 and L| F*—Fud0—>0, then f*=F.

2.82. To the preceding theorems we add two more, of which the
first constitutes a kind of converse of (H). They arise naturally out of
our considerations of the case of equality in (H).

THEOREM 3. Suppose that r>1 and E is any set of finite non-zero
measure. Suppose that (f being any complex function)

) I L g det <UV

for every bounded function g such that

[ —_— T
@ 2l lglras=77>o.
Then
1 7 r

If f is real it is sufficient for (3) that (1) should hold for every real
bounded g satisfying (2).

We may suppose U = 0. If now we take g to be a suitable constant
in [Ely and zero elsewhere [the constant being chosen so that (2) is
satisfied], our hypothesis asserts, among other things, that f is integrable,
and so measurable, in [E]y, and so measurable in E.

It is sufficient to show that

1 :
@ L], wrae < v



22 INEQUALITIES OF HOLDER AND MINKOWSKI.

1f the left side is zero there is nothing to prove. If not, choose

g =t|[fls|""" sgn ft

and the constant ¢ so that (2) is satisfied, i.e. so that

®) mE J’ \[flwi7ad = VT

Since ¢ is bounded (1) holds, by hypothesis. This gives

® 5[l =0] e <5 || feas| < T

Eliminating t between (5) and (6) we obtain (4).

TrrEOREM 4. Suppose that, all letters denoting non-negative numbers,
Sanb, s convergent for every set of b’s for which Sb; is convergent.
Then Zal is convergent. There are corresponding results for the con-
vergence of infinite integrals (of both kinds).

Note that this theorem is not a trivial consequence of Theorem 3 (for
sums).

It is sufficient to consider the series form, and to prove: if Zar,
is divergent there exists a set of b’s such that 30, is convergent and
Za, b, divergent ; or, writing a, = an, @.d, = fnans, to prove: given a diver-
gent Za, we can find a set of ¢, such that a,t, is divergent and Za,t7
is convergent. For this it is sufficient to take ¢, = 1/s,, where

S = oytast...+an.
[For =2t diverges with II (1— 31) = in-t
Sn Sn

Sn

2

and on the other hand

Pe o3 3 Qf—=j"‘i—‘3<x.]
Sy

Sn Sno1 Sn oy L

2.91. TreoreM (Young). Let ¢(x) >0, Y (y) >0, = 4(0) =0,
and let y = ¢(x), x=1Y(y) be strictly increasing, contmuous and
inverses of each other in £ >0,y =0. Then,ifa>=0,b>=0,

®» ab 40 (@) dw+j0¢<y> d,

and equality occurs if and only if b = ¢(a).

t Note that sgnf = sgn [f]n.
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Either a = ¢(a) < b = ¢(p), or else B/ =Y (b) < a = Y(a'); say the
former. Then B> a.

j:‘l’dw"l-ﬁ\//d:l/—ab = 5: ¢ (z) dz+- j:wdq‘:(x)-—ab

= ,8¢(/8)-—E (@) dv—ab

> Bo(B)—(B—a) p(B)—adb = 0.

@ @<%+%

The inequality

is the particular case ¢(z) = 2"~'. It generalizes to

3) abc...gE% for E—i—:l.
for more than two numbers a, b, ¢, .... This, in turn, generalizes as
follows.

2.92. THEOREM. Let ¢ (x), ... ¢n(x) be continuous, strictly in-
creasing functions of x im x>0, and ¢,(0) =0 (n<m). Let
P, (2) = zp.(x), and let x = X,(y) be the function inverse to y = P, (x)-
Suppose now that the ¢, are connected by

1) I;IXn(y) =y =0,
or, more generally, by
@’ l;I XLy<y (=0
Then for ¢, =0 (n < m),
2 111 ay < }13 Son (@) dz.
We may suppose that no a, is zero. Consider
@) F@Mwﬂm=zk%@M(M>m
subject to
(4) G=1la, =1,

where t is a positive constant. F is evidently bounded below, and it
tends to «© as any a,tends to infinity. Tt follows (since F is continuous)
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that F attains its absolute minimum for some set of a,’s, none of which
is zero.
For this set we have, by a theorem of the differential calculus,

(5) aaali A gaci n < m),

for some value of A, independent of n. (5) gives

n(an) = ana_“ = )\a,,gg = At,

(6) an = Xu(Af) ;
and taking the product for n << m,
M t = IIX,(\D)

< A, by (1)

The right-hand side of (7) being a strictly increasing function of A,
the equation (7) has at most one solution for A given t. Hence there is
ezactly one solution A = 1, for which (6) gives a minimal set of a,. Tor
this set the (minimum) value F* of F is

m (]

X, (A
F* =32 S ¢Pnlx) dir.
1Jo

Transform the integfal by z = X,(£), when ¢, = ®,/z = £/X.(6).
We have

=5 MEax.© d¥_<§2 [

= HXnO\t) =t
Hence for any set a,, ... a,,

F>F* =1t =Ila,,
the desired result.

The relation (1) is the generalization of the relation between a pair
of inverse functions ¢, Y. To see this, let y = ¢(z), z = (y). Then

zy=2@=Y@); z=%9""(y, y= ¥y,
zy = D7 (ay) ¥ (zy).

For a general function there is no extension, universally true,
of (H) in product form. '
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3. THEOREM 5 (the ‘‘selection principle’”). Suppose that the numbers
B(n,m) exist for all integral values of n and m, and are bounded for
each fired m and varying n. Then there exists a strictly increasing
sequence my, Ny, ... and a set of numbers B, Bz ... such that for each
value of m, B(n,, m) tends to Bwm as r—> .

The numbers B(n, 1) have at least one limit point B; say, and we
can select a strictly increasing sequence Si, or mny,1, 71,2, ..., such that
By, 1)—>0;. The numbers B(n,,,, 2) have a limit point, Bs say, and
we can find an (increasing) subsequence S; of Si, or g1, 722, ..., for
which 8 (na,,, 2) = Bs. Further we may evidently suppose that
Ng,2 > my,;, for example by choosing #; = 7m;,..  The process can
be continued indefinitely : there exists 8; and S;, or mns1, 732 ..., &
subsequence of S; with 733 > 75, and so on. Consider now the in-
creasing sequence S, or 71, N2 Nss .... Xor each m we have
B(n,m)—>B, as n—>o» through 8,; hence also B(n,m)—~B, as n—>w
through S, which is a subsequence of S,,.

If the variable m (but not n) in B(n, m) is replaced by a continunous
real or complex variable, the principle ceases to hold. We may, however,
expect it to hold if B(n, 2) has sufficient continuity for its behaviour to
be dominated by the behaviour of B(n, z,), where (z,,) is a set of points
everywhere dense. . We have, in fact, the following important and power-
ful principle.

CoroLLARY. Suppose that f, is continuous in a bounded domain D
of one or two (or any finite number of) dimensions, and that in any
closed set Dj interior to D the continuity is uniform in n. Then there
exists o subsequence (n,) and a continuous ‘‘limit-function’ f such
that f,.—f as r—>wo, uniformly in any closed set interior to D.

The uniformity of the continuity means that given e¢ there exists
a & = d(e, Dy (independent of ) such that for all n and all z, 2’ of D,
subject to |z—2'| << & we have

1) [fu@)—ful®) | < e.

Consider the points of D whose coordinates are rational. They can be
arranged in a progression (z,) in such a manner that for any z of D
there exists a z, within distance & of it for which m < M, where

M= M) = M)

depends only on & and D (for example, by arranging that the greatest
denominator occurring in coordinates of z,, is monotonic increasing with
m). The numbers B8(n, m) = f,(z,) are bounded for fixed m and varying
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n. Hence there exists a sequence 71, Mg, ... and numbers a,, a,. ... such
that for each m
¢-r(zm) =fﬂ-,.(zm) > Am

asr—>w. [Note that the sequence (r,) and the functions ¢, do not
depend on D;.] Now let D; be any closed set interior to D, a the dis-
tance from Dj to the frontier of D, and let D; (so far arbitrary) be the
set of points of D whose distance from the frontier is not less than %a.
Let 8 be the number associated with D; and the inequality (1). We may
allow & to be diminished, and may therefore suppose that & <<%a. If
now z is any point of D; there exists a z, within a distance 8 of z, where
m < M(3), and z and z,, belong to D;. Now, given any m, there exists
a v(e, m) such that
‘ ' ! ¢r(zm)“‘¢s(zm)| <e (s = v);

hence, if Ma}; v(e, m) = N = N(e, §) = N{e, D),
ms
-we have
®) [ pr(tm)—pslem) | <e (r,s =N, m < M.

In the inequality
l ¢r(z)"'¢s(z) l < l 95,.(2')— ﬁbr(zm) ] -+ | ¢s(z)—¢u(zm) l + ‘ ¢'r(zm) - ¢s(zm)l

each term on the right is less than ¢ (if 7, s = N), the first two in virtue
of |2—2z,|<<8 and (1), the last in virtue of (2). Thus

' 93,(2’)— ¢s(z)| < 3e

for'r, s = N(e), and all z of Dj. It follows that ¢.(z) tends to a limit
function f(2) uniformly in Dj. Since Djis arbitrary, f(z) cannot de-
pend on it; finally f is continuous at any point of D, as the uniform
limit of a continuous function ¢,. This completes the proof.

4. Theory of functions of a real variable.

4.1, In this section we set out those parts of the theory of real
functions which we require later. We sometimes carry our develop-
ments beyond what is strictly necessary, but have not tried to be
exhaustive. The extent of knowledge required is nothing like so
great as is sometimes supposed. There are three principles, roughly
expressible in the following terms: Every (measurable) set is nearly a
finite sum of intervals; every function (of class L% is nearly continuous;
every convergent sequence of functions is nearly uniformly convergent.
Most of the results of the present section are fairly intuitive applications
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of these ideas, and the student armed with them should be equal to most
occasions when real variable theory is called for. If one of the principles
would be the obvious means to settle a problem if it were ‘‘quite’” true,
it is natural to ask if the ‘‘nearly’’ is near enough, and for a problem that
is actually soluble it generally is.

‘When our results are capable of extension to functions that may take
complex values—and they generally are—the extended form is either
deducible trivially from the real one, or else the proof for the real case
applies with trivial modifications. We shall therefore take such exten-
sions for granted, giving only the proof in the real case, and sometimes.
only the enunciation in the real case, when either procedure suits our
convenience.

4 .21. TeEOREM 6t. Suppose that f(6) is of class L* in E,, and let
3, ¢ be given. Then there exist (a) a continuous ¢, (b) a stretchwise
constant (‘‘step-function”) ¢, with the further properties :

) |f—9¢l<<e except in a set e of measure less than 8,
1 k3
@ [ leran<e,

(3) ¢(m) = ¢p(—m).

If further f is bounded on one or both sides, such a  can be found
with the same bound or bounds.

Theorem 2 shows that if, given f, we can find, first an f® of a
certain type such that My(f—f®) is arbitrarily small, then, for fized f©,
an f@ of another type such that My(f®—f®) is arbitrarily small, and so
on to f®; then, given f, we can find a function of the last type, f©, such
that My(f—f®) is arbitrarily small. We shall use this argument fre-
quently, and we have here its first occasion. A precisely similar principle
is available for a result of the type (1).

Let f.=[f). and let e, be the set in which f,f Then
n=|fol<|f| in e,
’ 71}‘6n<j’ tfl)\d9<JE’

en 0

and so ¢,—~0 as n— o, and

S | f—fu 0O < jl 2f|* 46 — 0.

Ey

t This is the second principle of §4.1.
1 That is to say : E, can be divided into a finite number of intervals, in each of which ¢ is
a constant.
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By the principle explained above we may, in proving (1) and (2),
now suppose that f is bounded. We may, for similar reasons, reduce the
proof further to the case when f is a function which takes only a finite
number of values @y, as, ..., ay. [If f* is the integral multiple of ¢
nearest to f we have | f*—f| <¢'.] Let now e, be the set in which
f=a. Then ¢ = e, +é&j—e.’, where ¢, and ¢’ have arbitrarily small
measure and ¢! is a finite sum of intervalst; moreover, the dissections
can clearly be made in such a way that e, e, ... ¢iy are mutually ex-
clusive and together compose E,. Then if f* is the function which is
ar in ¢ (r=1,2, ..., N), My(f*—f) is arbitrarily small, and f* is
a stretchwise constant function ¢ with the properties (1) and (2).
By bridging the gaps in the graph of this ¢ by sufficiently steep
lines [thereby disturbing the values of the function in a set of
arbitrarily small measure, and disturbing M,(f—¢) arbitrarily little]
we can convert ¢ into & continuous function, which, by one more
such adjustment, can be made also to satisfy (8). The stretchwise
constant ¢ itself can be made to satisfy (3) by an arbitrarily slight adjust-
ment. Thus we have proved the existence of ¢'s of types (a) and (b)
which satisfy (1), (2), and (8). To prove the last part of the theorem we
have only to observe that if, e.g., « < f < 8 and ¢ satisfies (1), (2), (3),
then ¢*, defined to be ¢, a, or B, according as a < ¢ < B, ¢ <, or
¢ > B, is of the same type [(a) or (b)] as ¢, and satisfies a fortiori the
conditions (1), (2), (3).

A less elementary but shorter and more elegant proof proceeds as
follows. [It appeals to theorems proved a little later, but they are with-
out logical priority to Theorem 6.]

Let

1/n
fr=Iflegnf, ¢*@) = 2¢zj_1/nf*‘(0+t> at, ¢=|¢" [ sgn ¢.

¢ is continuous [and satisfies (3)], and it is easily verified that bounds
of f are also bounds of ¢. Since f* is of class L and is therefore almost
always the derivative of its integral, the functions

=23} " prO+na,

and therefore also ¢*(6), converge almost always to f*(6) as n— co.
Hence also (sgn ¢* —>sgn f* and) ¢—f p.p. Also
1/

In
Jolorao=] 1gtlao<ouf" acf 04010 =] 70 pas

t This (for an arbitrary set) is the first principle of §4.1.



REAL FUNCTIONS. 29

By Theorem 13 (2) holds when n is large, and (1) is an immediate
consequence of Theorem 9. This disposes of case (a); the transition
to a step-function is, of course, easy.

4.22. THEOREM 7. Let f(6) be periodic and of class L*. Then

7o = [ Ife+o—rora

is periodic and continuous. In particular F(0)—0 as 0—0.

Given ¢ we can find a continuous and periodic ¢ for which

[If—pPrao <e

w

Let P = j | pE+6)—¢(t)|*d0. By Theorem 2 (14)

-1

HF@O) }*— {2@)}°]

< (| 1re+o—perora)+ (| iso—gmPa) <2e

Since $(0) is continuous it follows that {F(6)}* and {F(0")}* differ by

at most 3¢* provided 6'—0 << J(¢), Tt follows that {F(6)}* and F(f) are
continuous.

CoroLLARY. Let f and g be periodic, and f of class L" and g of
class L™, or f of class L and g bounded. Then

HE) = %Sr FO+8) g db

is a continuous function of 6.

We have in the first case (writing t—6 for t)

|8H| = HO+O~HO == | {fe+o—701g¢—0 at|

T 1/r v 1y
W <{g| leta—fora {x | lge—ora

-

The first factor is small with 3, by the main theorem, the second is
M, (g)t and so finite. Thus AH—>0 with é.

+ This disappearance of an apparent parameter (here 6) will become very familiar.
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In the second case the right-hand side of (4) is replaced by
K T . _
ﬂj_wlf(t+3) f(8)| dt,
where K is a bound of |g|, and the conclusion follows as before.

4 .23. TrrorEM 8 (Riemann-T.ebesgue). If E is any set (of finite

or infinite measure) and J |f| a0 exists, then
E

lim Lf(@) &4 dh = 0.

t—>o0

Let [E]y be the set of those points of E for which |6]|<X N. Then

' 0) % 46
j_m 7)€

N -

<5E_[mlfld9—>0

as N—>w, It is therefore enough to prove the theorem for a bounded
set, or for E, and a periodic f.

(i) Writing 4 for =¢~?,
F) = j" F(6) ¢ a6 = -j"” F(O—n) e db,

—1r+n

and, adding and taking half the sum,

Poy=4| {f@—f@—nienas

-

—w+n ) ity .
+§5_ FO—2) emde—%j F(0—n) e d.

FOI<[ 176—n—7@ |6+ | i@ d0+3[ /&) ap,
o é o

when e; and ¢; have measure . Fach term on the right tends to zero
ag t—> o (or n—0), the first term in virtue of Theorem 7.

(i) It is easy to prove directly from Theorem 6 that it is enough to
prove Theorem 8 when f is a step function and E an arbitrary finite
interval. This reduces to proving it when f is a constant, and this is
immediate, by direct integration.

4.31. TrEOREM 9 (Egoroff)t. Suppose that as n—o f,(0)->f(6)
p.p. in E C E¢, and that f is finite p.p. Then there cxists a set H,

t This is the third priunciple of §4.1.
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of arbitrarily small measure, such that f,— f uniformly in E—H. The
result holds also if f is (say) + o p-p.

The last part follows by a trivial transformation from the first, which
we proceed to consider.

Let ¢u(z) be the upper bound of | f—fy | for m > n: ¢, is a decreasing
function of 7 for each z. Let E,(e) be the set in which ¢,>.e. For
fixed ¢ En(e) is a decreasing set, and its limit as n—>® is included in the
null-set in which f, does not tend to f. Let now e, tend to 0 as n—>
and let Za, be a convergent series of positive terms.

Since mE,(e)—0 there exists an 7., such that mE,. () < a.. The
measure of the set

, H=3E,(,)

does not exceed Z a,, which is less than » by choice of 7. Consider now
r

any point 6 of E—H, and let n > n,,, where s will be chosen presently.
We have
/2O —FO) | < $n(0) < P O) < €rvn

since 6 belongs to the complementary set of E.,,,(er4,). Since e, << ¢ for
§ > so, where sy is independent of 6, it follows that f,—>/f uniformly in
E—H.

4 .32. TeeoreM 10. If f.—f p.p. in .ECEO, then

Lfnd@ - Lfde,

provided f, is uniformly bounded*, or the product of a uniformly bounded
function and a function of class L independent of n, or, more generally,
provided f, has a majorant of class L and independent of n.

For if F' is the majorant of the f, (and therefore also a majorant of
f), and H is the set of Theorem 9, we have

- | - - _F -
”h_r)ri L fa—fld0 L lim L_H +lim L = lim L <l S” 2Fd0,
and this is arbitrarily small with the measure of H.

A similar result holds, of course, for a function depending on a
continuous parameter instead of on n, and the same thing applies to many
of the theorems that follow. We shall state explicitly only the results
involving the parameter n.

+ In these circumstances we say that f, converges to f boundedly.
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4.33. TEEOREM 11. (1) Suppose a.m) >0, am—>a as n—>w,
Then

@ Sar < lim 2 a, ().

n—>w |

(ii) Suppose f,(6) >0 and fo—f p.p. 2n ECE, Then
(@) J fdd < lim J Jfadb.
E

n—>»n JEg

To prove (i) we need only observe that for every N

N N w
Za, = lim Sa,.(n) < lim Za,.n).
N>

For (ii), the analogue of (i) for integrals, we have [fulv—[fly p.p.,
and boundedly. Hence, by Theorem 10,

LMMMﬂmJU&M mﬁﬁm

since £, >0 and so [fuly << fi- The limit of the left side as N—c0 is
j fd8 by definttion, and the desired result follows.
E

The proofs are valid whether the right-hand sides of (1) and (2) are
finite or +0. When [f40 is finite (ii) is an immediate corollary of

Theorem 9. Thus

tin | (apa0 > 1| (umpas+iim | fao— ras,
E E-1 H i

and of the terms on the right the first is zero, the second non-negative,

and the third arbitrarily small with mH, whence _thJ’ > 0.
E

CoroLLary. If f, is monotonic increasing (decreasing) in n for each

6 of E, so that f, converges to some f in E, and if J’ JSndf > — = (<4 o)
for some n=v, then

1mLﬂw=Lﬁa

For supposing f, increasing, f,—f, is non-negative for n>v on the
one hand, and not greater than f— f, on the other, so that

J, U708 <tim [ (=rra0 <Tm < | =pae.
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BSuppressing the various —f, we have

li j =
im | f.d0 L fas.

+4.84. Tarorem 12. Suppose that a,(n) — ay, for each r, as n—>x
and that ? |a,|* is convergent. Then in order that

) lim = |am)—a | = 0,

n—>w r=1
it is sufficient, and also necessary, that
@ 2| ) > 3| a N
The necessity is given by Theorem 2 (18).t For sufficiency we
assume the truth of (2) and have to prove (1). We have

@ © N-1 » N—-1
lim 2|a,) *=lim 2|a.()*—lim 2 |a0)* =Z|a.*— = |a, | = ey
n—>wo N 1 1 1 1

Hence, by Theorem 2 (16),
EE%[ a.(n)—a,|* < lim A,\§ ([ a.(n) |*+ | @, I“) < 24, en-

Hence finally

Iim 2| a,(n)—a,|* = lim = << 24, e,
1

Z M3

and the left-hand side must be zero.
The same arguments establish the following

CororLARY. Let f,(0) (r=1, 2, ...) be a set of non-negative func-
tions each continuous at § = 6. If now

FO) = Zf (6

is continuous at 6y, then

lim 2| £,0)—f.09| = 0,

and T f.(9) is uniformly convergent in some neighbourhood of 6 = 6.

The first part is a particular case (with A =1) of the theorem (for
a continuous variable ). For the second (‘‘Dini’s theorem’’) we have

216 < £ 1.60+ 21 £O—£0).

+ Indeed the hypothesis a,(n)—> a, ishere unnecessary, being a consequence of (1). But
this no longer applies in Theorem 18, the corresponding result for integrals.
D
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The first term on the right is independent of 6, the second is less than

provided that |6—8,|<< 8(e), by the first part, and the result follows at
once.

4.85. The result for integrals corresponding to Theorem 12 is as
follows (we have developed certain details) :

Taeorex 18. Suppose that f,—f p.p. i E, and L [fIPd8 < .
Then in order that ’

M L | fuef |2 @6 0,

it 1is sufficient, and also necessary, that

@ Lo[fw d9—>L°(f{’* a6,

and in particular it is sufficient that

3) L | fu 120 <SE | f1>ae.
When (2) holds we have also

OR j If,.l*de»j |f1*d6 (ECE,.
B E
In particular, when A =1, (2) is a sufficient condition for

®) 5 fudO—> S fdo (EcEy),
but it is not necessary. ’ B

Finally, if either (and therefore both) of (1) and (2) holds for a par-
ticular A, they hold for all smaller \.

We follow the proof of Theorem 12 so far as is possible. It is in-
structive to note what elementary device in Theorem 12 corresponds to
the use of Theorem 9 in Theorem 13.

In the first place, by Theorem 2 (18), (1) implies (2) (and, indeed,
without the hypothesis f,— f p.p.). Suppose now that (2) holds. It

is easy to see that (2) must hold also when Eq is replaced by any E c E,.
For writing

s = 1 frao. 1@ =] 17rae,

we have, by Theorem 11, lim Ju.(E) > J(E). If now lim J.(E) > J (E),
we have, by combination with im J.(CE) > J(CE), lim J.(Ey) > J (E,),
contrary to hypothesis. Thus lim J,(E) < J(E) and lim J,, (E) = J(E).
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We can now deduce (1) from (2). By Theorem (9) |fi—f|—>0 ‘uni-
formly in E,—H, where mH is arbitrarily small. Then

|, 1n=rsirao—o.

0

Also [ 1nmrla0 < ] 17upabas | 11020,

The right-hand side tends to 2A,\L| f1*d6, by what we have just proved,
and this is arbitrarily small with mH. It follows that

fm Lo’ foeflras = mjﬂ

is arbitrarily small and therefore zero.

Since (3) implies (2), by Theorem 12, it is sufficient for the truth
of (1).

The result (5) is, of course, included in (4). To see that, however,
(2) (with A = 1) is not necessary for the truth of (5), consider the example

Fo=00=0), fa=n 0<|0|lgn™), fa=—n (n1<<|O] < 207,
fa=0 (|6]>2n7. '

Here f(6)=0, but S fu]d6 = 2.
E,

To prove the last part of the theorem we have only to observe that if
S | fu—f1*d0 tends to zero for a particular A it does so also for any smaller
K,

X, by Theorem 1 (10).

4.41. Let (a;, B, (ag B9, .-+, (am Bx) be any finite set of non-over-
lapping, but possibly abutting, intervals contained in E, A function fis
said to be of bounded variation (b.v.) in Ejif a K exists such that

N
t= 2—1 lf(Bm)""f(am) | < K

for all such sets of intervals. If, further, given e, there exists a & = S(¢)
such that t << e for every such set of intervals whose total measure does
not exceed 8, the function f is said to be absolutely continuous (a.c.).

If f depends on a parameter and if numbers corresponding to K,
8 above exist which are independent of n, then fa is said to be uniformly

b.v. or uniformly a.c. (u.b.v. or u.a.c.).
‘I'\O

¢l
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In what follows we use e to denote the set of points belonging to any
finite set of non-overlapping intervals contained in E,, and (a,, 8,
(n=1, 2, ..., N) for the intervals themselves. We shall sometimes use
the symbol e to denote also the mode of dissection of the set e into
intervals. [Note that distinet modes of division ¢ may correspond to the
same set of points e.]

Any measurable set E is of the form e+ E,—E;, where mE;, mE,
are arbitrarily small. Let now mE;, mE,;, and Max |Bn—an|tend to
zero in any manner. Then it is known that if f is a.c. the number ¢
tends to a unique finite limit T'(f, E), depending only on f and E, and
additive in E. T is called the total variation (t.v.) of f in E.

For a b.v. function and an-interval afB, the t.v. is defined to be the
upper bound of t for all modes of division of aB with an e. The t.v. for
an e is defined as the sum of the t.v.’s for the intervals composing e (this
depends on e only qua set of points). When f is a.c. and E is an ¢ there
is evidently consistency with the definition of T'(f, E). We shall never
have occasion to apply the conception of the t.v. of a b.v. function in
an arbitrary E, and since it would require a long explanation we shall
ignore it.

The further results contained in Theorem 14 and 15 are also known.

TreoREM 14. (i) A b.v. function is the difference of two positive and
increasing functions, which may be supposed continuous if f is con-
tinuous. (i) A b.v. function f has p.p. a finite differential coefficient
S, and f' belongs to the class L. (iii) If f is non-decreasing and con-
tinuous, then

[ros<io—ra ©¢>a.
TuEOREM 15. A function f a.c. in E, is of the jorm
j’: g(6) do—+-c,
where g is of class L tn Ey and ¢ is a constant. Further

17,8 = Iglas
E

so that T' tends uniformly to 0 with mE (i.e. uniformly in E)t. Con-
versely the integral of a function of class L is a.c.

1 This is true by definition when E is an e.
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4 .42. TEEOREM 16. Suppose that f has the property
(1) ‘ (Bn) z (a,,)

n=1 l dﬁ'—an lr—l

for every set e, where r>1 and G are constants. Then there exists a
function g of class L™ such that

@ F6) = f gdd+c
0
and
® J lgl"dd < G.
E.

Conversely (2) and (8) together imply (1).

1 J’ﬂu
ﬂ —ay

<lbe=al gt [1grae,

by Theorem 1 (10), whence the sum taken over the left-hand side does
not exceed L lgl"d6 < G
Suppose, then, that (1) holds. We have first, by Theorem 1 (4), (8),

The converse is immediate, since

FBa~fal _ g
[Ba—an -1 = Pemom

) (SA)” < GV (mey”.

§N|f(,8n)—f(an)| =2 |%’A9 < (E Af

Since this tends to O with me f is a.c., and 8o, by Theorem 15, is of the
form (2). Consider now a sequence of divisions e, of K, e, being, say,
", 6™ ..., 0%), in which Max |67}, —65|—>0. We define a ¢.(6) for

mgLN,)
all 6 of E, by

= ae

n) y__ (n
7@ =LEDTTED g0 <0< o).
m+1 m

Then if e is taken to be ¢, (1) is identical with the inequality

@ L | 9.(0)"d6 < G.

Now g, is of the form

S:i“g(t)dt / (enteh.
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For a 6 at which g(f) is the differential coefficient of its integral the
numerator is

&la@+o)) +eaig®)+oD} ;
hence g.(0)—>g(0) except for a null-set in 6. Hence, by Theorem 11,
[lglrav< m | 10ula0 <@
B, n—>w J i,

4.51. TaeoreM 17. If f, is uv.a.c. then
0

f” = j gnde-l'cm
Ov

. 18 of class L and c, ts @ constant depending on nt.
e, there exists a 8= 6(¢), independent of n, such that, if L is any set
(not necessarily independent of n) for which mE < 3, then

T (fr, E)=J’“|g,,ld6<e.

For (for fixed n) T(f,, E) differs arbitrarily little (see § 4. 41) from a
finite sum ¢ taken for a set e of measure arbitrarily near mE.

4.52. TaeorEM 18. Suppose that f,—f p.p. in E,. Then in order
that. both f shall be of class L and 5 | fa—F1d0 shall tend to O it is
necessary and sufficient that 5 | fuldO is u.a.c., and, again, it is neces-
sary and sufficient that j'of,‘ dO is u.a.c. (Hence also the last two con-
ditions are equivalent.) ’

The equivalence of the u.a.c. of j[ faldf and [ fd0 follows from
Theorem 17 and we need only consider the first condition.

f 5: | fa| 40 is u.a.c., we have L | fl d8 < 1 whenever mE < u, say.
Then E, can be divided into [27/u]+1 intervals e (at most) for each of
which L]f,.[d@ < 1; hence Lo]f,,|d6 is bounded, and, by Theorem 11,

fis o.f class L. We may therefore suppose, in both the necessary and the
sufficient cases of our theorem, that f= and f are of class L, and incident-
ally finite p.p. Then there exists a set H, with mH < §, such that

t Note that fu need not be uniformly bounded : consider, e.g., the case f, =c. = n.
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Jo—f—>0 uniformly in E;—H. We have, therefore, on the one hand

o=

 fo=flaot] 17106+ I7ala8

(1) < o(1)+s(8)+Llfn|,

and on the other

@ [Inlao<| sl f1a0<] |fumrldtta® mE<D,

where () and ¢,(6) are independent of n, H, and E, and tend to 0 with

5. If now [|f£,|d6 is wa.c, the last term on the right-hand side of
(1) is less than (), and it follows that;j | fa—f1d8—>0. Conversely, if
j | fu] @6 is not u.a.c., there exists an a > 3’0 and a sequence By, Ey, ... for
which mE,~>0 and JE |fuld0>a. If now we take E = E, in (2) and

make 7—> @, we have
ti [, /=710 > a.

It follows that, if the integral last written tends to 0, jl Ju|d6 must
be w.a.c.
4.58. Taeorem 19. Suppose that fu—>f p.p. in E\. Then in order
(]
that f shall be of class L and S | fu—f1d0—>0 (or in order tlzatjfndo
E, 0

shall be u.a.c) it is sufficient, and also necessary, that a function P(f)
exists such that ¢(t) = P(§)[t increases to + o with ¢ and

M Lo B(|f,))d0 < K

for all n. .
Suppose that (1) holds. Given any set E let u = mE, and let E, be
the sub-set of E in which |f,| < u~} Ey=E—E;. Then

[, 17mla0 < [, wra0 =t = e,
and 1

L,‘ Ful 32 6 < Klpu™) = e,

-3
led9< {pu?)

j lfnld6<€(ﬂ)’
E
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8o that Y f2d0 is u.a.c. The sufficiency part of the theorem is therefore

established (in virtue of Theorem 18).

In proving the necessity part we may suppose that f Jf=d0 is w.a.c., and
also that f, (and so f) is non-negative (Theorem 18), and we have to estab-
lish the existence of a ® giving (1). Asin §4.52 we have L Jfrdf < K'.

0

Let Za, be a convergent series of positive terms, e, a positive function of
m tending to 0 as m—>c. Let T, be a positive increasing function and
E,, » the set in which f, > T,. Then

mmwg%h fudf < Tgujﬁw<T,
mn m, » m (n)

In virtue of the u.a.c. it is therefore possible (as a little reflection shows)
to choose the function T,, in such & manner that

@ j £,d0 < enan  (all m).
Em,n

Let us now define & () = t¢(t) where

¢(t) = 6;11 (Tm < t< Tnz+1)-
Then

@

fowa=(l, +5], , )i

< 27T+ 2 e j Sadb <L 27T+ ?am = K.
By

m=1
Cororriry 1. Suppose that fo—f p.p.in Ey, r>>1, and L [fal”d0 L G

Then J [flrde < j Ifn—f|d0—>0 and (a fortior) JEf” de__,jEfde

Jor any fized ECE, and f,, d0 s w.a.c. Finally we have
0

j lfn“f]’d@—)() Joro<s<r.

The first part follows from Theorem 11, the second and third from
the main theorem. The remaining last part is a consequence of the

1r
second and Theorem 1 (22), [since G |\ fo—f ]'d@) < 2K1/’_|.
E,

CoroLLarY 2.  Suppose that r>1 and J | fal"d0 < G.  Then
Eo
s:fnde 8 W.a.G.
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In fact the argument proving S | fa] A0 < e(u) is independent of the
hypothesis f,—f. £

4.61. ““Completion’’. Suppose that a function f is defined in a set
everywhere dense in E;, but not everywhere in E,, and let @ be the
exceptional set, 6, a point of it. Let us denote by A(6,, &) the set of
points 6 satisfying |0—6,| << 6. We shall define f(6, to be

1im [upper bound of f(0).1n A(B,, )],
—0

and shall denote by £.(6) the function that results from this completion
of the definition. [Taking the lower instead of the upper bound would,
of course, produce a different but equally satisfactory completion. ]

‘We often start from a sequence of functions f, which converges to
a limit f except in a null-set in E,. To ensure that f, is unique in this
case we lay down the conventions that ¢ is the set in which f, does not
tend to a limit (this phrase being taken strictly), and that f, is formed
from @ and the values of the limit function in Ey—Q.

‘We observe concerning completed functions :

(i) A point 6, belonging to @ is the limit of -a sequence 0y, 0, ... of
points belonging to €@ for which

fe(6p) = lim £(0,) = lim f£.(65).
1—>®

(i) If, by assigning appropriate values to f in @, it is possible to
obtain a function continuous in Ey, then f, is this continuous function.

4 .62. TaeorEM 20. Suppose that f,(0) is u.a.c. or u.b.v. in E, and
that f,—f n a set everywhere dense in Eo. Then f, is respectively a.c.
or b.v.; further, in the a.c. case f,—f, everywhere in E,, and morgover
uniformly.

We consider only the a.c. case; the other is simpler. Consider any
e, or (an, Bn) n =1,2,...,N). Some of the a, B. may be points of @.
Let us suppose, to fix ideas, that a; belongs to @, but that ho other a or B
does. Then q, is the limit as v— @ of a{, a point of CQ), for which

folay) = lim f(a(f')).

Then, denoting by e, the set of intervals e, modified by the substitution o
o for a;, we have

N N
2| fuBo—iad| = Jim (| FBI—Fe) 1+ 2 |/BI—f )
@) = lim lim ¢(f,, €.). ’

VP R N D
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Now me, < 2me = 2u (say) if v >y, and then, by hypothesis,
t(fny &) < e(u). Hence .
lim t(fn, &) < elw) >y,

and so, from (1), [ © K elp).

This proves the first part.

It remains to prove that Sa—>fc uniformly in E,. Given e there
exists a 8, independent of 8, such that

@) - A@)—fa@) | <e for |6—0|<é and all n;
moreover (since f, is continuous), we may suppose also that
® Lfe@)—f0) <e for |6'—0]|< .

Let us divide E, into intervals less than & by » divisions 6, 6,, ..., 6,

belonging to CQ. For a given A let now 6, be the division point nearest
to 6. Then

]fn(e) '_fn(er) I <e (&H n),

. fc(e)—'fc(er) l <e.
Finally, by hypothesis,

Ifﬁ(or) '—fc(er)! <e (71 > nr).
From these three inequalities we have

| f20)—F.00)| < 8¢, 1> Max (nq, g, ..., n),

and this completes the proof.

4.63. THEOREM 21. Suppose that Juo—>f in E,, or in a set cvery-
where dense in E,, and that r ~ 1,

9
f“ :'Lgnde‘{"c’n, Sn lgn ’Tde <G
0
Then f,= Sogde-{-c, where g is a function such that L ig]7d8 < G.

By Theorem 19, Cor. 2, fn 18 w.a.c. Hence, by Theorem 20, e is
a.c., and so an integral, say the integral of g. Consider now any ¢ and

the sum N]
— C(Bm)'— c(am) lr
8(f) = g:f# i

taken over e. Since f,— Jfo everywhere (Theorem 20) we have

8(f) = lim S(f,).
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Hence, since by Theorem 16 (converse part),

si< | larao<a,

thave also S(f,) << G. This being true for all ¢, Theorem 16 shows that
lglrd0 < G.+

9
4.71. TreorEM 22. Let fu(6) = S gndB+c, =1, 2, ...) be a uni-
0

Jormly bounded and u.a.c. sequence of functions. Then there exists a sub-
sequence f,,0), r=1, 2, ..., which converges uniformly to a funetion

(4

f (9)1=‘j 9d0--c, where g is some function of class L. If further r>1
1]

and SE | 9217d0 < @, all.this happens, and also JE lglrdo < G

Let 6,, 6, ... be the rational multiples of = in E,, arranged in any
way as a progression. By Theorem 5 there exists a sequence n;, ng, ...
and numbers a,, ag, ... such that, for each m, :

Sbr(em = fn,(em) —>an

as r—>o ., The sequence ¢,.(0) is u.a.c. (a fortiors, since f, is). It follows
from Theorem 20 that a. is the value at 6 = 0,, of a certain a.c. function

]

I r:J gdb+-c, and that f, —f uniformly in E, as r—> ». This proves
0

the first pait: the last follows from Theorem 21.

4. 8. Convergence in mean.

4.81. Convergence on the average. Let fi, f5, ... be a sequence of
functions, f another function, and let E (v, &) be the set (in Ky in which
|fi—f|>e If now, for each fixed ¢, lim mE(, ) =0, we say that

)

Jfn converges on the average to f (in Ej).

Tasorem 23. Let fi, fi, ... be a sequence of functions, each finite
p.p., Eu, v, € the set (in Ey) in which | fu—f,| > ¢, and suppose that
for each fized € mE(u, v, ) —> 0 as u, v tend independently to ® . Then
there exists an f and a subsequence (f,,), such that f..—f p.p. as r—> .
Also any two such f are equivalent, and f, converges on the average to f.

+ Theorem 16 has fulfilled its purpose- in establishing Theorem 21, and is never used
again.
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Conversely, if fn converges on the average to an [ findte p.p., then all the
other events happen,

It mE(u,v, & -0, then, given any convergent series Ze,, we can
find an (increasing) sequence 7,, 7y, ... such that.

ME (M, Npy1, €) < €.

Consider now the series

. ?fﬁ"r—f'nrq-l) = Eu'r-

If 6 does not belong to E, = 3 E(n,, Nr41, €) We have | u-| < e for

r >, and the series converges (absolutely). Since mE, < §er—>0 as

v— © the set in which the series diverges has arbitrarily small measure,
and consequently has rheasure 0. That 18, fu. —f p.p. (for some limit
function f).

Nezxt, given ¢, 5, we have

1) I.ﬂb—fn.— I <e

except in a set E, = E(n, 7y €), where mE, < provided 7 > u(e, 7),
7 > 7y(e, 7). Also, by Theorem 9, fa.—>f uniformly in CE, where
mE, <7, so that

@) fo—fl<e (r>mn

except in E,, Combining (1) and (2) for » = Max (15, 7,) we have
| fa=f| < 2¢ except in a set (depending on 7) of measure less than 2.
Hence f, converges on the average to f.

Suppose now that S and f* are two “limit-functions”. Then we
have simultaneously

Limfl<e |fa=f*<e

except in a set F,() whose measure tends to 0 ag 7 — . Since
| f—r*] << 2 except in E, it follows that the sef E() in which
| f—f*| > 2 has arbitrarily small measure, and so measure zero. The
set, ‘li_];ﬂoE(e), in  which f* 5= f therefore also has measure Zero,

and f*=7.
Finally, since
Eu, v, 2¢) E (u, oO+E@,e),

mE(u, v, € -0 for each e a8 u,v—> o if mE®W, ¢ >0 for fixed e as
v—> o _  This proves the last part.
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4.82. Strong and weak convergence. If A>0, f is of class L* and
L |fa—f'd0—>0 as n— ©, we say that f, converges strongly to f,
4

with index A.

The simplest case of strong convergence (and, incidentally, of con-
vergence on the average) in which we do not also have f,— f (p.p., or
indeed anywhere) is afforded by an f, whose graph is the real axis except
for an interval I,,, of centre P, and length 7, = o(1) (not too small), upon
which there is a steep peak, the set of P, being everywhere dense in E,.
For example, we may take the point 27 {n4/2} (where {z} denotes x
less the integer nearest to ) for P,, n~* for'Z,, and f, = a* or 1 respectively

in I, (and zero elsewhere). Evidently J frdd—0 if r<<2 in the first
E,

case and for all 7 in the second ; f, converges strongly to 0 with index 7.
On the other hand, familiar facts about rational approximations show
that any 6 is interior to an infinity of I, (and, of course, exterior to
another infinity), so that lim f, exists for no 6.

Ifr>1,
) | nre<e,
and
(2) there exists an f such that for each 6 of Eq

[0~ 7ae

we say that f, converges weakly to f, with'index r. Two “limit-func-
tions’’ of the same sequence are necessarily equivalent, since the integral
of their difference is identically zero.

We observe in passing that, subject to (1), (2) must hold for all 6
if it holds in a set of 6 everywhere dense in 6 (Theorem 21).

The simplest example of weak convergence is f, =sinnf. f, con-
verges weakly to 0 with any index r > 1 (by Theorem 8).

4.88. Tueorem 24. If f,—f p.p. in By, r>1, and SE |f-"d6 < G,

then j |fu—f1d8 — 0 and (a fortiori) fu converges weakly to f.

This is merely a restatement of Theorem 19, Cor. 1.
TreorEM 25. If f, converges strongly to f with index r> 1, then

fa comverges weakly to f with index r. Also L | fu |'d9—>L‘|f|’d6 as
n o ¢f ECE,
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The last part is a case of Theorem 2 (18), and it shows incidentally

that j [fal"d9 is bounded. Also j | fa—f1d6 — 0, by Theorem 1 (10).
Ey

Eo

4.84. TuEOREM 26. If f, converges wéakly to [ with indezx r and
constant G, then

" i w|"d0 < G.
J’E.,,fl a0 <nh:nl:c JEn,f "6 <
It follows first from Theorem 21 [with f, for g,] that L' |f]7d0 < G. Next,
if ll@j |fa|"d0 =1, there exists a sequence (12,,) giving JE | fanl"d0—1, or
Eo o

j%|fn,” ["d0 < l4e (m > my).
Since the sequence fa, (M=>mg) converges weakly to f with constant
I+¢ we have jﬂ [f17d8 < I+¢, whence the result.
It is false that
L.,I f17d6 = lim onl £7d0;
a Gegenbeispiel is f, = sinnf, f = 0.

4.85. TrroREM 27. If J/n converges weakly to f with index r and
g belongs to class I then

L Jrngdo —>JEfgd6 (EcCEy

as n—> o,

We may suppose (by taking g =0 in E,—E) that E = E,. By
Theorem 6 there exists a step-function ¢ in E, for which

j‘Eo lg—o|"do <.

By Theorem 26 f is of class L"; hence, by Theorem 1, fng and fg are
of class L. Then

HE‘,f""d"“L,,fgde <UEo(fn—f)¢d6| + L.,(f;‘_j) (g—¢)db |.

Since ¢ is constant in stretches the first integral on the right is of the
form

R 10— (ru=pas).
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and tends to O in virtue of the hypothesis. The second term on the right

does not exceed 1
(I, 7=r1ra0)" ([, 1g—s1ra8)".

of which the first factor does not exceed

(r709)"+ ([, 5re0) "< 0

and the second does not exceed /. 1t follows that

UEof"g a6~ 798| <o-+e),
and so that

Lﬂ Foagdd —> Lzo Faao.

4.86. TeeEorEM 28. Suppose that r > 1, J [ ful"d0 < G. Then
Eo
there ewists a subsequence fn, converging weakly () to some f

0
( Jor which L} [ flrae << G), the convergence of 5 S, @0 to _r fdoe being
0 ) o

moreover uniform.

Cl
Fo.(0) = j f»dO is the general term of a u.a.c. sequence (Theorem 19,
0
Cor. 2) ; also
17l <[ 152126 < 2w () < 2mE,

By Theorem 22 there exists a subsequence F,, converging uniformly

m

to some F(0) = j fdO. [The constant ¢ is zero sinece F,(0) = 0, and so

F(0) = 0.] This proves all but the pa.reuthesm, and tha,t follows from
Theorem 26.

4 .87. Teeorem 29. Let (f.) be a sequence of functions, each of
class A > 0, and suppose that for each given e

SEOIfF—-f,, *dO < € (,u, v > Vo(e)).
Then,
(1) there exists a subsequence f,., converging p.p. to some f of class A.
(2) any two limit functions f, f* of this kind are equivalent,
(8) f. converges strongly (A) to f,
(4) f. converges on the average to f.
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‘With the notation of Theorem 28 we have

mE(u, v, 1) L 0™ j’m | | fu—fo 1O < eny™ (,u, v > Vo(e))-

Hence for each n mE(u, v, ) >0 as u, v—>o and (1), (2), and (4) follows
from Theorem 28, except that we cannot conclude that f is of class LA,
Finally, if 2 > v,

|, J7—Airae = tim | fi—rlra0
< ﬁr_l_lﬂfnm—fnl"de (Theorem 11)

< Jed@ = 2me,

by hypothesis : f, converges strongly (A) to f. Incidentally this shows
that f is of class L*, and the proof is completed.

If A =k =1 (the most important case) it is possible to give an alterna-
tive proof of (1), (2), (3). This does not depend on the idea of average
convergence, or on Theorem 9 (but results from combining the argument
of § 4.81 and the proof just given).

Let Ze, be a convergent series. In virtue of our hypothesis we can
find an increasing sequence (n,) such that

1 ' 1
§;SEO|ur|'-de = ErSE(l|ﬁh’l_ﬁ,r|kd9 <é
Then LS PR P
27 Fo T X 6r
. N v
and lim J <2|ur;)d6=2J. [, ]| d0 < 27 Se,.
N—=>o JH \1 1 JE

By Theorem 11

J’F (%Iu,|)d0=‘[1im gﬁ_n1j<2w25,.< ©,

N—>wn

the integrand is finite p.p. and Su, is absolutely convergent p.p. In
particalar f, —f p.p. (for some f). But now

JalFAlas = [t | £ ra0 < lim (< >,
By By r—> 0

and f, converges strongly (k) to f. Thus (1) and (3) are proved, and
(2) is a case of Theorem 2 (19).
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Finally, if A = r > 1, there is another proof of (8) which is worth our
notice.
If v > v(1) we have

Jalpparas<a, | nra< Aty [ |fulas,

so that we have, for all =,

| d0 .
JplArae<e

By Theorem 28 there exists a subsequence f,. converging weaklyto some f.
Since f.,—f. converges weakly to f—f,, Theorem 26 gives

7 < tm | 1 f—pala@<e @>np,

and this proves (8).

5. Fourier series.

5.1. Notation. In what follows we suppose always, unless the
contrary is stated, that f(6) is of class L and has the period 2r. The
constants )

= au(f) == | f0) cosndaf
1) 1 ; (n > 0)
b, = 0,(f) = —;S f(6) sinnddo

are called the Fourier cosine and sine coefficients of f. For negative n
we define

(2) Ay =0_y, bp=—b_p (=0

(and these equations are then valid for —o <n < ®). The constants
(8) Cn = Cuff) = %S f@ e dl (—o <n< o)

we call the complex Fourier coefficients .of f (even if a,, b, are com-
plex). Clearly

(4) Cn =— % (an - ibn) .
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We indicate the relations of the a,, ba, ¢x to f by

®) gt 2 (@08 20+ b, sin ).
1
©) f~ E one,

in which there is no implication that the ‘‘Fourier series’” on the right
are convergent, or that if they are convergent the sums are equal to
f©. It ¢,=0 for n<<O the ““Fourier series’’ is said to be a ‘‘Fourier
power series”’. The condition for this in terms of the a,, b, is that
b, = i@, for all positive n.

We write also

N a, = ,(0) = a,co8n6+b,8mnl (—ow <n-<< o)

We have the following identities, in which we suppose n >0 :

©® 5= 5.(0) = oot >’::a,,,<e) = 3o+ f?:l(am c08 mO+ by, sin m0)

n
= = cn ™.
-n

O o= o, = 2OF5OF.. +5,0)

n

= }ao+ g (1—-171> Qm

m=1 n

Considered as derived from an f of which the a’s, b’s, and c¢’s are
Fourier coefficients, s, and o, are also written s,(0, f), &.(6, f).

»

We observe that if Py is a ‘“trigonometrical polynomial” 2 wu,e™
-N

then

Sn(PN) = P'm O'n(P_V) _= 2 (1‘—' 1—:’;“|> u,,,em“ (N > n > 0)

In particular we have
snlsw(N} = (), aulsw(H)} =oa() it N>n>0.

n (4 N
For, e.g., s,(PmM = 2 (1 J (2 u,e'“)e“”’"ide} e,

m=—n 12—'; -N

and we have only to integrate term by term. For a similar reason a
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uniformly convergent trigonometrical series is the Fourier series of its
sum. '
‘We write further

(11) o) = 3 {0+ 0)+F6——2f(O)},

(12) @m=£wmm,%w=£@w&a
1t 161

(18) @m=&|wmw,@w=ilmwwa

5.21. Treorem 80. If f is of class L then a,, by, c¢,tend to zero as
n->©. If f is b.v. they are of the form On™Y; if f is a.c. they are of
the form o(n™"). In any case

el < | IF188=1 [al<2r [bl<or

The first part follows from Theorem 8. For the second we may
suppose f real, positive, and decreasing (Theorem 14)t, and then, by
the second mean value theorem,

0
Ty = f(—m) { ' cos n0d0,

where —7 < 6, < n. This gives a, = O(n~?), and the result for b, is
proved similarly.

0
If f is a.c. it is an integral : say S g(®dt+c. Then for n>C,
0

T T 9
j feosnBdd = S (j g(® dt) cos n0do
—r - 0

__[sinnd * i ___1__5"' . _ -
—*I: " Lgolt-l_’r p _wg(G)smnGdO—O-l:o(n ),

by the first part.
The last part follows at once from the definitions of a,, ba, ¢y

5.922. TusoreM 81. Suppose that (f is of class L and) f ~ Zcne™,
]
and that F(6) = jf(t) dt—co0. Then
0
en® ==L 0.

+ For once, of course, we drop the convention f(—=) = £ ().

E2
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For o
en(f) = -21751”](9) e~™idf = §17,;[F(6) g—mbi “”_1_ 7227";'-_5_"1;'(9) g=moi g
= 0+ micn(F) = mica(F),
since Fr)—F(—m) = || £6) d0—2mey = 0.

5.31. TaeoreM 32. Suppose that f belongs to class L. Then for
any s

m 1 L
®  s@—s=gp {re+o-sieua=L] g0 0

-

. 1 "
@ e@—s=g[ {70+ Boat="1[ 0 B0 a,

bt

where

_ _sin(nt3)¢ _ _
@ QO=Qo=""TF E®=R(0=

so.-that @ and R are even functions of t, R(t) = 0, and

sin? dnt
nsin? 3¢’

) —:FKQ(t) dt = —;_—j:R(t) dt = 1.

We have, writing u,, = 1—|m|/n (and recalling that f is periodic),

n

6',,(6) = F': Um cmemoi =3 umewié_];_r‘g f(t) gl

-n n

= ._'!'._ 3 i ~mii
= 5 f.‘; ume SO+ e midye,

and so, since o,—s = o (f—3),

ou@—s =5 _%u,,,j"_"{f(aﬂ)—s} o= g = 2—17;5" {FO+t)—s} Rt dt,

—_—1

where RB(t) = 2 une ™, This sum reduces to the form in (8) by ele-

mentary calculations. The case of s, is similar [we have u, = 1 (m == 0),
uy=14]. We thus obtain the first forms in (1) and (2). The second
forms are derived by associating the values of the integrand for —t and
+t. Finally, if we take the special f for which f—s =1 we have
¢ =1 1in (1) and (2), and this leads to (4).

5.82. TuEoREM 33. The upper and lower limits as n— of s, and
on 6re unaffected by any change in f(0) outside an arbitrarily small
interval (0—8, 6+44), provided only that S remains of class L in E,.
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In fact
@ [ 16+ rr0—0) Quat | = ||, x0 sin oty et
when x(8) = {f(O+8+7O@—1)} cosect; and since (for § < =)
Jolxlae < cosee3a [ (10401 +1 7601
2cosec;~8J' 17| dt < o,

the right-hand side of (1) is o(1) in virtue of Theorem 8. Also (for o),

@ 2cosec 34 j’

j:sb(t) E@)dt| <

1 T
‘n—L |x | cosec3tdt << [F()] dt= o)

5.33. When a trigonometrical series is umformly convergent it is, as
we observed in § 5.1, the Fourier series of the function f(§) that is its
sum, and then f() is represented approximately by the polynomial s,(6)
when 7 is large. This is a desirable state of things, but in general no-
thing so simple is true. In the first place the ¢, are unaltered if we alter
f(6) at a single point ; hence the series and the value of f(6) have, at an
assigned point, no particular connexion. This fact suggests negatively,

and Theorem 33 suggests positively, that the ‘‘average of f at 6, that
is to say

im L [ so9d
m oo | A0+

or the limit of some higher mean, is the number, if any, to be associated
with the series at the point §. Secondly, the series may fail to converge
at some or all points §; we may then inquire whether the arithmetic
mean o,(f), or some higher mean of s,(f), converges to a limit in place
of s,(6). What is actually true (though the proof would take us too far)
is that if some average of f exists at 6, then some mean of s,(f) con-
verges, and to that value. Now for most important purposes the con-
vergence of a mean of s, is quite as good as that of s, itself. As for the
distinction between f(6) and its average, there are two principal cases.
In one f is continuous, and so everywhere identical with its average; in
this case the facts are that o,(6) > f(6) uniformly. In the other we are
satisfied with convergence p.p., and it is a classical result of Lebesgue
theory that any f(6) (of class L) has p.p. an average equal to itself. Here
the facts are that o,(9)— f(6) p.p.

The ‘“‘convergence problem’” proper for Fourier series, that is, the
question under what circumstances s, (§) tends to a limit (for a particular
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8 or for a class of 6), forms for the most part a curiously isolated portion
of the subject, and we do not need to discuss it.

5.41. Tarorem 34 (Fejér). If f(6) (or any function equivalent to it)
is bounded above, or below, or both, then, for every value of n, o,(8) has the
same bound or bounds as f. If f()<<C®) in 0<|t—0]| <3 and
C = lim C(J), then lim o, (9) < 0, and similarly for lim a,(68) and a lower

550
bound _()]’—-hm C'0). If f(6) is continuous in Ey, o0,(0) is continuous
&—>0

in Eq untformly in n.
Suppose, e.g., that f(0) < a. Then, by Theorem 32,

27

since the integrand is non-positive. In the second part, e.g. in the
case of an upper bound, we may suppose, by Theorem 33, that f << C(9)
for all . Then Tim ¢, (8) << C(6), and so lim ¢,(f) < C. The last part
follows from the first since Agy = o (B+ 1) —aw(6) = o {Af}.

o0 —a = L1 Y {f0+D—a} B(dE O

5.42. Taeorem 85. At a point of continuity of f(6), o, (6)—>f(6) as
n—>w. If fis continuous in Eot, then o,(0)—f(0) uniformly in E,.

6 w
We have  w(o,—f) = L $o(t) R(D) dt+L o (t) R(2) dt.

Since md <t <<

| 900 | B < 1|70+0]+ 06— +2170) ]} 22,

we have HS‘I 409 {A[f(@)]-utj [f(t)ldzf_o

and uniformly in the second case of the theorem. We have further, in

the first case, | p| <e in 0 < ¢ < 6 by. choice of 6, and in the second
case this result holds also umformly In 6. Hence

lon—f|<eto() (n>ny)
In either case, and uniformly in 6 in the second case.
5.43. We denote by A the set of 6 in which, for every ¢,
L fe+—cldt) = 70—
dt

T Remember we are supposing (as usual) that f (—n) = f(m).
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at £ = 0. Tt is a classical theorem of the Lebesgue theory that CA is

null. For any point 6 of A we have, as t — 0 (by positive and negative
values),

t
W [ 1ero—f@lat=o6, S0=o0m B0=o0.

-~

TrEOREM 36. For any values of 0 and s for which ®*@) = o(f) we

have o(6) —s. In particular, at every point of A, and therefore p.p.,
we have o,(6) — f(6).

By Theorem 33 it is enough to prove that

s 5
L‘P(t}R(t) dt[ < j g R@ dt < e(®) x> ny),
or that 0
] . 2
n Ll ¢| X(nt)dt < e(®), where X(w) = (&11.@) ]

u
Now

nS || Xty dt < n r- |¢|dt = n®*(n~") = o(1),
0 0
by hypothesis, and

') ™
nj . [¢ | X dt < n S _1]—% = oY
where " "

o) _ ("leldt _ [R*W)T TP*w)du _ P*(r) , (T (1
u —J £ “’[ u* ]u+25 d =T +JO<7)du%

w W

n

< OM+om™)

a8 4 — 0. It follows that ()= 0(1), and this proves the theorem.
(Actually op—>s if ®() = o(¢) and *(t) = O(t), and subject to the
second condition the first is necessary as well as sufficient. ]
Theorem 36 is a suitable text for the following remarks :

1. Suppose we are concerned with a theorem which asserts that some
relation, say the convergence of a sequence, holds p.p., .. holds except
in a null-set Z (and suppose that the premisses of the theorem do not
themselves involve exceptional null-sets—if they did, the presence of one
in the conclusion would call for no remark). If now we happen to be
told what set Z is, what remains to be proved is a pure approximation
problem, one of proving that a certain function of n and a fixed parameter

+ The contribution of the lower limit of the bracket being negative.
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¢ tends to a limit under certain conditions (those which express that 6
belongs to CZ). The search for an exceptional Z is therefore often the
best line of attack on the main theorem.

9. An exceptional set Z is generallyt the set of points 6 at which
some function (not always the first' to hand) is not the differential co-
efficient of its integral. This is why so many proofs begin with an
integration by parts, and it is why we sometimes [as in Theorem 44,
proof (ii)] introduce an integration where it has prima facie nothing to
do with the problem.

5.51. We proceed now to problems of strong and weak convergence.

TeEEOREM 87. Suppose that ® is periodic, and that
1 ko
40 =5 | sO+0HO,

where H(t) =0 end My(H) <1. Then
M) < Mi(®) (B> 1)
We may suppose M;($) < . Then, by Theorem 1 (4),

por<L[ et (L moa),

and the last factor does not exceed unity. Integrating with respect to
6 we have

M) < 5 j" ME®) H () dt < M),
TrEOREM 38. If (f is of class L and) k > 1 we have

| @0 <I= 176} ab.
Eo E.

Ko

This is a case of Theorem 37, with f for ®, o, for ¢, and R for H.

5.52. TrroreM 89. Let k>1 and let f be of class L*. Then, as
n—>®, o, converges strongly to f with index k :

jE L rn()—f(6) |26 —0.

Since o,—>f p.p., this follows at once from Theorem 38 and
Theorem 18 (3).

t Theorem 923 provides an exception.
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An alternative proof proceeds as follows (and does not use Theorem
13). Weé have, by Theorem 37,

jiwla'n(o)—f(e)lkde = f_" do (é% F {fO+—Ff(O)}R(®) dt)k

<s| FoROU =000, B),
where F(t) = Sﬂ |fO+4t)—f(6)|*d6. Since F is continuous at =0
(Theorem 7), ¢,(0, F) = o(1) by Theorem 85.

CoroLLARY. If fi, fs have the same Fourier constants, then f, = f,.

For if f = fi—fs, ou(6,f) is identically zero, and

j | o f | d9—0
requires f = 0. "

We use this result in the sequel only in the last of the four proofs
of Theorem 43 (it is itself an immediate corollary of that theorem), and
the reader who is not interested may ignore it. For proof (iv) of
Theorem: 43 to be genuinely distinet from the others, however, it is
necessary to prove the present result without using ‘‘summability’’ con-
siderations. We give accordingly another of the many existing proofs.

Let |a| < m, and let g(6) be the function that is unity in (0, a) and
zero elsewhere. It is elementary (and well known) that

g(6) = % (vm cos mO -6, sin m6)

for all § of E,, the sum 3 being uniformly boundedt. Hence
0

L F6)do = L Fgdb

= lim j’" f > (ym cos mB-4-6,, sin mB) d6,
0

n—>rw J—r

by Theorem 10,
= lim 2 (ym@n~+6,bw) = lim0 = 0.

The integral of f is identically zero, and f=0.

sin ma 1—cos ma
= snma . 2GS Ly~ 0).
+ Actually Ym — 1 proy (m ~0)
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5.61. TueoreM 40. If f. converges weakly (r) to f, then for each m
lim ¢, (f) = cn(f)-
n—yn

We have only to take g = ¢~™* in Theorem 27.

TaeoreM 41. Suppose that r > 1, that ..., c_,, ¢y, ¢, ... are arbitrary

numbers, and that s,(0) = Z cue™, 5,(0) = {5,0)+... 45,10} /n.
-
Suppose further that either

o -21; SF 15,0730 < G (lln),
or )

1
@) 57751:0] @ ]"ddL @ (all ).

Then there exists an f(0) of class L” for which
@0 3 1 ,
f~ Ei cme€™,  and - onlfl a6 < G.
Since by Theorem 2 (2)

(i) < 5 (] o)

(2) is a consequence of (1), and it is enough to prove the result for con-
dition (2). By Theorem 28 there exists a subsequence o,. converging

weakly to some f for which 2——:;_& |f1"d0 < G. By Theorem 40
Eo
=1 =1 — =,
¢,(f) hmmc,(a-,,m) lim Kl 'nm) ¢, =20,;
that is, f ~ Z¢, et

5.62. TEEOREM 42. Let f be of class L and r>1. Then (i)

W 5 loa(®) |fde->j @) 78,
Ey Ey
whether the right-hand side is finite or infinite; (ii) the necessary and

sufficient condition that j’E |f17d6 ds fintte ws tkatS Lo, (0)17d0 s
bounded. ’ o

If the right-hand side of (1) is finite, then o, converges strongly to f
by Theorem 389, and (1) follows by Theorem 2 (18) (and a fortiori
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Sz:: |on|"d® is bounded). If L loy|"dO is bounded then j | firdb is
) ) Yo By
finite, by Theorem 41. These facts establish both parts of the theorem.

5.7L. TrroreM 43 (‘‘Parseval’’). Suppose that f is of claés L.
Then

$= Slal=1{al+3 (wltnn) == Zl;j £ 2 o,

where either side may be +  (and f may have compler values).
In the first place the two infinite series are equal, since
lutiv P4 |u—iv P = 2(|u |2+ |v P
even when % and v are complex, and so

leal®+leonl® =3 @ul"+ 8a ).

We need, therefore, only consider the ¢, series. We observe further that
the theorem is elementary when f is a trigonometrical polynomial

N .
2 c,e™. TFor then

-N
1 (" N N A 1 N .
Jr= —S (E cne"® 2 E,,c‘”‘”) a6 = —S 2 CmCnd™™%dp,
27 ) \¥ N 2T J—n mn=-N
and the integral of the general term in the last sum is 0 or 2r|c,[®
according as m = n or m =n.
We give four proofs of the theorem, in which the depth of the *‘sum-
mability’’ theorems appealed to progressively decreases.

Proof (i). By Theorem 42,
1

erlwnlade

J?=lim
n—yw
n N 2
= lim X ( — L@) 2k
a n
(by the special case of a polynomial f). On the one hand the right-hand

side is not greater than
lim 2 |enl2= S,

N0 —N
and on the other, if N is any fixed integer, it is not less than

N 2 N
lim = (1—‘—’"—]) el = Z lenl’,
n N

n—>»»o —N

so0 that it is not less than S* Hence J? = 8%

-4
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We need not, however, appeal to so deep a result as Theorem 49. In
the first place the inequality S? << J? is elementary. We have, in fact,

0< L f—n|2d0 = L (f—s F—m) d6
— Y_,l f|2d6+j:r]s,, Pdo—2 _%n ’&Y_, Fomemd0
= 27rJ2+27r%[0m| 2—dr _nEnI en |t
_%Icml’ <7, ST

It remains to prove the complementary inequality J2 < 8%, and here
our remaining proofs differ.

Proof (ii). Since |c,|*—|f|* p.p., we have, by Theorem 11,

.1 ( 1 (..
lim - j_” loa |26 > o= Shm = J3,
which is

P [m]\2 2 2

lim (1——;7) lom|? > J2
From this we have, a fortiori,

IP<lim 2 e, | = 82
The remaining proofs apply (at least in their most natural form)

only when J << «. In this case § << J is also finite.

Proof (iii). Here we assume less than the proposition “o,— f p.p.”,
replacing it by Fejér’s theorem. The function

& 20 =2 | fe+ofma

is continuous, by Theorem 7, Cor. Also
) =g | [ f6+0F@emarae

= cm(ﬂ cm(f) = Icm lﬂ-
By Theorem 335, therefore,

5 lim (1— ‘—’;‘J) leal? = lim 0,(0, ¢) = $(0).

—N N—po
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The left-hand side is S? [by an argument used in proof (1)], and
¢(0) = J2

Proof (iv). We argue, as before, that ¢.(¢p) =|cn|®. Then ¢ and
the sum of the absolutely convergent series
§ | |2 €™
have the same Fourier series. By the uniqueness theorem (Theorem 89,
Cor.),
Z |em|?e™ =90

Since both sides are continuous the equivalence involves identity : taking
6 = 0 in this we have

$2=¢(0) = J=
CorOLLARY. Suppose that f and g are of class L?, and that

f~Zcae™, g~ Zche™.
Then

S cnctns H{Baptht S @uah b0}
—w 1
are absolutely convergent, and have the common sum
1 ™
2—7—‘_ S‘"fg dé.

Since c¢nclntc_nch = 3(@nan+0,0;) we may confine ourselves to the
second series. The absolute convergence follows from that of =] ¢, | and
Zlen|? In proving- the identity we may suppose (by taking real and
imaginary parts and considering separately the four terms thus arising
from fg) that f and g are real. The integral

1 ( 0g0 = L (7 2
| groras = L[ irrepras

-

is equal, on the one hand, to

@) Haota) +2 @t e+ Gat b,

and on the other to

@ ij" a0+ ij" ﬂde+ir fgd6
27 ) _» 2 ._,,g - _,,g -

Hence (1) and (2) are equal, and by subtracting the equation corre-
sponding to the minus sign from that corresponding to the plus sign we
obtain the desired result.
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5.72. TEEorEM 44 (Riesz-Fischer). Suppose that the c, are any

numbers such that § | cu |* converges. Then there exists an f of class
L? such that f ~ 5 Cn €™,
This is an immediate corollary of Theorem 41, with r = 2, since

1 n
5e | lenlta0 = Blen?< 3

On account of the great importance of the theorem, however, we give
two more proofs. Let
n
Jo=2Z cne™.
—-n

Proof (i1). If n=m>0
kg n w
5 If,,— 2 12d0 = 27 = 1(l c,|2+|c_rig)< 2 21< e (m>=m>v).
- r=m4 m+
By Theorem 29, f, tends strongly, and therefore (Theorem 25)
weakly, to an f of class L?. Hence (Theorem 40)
¢ (f) = lim ¢.(fa) = ¢
that is, f~ Zc,e™". ~
Proof (iii). Let
]
Fa0) = Lf”de—'co =3 cm (6 —D,

F@O) = lim F,(6) = §' L (i),
N30

-0

the last .series being uniformly and absolutely convergent in virtue of

Cn (gmei_1) l < 2lenl (l om 2+ 771?)

me | m |

and the hypothesis.
Since
-L |f2]2d0 = 27 2 |cn!* < K,
o —-n
F, is u.a.c. (Theorem 19, Cor. 2), and so (Theorem 20) F is of the form
0
Lf*de. Let now f=f*-+c,; then, since F(w) = F(—=), we have

¢ (f) = ¢,
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If now 7= 0, we have

% = o.(F)
= c,(f—’—co) = c,(z") (Theorem 81).
i T
Thus ¢.(f) = ¢, for all r; or f~ Zcme™.

Finally
f 171?d8 = 2 £ |ea? < @

by Theorem 43, so that f is of class L?. [We may avoid this appeal to
Parseval’s theorem by using Theorem 21 in place of Theorem 19, Cor. 2,
when we may conclude that f* belongs to class L2.]

The reader should trace all the proofs back to first principles.

The first proof uses the selection principle, the second the (rather
deep) existence of a convergent sub-sequence in strong convergence.
The third is the most direct, and constructs (more or less) a definite
function f. The underlying idea is that a function of class L? and its
Fourier series are at least sufficiently closely related for the indefinite
integral of f to be equal to the sum of the integrated series (the latter
being uniformly convergent) ; and to construct the integral is to construct
the integrand.

The reader may be referred also to the remarks at the end of § 5. 43.

5.81. TeEOREM 45. Suppose that A= 0 and f is of class L*. Then
there ezists a trigonometrical polynomial

N
¢(0) = 2 (¢, cos nO+-d, sin n6)
0

such that

1) |f—¢| <e exceptin a set of measure less than 8,
L[ g x

@) %Lolf #12d6 < &

If further f is bounded above, or below, or both, then the polynomial
¢ can be found also with the same bound or bounds.

This is an important extension of Theorem 6. By that theorem there
exists a continuous Y-, with the same bounds (if any) as f, and satisfy-
ing

3) |f—V | <e exceptin a set of measure less than d,

@ - L;o' FARVALVT I
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If now ¢ =o,(p) and 7>ny(e) it follows, by Theorem 84, that
¢ has the same bounds as Y+ and therefore as f, and, by Theorem 35,
that (if n, is suitably chosen)

6)] l¢—V | <e (ll @),
80 that further
1
©® [ lo—vrar<e,
From (8) and (5) we have

) |f—¢ | < 2 except in a set of measure less than 8,
and from (4), (6), and Theorem 2 (16),

® [ 17—Pas< s

(7) and (8) complete the proof of the theorem.

Cororrary. If f is of class L, then there exists a polynomial
N
“Px(0) = Z u,0"
0

such that |f—Px| < e except in a set of measure less than 8,

1 A
and ﬂjﬂogf—lm 6 < &

Let Py(6) be the sum of the first N41 terms of the expansion of
¢(0) in powers of 6. Then, for fixed ¢, |¢p—Py|<<e for all 6 provided
N> N,. The argument can now be completed as in the proof of the
main theorem.

5.91. LEMMA. Suppose that f() is of class L, and that h(6) is
bounded. Then
limS Flh—aa()}d6 = 0.

n—»o JEp

By Theorem 86 o,(h)—h—>0 p.p.; hence, by Theorem 9, o,—h—0
uniformly in CH, where mH << 8. Since further (Theorem 84) |0, | << K,
where K is a bound of |A|, so that |on—%| << 2K, we have

_Lof(h—-au) dO' < LHIfI |h—o, | dO+2K LI 7lde,

< j | fled0+2Ke(d) (n> ngy
cH

< EJE |f|264-2K e(d).
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The right-hand side can be made arbitrarily small, and the result
follows.

5.92. We can now prove the following extension of Theorem 3 :

TrEOREM 46. Suppose that r>1, [ f is of class L+] and

ey

1
5o SE., fgde, <UV

for every trigonometrical polynomial g satisfying

1 "
@) ij 6= 7> 0.
Then
1 r b
) 2—7;onm a0 < U

Let h(6) be any bounded function satisfying

1

@) 2

Then I say that
()

j |h|7do = v~
Eo

1
’—2—;Lofhd9l <UV.

By Theorem 38 we have
1
27
where V= V,(n) < V. Also h25.0, so that V; >0 (n>mny). Then
g = o, (R)V/V, Is a trigonometrical polynomial satisfying (2). Hence,
by hypothesis,

[, lowtr a0 = vy,

1 1
(6) }é; onfU'n(h) dO, < ’Q——fr JEofg dG' STV > ny.
But by the lemma, as n—>wo,
J I
| Flhi—aat)} 480,
(7) 27_I_J'Eof(b G(L)} —

and (5) follows from (6) and (7).
Since (5) holds for every bounded & satisfying (4) the desired result
now follows by the original Theorem 3.

t This is, strictly speaking, implied in (1), since that asserts, among other things, the

existence of the integral on fgde for a certain consiant value of g.
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6. Some theorems of analysis situs.

6.1. A domain is defined as an open connected set of points. The
symbols D, A, occasionslly d, 6, are used for domains. If z, 2, are any two
points of D, it is known that 2, and z; can be joined by a (rectilinear)
polygon lying in D. We denote the frontier, or boundary, of D by F(D),
or sometimes F. D together with its frontier is denoted by D' : this is in
accordancé with the ordinary notation for derived sets. We use the nota-
tion D_ to denote a domain with the property (D-)' € D; the *“ distance ”
of D_ from F(D) is then positive.

By “closed contour” we mean a closed simplet Jordan curve; by
“curve” we mean a Jordan curve. By a curve “extending to ®» ' we
mean a locus z = ¢(¢), y =1-(¢), where ¢(¢), V() are continuous for
every ¢ satisfying (say) 0 < ¢t <1, and ¢’+* tends to infinity as ¢— 1.

We take as known concerning a closed contour C that (1) C divides
the plane into two domaing, an interior and an exterior, and the latter
contains all distant points; (2) these domains are simply-connected, a
simply-connected bounded! D being defined by the property that any
closed contour consisting of points of D contains in its interior no point
of F(D); (8) if z = 0 belongs to the interior of C, then

Ag arg 2 = increment of arg z round ¢ = 2.

We shall take for granted some other, but minor, points of analysis
situs ; in particular, that if a domain A is in one-one continuous corre-
spondence (point by point) with a simply-connected domain D, then D
also is simply-connected (more generally A and D have the same con-
nectivity).

6.2. Further properties of a closed contour C and its interior D.

(1) Let A, B be dustinct points of C. Then C divides into C,, Cy,
with no common points except A and B.

(2) 4 cross-cut q (simple curve lying in D except for its end-points)
from A to B divides D into q together with simply-connected domains
D, D; without common points. D, has q+C, for frontier, Dy q+Cs.

These results are well known.

(8) Given A and B, there is a cross-cut q joining them.

+ I.e. without double points.

1 The case of an unbounded domain being dealt with by the usual processes of inter-
preting statements about z =,
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This is equivalent to

(4) There exists a simple curve L joining an interior point O and A
and lying (except for A) in D.

‘[For, if L,, L, are simple curves joining O to 4 and B respectively,
let P be the last (on Lg) intersection of L, with L,; we go from 4 to P
on L,, then from P to B on L,.]

Proof of (4).—We may suppose that the range of t is —7r < t L ,
that Bis ¢t = -, and that 4 is {=0. Let P be the variable point ¢
of the curve. The distance 4P = p(?) is a continuous function of ¢ with
t =0 for its only zero. The circle K, with centre 4 and radius 7 less
than AO and 4B, cuts C where p(t) = 7, and this has solutions. (P is
inside K when ¢ = 0, outside it when t = +=.)

Let L(r), I(») be the upper and lower bounds of the moduli of the ¢'s
for which p(f) = r. Then, since p(f) is continuous, p ( L(r)) = p(l(?‘)) =r.
Also 0 <I(r) < L(). and L()—>0 with ». [If imL = 28> 0, then
L > & for some arbitrarily small 7; r = p(L) = mm p(t)>0; and this
is false.] 1=

Let u(r) = Il\lc[m p®. Clearly 0 < um L .
tl2l(»)

The circumference K contains points of D, for its interior contains the
neighbourhood of 4 and its exterior contains the neighbourhood of B.
These points of K interior to D fall into a set of non-overlapping ares.
These, taken closed, are cross-cuts of D. I say that some of these cross-
cuts g\, qs, ... separate A and B, i.e. join a P, (P of positive t) with
a P_. Suppose not. Then every ¢’ joins a P, toa P, ora P_toa P_.
Let t,, t; be the ends of ¢j. Let C; be the curve derived from C by
replacing the piece from ¢, to ¢ by g1, described by a parameter running
from t, to . Let g,, be the first ¢’ that is a cross-cut of C; (or D), and
derive C, similarly, and so on.t The infinite process yields a Jordan eurve
C., since for any ¢ between = there exists a definite point, continuous in ¢.
Also 4 belongs to C,, since 4 never lies on a rejected piece (the ends of
rejected pieces have ’s of the same sign and magnitude > 1. So, clearly,
does B. C, is clearly simple, and encloses & D, . Also C,C D'; hence
D.c D. But now the circumference makes no cross-cuts in D, and this
is impossible.

Let ¢y, o -.. be the set of cross-cuts separating A and B; ¢ =q@)

+ No ¢’ joins a ¢ between ¢, and ¢{ to one outside this range, by (2) and the fact that two
¢' cannot intersect.

F2
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that one which C, described positively from 4, first meets; and let
d=d,r)=d)

be the domain, with 4 on the boundary, that ¢ cuts off [see (2)]; m(r)
the upper bound of the distance of a point of d(r) from 4. Then I say

) m(@)—>0 as r—>0.

For if C;+¢ is the boundary of d(r), C; corresponds to a range of ¢ of
type —r < t < 7'; also the extreme ¢ correspond to the junctions with
g, for which p(f) = r. - Therefore |t| < L(r) on Cy, and

Max p(f) < Max p(H)—0,
Cy [ti< L(7)

Max AP = Max AP0, m(r)—0.
d

Cit+g
Observing now that
{distance of A from a point of D—d(n)} > n() >0,

we choose a sequence 7, tending to O for which 7.1 < u(,). Then a
point of ¢u41 = ¢(7n+1), other than an end, is interior to D, and [since its
distance from 4 = r,1 < u(r)] is not a point of D—d,, nor (obviously)
is it one of ¢q,. Hence it is interior to d,. Therefore g..1 %s @ cross-cut
of d,. By (1) it divides d, into dn+1 and another domain A,.

If now P, is the mid-point of ¢., P, and P, are on free circular arcs of
the boundary of A, and can be joined by a simple polygon 8§, lying wholly
in A, except for the ends. Cousider the locus 8,4 S,+.... Its moving
point can be described by z = z(v), ¥y = y(7), where = runs from 0 to %
on Sy, from  to § on S;, and so on. (), (1) are defined for 0 < v < 1.
But since m(r,)—>0 we have z(r) >4, y(r)—>y4 a8 7—1. Completing
the definition we have a curve L', 0 < v < 1, from P, to 4.

Since all domains of suffix greater than n are contained in d,,, and
therefore have no points common with A,, we see that S, cannot cut an S
of higher suffix. Therefore the curve is simple. We can finally join O
and P, without meeting L'.

7. Harmonic functions.

7.11. In this section we discuss the classical properties of harmonic
functions. We take for granted some results belonging to the circle of
ideas of Green’s theorems and Cauchy’s theorem.

The formula of Green is

) HD (%% - g—;‘) dedy = L (ada+bdy)
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where D is a domain bounded by L, where L consists of a finite number
of curves C. If in this formula we take

and write Af = ;12_’__];,

we obtain »

¢ d

@ ﬁ (ZZ‘S % _? i)dzdy = “HDSbA\[rdwdy

oy 0
+L ¢(3z dy__%dx)'

The three integrands in (2) are invariant for a change of rectangular
axes, and the last integral is written, in the usual convention,

5 W 4

ds 'the element of are, taken so that the sense of the axes (dn, ds) is
the same as that of Oz, Oy.t

denotmg differentiation ““ along the inward normal’’, and

7.12. These formulae have, in any case, no meaning unless the
curves C are restricted in some way. We shall always suppose, when
there is a question of integrating along a curve C, that C consists of a
finite number of portions z = £,(#), y = fo(t) (a < t < B), Where f, and
fi exist and are continuous in a < ¢ < B, the various portions being
pieced together in such a manner that C is connected. Such a curve C
will be called an ‘‘elementary curve’”. It will be found that the
apparently ugly restriction does not in the end impair the generality of
our conclusions.

The formulae are proved in the first instance when D is bounded,
and when respectively a and b have first derivatives continuous in D’.
or ¢ has continuous first and v continuous (first and) second derivatives.
In certain important cases, however, we need not assume so much.
Suppose that ¢ has first, and  second, derivatives continuous at every
(internal) point of a bounded D, and that Ay = 0 in D; further that ¢
and Y have continuous first derivatives in D’. Then

(8) H <—J$ —gg %Zé %%) dzdy =L ¢%%ds.

+ The questions of analysis situs raised by §7.11 do not involve any fundamental
difficulty.
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The deduction of this from the original case proceeds on the same
lines as the modern proofs of Cauchy’s theorem. The result is valid for

an L; “‘just inside”’ L, and the enclosed D;, and Hu —>ij+ as L;— L.

The proof that S —+j is the most difficult part of the argument.
Iy L

This much we take for granted, and also the following : Suppose
that a, b, 0a/Oy, and 0b[ox are continuous in & SIMPLY-CONNECTED
domain D. Then if

da _ 0b
“) oy = ba

for all points (x, y) of D, we have
(5) L (adz-+ddy) = 0

for every closed elementary curve C contained in D, and conversely.
Further, if
z, Y
7={"" @aztoay,
a,p
the integral being taken along any elementary curve in D, then J does
not depend on the path from (e, B) to (z, y), and

aJ-—*a -a-'i—T—'b
o " oy

7.21. A function u(z, y) is said to be harmonic in a domain D if it
has continuous derivatives of the first two orders, and if Ax =0 for all
points of D. w is said to be harmonic at a point P if it is harmonic in
some neighbourhood of P. A (one valued) function, harmonic at every
point of D, is harmonic in D (by Borel’s covering theorem).

It is well known that if f(2) is regular at z = 24y, and f(2) = u+iv
(where « and v are real), then Auw = Av = 0. Thus Rf(2) and Ff(e) are
harmonic in any domain in which f(2) is regular.

We shall sometimes denote, for brevity, the point (z, y) by 2, and
u(z, y) by u(2). (The reader must, however, guard himself from sup-
posing that u is an analytic function of 2.) We shall also sometimes
denote (x, y) by its polar coordinates (r, §) and write u(r, 8) for u(z, y).

t Practically by definition of J l-D'
J
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TrEOREM 47. Let D; be a domain bounded by L, a finite set of
elementary curves, and let u be harmonic in a D containing D;. Then
ou
j S ~ds = 0.

This is true also if L contains part of the boundary of D, provided that
Ou/oz, oufOy are continuous in D).
We have only to take ¢ =1 in (8) above.

THEOREM 48. Let u be harmonic in |z—z,| << r and continuous in
|z—2¢| < r. Then

%(Tg Yo) = él;j;u(zo{"’.' %) do,

Let p<r Ip) = 21—75' w(z+ pe) 9.
‘We have
ou T 9 .
0 0= j 2 g = —pL 55 et pet) 6.
Since g-:—: = 3—,-3 36+g 8in0 is continuous in |[2|{<<p, O] < ™, we

have
olp) _ 1 (" ou
o %r ). a @9 = 0.
Hence I(p) is constant in 0 < p<Cr;-also it is evidently continuous in
0<<p<r. Hence I(r) = I(0) = u(z).

7.22. THEOREM 49 (Mazimum principle). Suppose that u is harmonic
in a bounded domain D, and that a constant M exists such that, for an
arbitrary ¢ and any point P of the boundary F(D),

U< M-+e

for all points of D near enough to P. Then v << M in D, and equality
at any point can happen only if u is the constant M. A similar result
holds for the opposite inequality.

Let G (possibly + ) be the upper bound of u in D. It follows by
the bisection method that there exists some point P of D’ such that every
neighbourhood S of P gives G as the upper bound of « for points of SD;
let us consider the class of all points P of D' with this property. If no P
is an interior point, some P is a boundary point. But then the hypothesis
of the theorem gives G << M+e¢, or G < M, while u = M at an interior
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point makes that point a P, and is impossible. If some P is an interior
point z we have, by the continuity of u, u(z)) = G (and G< ). If
now C; of radius r, is any circle round z, lying, together with its interior,
in D, we have, by Theorem 48,
—217; jﬂ u(zoF1re%) dB = u(z) = G = 2—]77_ L"Gdﬁ.

Now the first integrand does not exceed G. But a continuous function
whose average is equal to its upper bound is necessarily constant, and it
follows that u = G for all points of C. Thus (since r is arbitrary) u = @
in the interior of the least circle with P as centre and containing a

point of F(D). I say now that u = G throughout D. For if u < G at Q,
~ we join P, Q by a polygon lying in D, and it follows by a Dedekind
section that a point R of the polygon exists, such that x = G on the
polygon from P to any point short of R, but not from P to any point
beyond E. By continuity «(R) = G; hence, by the above argument,
% = G in some circle round R, and this is contrary to what has just been
proved. 'Thus the hypothesis u(P) = G for an internal P involves 4 — G
throughout D, and then (since u = G near any boundary point) we have
G<M+e or G M. The statements of the theorem are therefore
true in either case.

Another proof proceeds on the lines of Theorem 201 below ; this does

not require the Dedekind section argument.

-

THEOREM 350 (Theorem of uniqueness for given boundary-values).
Let Uy, Uz be harmonic in a bounded D, and let them have the same
boundary-values. That is, giwen e and any point P of F(D), then
[wi—us|<e for all points of D near enough to Pt. Then u; = u,
throughout D.

% = u;—uy is harmonic in D, and satisfies the condition of Theorem
49 with M= 0. Hence u < 0 in D, and similarly % > 0.

7.31. Let u be harmonic in D. If a function v exists such that

Bu_dv du_ 2
e oy’ oy oz’

throughout D, then o (evidently harmonic in D) is said to be the function

conjugate to u. Evidently v-4c, where ¢ is a constant, is also a conjugate

of u. Conversely two conjugates of u differ by a constant (since the

t Observe that two functions can ‘‘have the same boundary values” when they are
undefined at the actual boundary. The phrase is convenient,
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difference w satisfies w, = w, = 0). Ifvis conjugate to u, —u is evidently
conjugate to v.

THEOREM 51. Let u be harmonic in o SIMPLY-CONNECTEDt D. Then
there exists a (one-valued) conjugate v, given by

[, ¥)

" en <—@dz + 35dy)'

Also u-+iv = f(2), a function of the complex variable z regular in D.

’ The first part follows at once from the last result stated in § 7.12.
For the last part we have only to observe that the derivatives wu,, u,, vz, 0,
are continuous and satisfy the Cauchy-Riemann equations in D, so that
Sf!(2) exists at every point z of D. v

It follows from the last part (and § 7.21) that the property of being
real and harmonic at a point is equivalent to that of being the real part
of some function f(2) regular in a neighbourhood of the point.

7.41. THEOREM 52. Let u and v be any two functions harmonic in
a bounded domain D whose boundary L consists of a finite number of
elementary curves C, and let u and v have first derivatives continuous

in D'. Then '
ov ow\ , _
L (u% v—&-z) ds = 0.
For —5 = ﬁ (wAv—vAu) dedy = 0.
z D

An important particular case of the theorem is that in which D is a
circular annulus, with centre at, say, the origin. If the circles have
radii r, and 7, we have, in fact,

T/ Ov ou _ , ) o
j <u§7 —-'ug)?df) = constant (<< r<r.

7.42. Consider now a bounded domain D and one special point of
it, which we may suppose without loss of generality to be the origin O.
Let r = (®+y»?%. It is easily verified that log 7 is harmonic except at
O. Suppose now that w(z, y) is harmonic in D and has first differential
coefficients continuous in Dj, and let

—

h = h(z, y) = —logr+oz, y).
Suppose, further, that D is bounded by L, consisting of a finite
number of elementary curves, and let ¢ be a small circle, of radius p,

t If D is multiply-connected the conjugate is many-valued, with moduli of periodicity.
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round O. Then, by Theorem 52,

o [ Bgee=] =~ (-5
Now on ¢ %2—74--6—?,

limpfr ug%de = lim‘r: (——u—l—pu -g'-‘f’) dg = —-limj_"ude = —27u(0),

p—>0 J—m
. ou
and lnn ph o dd =0,

since ph—0 and Ou/on is bounded at O. Taking limits in (1) we
therefore obtain

1 oh ou
@) u(0) = j (w5 ~nZ) s

Replacing now the origin by the point (x, ¥), and using §, 7 for
current coordinates, we obtain :

TrEOREM 53. Let u be harmonic in D, a domain whose boundary
L consists of a finite number of elementary curves, and let u have con-
tinuous first derivatives in D'. Then for a point (z, y) of D

u(e, y) = 15 ( g-}-; a“) ds.

In particuler we may take h = —logr, where r is the distance
between (x,y) and (£, »).

7.43. The Green’s function of a bounded domain. This is defined
to be the function (if anyt) g(x, y; &, %), with the properties (i) ¢ > 0;
(i) ¢ is harmonic (in £, %) for (£, 9) of D other than (x, y) ; (iil) near (x, y)
g = —log r+w, where o is harmonic for all (¢, 9) of D; (iv) g tends
uniformly to O as 2 tends to any point of the boundary.

It is easily shown that (if g exists) g(z,y; & n) =g(§, n; z, 9), but
we nowhere make use of this property.

Taking h = g in Theorem 53 we obtain

TeEOREM 54. Suppose that D is bounded by a simple closed ele-
mentary curve C, and that g, the Green's function of D, has continuous
first derivatives in D' with respect to £, n [for every fized (z, y)|. Let

1 We shall not be concerned here with the existence theorem.
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h be the fumction conjugate to g. Suppose now that (i) is harmonic

in D, (ii) u has continuous first derivatives in D'.+ Then if U(E, ) is
the ‘‘boundary value’’ of u at a point (£, 1) of C we have

_ og oh

U= 5= 5 Uand j Uasds

7.44. The Poisson integral. It is easy to calculate Green’s func-

tion for a circle. ILet the circle have the origin as centre and radius a.

Let P be (z,y), an internal point, P’ the inverse point of P with respect

to the circle, @, or (§, ), a point within or upon the circumference, p

and p' the distances PQ, P'Q. It is a familiar geometrical fact that
plp’ =k =k(z, y) for all @ of the circumference. The function

g = —log p+log p’'+log &

evidently has the required properties.
A straightforward calculation gives

at—1?

a*—2ar cos(0—\)+7*

Qg_ _ a2—rt

1
on =~ ap® T a

where (r, 6), (a, Y) are the polar coordinates of (z, y) and (£, ). We
obtain now from Theorem 54 the following important result :

THEOREM 55. Let u be harmonic tn a domain containing r<a
@ = 22 4+y?), and let w(ae) = URY). Then for r <a

a u= 51; j"_” UW) P (% 6—3&) dy,
where
@) P, ¢) = A(p ¢) Ap, ¢) = 1—2p cos ¢+ p°.

7.45. The equation (1) is called Poisson’s formula, and u the
“‘Poisson integral of U’’. We shall have to consider the formula subject
to much less restrictive hypotheses, but at the moment we wish to point
out other ways by which we may arrive at it, under whatever conditions.

(i) From the point of view in which a harmonic function is the real
part of an analytic function f(z) we argue as follows: We may sup-
pose a=1  If |z|<<1 and we denote by C the circle z = ¢*,

t+ It is enough, in actual fact, if (ii) is replaced by the continuity of % in D'.
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—7 S ¥ <, we have (supposing f regular in |z|< 1),

g . ™ . Wi
Also

1 €) " w2 @y (T o Zyd
0= ___L_f_dz _j_"f@w);o_z = L(U+uf) ;0__;‘—071

1 Jez—1[2,

since 1/z =7 on C. In this change the sign of 4, and of the whole; we
obtain

@ 0= L U—i?) ei—‘;ji_ﬁg—o.

Adding (1) and (2) we have
' Y A .
® 2 {w (2 +iv (2)} = j_ ( U%,,{—Z +3V) dy,
and, taking real parts,

k.3

4 /1
=g vnGteay = 11" upg, 6-yyay.

er'—z,

(ii) Proof by a transformation of Theorem 47. We shall in time be-
come very familiar with the idea that a property of the centre of a circle
mn which a function is regular or harmonic can generally be asserted, in
modified form, of any point of the circle. Poisson’s formula is such a
modification of the formula of Theorem 47.

We must observe first that, if f(2) is regular and f'=£0 in D, and
the equation £4in ={ = f(2) transforms D (point by point) into a
domain A of the (¢, 5) plane, then the transformation from (z, ¥) to
(¢, ) changes a u(z, ¥), harmonic in (z, y) of D, into a u3(€, 1), harmonic
in (§, n), of A. Also the conjugate v of u becomes the conjugate v, of
u;. We have, in fact, by simple calculations,

&=, & =—n, fﬁ"i”ii =J = f'(2)2> 0,
'uxz+uyy = J(u“—f-u,,,,),

which establish the first part ; and for the second we have only to verify
that v = u,, v, = —u,.
Consider now the transformationt

@ ==
1—=¢6

t This also is destined to become very familiar in the sequel.
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where |v§°|< 1. This transforms the unit circle of z, boundary included
point by point into the unit circle of { (and conversely), and d{/dz and
dz/d{ are never 0 (in either unit circle). Hence an arbitrary u(z, 4"

harmonic in |2| <1, transforms into an arbitrary «, (¢, ») harmonic 1n
ITI< 1.

Take now the formula

®) w® = o [ uletdg,
nd let 2z = ¢#* and { = ¢%' correspond by (4), and {, = p,e*’. We have

d¢ = % =—idlogz = —1 (;ifg + 1§u a) Ploo ¥ — o) &,

and (5) transforms into Poisson’s formula for u:(&, o).

7.51. We proceed to develop the theory of the formula subject to
more general conditions. We start afresh from a different point of view,
suppose in what follows that U = U({) is any function (of period 2r)
integrable in the sense of Lebesguet, and consider the nature of the
function

Q) w = 517; S_" TW) P, =0 dp  (r < 1),

whether the values U(y) can be considered as in any sense
‘‘boundary-values’ of u on r = 1.

It is evident that we may differentiate (1) under the integral sign any
number of times with respect to = and y, provided r<<1. Now it is
easily verified that P(r, Y—6) is harmonic in (z,y). Consequently we
have

TreoreM 56. If U@) is of class L, then the function u given by
(1) is harmonic in r<<1, and has derivatives of all orders, themselves
harmonic functions, in r<<1.

7.52. If we take a =1, « = 1 in Theorem 55, we obtain

THEOREM 57.

5‘17,5:,1’(7’ f—P)dy =1 (r<1).

+ It would suffice for our immediate purposes to suppose U continuous, but the extra
generality costs us nothing. We.shall return to the deeper study of the connexious of % and
U in Chapter 3.
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This, of course, is incidentally a result in the theory of definite
integrals, and may be verified as such.

Cor. If UWY) is of class L and U < G for all -, the function u given
by (1) satisfies u < G-
Similarly for a lower bound.

For P>0,andso | (U—G)Pdy < 0.

7.53. THeorEM 58. If U(Y) has period 2 and is of class L, and
d<<1, then

116, 1,6,0)|= ' (L— J:“”) UW) Pr, p—0) dyr

-5
<400-n[ U ap (smemti <30,

Thus if 2 = re*—>eh', -0 uniformly in 0, and in the manner in
whach z tends to its limit (by a path internal to r = 1).+

We may suppose that 6§,=0. Then [z—1]< 36, |8] < %, and
|sinf| < 3. Hence || < (1—4)8, and (in the ranges over which Y
varies in [) 46 <|y—0|<< 7. Thent

A=01-n'+4rsin® 3(L—0) > (1 —r?4+4,8%,
or, since this exceeds % for » < % and 34,68® for » > 3,
A>4@), P<A—r»)4©) <2(1—1n A@),
and the desired result follows.

Let U, (Yn) be the limit as §—0 of the upper bound of U@)) in
0<|Y—y| <8, U_({) the corresponding limit of the lower bound.
The condition that v, should be a point of continuity of U is

Us(Wo = U_(¥) = Ulyy.

t Thus the behaviour of the Poisson integral of U near e is affected only to the extent
of a uniform o(1) by altering the values of {7 outside an arbitrarily small interval round Y =6,
(80 as to leave it of class L). Compare Theorem 33. In fact the Poisson integral of a function
U behaves very much like the tunction 7,(6, U), the limit operation r—1 replacing
n—> , and the positive kernel P (depending on #), the positive kernel R (depending on ).

T It is useful in tentative work to replace the function P(r, ¥) by its effective equivalent

_3n
g3

where n=1~r (in fact the two things differ by less than an 4).
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TreoreM 59. If U() is periodic and of class L, and

w=ul, ) =z=| UW) Pr, v—0dy <),
27 |

then, uniformly as z—eh' (in r<<1),
Iim uL Uy, limu > U_(y.
In particular, if o is @ point of continuity of U, then
(1) u—>U(r)

uniformly as z—e%t. If U is continuous in (—m, ), then (1) holds
uniformly in o also, and u is continuous in r < 1.
Finally the relation “lim u = lim URY) uniformly as z—>e™¥’’ holds
-the limit on the right (as \r—>ro) 48 +o© or —wo.
We have, supposing U, (V) finite,

U < Uspte 10 <|Yr—| < of,

where we may suppose ¢ independent of y, in case U is continuous every-
where.

Let U* be the function agreeing with U in |yr—y, | <4, and bhaving
the value U, () +e elsewhere, and let u* be the corresponding Poisson
integral.

By Theorem 58 u—wu* tends to 0 as z—>e%%, and with the maximum
degree of uniformity contemplated in the theorem. By Theorem 57, Cor.,
we have u* < U, ())+e, whence

imu < U, ()

with the appropriate uniformity. A similar inequality holds for the lower
bound, and the two inequalities together establish the desired result.
The cases U, (Y = + © require only obvious modifications.

7.54. TEEOREM 60. Suppose that U()) is periodic and continuous in
(—n,w). Then there exists one and only one function u harmonic in
r<1, continuous in r<<1, and (for all ) taking the value U(p) at
2z = e*’. This function u is given by the Poisson integral of U.

This important result is an immediate consequence of Theorems 50,
56, and 59.

7.55. THEOREM 61. Suppose that U is periodic and of class L, and
that uw is its Poisson integral. Let v be the conjugate of u in 7<<1.
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Then — v=vl )= o] UQIQE w—6dp+C,
where | Q= :%%@.

For, denoting (r, 6) by z, and ¢* by 2,

2m ) n 72,
is differentiable with respect to z, under the integral sign. It therefore

represents a function of z, regular in r < 1. Since its real part is

JLY Umz+%z¢._——y UPdY = u,

2 21—z,
it follows that its imaginary part is' a conjugate, v—C, of u. Since

_ g 214
Q=3 z—2z,
(as is easily verified) this proves the theorem.
1 L4
Comr. Let v denote the particular conjugate 5 j_ UQadys. Then:

@ If |U|< G for all ¥,

2G 14r
le<-——10g1{'-_'—';~
(i) In any case
147, 2
<120, |ol< T,
1 ”
where M, = ﬂj_,l U|dy.

In fact, we have in case (i)

G ™ 9p 8i 4
}”|<g£"|Q,Jd¢<—§-So%ﬁ—~—[lo A(¢)] ~—lo ;,

and, in case (ii),

1—r 14y < Max
[(7)

SO0 =1 Q1< 2

242y | _
3 1=

=2,

P +—

whence' we obtain the required results.
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7.6. General theorems.

7.61l. We now apply the results of 7.5 to the general theory -of
harmonic functions.

THEOREM 62. A function harmonic in a domain D has in D partial
deriwatives of all orders, themselves harmonic junctions.

Any point of D has a small circular neighbourhood also belonging
{when taken closed) to D ; by Theorem 55 u is equal to a Poisson integral
inside the circle, and, by Theorem 56, has harmonic derivatives of all
orders there.

7.62. TaEorEM 63. Let the functions w, be harmonic in D and .
continuous in D', and suppose that the boundary values U, of u. con-
verge uniformly to some boundary function U. Then u, tends uniformiy
in D to a function u, harmonic in D, continuous in D', and with boundary
function U. Also any derivative of u, converges to the corresponding
derivative of u, uniformly in any closed set contained in D. Similas
results hold for a u(x, y, t) depending on a continuovs parameter t in
place of n.

We have |Un.—U,|<<e (m,n>mn,). Hence, by Theorem 49,
| Un—tn <e for m, n > no and all points of D, and u, tends to a limit

function  uniformly in D.
Consider now any circle -C in D, and let the values of u, and u on C

be denoted by U,(C) and U(C). Then
- Un(0) = T(Q)40(1),

0’s being uniform in the variable point of C. Inside C we have

Uy = —1—5" Un(O)Pdys (Theorem 55)

2r ) —n

1 (" 1 ("
- L UOPdy+35- Ll U,(0)—U©) Py

- %5" U(C)Pdy—+o(1) (Theorem 56).

It follows that L
u = ‘2_7“_ S—r U(C)Pd\l’:

and hence that u is harmonic.
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Tet now C have radius r, and consider Ci, the concentric circle of

. . . 0 d
smaller radius p. We have in C,, denoting by D either & OF ek
1
@ Du, = 51;5 U.(DPdy, Du=3- j U(C)DPdy.

Now DP is continuous in %, ¥, ¥ if («, ) is in or upon C; and - is the
amplitude of the variable point of C; thus

| DP|< 4G, p)

in the integrals in (1). Hence
| Dun—Du < o= || T@—TU(O)| | DP | dyp = ot1),

and Du, — Du uniformly in C,. Since Du,, Du are harmonic (so that
the argument can be repeated), and since any closed set interior to D can
be coveredt by a finite number of circles C;, the proof is completed.

Cor. Suppose (in addition) that D is simply-connected, and that v,
is a conjugate of u, and v a conjugate of u. Then there exist constants c,
such that v,—c,—v uniformly in any closed set contained in D.

Let

@ 9) Ouy, ou,

(2) v, * = L’ . (—- E de+ ~= dy> ,

which (by §7.12) is independent of the path. Given any domain D;
such that D{c D, D, can be covered by a finite set of circles each con-
tained in D, and there exists a K such that any two points of D, can be
joined by a rectilinear path lying within the sum of the circles and of
length not exceeding K. Since Du,— Du uniformly in D,, it follows
from (2) that

G Ju
* * —_— —
V¥ —»v* = L’ 5 ( 5 dz + o dy)

uniformly in Dy, and vy and v* are particular conjugates of u, and «.

7.63. THEOREM 64. Let u, ug, ... be an increasing sequence of func-
tions harmonic in D. If now w, converges at one point A of D it con-

verges uniformly to a function w in any closed set contained in D, where
u 18 harmonic in D.

T In virtue of the theorem of Barel.
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Evidently Uy = %*w,.,
. 1

where w, is, for n>1, a non-negative harmonic function.

Let G be a circle about 4 (which we may suppose to be the origin),

interior to D and of radius @, and let p<<a. In a circle of radius 7 <p
we have

=] (L, y—o)es

(in the notation of § 7.62). Now

a
0<PL a—_"}f,
whence, if n > 1, and sa W, >0,

.wn<‘1i_£_1j" W0y =9i'£w,,(A).

Na—p 2T ),

Since Ewn(A) is a convergent series of non-negative terms, it follows that

Zw, converges uniformly in r < p.

It is easy to extend the region of uniform convergence to any D, for
which DicD. If Zw, converges uniformly in a neighbourhood of each
point of Dj it converges uniformly in Dj, by Borel’s ‘‘covering theorem’”
(a finite number of neighbourhoods can be made to cover Dj). If now
there is not uniform convergence att every point of D, consider the set
E of points of non-uniform convergence}, and let B be the point of E’
nearest to 4 (evidently BA = p). Clearly there exists a circle ¢/, with
centre at a point P of uniform convergence, lying wholly in D, and
containing B in its interior. Since Zw, converges at P it converges
uniformly in a circle just smaller than ¢/, and so converges uniformly in
a neighbourhood of B, and, again, in a neighbourhood of every point of
E near enough to B. This gives a contradiction and completes our proof.

7 .64. TEEOREM 65. (Analogue of Liouville’s theorem.) A bounded
function harmonic everywhere is necessarily a constant.

It is sufficient to prove that w(r, 6) = «(0). If Cis |z| = R>r, we

+ Uniform convergence ‘‘at*’ P means, of course, uniform convergence in some neigh-

bourhood of P.
+ By this we mean, of course, to include points of non-convergence.
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have, supposing |« | < K,
27 {u(r, 0)—u(0)} ==J u(R, ) P (—1"-%-, \,b-—G) d\,b—J_wu(R, ) d\/r,

™
-

o |u(r, O)—u(0) | < J P (—1% ¥—0)—1 ,de/z

-

— 7 (" [ {B = —{R*—2Rr cos(\"— @) 4} | 2Ry 42,2
- Kj—-'r R*—2Rr cos(—0) 413 af < K2r B—r

Since this tends to zero as R— o the left-hand side must be zero.

7.7. Functions harmonic in a circle or in an annulus.

7.71. THEOREM 66. (Analogue of Taylor's theorem.) Suppose that
u is harmonic in r << R and v is a conjugate of u. Then

u = 3a,+ § (@n cos n04-b,, sin n6) »* ]
1

€3] - (r < R),
v+¢ = Z(—bau cos nB+a, sin 76) r"j
1
where
@ a,= L "J u(Re") cos mprdyy, b, = 1 ,,5 w(Bye¥) sin n\rdy,
TLYY J—7 T.Rl -
for every R, satisfying 0 << Ry << R: The series
(3) Z(anl+1buly

is absolutely convergent for r<< R, and (1) is uniformly convergent in
r< B—3& and all 6. Further, any expansion of w or of v4c in a series
of the form in (1) which converges uniformiyt on (say) r = ro, necessarily
has coefficients given by (2). Conversely, if the a’s and b’s are any
numbers such that (8) converges for r << R, then the right-hand sides in
(1) are conjugate harmonic functions in r<<R.

Let By <R, <<R. By Theorem 55 we have in r < R,
1 (- ; 7
—_— ( Yl —_ —
(4) U= 5 jﬂu(Rle YP (Rl, V2 9) .
Since
r ’» n
P (_R:’ \b-—@)z 142 (ﬁ;) cos n(yr—0),

a series uniformIy convergent in r << R, and all v, 0, we may integrate
term by term in (4), obtaining the first equation in (1) for r < R..

t We cannot, as we can for a Power series, infer the uniform convergence for r < r,~35
from the convergence at a single point on 7 = r,,
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Since =23 (—1;—) nsin n (r—¢
1.

the second equation is proved similarly.

Since R; may be arbitrarily near R the first part of the theorem is
pyoved. The second part is a consequence of

|+ 0u] < ;%,3 L;uwle*f) |y < K(R). R
For the uniqueness of the series developments, suppose that
u(ry, 0) = $a,+ % (@, cos nB+-b;, sin nb) g,
where the right-hand side converges uniforrly (in 6). Then
3(@i—ay)+ ? {(an— an) cos n6+(b,—b,) sin nb} 7y

converges, uniformly in 6, to 0. 'We may now multiply by cos 2 or
and integrate term by term between —= and =, and this gives
a:a_a'n = b':l—bn = 0.

The uniqueness result, combined with what has been proved, shows
now that the B; in (2) is arbitrary.

For the converse we observe that Zn (| @, |+ | b.|)(R—3)" is convergent,
so that (for » < B) we may differentiate any number of times under the
summation signs in (1). It follows that u, » have continuous derivatives
of all orders, and, since 7" cosn® and »"sinn@ are harmonie, that

Aw = Av = 0 and wu, v satisfy the differential equations connecting conju-
gate funetions. This completes the proof.

Cor. If, in particular, R =1 and w is the Poisson integral of a
function U(Yr) (of class L), then a,, b, are the Fourier coefficients of U.
If @ u given by (1) has a continuous boundary function U, then a,, b,
are the Fourier coefficients of U.

If U is continuous and a,, b, are its Fourier coefficients, then the u
given by (1) is harmonic in r<<1, continuous in 7 << 1, and has U as
boundary function.

In particular, the Abel limit of the Fourier series of a continuous
function U exists uniformly and is equal to U.

. 1
For in u=g-[UPdy
we may expand P in a series

(5) 14229 cos n(\-—0),
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uniformly convergent in r _ 1—8, and integrate term by term. This
gives

(6) u = }ay+ 3 (ax cos nB+ B, sinnb) r",
1

where
) an = —};J Ucos mpdi, Bn= ;11_—5 U sin nyrdvr,

and the series (6) is, like (5), uniformly convergent in r < 1-38. By the
uniqueness of the series development, a, = a., Bx = bn; and, by (7),
s, Br are the Fourier coefficients of U.

The last parts are immediate, since u is the Poisson integral of U
(Theorem 60).

7.72. From Theorem 66 we can deduce the following result in
general theory.

TreoreM 67. Suppose that uy, ug are harmonic in D, and that u, = u,
in a domaint D,cD. Then u, = uy throughout D.

If the theorem is false it is evidently possible to find concentric circles
Cy, Cq, with radii 7, and 7, > 7;, both entirely interior to D, and such
that # =wu;—u; =0 in and upon C;, but not everywhere within C,.
Taking the origin at the common centre we have a series development
for u within C;. But the coefficients of this series are given by (2) of
Theorem 66, and the integrands are identically zero if 0 < By <<r;. Thus
the coefficients are zero, and w = 0 in C,;, which gives a contradiction.

7.73. THEOREM 68. (Analogue of Laurent’s theorem.) Suppose that
0 <1 <<rs, and that u is harmonic in a domain containing the annulus
n<r<r. Then foran (z,y) of n<r<ry,

b U = t;tte,
where
1 dlog B o (C,
@ wey=—g- L’ (i, m “gEE —10g R LY éi V) g,
(8) u(z, y) = __21; L (u(f, ") o lgg R —log R auéi, ;;)) ds,

Cy and Cqare r =17, and r = ry respectively, and
R = v {(—2"+0—y?"}.
T Inthe familiar analogue for analytic functions f(z) it is enough to suppose that f, = f,

along a curve, or indeed merely at an infinity of points with a limit point interior to D. These
extensions are false for harmonic functions.



HARMONIC FUNCTIONS. 87
Further :
(4) w; is harmonic in r <1y, u, harmonic in r> r;

() m (2) and (8) we may replace C, by any circle Ci between C; and
@, y),.and Cy by any circle Cy between Cy and (z, y);

(6) wu; s of the form -
ag+ = (a, cos nf+b, sinnd) *  (r < 7p),

where Z (| an|+|ba|) 7™ converges for r <r, so that the series for—u;
converges uniformly for r < ry—3§;

{7) u, is of the form
klog r+ § (ah cos N0+ by sin nBy r="  (r > ry),
1

where Z (|anl+|by|) r~" converges for r > r,, so that the series for w.
converges uniformly for r > r,+8;

(8) the results (1), (4), (6), (1) are valid also if w is harmonic only in
rn<r<rs
Finally

(9) Any two expansions for v of the type
(10) g(au cos 0 b, sin n6) »"+k log r+ i (a; cos 70+ by, sin nd) r—*
1 1

are identical, provided that on two distinct circles r =1, r =1y of the
annulus they represent u and are uniformly convergent.

The result expressed by (1), (2), and (3) is an immediate consequence
of Theorem 53. Next, we may differentiate any number of times under
the integral sign in (2) if r<<7, and in (8) if r>r. Since the
integrands are harmonic in (z,y) in these domains we obtain the result
(4). The two results in (5) follow from the special case of Theorem 52
given at the end of § 7. 41.

(6) is a consequence of (4) and Theorem 66; but (7) is less imme-
diate. We may write (8) in the form
11)  —2ru, = 5 ua—lg—%—l—g ds+log rLi o ds— jcl log l:ig—; ds.

(61

Now for points (£, n) or (1, ¥) of Cy, 9 ]giR ( =5 Q_) and log_]-ri may
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each be expanded in the form Zc¢,»~" cosn(y—6), where X| ¢, |(r40)~"
is convergent.t Since « and g:—: are continuous on C; we may integrate

term by term in (11), obtaining the various results in (7).

Next consider (9), still supposing % harmonic in a domain con-
taining n <7<<n.  In virtue of the uniform convergence we may
multiply the expansion for « by cosnf or sin nf and integrate term by
term on ejther r =1y, or r =7, With cos 20 and n> 0 this evidently
gives two equations which determine a, and a,, and the case n = 0 gives
two equations to determine %-and ao. Similarly with sin 26 we determine
bx and b; (there being, of course, no exceptional case n = 0).

Finally it is evident, in virtue of (3) and (9), that we need suppose u
harmonic only in 7, <7 <<r; to secure the truth of (1), (4), (6), and (7).

Cor. If u is (one-valued and) harmonic in 0 < r < Ty then
U = U+,

where w; is harmonic in r < ry, w, is harmonic in r < 0, and.

(13) w; = a,+ i (an cos nO+ b, sin n6) r*  (» < rs),
1
(14) u, = k logr+ % (@n cos nO+b), sin 16) =" (r > 0),
1

where Z(|an|+|0a|) 1™ converges for r <r, and Z(lan| o) r- con-
verges for all positive r.

7.74. TuEOREM 69. (Analoguc of Osgood’s theorem.) Suppose that
u 18 (one-valued and) harmonic in a neighbourhood of a point P, cxcept
at P itself, and that u is bounded in the neighbourhood of P. Then u s
harmonic also at P.

We may suppose P to be the origin and the neighbourhood to con-
tain r < 7. By Theorem 68, Cor., and with its notation we have, sup-
posing K to be a bound of |u| in r < 7,, and Integrating term by term,

1( .
|klogr+a,| = 1"2?5 w(r, )do | < K.
tIf 2= rlle*‘, 2 = re%, then
dlog R _ 0 fm RS [2\ 7\ .
™ -—!iz‘,&;log(,. zu)—!{? (?u) =2 (7;-) cos (Y — ) ;
R z2—¢ S1 /[ r\-»
log= =Rlog?”%_ _s1 (7 — 8!
g R log - fn ("‘1) COS 7 (i — 6).
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This being true for arbitrarily small » we have k = 0. Similarly, for
n>0,

‘ a;.’-"n_l._al,)m [ =

1{ 1 .
= qu(r,ﬂ) cos.nﬂdel <4 J'_,,Il dé = 2K.

Since this is true for arbitrarily small 7 we have af,=0, and similarly
b, = 0. Hence

w = dy+ ?(a,,. cos n6-4-b,, sin n6) »*

for 0 <7 <7y, and so for 0 < r <7y if we define u(0) = a,,.
Since Z(|an|+|b.]) 7™ converges for r << 7, w is harmonic in r << 7y,
by Theorem 66 (converse part).

7.75. TuroreM 70. Suppose that the real function u is (one-valued
and) harmonic in the neighbourhood of a point P, except at P, and that
u— +o as (z,y) tends to P. Then u = k log r4u,, where k is negative
and u, 15 harmonic at P. A similar result holds if u— —w®, k being
positive.

‘We may suppose P to be the origin, and in the notation of Theorem
68, Cor., we have to prove that a, = b, =0. Now ii, eg., u—>+ ®© we
have, for any large positive %,

u>nh 0<r<<wy.
Hence, for n >0 and 0 <<r <<,

T cos i cos _
Squ <1i sin nB) a0 > j’_r h (1 + oin nG) do = 2= h,

since the factor in brackets is non-negative. Hence we have

T

27 (@y+k log 1) & wlanr™"+a,r") = S 4 (1 & cos nf) df— +

—_—7

as r—0, whichever sign is taken. This clearly requires a, = 0 (and
%k < 0). Similarly 2} =0.
Theorem 70 is the analogue of the theorem that if | f(z)| - at an

isolated uniform singularity, then that singularity must be a pole.

7.76. We conclude by giving the existence theorem for a circular
annulus with assigned continuous boundary values.

THEOREM 71. Suppose that 0 << 1 <<T7s, and let us denote the open
and closed annuli 1 <r1<<m, n<r<r by D and D'. Suppose,
further, that U,(6), Us(6) are continuous and periodic functions of 6.
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Then there ewists one and only one function u harmonic in D, con-
tinuous in D', and such that

u(ry, 6) = U,(0), u(ry, 6) = Uy(6).

Further, if
Ui ~ Z(ay, ; cos n0+b, ;sinn) (3 = 1, 2),

then we have in D,
(1) % ="F log 1'+%a0+§ (ay, cos n0-+ B3, sin n@) r
1
+§ (yn cos n0+-6,, sin nB) r—*
1
= k log v +%ag+ 1, +u,,

where the coefficients k, a, B, v, 8 are so chosen that the series (1) be-
comes formally identical with the Fourier series of U, when r=p,
(1=1, 2). Finally

2 Z(|lan|+|Bel)r™, =] Yul 4 |Sa]) ="

respectively convergent for <73, >, and (1) is uniformly con-
vergent for 48 << r < r—8 and all 6.

‘The conditions of formal identity just determine the coefficients in
(1), and in virtue of
@, = 0), b, = 0(1)

(as 7n—> ) the explicit formulae give at once the results about the con.
vergence of the series (2). It follows that the series for u; with r =,
is the Fourier series, 2 (an, 2 cos nO+ bn, 2 8in n0), say, of

F6) = Uy(0)— (% log rg+%ag) —u, (r,, 6).
Since this function is continuous
U Ary, 0) = Z (ar ; cos nh+ by 2 8in n6) \*

tends uniformly to U¥ as \—>1—0 (Theorem 66, Cor., last part). Quite
similarly, with an obvious notation,

U7y, 0) = 2 (a  cos n+ byt 1 sin nf) A"

tends uniformly to U¥ ag A—1—0. It follows easily [since the series
for us(rs, 6), wy(r1, 6) are crudely convergent] that

(8) ulr, 0; \) =k log r+4ag+u, O, 0) 4 us(X~1r, 6)
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tends uniformly to U; when r=1r, and A— 1, and to U; when r=r,
and A—1. It follows from Theorem 63 that as A— 1 u(r, 6; A) tends
uniformly in D’ to a function «*, harmonic in D and continuous in D/,
and with U, Us as boundary values. If finally r,<<r<Crs, (8) gives

w* = limu(r, 0; N) = k log r+ 2ag+u, (r, 6)4u,(r, 6),
and this completes the proof.

8. The behaviour of certain special functions of a complex variable.

8.1. In much of our subsequent work it is of great value to possess
examples of all the important varieties of asymptotic behaviour. The
behaviour of each of the functions discussed in this section is in some
respect extreme. Our functions

f@) = Za,2*
are all regular in the unit circle y. The mean M,{f(pe*)} we denote by
Mi(p, f), or by My(p). Thus
1 ™ o a 1/A
w1 = (] remras)” a>o.
We write F(p) for the majorant X |a,|p™ of f(2).
8.92. The first function we consider is
f&) =Zn? .

This is evidently continuous in |z |<{1, and it has the property that
2| @, |* n diverges for all positive A and e. 'We describe f(z), for obvious
reasons, as a ‘‘gap-function’’.

8.38. Consider next the unbounded gap-function
fl&) = Znle=nemt,
Let w, = n!énz™, p, =exp(—1/n!), and consider f first when p = p,.
The function ¢(w) = up* is a maximum (in u > 0) when « = ug = 1/log1/p,

and ¢(ug) = e~'u,. It follows that un| is greatest when m =n. We
have, in fact, :

Un— : 1 e

s —n! = =12,...,n),
un | P =1 (e—s+1) ~ n—1)...a—s+1) ¢ "

'll«:+s — e(7z—|-1)(n+2)...(n+s) e~ (t1)...(n+9) < e(n+s) e-(n+s)<Ae—§(n+s)

s=1,2,..)).
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Hence
J@| _ Wa! 1 1 —in 4y -1
L= 18 e (G gy o+ D) FAe ey
43
=1+';;-7

1 -1 -1
@I~ lml = (log) "~ =)

uniformly in 6 and the a,’s. Thus F(p), M(p)::lNl[alx [f], and B, (p)
zl=lp

are all asymptotically equivalent to e (l—p)! ag p—>1 througn the

pw. On the special circles p = p,, in fact, there is complete dominance
of the series Za,2" by a single term.

It is easily seen that for other values ot e fis dominated by at most
two terms. Suppose, in fact, that P e <pai1, and of the two terms

Un, Uiy 166 20, 88y, have the greater modulust: |ty 41] = ¢ju,|, 0 <o < 1.
Then we can show, much as above, that

A
< z + 2 ) ]uml< _’"unly

m<n  mS>n4l n
whence

@ 1= lwunl | 146 | 40(] u, ),

where v = (n+1)1—n!. From (1) we have

©) M) = {1+o+oM)}lw|, Flp) = {1+o+o)} |un!,
1 e 1
(o) = o | (51 j" [ Tohoe# d6) ™ 4o(|u, ).
By change of variable from 4 to 6/v the coefficient of |2, is
(_l_.r |1+ 47+0i]hd9>1/)\_. M
27r . age - 4\(¢)y

where ¢ = 14+0¢”. Now if o < 1,

-1

a,n enei de — O,

ki

— _l " 87 — 1 " (_)I
log My(¢) = % 5 J'_w log(14+oe®) 4o = 11 ELZ "

and so [Theorem 1, 10)] M, (¢) = Mo(¢) =1 (A >0). Since M, (@) is

t Bince in any case lua] Z e='n! it follows that the greater term is large.
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continuous in o for o<1 when A>0 we have also M, (¢)=>1 for
o <1t. Hence, ﬁnally

(.3) M) > {140} ua| A >0)
It follows from (2) that
{4) Mx(p) > G—e) M(p), M(p) ~F(p).

A precisely similar argument shows that the results (4) hold also if
|tnt1]|>|ua]|. They hold therefore as p—1 through all values.

8.4. Our next function is

f@) =0—2) {-1; log liz}p

where a =2 0, and 8> 0 if @ = 0, so that f is unbounded in 4.
We write B for A (a, 8). We shall show first that, as n— o,

1 an~ Bn*"t(logn)f  (a>0),
103} a, ~Bnltlogn)f~! (¢« =0, B> 0)
It is enough to prove (1), since if a =0, 1
S8 st = o @+ = B~ { L 1og 71}

1—z
and na, ~ (n+8) a, ~ B(log n)*~! by (1).
Similarly, by repeated differentiation, it is enough to prove (1) when
a is greater than any convenient constant, in particular when a >|8|41.
Let now '

18
r=e¢ fr*=(1—2)"" i—-log 1= } .

ﬁz) dz

¢ zn+1 >

‘We have A = %S
m

‘where C is the circle |z|=r. Our argument is, roughly, that f and f*
differ trivially on a certain part of C of length large eompared with
1—7 (but not too large), while the contribution of the rest of C to a, is
negligible. This reduces the problem to the simpler case 8 =0. As
it is on these grounds that the results are intuitive to the expert, a
proof based on them is perhaps the right one; the details, however,
seem a little awkward (and the experienced reader will omit them).

1 This also follows at once from Theorem 208 below, in virtue of which 3, (p, ¢) is an
increasing function of p,‘and so M, (p) = M, (0).
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Let C, be the part of C for which|6|

<A—nlog{Q—n"1} =4, C, the
remainder. On C;
®) 1—z = 1—r+i0+0{6(1—n | +0(6),
= 14ire tow,
_, [owit]ol<2a—n
8Ty = {0(log log 1) if 201~ < [ 8] < (L= log{ (1—n "1}

1
logy— = {1401} log-l—é—,

and so, since z/r = 14o0(1),

4 f@ = {1+o)}f*@).
On the other hand, on C,

™
r

logtl —z <

:
® 1+ 171 < B (log 12 ,)“’l

We now have, since r"=¢e<< 4,

oo [, C0 = g1 |, 0

n+l

AJ V1 a0+a [ 071+ L) as

1 \!8! 4o

6 % — ———

®) <0(L[f |a8) + B (log =) J02|1——z]“’
Now on C; we have, by (8),

1
- ll—r+z'9 Fo(1) ~ {(1—r)2462}

L |1—s 1-=de~j (- erymas =2
1 = 2(1—r>1-uj e
0

=

1+ah) "t de
(M

~ 20— | = Ba—n,
since a > 1.
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On C;
‘1_zx>{lSi]’;lel>A|]g{>lo;T ; 410] (oj<m),
e - e — 1 1A
(8) jonfl ] "6 df < By O[(l-—r) (1081 ) ]’

since a—1>|A8].
From (5), (6), (7), and (8) we conclude that

*(2) d. 1 \A -

Un—5 = Scf Z(nzL “l=o0 [(l—r)l"“ (log 1__7) ] = o[n*~1(logn)*].
. 1 _ (1 1 \” . . o
Since o Sc = (7, log '—1_7) X [coefficient of '#* in (1—2z)~%]

T
~ (log n)® f‘?ﬁ%%@- ~ Bn*~'(log n)?

we obtain finally the desired resuit (1).

The means M,(p) may be approximated for by rather similar argu-
ments. We can, however, deduce their behaviour from that of a,. In
fact

J = %Sﬂ_" \(l—z)“‘ (——log 1— ‘dG

== él; S:r] Sea2® 2d0 =2 | ¢, |2 p™

1 1 )éﬂ
— )= [
where a2t = (1—2) (z log 1) -

If a<1, 2]c,|? is convergent and J < B for all p. If a =1 and
ﬁ¢—17

<B(B< —1
= Ln~! (log n)B o2 1
J = BZ{14+0@)}n* (logn)®p -3 <lou : 1p>3+ B> —Dt.
If a>1,
9) J = BE{140(1)}n* ?(log n)Pp*

0 [--] B
~Bj w*~2(log u)P e~ du = Bt““j pe? (logfv+log—i—> e dyp,
0 0

1 This is proved by a comparison with the integral

J’ %~ (log u)® p* du.
See (9) below.
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where ¢t = log% 1—p. But

© og1/¢ 1\8 . 2/t 1\
= =2 ({140 ()}log—) e*d j “20(log &) e
Jo 5: v ({ +o (1)} Qgt)e ot v (gt) e d

log21ft

+J O(UB)e‘é”dv.
J2/[t :

The first term on the right-hand side is
B[ e
{140} <10g~1-) L 262y ~ B (}og_i.) ,

and the remaining terms are small compared with this, so that finally

7~ Bt (o)’
’ (1—p 08 1—p/°
The integrand in M,(p) has indices M, AB. We may therefore sum
up as follows :
(10) Mip)<A(a, B,N) for Aa<l or Aa=1, \B<—1,

‘1

B+1/A 3
=) Oa=1,28> -1,

an M) ~ 4@ 8, (log

B
(12) Mi(p) ~ 4 (a, B, N)(L—p)=e+11r (logﬁ) Ma> 1).

The exceptional cases omitted in this section require further analysis
(and lead to repeated logarithms). They have little practical importance,
and it is not worth while to pursue the subject further.

8.5. We consider next ‘‘Weierstrass’s non-differentiable function”’
f @ = Za™mz™,

where ¢ is an integer greater than 1, and ¢ a real constant. Here also
we shall not elaborate results beyond the requirements of our applica-
tions.

If ¢ <0, f(2) is continuous in y.
For ¢ > 0, we prove the following results :
ey | fl < A(a, o) (1—p)=.
(2) Given ¢ > 0, then if loga > Max(2, 8¢™Y) there exists a sequence
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p1 P --- tending to 1, and such that |f| > A(a, c)(1—p)~° for p = py, (und
all 0).
For (1) we have, writing B for A(a,¢), b =loga,

Sp = @+ a+...+a, = Za™ < BMax a™ < B(n+1)°

a" <
| F@) | < Zanp™ = (1—p) Sspp® < (1—p) BE(n+1)%" < B(l—p)=.

Consider now (2); we take p, = exp (—ca™") and show that for p = p,
the series for f is dominated by a single term.

If u, = a™2*", we have
Un—s —cbs  —a —_ e—cbs
T <8 P =e (821, 27 ""n)’
Unts| . cbs @-1) — o b bs 2.9
v | =P = exp {cbs—c(e®—1)} < exp(—3cb’s?) < exp(—3cbhs)
Hence (s> 0).
_,L! 2l tnss| 3 Iuw i ol
1— 3 | == — —nis — —
Uy, > s=1] U Ex Un, >1 1—e®  1—e ¥
> 1— ¥ g 1—2e¥P 2" 1207 _0g0
1—e® 1—g™it ™ 1—e 11—
A
=1 > 4.
[ [
Also |#,| = Ba™ =B (log —1-) ~B (L) .
p l—p

8.6. To prove our next results we require two lemmas.
Lemua y. For s=o+ti, oy <o Ko, t>1 we have
IT(—s)| < Btle~t™, B = A4(oy, o).

This follows easily from the well known asymptotic formula for
log I'(s).

LeMMA 8 (““Mellin’s integral’’). For By >0, « >0 we have

_ 1 —x+i®o ,
eV = —. F(—s)yds.

- x—iw
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We have, with the contours marked in the figure,

1

-———5 (—s)y'ds= = =y
271 M+(2)+B)+) m

=0 m!’

(2 n+34iT

Y

)
Y:}é'

WA

&

-Kk-iT (4

Fig. 1.

the right-hand being minus the sum of the residues at s =0, 1, ..., n.
We now fix # and make T— . It follows at once from Lemma y that

—x =0

-k +io0
j tends toj ' and J . J‘ tend to 0. Thus
(¢)] @) J®

_:_l_ ~x+i0 _ n (__y)m _ Ljfrwh.iw _ , _

271'@'5 —k—i®0 %: Ml B8t jie I'(—s) y*ds = R,.
Now

| T(—n—3—ti)| = | —LE=1) < 2| T'(3—t3) |

n!

I (—m—}~—ti)
—_— 2 . }
= S ITG—t) TG+ts)|

=2 (7 N _4
@ —n!<coshvr[t|> <ae
Hence, writing y = 7e*, where | ¢| << 4, we see that the integrand in
R, has a modulus less than

Annﬂ;

L g=tm=14Die]

It follows that B,—0, and this proves the lemma.
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8.7. Weierstrass’s function satisfies the following identity.

If b =1loga>0 (but a is not necessarily integral), Ry =0, c is real
and not zero or a negative integer, then
M Samew =3 3 T(o+ 2 yeaon_ 3 gV

n=—00 n=0 n! (a«“’"’—l)'

Let y = 5¢*, |¢|<<ir. Consider now

taken round the contour of the figure, s, being the point —c+2rai/b. In
this we first make M — . On the horizontal boundaries
[t|=h=@M+1) /b, [yl'<<re!* <Kel#!,
[T(—s)| < KhEe~ ¥ < Ke XX,
where K’s are independent of M and o [K = 4 (3, ¢, «, 1, ¢, N)];
a’** = exp {b(c+o) + (2N +1) 7i/b} 1is real and negative.

SM-H
SM
N+l
-k| -] o [ ™
Sm
S

Fig. 2.
Hence the integrand has a modulus less than Ke=*" and the integrals
along the horizontal boundaries tend to 0. Hence, also, the series of
residues at the poles on o = —c converges at each end.
On the vertical boundaries |1/(1—a‘*$)|<<K and the integrals
converge absolutely (when taken to ») with the integral of Lemma 8.
H2
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We have, therefore, taking account of the residues in the rectangle,

1 (j—n-;-iao —j‘NHHw) T(—s)y'ds

27t Nip—in/ 1—a’*®

—x =100

- ¥ (=y" i S ( Qﬂ) —c—(2minft)

- %n!(l—a”*")-+ _Ewr G-I" " b y .
In this we now make N>, Since 1/(1—a"*") <1 for ¢ = N+3 > 4(c),
the integral along o = N4} tends to O in virtue of (1) of § 8.6, and we
have

_ 1 —xtios I‘(—'S) sds
@ I=g) IR
—w_ =y 135 2min G (@rin [B)
=2ty 2T () v :
1 -‘+i°° S on ns ——
Now J = é;zj_“m EO a®(ya™’T'(—s)ds,

and in this we may invert the order of the operations j and X, since

0

jzlacn(yan):r(_s) [ I dsl = J’ . Sa—(x-on ”—Ke—‘#t] T'(=s) [ dt

exists. But this leads at once, by Lemma 8, to
(8) J = ZaTe ¥,
and from (2) and (3) we obtain the desired result (1).

8.8. We can now discuss our last special function. We prove :
Given B> 0 and a real ¢ 5 0 satisfying |c| <34, then

f@) = Za,2" = Znc-igihnlogn ;n
satisfies

— gm0
(1 fl&) = é @ Fy)+,
for z=pe%, | 0] < 7, where
loga =b=22B8", y=o+t, t= Bexp(—1—687Y,

o= B"1¢ log(1/p),

T The assumption | ¢| < 4 enables us to avoid some minor complications. The important
values of ¢ are small positive and small negative ones.
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Y- 15 @ continuous function of p, 0, in p L1, (0| < ™, and
F(y) = Za*e~¥,

Evidently t lies between two constants of the form A4(B8), and
>0 uniformly in 0 as p—1. We suppose first 3 < p << 1, so that
o <A4A(PB. Now we have as n—> o, the constants of O’s being
independent of 8(or ), o, n,

(o 25) = (o 25) (o 25) o o 25
25 0(2)

X exp{ (c+ ——) [l 0g % +10gﬂ+%ﬂ+ + "15) "'1] +0 (':Z)}

= ¢~ Iripiy-t

@ = ¢ tripipi

X exp {gb_ im logn— = n+ %’Z (log -2-61—-1> in—+c log g—%——n +3wrci+0 (—,'1;)}

_b—
yemnl = exp{ ( 27%) [bg t+gmitlog (H' t@>:|}
o+

= exp {— 27””') [log t+%7r’l:— - -I-O( 2)]}
(8) = exp {—7‘%—7—& —_ ggrbzn——— Tm log t—clogt—3met+ O(0)+ O(a-’n)} .

From (2) and (3) we obtain, after a little rearrangement,

( 422 2"2@”) —c—(2minfb)
— et grrbi- b e exp 0 (L) 406+ 0t
4) = ¢~ (Qr) Bt~ a, "+, p",
where

o | <K

exp {o (-:7) +0(¢)+0(aﬂn)} -1| — K|expwa—1|.

We show now that
(5) w2, |p" < Kn~%  (uniformly in p <1).



102 SPECIAL FUNCTIONS.

We have o << K log(1/p). Hence for < v = (log 1/p)~% we have
n<K(ogl/ph, |wa| <K, |v,]<<K|w,],
and so [vn | < En~14+-Kv™i < Kn~%;

and (5) follows since ¢ < }. If, on the other hand, n>v and 1—p > K,
then v> K, and p = exp(—v-i) gives

17y, | p* < exp (—mY) exp(K+Ko’n) < exp(—mv~ 34K Kv="¥p)

< exp(—~Knm i+ K)
< exp (—Knv8) << Kn~%

Thus (5) is proved for 1—K < p<<1l. The rest is easy. The series
Zn*~t,p" is majorized by KZn-%#," and represents a continuous fune-
tion ; and since ¢ < K, and so |y|<< K, the series

(—)"

§=2Z @ —1)

1o also continuous. Hence, since # is continuous and lies between two
constants A(B), it follows from the formula of §8.7 that (1) holds
subject to the condition p>1—K. But when p<1—K, and s0o ¢ > K,
the functions f(z), F(y) are clearly continuous in (p, 6). The result
(1) holds, therefore, without restriction.

If now we select @ as in § 8.7 we deduce the following results con-
cerning the behaviour of f(z) = Sno—t gifnlogn 4n,

Given a real ¢ =0 subject to lel<% there exists a B= A(c) with
the following properties

(@ If ¢ > 0 then
f@I<4@U—p) (6<1)

on the one hand, and on the other there exists a sequence (p,) tending
to unity and such that
[f@|> A1 —p)—*

Jor p=p, and all 6. In this case all M\, /) are unbounded,
and, indeed, of the same order; and this can occur with a function f
Jor which |a,| = n-1+3,

() If ¢ <0 then f(2) is continuous in p < 1. This can occur for a
function with |a, | = n-i-s,
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CHaapTER 1.

The contents of this Chapter are almost all classical. It ends with
the theory of the conformal representation of “‘schlicht’’ domains in
general; but much of the earlier part has great intrinsic importance.

9. The mazimum modulus principle.

9.1. TaeorEM 101.t—Let f(2) be regular in a bounded domain D.
For each point § of the boundary suppose that, for some 8 = 8(e, &),

|fl<M+e

Jor all z of D in [2—£| < 8. [We call these  conditions (A)”.] Then
[fl < M in D, and equality does not occur unless f is a constant.

[N.B.—f is defined only in D, i.e. at interior points.] The proof is
very much like that of Theorem 49. TLet G, possibly o, be the upper
bound of |f| in D. Consider the class of points P such that every
neighbourhood S of P gives G as upper bound of | f| in SD. The bisec-
tion argument shows that there exists at least one P in D’ (not neces-
sarily in D). Suppose now no internal point is a P ; then some boundary
point £ is, and since | f|<< M+e¢ in some neighbourhood of £, we must
have G < M. Since evidently | f|<< G at all interior points [equality
makes z a P], we have also | f|<<M.

I prove now that if an internal point is a P, then f = C, a constant
in D, and |C|= G. This will complete the proof, since every £ will be a
P, and so G < M as before.

Suppose an interior point 2z, is a P. By continuity | f(z)] = G,
say f(z9) = Ge**. Then

1 (" ;
fi =5 [ flatrenae,
where |z—z,| < 7 is any circle round 2, lying entirely in D. Thus

1 " —ia
G_Ej o= 7 d,

-1

+ The theorems of Chapter I begin at number 101, those of Chapter II at 201, and
so on. The sections are numbered consecutively.
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Since |e~i f| < G and | f]| is continuous we must have | f|= G on the
whole circle. If now f(z,4 7€) = Ge®,

G = 1 52" G2 4O = G rr cos (p—a)db
Qmr 0 . 2 0 ’

and the same argument shows that cos (p—a) =1 on the whole circle,
and so f= Ge'*. Since r is arbitrary, we have f= C = Ge* = f(z)
in any circle round 2, lying in D.

Suppose now f is not equal to C everywhere in D, say f== C for
2 =2;. Join 2, 2; by a polygon, and let { be determined, by a Dedekind
section, so that f = C on the polygon from z, to anything short of ,
but not from 2o to anything beyond {. By continuity f({) =C. Hence
by the above argument f = C in a circle round {, and this is false.

An important particular case of conditions (A) occurs when f is
continuous in D’ and | f| << M at all boundary points.

CoroLLARY 1.—The result of the theorem is true also if f is regular
at each point of D and | f| is one-valued in D.

CoROLLARY 2.—If f# 0 in D there is a minimum modulus principle.
We have only to consider g =1/f.

CoroLLARY 8.—If f is regular and never zero in D, f is continuous
in D!, and the boundary values of | f| are everywhere constant, then f
is comstant in D.
By Corollary 2 | f| is not less than its boundary value anywhere in
D; hence | f]| attains its upper bound at an interior point and f is a
‘constant.
- Corollary 3 becomes false if the condition f == 0 is omitted.

9.9. The réle of Cauchy’s theorem in the above proof.

1. The theorem is used only in the case of a circular contour within
the circle of convergence.

2. Its use is avoidable. It is enough to show that [ f| cannot be a
mazimum at an interior point of D, unless f is a constant. If f is not
constant, and the point is the origin, we have

f=apte.s*+..., .50,
Let 3 be small and positive and let z be a root of the equation
1) 2" = da/cn.

Then [fl= 14| ao [+ 0@ > | a,| = | f0)].
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It is instructive to compare the problem of proving the fundamental
theorem of algebra without using Cauchy’s theorem (or an equivalent).
This problem, too, reduces, on the above lines; to the existence of a z
satisfying (1), and is substantially equivalent to the existence of a solution
of the equation 2" = k. This last existence theorem can be proved, if with
some difficulty, by purely elementary reasoning.

9.83. The following argument has a certain interest in spite of
requiring assumptions more stringent than (A). Suppose D bounded
by a contour for which Cauchy’s theorem is valid, f continuous in D
(and regular in D), and | f|<< M on the boundary.

(i) Let z be interior to D. Then

1 n L
| Flz) | = ,%J [ dz <

c R—2Z, o= 2é

M™,
where L = length of C, 8 = distance of z, from C.

Make n— o : | flz) | < M.

(ii) Suppose | f(z)| = M : to prove f constant. We have
L

B 11 "g .
|nf*eg) . f (&) | = I‘Z';;IL (‘an_z:) < g2 M
, L M . ,
Hence WHCAIES 9ngt " oy » and n—>o gives f'(z) =0.

Let F=jf" Then F" = n(n—1)f"*(f")+nf*1f" and so
F(zp = ni{fla)} " f"(2)
21 5 frdz

27 c (Z—'zo)

2! L

| (e | = | B | = 5 M

3| <

PE )
Sf"(29) = 0.

Similarly f"(z¢) = 0, ete., and f is a constant.

9.4. TeEorREM 102.—Let f(z) be regular in a bounded D;
|fl<M+e for some nmeighbourhood of each boundary point, except
for a finite set &, ..., &3 |fI<<M' in D. [Conditions (B).] Then
|fISMin D, and | f|<M unless f is a constant.
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Let d be the diameter of D; ¢ >0. Let

¢ = «°f, w=H(i:-‘-Z—§-T-)

«° is regular at every point of D [in D if D is simply connected], and
| @ | is one-valued in D. The same things are therefore true of ¢. Also
|o”] <1, s0|¢|<<|f], and |¢|< M+ in some neighbourhood of any
£ other than a £.. Also

ol < Ifldc|e—El S M A6 <e< M+e

if | #~¢,| < ¢ and ¢ = 6(e, o) is suitably chosen. Hence |¢|<< M+e in
some neighbourhood of each ¢, and ¢ satisfies the conditions of
Theorem 101, Corollary 1. Hence

|¢| <M in D,

|f|<M(m—§”jg])’in D.

Fixing #z and making o—~0 we have |f| <M. By Theorem 101 f is
constant if | f|= M at an interior point.

9.5. Strip-theorems.

9.51. The principle of the argument of Theorem 102 generalizes as
follows :

TraeoREM 1020.—Suppose that f is regular in D, and satisfies
| f1<M+-¢ for some neighbourhood of each ¢ of the boundary, except
for £s of a set E ; and that a function w(z) ezists, regular at every point
of D, and not identically zero, for which |w(z)| is one-valued in D and
satisfies |o|<<1in D. Suppose finally that for any given positive ¢ and
o the inequality |o” f | < M+6 is satisfied in some neighbourhood of each
§of E. Then |f|<M in D.

g = «°f satisfies the conditions of Theorem 101, Cor. 1. If z, is an
interior point, not a zero of w,

lg@| <M, |fle) | < Mok |

and |f(z) |<< M by making c~—>0. 1If z,is a zero of it has points 7y,

not zeros of w, arbitrarily near it; | f(z)| << M, and so | flz) | < M by
continuity.



MAXIMUM MODULUS PRINCIPLE. 107

9.52. Theorem 102z has applications to the theory of functions
regular in infinite vertical strips. We nowhere happen to use these
applications, but they have great intrinsic interest, and we shall digress
to discuss them.

TreEoREM 103.—Suppose

(i) f 1is regular in a half-strip a <<z <<B, y>=n, or D;

(i) | f| < M+e in some neighbourhood of every (finite) point of the
boundary ;

(i) f= O(exp{e*"!*I=9}) uniformly in D, where 3 < 1.
Then |fl< Min D.

Remarks. (1) The strip is the transform of a bounded D with one
exceptional &, & going to .

(2) As against Theorem 102 we assume a highly specialized boundary,
with a cusp at oo, but, on the other hand, much less than | f|=0().
There are other compromise theorems.

(3) The theorem is more or less best possible. The example
a= —%ir, B=73%r, n=0, f=exp(e~*), shows that I =1 is not per-
missible ; here | f|=1 on @ = +3m, |f|=exp(e’) on z=0.

Proof.—As often happens, the critical case gives a clue. Let a, 8, #
be as above, ¢ >0, g = fexp(—oe ™) =fo”, where <k <L
Clearly |w|<<1in D. As y—>®

g = Ofexp[e**'— e cos 3k7])  (uniformly in 2).
Now €'!*l—geH cos 3k < €@+ —ge? cos $kw — — o (uniformly in ),

since & >9. Hence g—0 uniformly, and so|g| < M+e (y >y"). The
theorem now follows from Theorem 102a, transformed to the case

§— @.

To carry out the details, not using Theorem 1022, we proceed as
follows. Liet zo be a point of D. We can choose H so that |g(z) |<<M+e
on y = H, and may suppose H >y, = Jz, Since |o”| <1 we have
now |g|< M+ e in some neighbourhood of every boundary point of
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the rectangle, therefore |g|<< M at z = 2o by Theorem 101. That is,

~ikz

lf(zo)l<M|3“ °.
In this we make o—0.

CoroLLARY.—Suppose (i) and (iii) hold, and f is continuous on the
boundary; f= 0@y, 0" on z=a, B. Then f=0(@°) on z =y,
uniformly in vy, where ¢ = py+q and pr-+q is the linear function that
tsaatz=gq and b at z = .

We may suppose » > 0. Lt ¢(2) = f(2)(—z)~»*9 = fi},, regular
in D, continuous in D’.

l\b | — I (y_,,;w)—(pzw)—im 1

= |y—iz["®*Dexp (m/ Flog y—;z )

*® exp {py [— —3 +0($§) ]}

= y et g {1 +0 (%) } (O’s uniform).

= y—(m+q)

1rof})

Thus ¢ =0(1) on ¢=a, =4, and, of course, on the bottom
boundary. Since ¥»= O(y*) = O(|2|¥) condition (iii) holds for ¢ if § is
rechosen. Hence ¢ = O(1) uniformly in the strip, whence the result
for f.

A similar theorem holds for O{log ) ?}, etc.

9.53. TeEEOREM 104.—Suppose (i) and (iii) hold, and f is continuous
on the boundary. Also that lim | f|< M on ¢ = a and =p. Then
y—>

Iim | f| << M uniformly in the strip.

f is bounded on the boundary, therefore, by Theorem 103, in D'.
Suppose #>0; and let H = H(e) be the ordinate beyond which
| f1<M+-eon the edges. Let h be a positive constant, g = fz/(z+4hi).

In any case|2/(z4A42)|<1 in the strip; we suppose further h = h(H)
chosen so (large) that

lg|<M+4e om y=H

(this is possible since |g|<|f|< K). Then g satisfies the conditions of
Theorem 103 in the strip above y = H. Thus |g|< M+-¢ in this strip,
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and ;1115- |g| < M+e, uniformly. This gives Iim |f|< M+et since
z/(z+hi) 1 uniformly (in ). Hence im |f| << M.

Cor. 1.—If, subject to (i), (iii), and the continuity of f on the
boundary,

a z=a,

Ealf1<{b o,

where a, b0, then Im| f| < e (uniformly), p and gq being
Yy—>w
chosen so as to make the right-hand side a at a and b at B.

Consider g = fe~ (749,

Cor. 2.—If f=0Q) onz=a, f=01) on x =B, then f=0(1)
omzr=vyif a<<y<pB.

We may take b=¢ in Cor. 1, observing that e?*¢ (for fixed v)
tends to 0 with e.
This ends our digression.

9.61. The conjugate function F(z). Suppose F(2) is 1egular in D.
We define F(), for a { of D, to be the conjugate of the number F@.
Then F(Y) is a regular analytic function of { in D. TFor it is evidently
one-valued ; also if { =7, {+6¢= 2+4dz and so 6{ = &z,

FE4+8)—F§) _ Fetd)—F@) LT
6§ - oz

(by reason of the existence of the corresponding limit for conjugates),
and F is differentiable at {.

9.62. It is convenient to take here a proposition quite unconnected
with our immediate topic.

THEOREM 105.—(Schwarz’s continuation theorem, or ‘‘symmetry
principle’’.) Suppose the domain D has a segment of a straight line
AB as a free part of the boundary (i.e. if P is between A and B the whole
interior of some semicircle about P lies in D), and that D lies wholly

+ Not M. 1Itis M+ e that plays the part played in Theorem 103 by M : the domain and g
depend on e.
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on one side of the complete straight line AB. Suppose that f is regular
in D, is continuous (in D) at points of (AB), and takes real values on
(AB). Let us define

f(), for zin D+(4B),

Fl) = L=
the conjugate of f@), for zm D.

Then F is a regular analytic function wn D; = D+D+(4B).

D and 7 here denote reflections in 4AB. We may, however, suppose
AB the real axis, so that D, z have their usual meanings. D and D have
no common point.

F is regular in D, as above, also continuous (in D;) on (4B).
It is enough to show that F' is regular in some circle about every P of
(4B); for it is then regular at every point of D,, and one-valued, by
definition, in D;. Let us then draw a circle C round P in D;. Let

_ 1 ( FRde
20 =55 |, 525

a function regular in the interior of C. Let C;, C, be the perimeters
of the upper and lower semicircles (including the diameter). If now
{ does not lie on the real axis

\ ) d.
9 () = jcl f;‘%ﬂc’ fﬁ

If ¢ belongs to the upper semicircle, j = 2mi F({), since F is regular
o

1

inside €, and continuous on the boundary, and { is in C,. Also L =0,
since F/(z—{) is regular inside C, and continuous on the bouridary.
Thus ¢({) = F()). Similarly this is true when { is in the lower semi-
circle. Hence ¢ and F' agree in the interiors of C; and C,, and so, by
the continuity of F and ¢, also on (AB). Thus F is identical with ¢,
a function regular in C.

9.7. THEOREM 106.—(Another mazrimum modulus principle.) Let
f(2) be regularin D, F(2) in D. Let (2) = f(2) F@) (- is defined in D,
but is mot analytic). Suppose  satisfies conditions (B) in D (i.e.
|¢ | <M+-e in some neighbourhood of every ¢ but a finite number, and
| Y| <M). Then

|f@F®@|=|v|< M in D.

Let g(2) = f(2) F(2), evidently regular in D and satisfying a con-
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dition of type (B). We have |F()|=|F@]|, |¢|l=|g|< M, by
Theorem 102.

Cor.—In the theorem z and z, D and D, may be reflections in any
line.

9.8. We propose next to explain an important method ; this will be
grasped most easily if we take a concrete example of its application; the
example has no very special interest in itself. Consider the rectangle
R of Fig. 8, in which we suppose b :

D 3 A

a R £ a--_é

C B
Fig. 8.

Suppose f regular in R, continuous in R’'; | f|<< M on the whole
boundary (therefore also inside), | fl<m<<M on AB. Then in the
(isosceles right-angled) triangle AEB

| fl< MEmt.
Let 2z, be any point of the triangle,
f@) = ple—z) = p(&),
VO =11 g6,

so that () is a regular function of 2z in the dotted square. On each side
of the square one of the ¢’s has modulus << m, the others moduli << M.
Hence |y | << M®m, in the square. In particular,

[0 | < MPm,
2.e. | Flza) |t << A 3m.

Cor.—We may suppose conditions of type B (M-4e and m-te)
instead of continuity in R'.
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For another example see Fig. 4. At any point 2, such that a rotation
= round it creates a region bounded only by m-arcs, we have

[flz9) | < &/(Mm).

Fig. 4.

In such problems we can also often employ Theorem 106. Thus, in
Fig. 5, suppose ACB an m-arc, AEB an M-arc. If the reflection of
D, in AB lies in the original domain, then | FI< +/(Mm) on AB, and

so in D,.
B (Y

Fig. 5.

Take F=jf and D= D,+D,+(4B) in Theorem 106. f(2) and
F(z) are defined in D. For a z of ACB, lf) | <m, |f@l<M
| f) f@)| < mM. Similarly for AFB. Hence | f(2) f@) | < mM for all
z of D, in particular for z of AB, where 7 = 2.

10. Some classical theorems.

10.1. TrEoREM 107 (*‘Schwarz’s Lemma’’).— Let f be regular, and
FIS M in |z2|<R; f(0)=0. Then

|IfI<M|zl/R (2] < R).
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In particular this holds if f is regular in |2|<<R and continuous in

We may suppose M =1, R=1. ¢(2) = f/z is regular in the unit
circle y (by Osgood’s theorem). Given r << 1, take p such that » < p < 1.
On |zl=p | 9@ | <1/p. Hence |¢)|<1/p also for |z|=1.
Since the left side does not depend on p, we may make p—1; thus

lel< 1, (/1< 2l
Cor.—Let f(z) be regular, |z|=p, and | f | < Y (p) in v, where y» is
increasing and Y (0) > 0. Suppose also f(0) = 0. Then
|[/I<Epy) (<D,
where K is a constant, which may be taken to be 24-(3)/4(0) = K,

For p>3, |fI<p¥ e < 208 (0) < Eopyr(p).
For p< 3,

| fle] < Max|flz| < 2Max | f| < 20 B) < 20D Y)Y O

10.2. TEEOREM 108 (Hadamard’s ‘‘three circles theorem’).—Suppose
rn<L <L f regular and | fI< My in (2| < rs; | FIS My dn |2|<

(oron |z|=r). Then

<M M ((z1<n),
, = log 18 I3 —8 =log 12 Is
where 3 = log s / log ' 1—9 =log m / log e

Consider f(2)z~* in the annulus (7, 73) and apply Theorem 101,
Cor. 1, choosing A so that M,»i* = Myrs* = pu. We get, for |z|=r.
|[fo=* | << my My < prd, and this is the desired result.

10.8. TEEOREM 109.—Suppose f(z) 1is regular in |z|<<r.

B U (2| <), f(0) = ay = B+3y. Then for |z|=p<<r we have
2 U 2 U
o —a0l < 222,y —p) < 2022,

We have B U. Moreover, since the desired 1esults are true by
continuity in the limiting case U = B if they are always true for U > j.
we may suppose U—pB>0. We may further suppose ay= S+iy=0.
We suppose then f(0)=0, 8 f< U, U>0. We may suppose also r=1.

The values of f are confined to the half-plane Bw << U; also f(0) = 0.
[
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What function w = g(2) conformally represents the z-circle on the
w half-plane, and 2 =0 by w=0? TItis

—92
g(e) = _gz
Take the inverse function
— 9
Z(g) = =30’
and consider
& o) = Z{0)} = 7=l

Conformal representation theory shows that w is regular in |z]|<C1 and
|o|<1. But without appealing to this, let us define » by (1). Then,
since W(f—2U) < —U <0, w is regular in y, and if f= u+iv, we

have
_ w?+v?
lo1=V (o=t
and so |w|<C1, since 24—wu > |u|. [Consider u > 0, u << O separately. ]

But «(0) =0. Hence, by Theorem 107,
lo() | < 2],

fOl=glu@}]= — 2‘_7‘;,

10. 4. There is an alternative proof, giving more.

TeEEOREM 110 (Borel).—Suppose f(2) = Za,z" is regular in y and
R U. Then |[a.|<<2U, =2(U—B) (n> 0).

For z=1re%, r <1,
f = B+iy+ %(,Bn+iyn)r”(cos nf+i sinnd) = P(r, 64:Q(, 6),

P=g8 +213(,6n cosnf—ry, sin n6) r*, uniformly convergent in 6.
Hence

(1) 2mp = F'P a9,
0
2 ™
"By = L Peosnfdb, wrty,= —-r P sinn6db,
0
2
o) T, = L Pe~?d6.
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(i) Suppose U=0. Then 0<|P|+P < 2U. From (1) and (2),

. j |P|d6 = 5 "1 P|+P) d60—2x8

< ["em as—2np = 2005 .

Make r—>1: |a.] < 2(2U—P),
the result with 2U for U, and under an additional hypothesis.

(ii) This can be amended. @ With the original hypothesis let
fl=f—U. Then Bf<U' =0, =PB—U. The extra condition
in (i) is satisfied, and (i) gives

lan| < 2.{2.0—B—1)} = 2(U—R),
the full result.

(i) An alternative device. Tiet f1= f—ao. Then B /i< ..,
U, =U—B>0, and we have to show |a.|< 2U;. Here f; = P+1iQ,
where .

) 0= fpde,

T, = .V" Pe=" 6.
0
Let now a =arga,; then
2 b
T Ay, | = Trta, e =5> Pe=+aigy — r P cos (n9+4a) dé,
0 0

since the left side is real,

= ﬁ"P{1+cos(ne+a>;de, by (3),

< ro" U,{14cos(nf+a)} d6 = 2= U,

as before.
To see that Theorem 110 includes Theorem 109 we observe that

/&) | < Flp) = 2| an| p" L)@ | +2(T—B) Zp™
(iv) A function-theory proof of Theorem 110.

Let f;= Ea,,z , Bf; < U.. We have to show |a.| < 2U;. Asin
the proof of Theorem 109, we have for |z|=p >0,
il 202

Sl—p°
12
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Hence LG (z) 20,

] 1 —p’

As 7— 0 the left side tends to a,, Hence
I a l < 2U1’

the result for the special case n=1.

Now let w = e**¥/*; then

k=1
1 2 Sile™2) = Eam 7= g,(e") = g1(2).

The series for g; is convergent for |z|<<1, and so for all Z for which
|Z|<1;g1isregular in |Z|<1. Since 3Bg, < U, we have

| coefficient of Z | << 2T,
Fay| < 20
We record finally the following deduction from Theorem 110
Cor.—Suppose that f(z) is reqular and

B{f)—fOI<ST

2
(TE:Z;Q (2] =p<n.

in |z|<<r. Then
@) <

‘We may suppose r = 1, and the result follows from

17@] < 2 n|au p* < 2T, Znp™

10.5. There is another result of a slightly different kind. In the
first place we have

TeeorREM 111.—Suppose f(z) regular in

2=z, | <, F=P@, §)+iQ(r, ¢) (2= zy+re).

Then Flla) = :—J;'P(r, e dgp.
We have '
1 dz _ 1
@ fla) == Lgflz—o% = (P—HQ) =i dg.

v 1 4 . .
Also 0= W jof(z) dz = oy L (P+412Q) ¢ dg.

In this we change the sign of ¢ and add to (1), obtaining our result.
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From Theorem 111 we deduce at once

TeEOREM 112 (Schwarz).— Let S be regular and |Bf|<C in
—20| < r. Then

|G| < 20)r.

10.6. TrHEOREM 113 (Vitals). —Suppose that we are given a domain D
and a sequence (f,) satisfying :

(@) fn1s regular in D for each n ;

(b) fu 1s uniformly bounded in every D ;

(€) fu— @ limit (necessarily finite) for each z of 2, z,, ..., an infinite
sequence (of different 2’s) in D with at least ome limit point 2z, in D.
Then there exists an f(2), regular in D, such that

fn '_>f’ 'fSn.p) ___,f(p)’
uniformly in any D'.

It is a consequence of (a) and (b) that fa is a continuous function
of z in any D’ uniformly in n. In fact, let a be the distance of D’ from
F(D), and let z;, 2, be two near points of D”.. We have | f,|<X for
all z of D distant more than 3a from F(D) and all n. Hence, if

|21—2,| < 8 < }a

and C is the circle with centre z; and radius 3a,

M |Fale) —fule) | = - Ucfn@ (;_lzl = g_lzg) df,
lzl“z | __[uQdl
< g L C—2)C—2)
2 — ™ K.*adB l 17 K
<132:2'J’_" %aia ==k -
<e

if 8 <<lae/K. Since n is arbitrary this gives the desired result.

I say now, abandoning uniformity for the moment in our conclusions,
that for every z of D Jn tends to a limit f as n— (through all values).
If not, there exists a z* of D at which S does not tend to a limit, and we
can find two subsequences (1), () through which Ja(2*) tends re-
spectively to two values differing by ¢=£ 0. Let ¢.(2) be the difference
fn;(z)—fn;'(z); as r—>® ¢,.(2) tends to zero at z =z, and to ¢ at z = z*.
By Theorem 5, Cor. we can find a subsequence of (r) through which
$.(2) tends to a limit function ¢ in D, and uniformly in any D', By



118 CLASSICAL THEOREMS.

a theorem of Weierstrass ¢(2) is regular (in any D” and so) in D. Since
¢(z) =0 at an infinity of points z, in the neighbourhood of z = 2, it
must, by a classical theorem on the identity of two analytic functions,
be identically zero, and this contradicts ¢(z*) = c.

Thus f,—>f in D. Also f is continuous, as the limit of a uniformly
continuous f, [“|Af| =1lim|Af| < e (|Az|<8)”]. If now the con-
vergence is not uniform in every D' there must exist a k > 0, an infinity
of values of n, and corresponding points ¢, with a limit point { in D,
for which d,({n) > %, where dn(2) = |fu(2)—f(2)|. DBut since f is con-
tinuous and f, uniformly continuous at {, d.({) and d,({, differ by
arbitrarily little whenever {, is within a distance & (independent of n) of {.
Therefore d,({) >4k for large n of the sequence; and this contradicts
fa©—F(). Thus fo,—f wuniformly in any D.. Hence finally, by
‘Weierstrass’s theorem, f is regular (in any D’ and so) in D. Our results
are therefore proved so far as they concern f,. The results for the p-th
derivative f¥ may be proved in the same way [the argument at (1)
being available, with obvious modifications]. They may also be deduced
by Weierstrass’s theorem (since every D’ is strictly interior to some
other one) from those for f,.

It would be convenient to have some short symbolism for ‘‘f, con-
verges to a regular f in D, and uniformly in any DL”. “f,—>f
uniformly in D’’ is open to the objection that it has already a meaning
other than the one we intend (and incidentally a false one). [The
objection is not absolutely fatal, since we practically never need to
assert uniform convergence (in the ordinary sense) in an open set, and
might alter its meaning without much fear of confusion.] A purely
symbolical assertion like ¢ f,—f (V) in D'’ becomes uncomfortable
when the fact has become very familiar that “f,—f (V) in D"’ is a
necessary consequence (by the theorem) of “ f,—f in D’’. We prefer
to use merely “f,—f in D’’, and, having once strongly directed the
reader’s attention to the point, expect him hereafter to read into the
assertion all the consequences of it implied by the theorem.

10.61. An alternative proof of a special case.

Suppose (i) f. regular and wuniformly bounded in D, a circle.
(i) fa—>f wuniformly in d', a concentric smaller circle. Then f is
reqular in D, and f,— f in D, uniformly in any D_.

By hypothesis we have for n, m > v(e),
ol =1/fa—fnl <e= M, (in d".
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Also [¢|<<2K = M, (in D).

We may take D_ to be |z | << 7, <7y d' to be |2| << 7, D to be 2| < rs.
Theorem 108 gives

M, < € 2K) -3,
9 depending only on 7, 75, 5. Since this tends to 0 with e it follows that
| fa—fnl<<e in D_ for n, m >/ (e).
Hence there exists an f such that f, — f uniformly in D’, and then f is
regular in D’ | by Weierstrass’s theorem.

The general theorem also can be proved without the selection prin-
ciple, but (if we are to take the simplest proof) not on these lines.

10.7. THEOREM 114 (Montel).—Given a sequence {f,(2)} of functions
regular in D and uniformly bounded in any D', there exists a subsequence
fu(?) and an f(z), regular in D, such that f,,—fin D as v—> .

Take any 2, in D, and a sequence z;, 2z,, ... tending to z, The
double séquence f,(z,) is bounded; hence, by Theorem 5, we can select
a subsequence f, wsuch that, for each z,, f., (¢n) converges to a limit as
v —>w. The desired result follows by Theorem 113.

11. Preliminary results on conformal representation.

11.1. TeeorEM 115.—Suppose that f(z), not a constant, 1s regular
at 2z =a, and that f(a) =b. Then f takes, near a, any value near
enough to b. More precisely, if z=a is a zero of f(2)—b of order n
(ezactly), then for every sufficiently small s there exists an r, tending to
0 with s, and such that for every ¢ satisfying |c—b| < s there are exactly
n solutions of f(z)=c in |z—a|<r.

Suppose that a =0, and that for small 2z

f=b=a."+tan 2"+ ..., n>0, a.,¥+0.

For all small r
| pir 2" | < E|an | (2]|=1).

If now s = }|a,|7" and |c—b|<s, then f—c = F+¢, where
F=a,2", ¢=0b—0+(@+12""+..),

and, on |z| =1, lpl < ¥lanlm™ |9/Fl<3<1.
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Round |z|= » we have
Aarg(f—c) = Aarg F+A arg (14 ¢/F) = 2nw-+0.
Hence f—c has n zeros in [z]|<<7.

Definition.—A function is called ‘‘schlicht’’ in D if f'(2) 3= 0 in D,
and f(z;) % f(2,) for distinct points z;, 2z, of D. Or: if f(2)—a =0 has
never more than one solution (counting multiplicities) for 2z of D.

TrEOREM 115, Cor.—If f is regular at z, and f'(2) %= 0, then
there exists a neighbourhood of z, tn which f is ‘‘schlicht’.

Here n=1. If z is near z,, the value f(z;) is near f(zo), and cannot
be taken twice near 2o.

11.2. TuEOREM 116.—Suppose that f is reqular and “‘schlicht’ in a
domain D. Then the values w= f(2) “fill"’ a domain A. Also there is
a function ¢(w), the inverse of f, reqular and ‘‘schlicht” in A, whose
values z fill D. If D is simply connected, so is A. (Thus there is com-
plete reciprocity.)

If E is the aggregate of values w, and w, a point of E, it follows
from Theorem 115 that all w near enough to w, belong to E. Hence E
is an open set. K is connected, since if w, = f(z), w; = f(2,) belong to
E, so do the w = f(#) corresponding to 2 of a polygon in D from 2, to 2,
which w lie on a curve. Thus E is a domain A, possibly multiply
connected.

If now w is a given point of A, there is a unique solution z in D of

w = f(z). We define
z=¢w) win A),

and have to prove (since ¢ is certainly one-valued) that ¢ is differentiable
in A; then evidently ¢ is regular and ‘‘schlicht’’, and its values fill D.
Now Theorem 115 shows that ¢ is continuous at a w of A (for a value
near w is taken by f mnear 2z, and can only be taken once at all). Hence
if 248z, w+8w correspond by f, 8z tends to zero with dw. Then

Sw 8z fl2) 5 ow

Thus ¢ is differentiable in A.

That A is simply connected follows from the one-one continuous
correspondence with D.

When f, ¢; D, A are (reciprocally) related as in Theorem 116, we
say that w = f(z) gives the ‘‘conformal representation of D on A", and
z = ¢(w) that of A on D.
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Cor.—f need not be “‘schlicht’’. In this case, however, A must be
taken on the appropriate Riemann surface ; ¢ is multiform on the simple
w-plane.  Reciprocally f need not be uniform, if D is on a Riemann
surface, and then ¢ is not “‘schlicht’.

[Omit the word ‘‘schlicht’’ in Theorem 116, and interpret ‘‘regular’
in the usual conventions for Riemann surfaces. The details involve the
usual treatment of branch points. Developments of this kind, however,
we systematically omit.]

11.3. THEOREM 117.—Suppose that C is a closed contour, D its
interior; and that f(z) is reqular in D and continuous in D'. Suppose that,
as z describes C in the positive direction, w = f(z) describes a closed
contour I once. Then (1) I is described positively, and (2) w = f(2) gives
a conformal representation of D on A, the interior of T'.

D and A are simply connected. After Theorem 116 it is enough to
prove (1), together with

(3) Given z5 in D, wy = f(z) lies in A;

(4) Given w, in A, there exists a 2z, in D, and only one, for which
wa = f(2a).

[For after (3) and (4) f is ‘‘schlicht’’, and its values fill A.]

Suppose 2o is a point of D, and let u = f(z,). We have
(5) Acarg {f(9)—f(zp} = Ararg {w—f(z)}.

The left is 27 times the number of roots of f = f(2¢) in D, or at least 2x.
Hence u cannot be an exterior point of A, or the right-hand side would
be zero. If u were a frontier point of A, ¢.e. a point of I', f(2) would take
near zp all values near u, and so would take values that are exterior points
of A, which we have seen to be impossible. Hence u is an interior point
of A, (5) holds, and the right side is +2# according as I' is described
positively or negatively, while the left side is not less than +2x. Hence
I' is described positively. Thus (1) and (3) are proved.

Finally, if w, belongs to A (and so f 5= w, for z of C),
(6) Agarg {f(e)—w,} = Ar arg(w—wy) = 427,
so that there exists one and only one z in D giving f(2) = w,. This
proves (4).

Cor.—In Theorem 116, to a closed contour C; lying in D, its interior,
and its exterior (in D), correspond by the transformation respectively a
closed contour Iy in A, its interior, and its exterior; and C,, I'1 are

described in the same sense.
The transform of C,, having no double point, is a closed contour.
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11.4. Lemma 1.—Let f(2) be regular and “‘schlicht’”” in D. To a
sequence (z,) tending to z in D corresponds a sequence (w,) tending to w
in A, To a sequence (z,) in D with one or more points of the frontier as
limit ponts corresponds a sequence (w,) tn A with one or more points
of the frontier as limit points (but the frontier points need not corre-
spond point by point). To a closed DL corresponds a AL, frontiers
corresponding point by point. Finally the distance d{A”, F(A)} tends
to zero with d{D., F(D)}. All these results hold also reciprocally .

The first part is obvious sinece f(2,) — f(2), a point of A. The
reciprocal of this, and the reciprocals of all other proved results, are,
of course, immediate.

If the second part is false, then every subsequence of the w, tends
to a w interior to A, and by the reciprocal of the first part the z-sub-
sequence corresponding (therefore an arbitrary one) tends to a z interior
to D, which is false.

In the third part, to (the interior of) D_ corresponds a domain A,, and
to the frontier of D_ must correspond, point by point, that of A;; since, if
2o belongs to F(D_), f(2) takes, near 2o, values belonging to A, and others
not belonging to A;; and reciprocally. TFinally, every point of F (4))
being interior to A, A} = A, +F(D,) is interior to A.

If the fourth part is false, there exists a sequence D) with
dn=d{D., F(D)} tending to zero, and a corresponding sequence A,
such that each F(A,) contains a w, distant more than d > 0 from F(A)s
The w, have some limit-point w, necessarily interior to A. But then,
by the reciprocal of the first part, the corresponding z, have a limit-
point z of D, and this contradicts 4, — 0.

Note.—It is not proved, nor is it true, that if z tends to a z on
F(D) then w tends to a (unique) w on F(A).

11.51. Theorem 117 is important in applications in which we are
given D and A and have to find an f; it is enough to find a regular f
that behaves correctly on the boundary C.

The domains we have been considering are bounded; we often
require, however, the function representing a given D on a half-plane.
Following the usual rules of thumb we might expect the following
modification of Theorem 117 to hold (and it is often naively appealed to
by mathematical physicists) :

(A) Suppose that C is a closed contour starting from and ending at
z = a, and that f(2) is regular inside C, and continuous on C except at
2z =a, while f— o (uniformly) as z —~a in D. Suppose further that
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as z describes C, w = f describes the real axis from —o to +co. Then
w = f conformally represents D on II, the upper half-plane of w.

This proposition, however, is simply false. Let f(2) = i(142)/(1—2);
w = f(2) represents |z|<<1 on II, and as z describes |z|= 1, starting
with z = 1, f increases steadily from — @ to w. Consider now ¢ = f.
¢ increases steadily from — o to @ as z describes the circle, ¢ is con-
tinuous on the circle except at z =1, and ¢—>o as z—1. But if
Fw, > 0 two of the cube roots of w, lie in II and are values of f, so that
the value w, is taken twice by ¢ (in v); and if Fw, < 0, one cube root
lies in II and ¢ takes the value w, once.

It is desirable, of course, to have a true form of (A) with the minimum
of extra hypotheses. We give three such forms.

11.52. Sufficient extra conditions under which (A) is true.

(1) There exists a w,, not real, such that f=w, in D. (We shall
see that Fw, is necessarily negative.) It is easily verified that (if w, is not
real) {=1/(w—w,) describes a certain circle I' (interior A) as w goes
from — o to «, that the transformation represents A on that half-
w-plane in which w, does not lie, and that I" is described positively or
negatively according as w, does not or does lie in II. Consider now

$= ¢ = 1/{f(d) —wo}-
It is regular in D, and continuous in D’ (including z=a). As z
describes C, f describes — @ to o, and { describes I', once. It follows
by the main theorem that { = ¢(2) represents D on A. Also that I is
described positively; so w, s not in II. Then, combining the trans-
formations, we see that w = f(z) represents D on II.

In the remaining cases we suppose, but purely for simplicity, that in
the neighbourhood of z =a, C consists of two analytic curves C’, C”
meeting at a.

Suppose pg is an arc of a small circle with a as centre, joining C' and
C", and lying, except for p, ¢, in D. Then (A) is true if :

(2) As z describes a pq near a, f describes a curve lying in II, or
more generally, describes a curve not cutting a fixed curve A, where A
“‘extends to x’’, and never cuts the real axis of w. [Actually A must
lie in II, though we need not assume this explicitly.]

Denote by C, the contour C modified by the cutting out of a by pg,
and let £ be a point.of A. As z describes C,, f(z) describes a closed
(but mnot mnecessarily simple) curve Iy, mnot cutting A. Now
Ac arg (f—&) = Ar, arg (w—§) = 0 for sufficiently distant £  Also the
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p]

left side is a continuous function of & except for £ of I, and is also of
the form 2nr except for ¢ of Iy. It is therefore zero for all ¢, since
¢ never lies on I'y. Hence, for any fixed §, f#¢in D;  Since D,
differs arbitrarily little from D, f ¢ in D. We may therefore apply
case (1).

[NoTe.—We cannot, in the special case, argue directly that w = f
represents ‘‘D;"" ona “‘II;"’ and take the limit, since I'; may not be simple. ]

Finally : (A) is true if:
(8) f is defined in a complete neighbourhood of a and satisfies
f~c—a)™ G<A<P as z—>a;
in particular it is true if f has a simple pole at z = a.
Suppose @ =0, and let arg (¢z—a) =argz=20. Then
arg { ¢—alf} = A arg z+arg f

is, near a, M0+ (2m+41)r on C; and AG+2nr on Cs. Since these must
tend to limits arg ¢4-2pr we see, (1) that C, and C; must have tangents
at @ (which, of course, we are already assuming), and (2) the angle «
formed at ¢ has a magnitude (2k+1) r/A. Since a << 27 and A << § We
must have k=0, a=x/\. Since further A > %, « is positive and less
than 27. We draw a piece of a straight line L bisecting the com-
plementary angle at a. Now for any « of L and any z of D

lim | arg /() —arg /(@) | = A(r—3a) = A—H= >0

as z, 2—~>a. Hence f(z) == f(2) if « and 2 are confined to a circle of
some radius r round z = a, to which we suppose L confined. Then, in
the notation of case 2, the transform of pq does not meet the transform
A of L. Also for distant w of A we have arg w = + 4= nearly; hence
A, beyond some point, does not meet the real axis of w. We can
now apply case 2.

11.53. Another problem presents itself : suppose z = a is replaced by
z= o, This, however, is trivial. We have

TrEOREM 117, CoR. 2.—Suppose C is a curve, extending to o at both
ends and simple, and let D be one of the domains into which C divides
the plane.  Suppose f is regular in D and continuous in D' (except for
z=®) and f—>1 as z—>o in D; further that, as z describes C,
w = f(2) describes a (bounded) closed contour I' once. Then w = f(2)
represents D on A, the interior of T

There exist points z = o exterior to D. Then 2z, = 1/(z— a) trans-
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forms C (plus the point 2z =) and D into a bounded closed contour C,
and its interiort D; and f(2) into f,(z) say. By the main theorem
w = f,(2:) represents D, on A.

12. The theory of the linear function

az<+b

= L) = ot d’

ad—be 5+ 0.

12.1. This theory is important in the sequel, and we break off to
give a systematic account of it. { is regular except at 2 = —d/c (and
not excepting 2 = ). Also { is ‘“‘schlicht’’ in any domain. The inverse
function

by = d¢—>b
T —clta
is regular except at { =a/c. If we make 2= and {=a/c; 2= —d/c

and { = o correspond we have a one-one correspondence between the
z- and (-planes. (If ¢ = 0 the points « correspond.)

Let 2, {'; 2", {" correspond. The equation is then
' e &

=m =

In what follows we shorten the discussion by appeal to geometry (see
Fig. 6). Let 21, 22, 23, 24 be four distinct points of a circle. Then

Z2—Z
Z—Z

m a constant.

(a)

It

23—2% _ T3 g HTAh Ta g
S R .
Z3—% Ty Z—2y Ty

Z,

4

Fig. 6.

+ Interior or exterior, and the latter is impossible since  corresponds to z = 2.
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Since a = B or =+ 8
za—zl/z4—z, -
B4 fATER )\
25—y | 24— 2y

is real, and \ =1 if z,, 2, are distinct.

Conversely, if the cross-ratio is real the four points are concyclic.
Now the cross-ratio is the same as that of the corresponding {. Hence
z-circles correspond to ¢-circles, and conversely (straight lines are re-
garded as circles).

Liet us now represent {-points on the z-plane. (We then speak of
‘“‘invariant’’ points, curves, families of curves.)

12.2. The fized points of the substitution. These are given by
{==z or
2+ d—a)z—b = 0.
with roots 2, 23 say. If a =d, b = ¢ = 0, we have the identical substitu-
tion ; every point is fixed. Rejecting this there are two roots or a double
root, reckoning z = = as a solution if ¢ = 0.

Suppose first z,, z, finite and distinct. We denote by K a circle
through 2z, 2,; by K’ a circle with 2, #z as inverse points. The K'’s
go into circles through =z;, 2z;. The sheaf of K’s therefore trans-
forms into itself. By the angle-properties of a conformal transformation
the K'’s, being orthogonal to all K’s, transform into circles orthogonal
to all K’s, i.e. into circles K/. The sheaf of K’’s is invariant.

We have now to distinguish three cases.

1. Every K transforms into itself (not, of course, point by point).
The intersection of a K’ and a K transforms into the intersection of the
new K’ with the same K. We may think of the transformation taking
place by each point moving along the K through it into its new position.
The K’s are the ‘‘tracks’ of the transformationt. This type of trans-
formaition is called hyperbolic.

2. Elliptic. Ewvery K' goes into itself. The K’’s are the tracks.

3. Lozodromic. The general case : neither (1) nor (2).
Normal forms of the transformation. Let z and z; be two points on
a K, 235 25, 2. Then
(1) z_zl/zs—zl — {"‘f} &$—& — (=2 [ ==
2 §—6l &G—& $—2af {s—2q

Z3—Rg
1 The transformation depends on a continuous parameter a (besides z;, z;). As this is
varied the tracks come into being.
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In case 1, 21, 23, 23, {3 lie on a K. Hence

Zg—2 —z
AW € (a real, 5= 1).
[ $a—2

Hence the normal form is

z—z _ {—=
— a >, (a real, = 1).

Conversely if a is real and = 1, this equation makes z, {, 2, z; lie
on a K.

Case 2.—Here z and { lie on a K’. Therefore

o) {—2
24y $—2,l’
72—z L E—z
=8 _ g (¢ real).
Z‘_‘zz —Z:_)‘
The converse also holds.

2—2 . E—2

Case 8.— —1 = ,uw“‘“(j 1
2—2 $—2,

[u>0; ¢=~=0 (mod2r) and xF1].
Suppose next z, = , 2, finite. The forms become

o)) z2—z; = a(l—2) (areal, 3=1). (“Expansion” about z;.)
) z—2z = ¥ ({—2z) (¢ real). (Rotation about z.)
8) 2—z = ue({—z) (p=£0 and w=£1).

In (8) the invariant curves are logarithmic spirals (loxodromes). For
suppose 2; = 0, ue'® = ¢?*%.  The curves z = "4} (—0 <t < 4 )
are invariant (if a is a real parameter). For if { = ¢**(?*¥7T the trans-
formation becomes ¢ = T+1.

Finally suppose z; = z;. This substitution is called parabolic.

(a) 7, finite. The K’s become circles with & common tangent at
21, and the K”'s circles with a common tangent at 2; normal to the first.
The normal form is

1 1
szl = E:Z +b (b=0).

(b) If 2, = o, the K and K’ are orthogonal sets of parallel lines.

The transformation is

z={+b" (V'3£0),

a translation.
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12.3. The general equation of linear transformation contains three
arbitrary compler constants, and we can transform any three points
(and their circle) into any three points (and their circle).

Inversion.—The points ¢ and z are inverses in the unit circle if
E=1/z. The transformation {=1/z (from z to {) is a ‘“‘conformal
transformation with reversal of angle’’.

Lemma 2.—If z, 2’ are inverses with respect to K, then for a linear
transformation { and {' are inverses with respect to K/, the transform
of K.

For K and the system of orthogonal circles to it through z and 2’
transform into K’ and the orthogonal circles to it through { and {'.

Inversion in a straight line is a reflection.
Examrre.—To find all linear transformations of Fz > 0 into |{|<< 1.

The inverse of 2z in the real axis is 7, that of ¢ in the unit-circle is
18 It
_az+b _ a 2—P
(= czt+d ~ ¢ 1—y
is the transformation, then z = 8, y correspond to { =0, o, inverses
in the circle. Therefore 8, y are inverses in the line; y= 8. Also z =0
must go into a point of the unit {-circle. Hence a/c = e'" (r real). Thus
the transformation must be

(1) g- —_ ei-r

z—p
2—p"

Finally 2z = B8 goes into {=0, and 8 must belong to the upper half-
z-plane.

Conversely, if JB>0 (1) does what is required. For |{|=1 for =
of the real axis, and arg { increases by +2x as z goes from —w t0 o :
the result follows by Theorem 116, Cor.

There are three real constants implied in =, 8, which we can use to
make three points of the line and three of the circle correspond. If the
triplets have the same sense arg { must increase by 2 as # describes the
real axis positively, we must have JB > 0, and Fz >0 corresponds to
|{|<<1. If they have opposite senses then PB < 0, and the lower half
z-plane corresponds to the {-circle. We can also make { =0 correspond
to a given B (PB>0) and a direction OT at the centre of the circle to
& direction at B.

To find all linear transformations of a circle (and the interior) into
stself.
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Let the circle be |z| < 1. Write the general transformation

a must be in the circle. Since { = 0, { = o must have an inverse pair
as correspondents, we have 8 =a. For z=1 we must have |{|=1,
hence :

1—a

a—1

Hence the most general transformation is

1=|y| =yl

w 2—a

@ {=e az—1
12. 4. Lemyma 3.—The transformation (2) transforms the interior of

the unit-circle into itself, and the exterior of the unit-circle into itself.

We use inversion, and the last result.

It follows without difficulty that we can, in a linear transformation
of the unit circle (and interior) into itself, make three points of the
boundary correspond to three others, provided the triplets have the same
sense; or we can make one internal point and a direction at it corre-
spond arbitrarily, and either condition determines the transformation
uniquely.

(r real, |a| < 1).

12.5. We end this section by proving

THEOREM 118. (Generalization of the symmetry principle).—Suppose
two arcs of circles AB, o83 are free portions of the boundary of domains
D, A. Let f(2) be reqular in D and continuous (in D') on AB, and let
{ = f(z) represent D on A, AB, af being corresponding arcs. Let D*, z*
be the inverses of D, z in (the circle of) AB, and A*, {* those of A, { in
af8. If now {= f(2) (for z of D) gives {* = ¢(2*), say, then ¢(z*) is
a reqular function of z* for z* in D*, and is the continuation of f across
(AB); f is further regular at points of (4B).

If » = f(2) represents a domain Z on V, and w = ¢(v) represents V
on W, then w = ¢{ f(2)} represents Z on V.

By linear transformations we can turn AB into the real axis of 2,
and of into the real axis of {,. Then z* (qua z-point) becomes z,, ¢*
becomes &, and & = f(2), &* = $(2*) become = fiz). & = ¢,(Z). The
functions fi;, ¢ are related as in the original Theorem 105, and we
obtain the general form by transforming back.

It is the ‘‘symmetrical”’ value of the function when continued that
gives this theorem its great importance. The rather different question
of the conditions under which some continuation is possible is, however,

K
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also important, and can be answered completely. We therefore dis-
cuss it here (though it is alien to our present ideas).

COROLLARY. Suppose that a free arc AB of the boundary of D is
an analytic arc without singular point, that f (2) is regular in D, con-
tinuous (in D') at points of AB, and that w = f(2) lies upon an analytic
arc without singular point in the w-plane as z describes AB.  Then
f(z) can be continued across AB.

An analytic arc AB without singular point is a curve for which, in
some parametric representation z= z(t) (t real, t; <t <<ts), 2(t) is
a regular function of ¢, and 2'(t) 5= 0, at all points of the interval
(t1, t5). Consider any point z, of AB; we may suppose that this corre-
sponds to the value t =0. By Theorem 115, Cor., the transformation
2 = z(t) transforms the neighbourhood of 2z, into a mneighbourhood of
t =0 in the t-plane, and must therefore transform the piece 4’B’ of
AB included in the neighbourhood into an interval of the real axis of t.
Similarly the transformation w = w(r) (associated with the parametric
representation of the w-arc ¢B) transforms the corresponding piece of
aB into an interval of the real axis of . Further [since 2'(t)== 0, and
w'(r) 5 0 near 2y, wo), both transformations have (regular) inverse trans-
formations, t=t(2), 7= r(w) respectively in the neighbourhoods of
2y, wo. To a neighbourhood of 2z, bounded (partly) by A’B’ corresponds
a neighbourhood of ¢=0 bounded by a piece of the real axis, and
similarly for o’ and the r real axis. The equation = = +[ f{2(t)}] = ¢(t)
makes ¢(t) real for small real t; hence, by the original symmetry prin-
ciple (Theorem 105), ¢(t) can be continued across the real axis near
t=10. It follows that

[ =wlp{t@}]

can be continued across AB near z = z,.

13.1. 'We resume now, after the interruption of section 12, our dis-
cussion of conformal representation in general.

TrEOREM 119.—If the conformal representation of a simply-
connected D on a circle d 1s possible at all, it can be effected with a given
point and direction in D corresponding to a given point and direction in
d ; or, if the representation is one of D’ on d', the boundaries, supposed to
be closed contours, corresponding point by point, it can be effected with
three points of the boundaries (the same way round) corresponding

arbitrarily. Further, either of these conditions uniquely determines
the representation.
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CoroLLARY.—A conformal transformation of a circle into itself is
necessarily linear.

The first part is now obvious: the new representation can be made
via a linear transformation of the circle into itself.

If two distinct transformations exist with the same set of conditions,
we obtain (by combining one with the inverse of the other) a non-identical
transformation of the circle into itself with an invariant centre and direc-
tion there, or three invariant boundary points. This is impossible. Sup-
pose first that { = f(z) transforms the unit circle into itself, with
f0)=0, f/(0)>0. Since |f(2)|<<1 for |2|<<1, and f(0)=0, we

have |¢/z|=|flz] <1 (Theorem 107).

In particular (z =0) | f/(0)|<1. But z = g({), the inverse fransforma-
tion, is of the same type; hence |1/f/(0)|=]¢'(0)|<1. Hence
| F/(0)| =1, f(0)=1. But now |f(2)/z| takes at z =0 its upper bound
in |z|<<1. Hence, by Theorem 101,

f(2)/z = constant = a; = 1.

If, on the other hand, a non-identical transformation T of the unit-
circle into itself leaves three points of the circumference invariant it
must, by the above, change the position of z =0 or the direction of a
line through it. The linear transformation L that restores them changes
the boundary triplet (having only two fixed points), so TL is not identity.
But T'L is of the type just considered, and we have a contradiction.

To deduce the corollary we need only observe that there exists one
transformation, and a linear one, that transforms the centre and a direc-
tion there in the same way as the given one.

TrEOREM 120.—The representation of a bounded (‘‘schlicht’’t)
domadin D (not necessarily simply connected) on a domain A is, if possible
at all, uniquely determined by the correspondence of a point and direction
in D with a point and direction in A.

The proof of the special case does not extend, and we must start
afresh. Tt is enough to prove :

If w = f(z) represents a bounded ‘‘schlicht’ D, containing the
origin, on itself, with f(0) =0, f(0) =a>0, then f(z) = 2.

Let C be a circle, radius r and centre z = 0, containing only points
of D. Write f_, for the inverse of f, fo=f(fac1), fon =Ff-1(f-ta-1),
fo= 2 : all these have the same domain D of existence, and

[ ful < M = Max| z|.
D)

t A ¢ schlicht ”’ domain is one that does not overlap itself.

K2
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Hence, by Cauchy’s theorem,
© if S}p)(o) l <p! Mrr.

Now it is easily seen that f,(0) = a" (for n of either sign): (1) (with
p = 1) therefore requires ¢ =1. But then, unless f =z, we have in C

f=24+a,4... (a,%#0),
and so Jo=2+nay+. ..,
which again is incompatible with (1).

Cor. 1.—If w = f(z) represents a bounded ‘‘schlicht’’ domain D, con-
taining the origin, on a domain A, and if f(0)=0, f'(0)=1, then
either f is z and A = D, or else D and A overlap in the strict sense, i.e.
they have common points, and each contains points not belonging to the
other. '

Suppose that A © D. Then, on the one hand

[@ = f, file) = fif@},
evidently exist in D and are bounded by M, as in the main theorem ;
and on the other f, = z+nays"+... for positive n and small 2z (also as
before), if fs%2 Hence A c D implies f=2 and similarly DCA
implies f_, =z, or f=2

Cor. 2.—If w = f(2) represents D, containing 2 =0, on a A con-
tained in D, and if £(0) =0, then | f/(0)| < 1.

For IO =] 10| < Mr.

13.2. We recall that any one-one continuous correspondence between
two domains preserves the conmectivity. A closed contour and its
interior become a closed contour and its interior (or, with some con-
ventions about infinity, possibly the exterior).

TEMMA 4.—A simply-connected D (in a single-sheeted surface); with
more than one point in its frontier, can be conformally represented on
some bounded domain.

If 2, and 4, belong to F(D) we may suppose z, = o : otherwise take
Z =1/(z—2y) (a ‘‘schlicht” transformation). Then infinity is not
interior to D. TLet {= 4/(z—2z;). A closed contour in D cannot
surround 2;, hence { is regular in D. {(z) is also ‘‘schlicht’’ (since
z=72+{). Suppose then that {={(2) transforms D to A. If ¢
(necessarily == 0) is an interior point of A, —, is not one, otherwise zq
in D has two correspondents +¢, in A.  Since { is interior, and —{ is
not, also when { is near {, it follows further that —{, is not a point of
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F(A) (f it were it would have neighbouring —{ that were interior). Hence
—{, is an exterior point of A. If now Z = 1/({+{o) we obtain a Z-domain
that is bounded.

This result can be pushed further. (We do not actually use the
extension for conformal representation theory.)

LemMa 5.—Suppose that D is ¢ bounded simply connected domain,
and that P is one of its frontier points. Then D can be conformally repre-
sented on a A intertor to a finite circle K, and in such a manner that P
corresponds to a point Py of the circumference of K, that is, all points of
D near P become points of A near P;. If D 1s bounded by a closed contour,
so will A be. '

We may suppose DP to be z=0. Let Max|z|=R. Now let
(D)

{=log #, a function regular in D. This transforms D into A, lying in the
half-plane IT, or B{ < log B. Also points near P in D go into points near
win A. If now we transform II into the interior of a {-circle K we arrive
at our conclusion.

Note on the condition for D in Lemmas 4 and 5.—For a single (or
finite) sheeted surface an F(D) that contains two points must contain
at least a connected continuum extending to infinity if D is to be simply
connected.. But this is not true if there may be an infinity of sheets.

The excepted case.—Suppose D is bounded by one point. Then
D cannot be conformally represented on a domain bounded by more
than one.

For, by Lemma 4, if it were we could represent it on a bounded
domain. Since we may also suppose the missing point to be z =00,
we should have a representation { = ¢(2), with ¢ regular for all finite 2,
not constant, and bounded. This.is impossible.

Finally we can show :

The only transformations that transform one D bounded by one point
into another are linear (and then the missing points also correspond).

If not, we could, by combining with a suitable linear transformation,
transform the finite plane, non-linearly, into itself. The transformation
and its inverse are

{=f@, z=g@,
where f and g are regular at all finite points, and ‘‘schlicht’’. Hence
f is not a polynomial of degree >1, and so has an essential singularity
at infinity. Then { takes arbitrarily small values for some large values
of z, and this is inconsistent with 2 = g({).
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14. Two lemmas about domains.

14.1. In what follows we confine ourselves to simply-connected
domains, on a single-sheeted plane, and not overlapping themselves
(““schlicht’’), for which F(D) contains more than one point.

LemMMa 6.—Suppose that we are given an expanding sequence of
simply-connected domains D,, bounded in their ensemble. Let D =ZXD,,
Then (1) D 45 a bounded simply-connected domain, (ii) D,c D,
(i) D_c D, > ny).

(i) is trivial. (iii) practically is the generalized Borel theorem.
(Every point of D is interior to some D,, therefore a finite number of
D, cover D', so therefore does the greatest of these.) It follows further
that D is connected (if #;, 2z, belong to D they belong to a D,). Also
D is open and bounded ; hence it is a bounded domain. Finally if C isa
closed contour of D, C, being a closed set of points, lies in a D,, therefore
contains only interior points of D,, therefore only interior points of D.
D is simply connected. This ends the proof.

[In the language of ‘‘limit-sets”, D, — D.]

14 .2. Lemma 7.—Given g simply-connected bounded D, there exists
a strictly expanding sequence D, of simply-connected domains bounded by
polygons with sides parallel to the axes, and a sequence I, such that
(@) D is the sum (or limit) of either the D, or the D,, so that also D_C D,
for large n; (b) any two points of D;, can be joined, in D,, by a polygon
of length << 1,.

Cover the plane with a network of sides 277, ..., 27", .... The meshes
of order n interior to D coalesce into distinct pieces, which are simply—'
connected (otherwise the outer boundary of the piece would surround
frontier points of D). Call D;, the piece containing a fixed internal point zo
of D. In the first place any point z of D belongs to D,, for n > n¢(z). For
join %o to z in D, and let § be the distance of the path from F(D); it
1s easily seen that z belongs to Dj if 27" << 16. Hence D = ZD, (since
evidently D,c D). 8Since D,c D, we have D,c D, for some m
(Lemma 6), and so also D = =D,. For the same reason we can, by
taking an appropriate subsequence, secure that D, < D, ., for all m,
so that D, is strictly expanding. Finally if M is the diameter of D, any
two points of D7, can be joined by a polygon of length <{ 2M+perimeter

of Dy,

15.1. Lemma 8.—Suppose f, reqular and f,—f in D. Then
Jfo—c and f—c have the same number of zeros in D_ for n > n, (¢, D_)
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(counting multiplicity), provided no zero of f—c lies in F(D_). (If a
zero does so lie the result may be false). The provision requires in par-
ticular that f—c must not be identically zero.

) f—c has a finite number of zeros in D_. Surround these by (small)
circles lying in D_. In the rest of D' (a closed set if the circles are taken
open), f—c is continuous and never zero, therefore bounded below in
absolute value, by 28, say. By Theorem 113 we can choose 7y so that

|fa—fl<d8 m>=mny zin D).
Then evidently f,—c¢ =0 in D’ outside the circles, and, since on a circle

L=l <y,

Ju—c, or (f—c)4+(fa—f), has as many roots inside as f—c. This proves
the result.

Cor.—If each f, is ‘‘schlicht’ in its domain of existence, then either
[ 18 “‘schlicht” in D, or else f is a constant.

If f is not constant and takes the value ¢ more than once, there
exists a D’ in which it has the same property, while f=~¢ in F(D.).
By the lemma f,—¢ has two zeros in D’ for large n, and this is false.

16. Riemann’s existence theorem.

16.1. We come now to the fundamental theorem on conformal
representation (of a ‘‘schlicht’’ domain).

TaEorREM 121.—A simply-connected ‘‘schlicht’” domain containing
2z =0, whose frontier contains more than one point, can be conformally
represented on | { | <1 by ¢ = f(z), with f(0) = 0, f/(0) real and positive.

We may suppose the domain bounded, by Lemma 4; also translated
and reduced in scale (2’ = az+b). It is therefore enough to solve the
problem of representing D on d with f(0) = 0, f/(0) > 0, where d is the
unit {-circle, D contains z = 0, and D’ c d.

We represent z- and {-points in the same plane.

Our main idea is to seek a transformation {; = fi(2), regular in D,
which increases the distance of each point of D from 0 (makes
|8 |>12]|), but leaves it in d. D then goes into a larger D;. Similarly
D, into D;, and so on. We may hope to secure that D, —>d, f.,— f, and
that f will do what we want.

Consider

) %—Z{—g—_—\/(i"_-‘:fi) r<1, o/ =+r at z=0),

rz
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Z is ‘“‘schlicht”, regular in any simply-connected domain A contained
in d and containing z = 0 but not (as an interior point) z =7, and con-
tinuous in A’.

As a function of Z # is regular in | Z| < 1 and continuous in | Z| << 1;
also z = 0 corresponds to Z =0. Now if |{| <1, | (—&)/é—1)] <1
if and only if |{| << 1, and the signs of equality correspond. It follows
from (1) that |2(2)] < 1if |Z]| < 1, and that | Z(2)| < 1 if |2| < 1 which-
ever sign is given to the square root; also that signs of equality corre-
spond. By Theorems 107, 101, since z/Z is evidently not a constant,

Z

Z

<1 (Z|<D,

from which we have, respectively for Z =10 and Z3£0,

dz
(2) ﬁz=o<1’
(8) 2| <|Z] 0<|Z|<D.

The inverse function Z(z) is regular in A and continuous in A’, and
is defined at z =0; and for z of A’ we have [by (3) and (2)],

4) 1>Z|>2] (z]<UD),

(5) | Z'(0) | > 1.

16.2. We observe concerning the transformation (1) :
1. When Z describes |Z| =1, # describes |z| =1 twice.

2. It is not possible for a function Z, regular (and not constant) in
2| <1, to have |Z]|=1 on |z]=1 and |z|<|Z]| for 0<]|z|<]1,
and we cannot avoid many-valued functions altogether. For such a Z
must vanish somewhere (Theorem 101, Cor. 3), and this can happen
only at z=0. Then we should have

_ 1Z/z1< 1 (J2]<D),
contrary to hypothesis.

3. We have so far given an account that does not mention Riemann
surfaces. But the wider point of view is the right one, and suggests
quite naturally the transformation (1), to whose origin there has so far
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been no clue. (This is not the only occasion when Riemann surfaces
suggest a proof of a theorem with which they have prima facie nothing
to do. Compare §25.31.)

- Suppose that we represent a Riemann surface of two sheets, bounded
in each sheet by |z|=1 and branched at z=17, on |Z|< 1 [so that
2(Z) is regular], making z =0, in some sheet, and Z = 0 correspond.
Then 2(Z)/Z has modulus 1 on the circumference. Since it vanishes
somewhere other than Z = 0, it is not a constant. Hence the modulus
is less than 1 in |Z]<< 1, and the inequalities (2) and (8) [and so (4)
and (5)] must hold.

The subsequent argument requires only the existence of a function
with these properties. We can find its actual form [viz. (1)] by the
following stages. We first represent the single sheeted unit circle of z on
that of 2/, z = 7 corresponding to 2’ = 0 ; then the double 2’ circle, with
winding point at the origin, on the simple z” circle ; finally the (simple)
z" circle on the (simple) Z circle, making 2” = 0 correspond to Z =1r
(the last fulfils the requirement of making z=0, Z =0 correspond).
The three transformations are :

—r __ b o — LAY
re—1_ % VE = A= NTZ—1"
16. 8. The more general transformation
Z—\re® __ (z—re“’)
@ NrZ—e® T \/ rz—e*

also has the properties (4) and (5).
Let now 7% be the point of F(D) nearest 0. Then

Si— e 72—, 6" _
Vrel—ete \/(roz——e‘"’v o L=h6),

gives a {, regular and ‘‘schlicht’’ in D, and transforms D to D,, say,
interior to d. Since f;(2) is continuous in D’ it transforms points of
F(D) into points of F(D,) = F;. Hence, if r, is the distance of O from F,,
we have 11 >r, (provided 70<<1). We now repeat the process on D,
and so on, obtaining sequences (D,), (r,). It is in point of fact the case
that for any D », tends necessarily to 1 (so that D, tends to the unit
circle), that f,—>jf in D, and that (what the reader will then easily
believe) w = f(z) represents D on the w unit circle.

The actual argument is rather long and delicate, and we become a
little awkwardly entangled in the structure of 7, and f,. (We may ob-
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serve, however, that the selection principle is not required.) There is,
however, an alternative line of attack which, depending ultimately as
before on the transformation (1), employs, so to say, a larger army of
functions (in fact, the largest possible). Here there is much greater
flexibility, and no irrelevant detailt.

Let D be any bounded domain. We may suppose 2z = 0 an interior
point. Consider the class of all functions ¢(2) with the properties :

(i) ¢ is bounded in D,

(ii) ¢ is “‘schlicht’’ in D,

(iii) ¢(0) =0,

(i) ¢/(0) =1.
We want to prove that some ¢ = ¢, represents D on a circle. Now if
a ¢ exists (as it in fact does) the function ¢o and the circular domain
will have certain interesting minimal properties with respect to D. For
example, M(g¢)= M(¢,D), the upper bound of [¢| for z of D, and
A(¢) = 3 (¢, D), the area of the transform of D by w = ¢(2), both have
their minimum values when ¢ is ¢o- This is indeed true if we allow &
to range over the class of functions subject to (iii) and (iv) only. Thus,
let R be the radius of Ay (the circle), let Z(w) be the function inverse to
W= ¢o(2), and let ®(w) = ¢{Z(w)} (so0 that @ (w) is w when ¢ is o).

Then @, gua function of w in |w|<< R, satisfies the conditions $(0) = 0,
$'(0) =1; we have
M(¢p, D)= M, &), B(p, D) = 3@, A);
and it is enough to prove
M@, A) >R, 3@ A)> ~&

The first result is immediate, since (by Theorem 107)
R =R|¥0)|< RM (%) = M@).

Next we have

@) 7 3@ =([19'w0) 2rardg,

where w = 7¢*, the double integral is taken over Aq, and regions covered
multiply are counted multiply in the area, For |®'(w)|? is the Jacobian

T It would be possible to obtain something (but not enough) of this improvement by making
the original process transfinite ; the expanding sequence D, has a limit set D, we may repeat
the process with D,, in place of D, and so on transfinitely.
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of the transformation from w to t. Now for w of A, we have
P (w) = 14+2b,w+8b;w+ ...,
and the right-hand side of (2) is (by Parseval’s theorem)

R o«
275 (1422 bg? 2482 I by|2rt+..)rdr = #R¥*+7 = n| b,|* R** > = R2
0 n=2

Suppose now that N(y) is any number {such as M(}) or & (¥
associated with a function V-, and that a class of v/, all defined in a fixed
D, has a member Y for which N is a minimum. If v is the lower bound
of N (for varying ) there exists a sequence ({,) for which N(¥,) = v;
we can, perhaps, select a subsequence of (\,) converging in D to a limit-
function, and this function may well turn out to be Y. This suggestion
we now follow up for the class of functions ¢ satisfying (i) to (iv). The
argument can be carried through when N is either #(g¢) or M(g); the
latter gives the simpler version.

16 . 4. After these preliminaries we make a fresh start. We take as
known the properties (4) and (5) of the function (1) of §16.1. They
are established either by the argument of that sub-section or by the last
fifteen lines of §16.2; one of these counts as part of the official proof.
What now remains is important but quite short

The class of functions ¢ satisfying (i) to (iv) exists, the function

pl) =2

being a member of it. ILet u be the lower bound of M(¢) for all ¢. Then
there exists a sequence (¢,) of functions ¢ for which M(g,)—>u. ¢, is
uniformly bounded in D for large n [since |¢.| << M(p,) < utel.
Hence, by Theorem 114, we can select a subsequence of the ¢,, with
which we may now identify the original sequence, converging to a y(z) in
D. By Weierstrass’s theorem (or by Theorem 113) ¥'(0) = lim ¢, (0) = 1;
and incidentally Y is not a constant. By Liemma 8, Cor., ¥ is ‘‘schlicht”’
in D. Further, M(Y) < p. For if M) > p' > p we have | Y () |>p'
for some { of D, ' ¢,({)| > u' for large n, and so M(¢n) > | ¢u() | > u' for
large n, which is false. - now satisfies conditions (i) to (iv), and is a ¢.
Hence finally M () > n and so M) = u.

I say now that the transform A of D by w = {-(2) is a circle, which
establishes the theorem. If A were not a circle we could decrease its
largest radius, which is u, at the expense of the smallest. In fact, given

+ Since we are concerned with the transform of the whole of 4y a full discussion requires
some limit-argument. This is given in most accounts of quadrature, and the point is in any
case rather trivial. As we do not actually use the result we omit the details.
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a z-domain A containing z = 0, interior to a circle d of radius # and not
identical with it, there exists a x(2), with |x’(0)|>1, which transforms
A into a new domain interior to d; we have only to take x(z) = uZ(z /m,
where Z(z) is the function (1) of §16. 3, and re* is any point of F(A)
interior to d. If now our A were not identical with |w|< u we should
have |x{y¥(2)}|<p. Then

Y (o) = —L{ (Z)}

x'(0)
is “‘schlicht’’ in D, Y (0) = 0, 30{(0) ='(0) = 1, and

My < l_x%o)‘] < m.

This is impossible.

17. The conformal representation of limit-domains in general.

17.1. The nucleus of a sequence of domains.—T.et (D) be a sequence
of domains each containing 2 =0. The nucleus N of the sequence is
defined to be, either the greatest domain D, containing z = 0 and with
the property D_c D, for any D_ and all large n; or, if no such domain
exists, the single point z =0. (In a nucleus; there is a privileged point,
taken to be the origin.) .

We say further that D, “‘converges into its nucleus’’ if every sub-
sequence gives the same N.

Notes.—1. If one domain D has the “D_.c D, (n > ng)” property,
so has XD, the summation being taken over all such D. A sum of
domains all containing 2, is a domain (21 and z; are connectible vig 2g).
Z is therefore a domain, and the greatest one of its kind. N therefore
exists (and is unique).

2. Let L be the set of points P such that P is contained in D, for all
large n; the set of interior points of L is a sum of domains, let M be the
domain containing z=0. N (supposed mnot the single point) is not
necessarily the same as M. Suppose, e.g., D, is the unit-circle less the
circle (taken closed) on the segment 3+3n7 to 3+n! as diameter. M
is the interior of the unit-circle, N is M less the point z =3. (Thus
N and M need not even have the same connectivity.)

3. Examples. (i) D, expanding and uniformly bounded. Here
N= ED,, and D, converges into N. This is the most important case.
(i) Contracting D,. There exists a limit set L. If L. taken open,
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is a single domain, then N = L. (L need not, however, be a single
domain ; see, for example, Fig. 7.)

Fig. 1.

17.2. LemMa 9.—Given two bounded sequences of domainst (com-
taining the origin), (D,) and (A,), let D and A be their nuclei, neither
being a point. Let = fu(2) represent D, on A,, and let ¢, be the
inverse function of f,. Suppose now that

fa0) =0, fa—>fin D, ¢.—>¢ in A.
Then (= f(2) represents D on A, and ¢ is the function inverse to f.

Observe that [since ¢,(0) = 0] there is complete reciprocity : any-
thing proved for D, f, ... applies also to A, ¢, ....
The proof falls into four stages.

(@) f and ¢ are mot constant. This is far from trivial. If f is
constant its value is f(0)=0. If (%0 belongs to A, let
z = ¢({), Zn = ¢a({y). Then z,—>2z. If now zC D, there exists a D_ such
that @) 2, 2€D_ (n > ny, and so also () 2z, 2C D, (n>n > ny.
From (i) f,@) =¢. From @) |f@)—/f.@)|—>0 as n— o (uniform
convergence of f, in D.). But the left side is |0—¢,[, and we have a
contradiction. Therefore ¢({,) takes only values lying in C(D) for §, %0
of A. Since ¢(0) =lim ¢,(0)=1m0=0 and ¢ (the uniform limit
of ¢,) is continuous at { = 0, this is impossible.

(b) f is “‘schlicht’” in D, ¢ ‘‘schlicht” in A. This follows from (a)
and Lemma 8.

(¢) The values of f (for z of D) lie in A, the values of ¢ in D. By
(b) = f represents D on some domain 8. Given z of D, there exists a
D_ containing 0 and 2z, and a D, such that D_. <D, and Djc D (see
Lemma 7). By {=jf there correspond J_ and ¢, similarly related to

é and { =0. Now by the uniform convergence of f, in D,, {=fu (n
large) represents D, on some area differing arbitrarily little from &,

t By a bounded sequence of domains we mean a sequence of uniformly bounded domains,
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and therefore containing §'.. Since also D, D D, (for large n) we see that
A, D¢ for almost all n. By the definition of A, §_ C A, and the value
f(z) belongs to A.

(d 6. Let { be any point of A; we have to prove it the f of
‘some z. Now z, = 9a(l)—> ¢({) =32, a point of D, by (c). There-
fore there is a D-_ such that z, and .z belong to D_ for large n. Hence

-0+0=0, ‘

by the continuity of f and the uniform convergence of f in D_ respec-
tively.. Hence f(z) = ¢{,: {, is a point of 8.
It follows now that { = f represents D on A. ~Finally, we have just

‘seen that fe} =&

for any { of A; hence f and ¢ are inverses.

17.8. We prove next :

Given a bounded sequence of D, each containing z = 0, and that D,
converges into a nucleus D, not a point; also a bounded sequence A,,
with nucleust A. Suppose now that { = f,(2) represents D, on A,,
f2(0) =0, and Jo—>f in D. Then (1) ¢ = f(z) represents D on A,
(2) A, converges into A.

Case (). A not a potnt.—Consider the inverses ¢.. We can select a
subséquence giving ®n = ¢n, > L, Fn = f,, = F = f. Let A* be the
Nof the A, = A¥, D* that of the D =D,,. Then D* =D, ACA¥,
and A* is not a point. By Lemma 9, { = f represents D on A*, and f,
® are inverses. It follows now that ¢,—®. If not, we can select
different subsequences giving different limit-functions & and ®, and
nuclei (possibly the same) A*, A¥. But since then { = f(z) represents
D on A* and on Af, these last are identical. Then further z = $({),
z = ®,({), defined in the same A*, are both inverses of f, therefore
identical. But if ¢,— P the subsequence originally chosen may be the
whole sequence, and A* = A. This proves both (1) and (2).

Case (ii). A the point { = 0.—We have to show f,— 0 in D. If
not, f is not constant, is therefore ‘‘schlicht’’ (Liemma 8), and therefore
represents D on some domain & containing { = 0. Take J_ containing
{ =0, and & such that 6~ c §,, 8, d, and let D_, D, be the corresponding

t We slightly extend here the use of the symbol A; & may be a peint.
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z-domains (they contain 2=0). {=f, represents D, on something
differing arbitrarily little from J,, therefore containing §_. It follows
that é_ c A, and this is impossible.

17.4. Tt is easy to prove a converse of the last theorem, viz. : Let D,
D, A, be as before, and let {=f,(2) represent D, on A,, f»(0)=0,
f1(0) >0. Then, given further that A, converges into A, it follows that
(for some f) f.—fin D.

If not, there exist two subsequences (f,,) with different limit-
functions F'; and Fy. With obvious notation we have A¥ = A¥ = A (by
hypothesis). Therefore, by the direct result, { = F, and {= F, both
represent D on A, with Fj(0) =limf;, (0) >0 and similarly F5(0)>0
This is impossible, by Theorem 120

Summing up we have :

TreroREM 122.—Let (D)), (A,) be bounded sequences of domains,
with nuclet D and A, where D is not a point, and let D, converge into D.
Let § = f.(2) represent D, on A,, f,(0) =0, f.(0)>0. Then the neces-
sary and sufficient condition for f, to converge to some limit-function
fin D is that A, should converge into A. If this happens { = f(2)
represents D on A.

It is an instructive exercise to write out the proof for the special
case when D, A, are expanding (and bounded uniformly), making the
appropriate simplifications. The result, for this case, which we call
(for reference) (A), is as follows :

If D,, A, are expanding and uniformly bounded, and tend to D and A,
and if fo—f in D, then { = f(z) represents D on A.

17.5. Montel's proof of Theorem 121.—D is a limit of expanding D,
which are polygons. The theorem, (B), that any (simply-connected)
polygon can be represented on a circle, goes back to Schwarz (see, e.g.,
Goursat’s Cours d’Analyse, Vol. III). From (A) and (B) Theorem 121
follows, and this is Montel's proof. It is instructive to analyse further
the proof of (A), especially so far as it depends on (C), Montel’s theorem
(Theorem 114). We want (C) only for a domain D, knrown to be repre-
sentable on a circle; it is therefore enough to prove (C) for a circle, a
specially simple case.

The boundary problem.

18.1. We prove next a result of interest in itself, which we shall
also have occasion to apply in the sequel.
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TuEOREM 123.—Suppose that we are given a closed contour I' (interior
A), divided at B and a into T'; and T, Suppose (1) () is regular and
bounded in A, (2) y is continuous in A' except possibly at a, (8) Yr—a
as {—>a along T,. Then either —a as { ~a along I';, in which case
V- a (uniformly) as {—>a in A, or else | does not tend to a limit as
&—a along T,. ‘

Suppose the result false, so that y»— b=~ a along I, Let

X = {y@—al {LO—b}.
Then x— 0 along I, and I';, We prove first that
x —> 0 uniformly as {—a in A.

By Lemma 5 we may suppose that a is the origin, that Ty, I, lie, except
for a, to the right of the imaginary axis, and that |x|<<1in A. [Our
applications require only this special case, and are therefore independent
of Lemma 5.] Let h be large and positive, and

x1(§) = x(O) /A +AE).

Given e, choose 7(e) so that |x,| < e for points of T', Ty in |{[ < 7. Let
8(r) be a domain, with a on the boundary, cut off from D by |{|=r. Now

) [1/a+2D <1 (€ inA).

By choice of h=h(e) we can make |1/(1+44{)|<<e for points of T'
odtside [{|=7r. Hence |x;|<Ce for points of I' other than «, whetbher in
| €] < v or not, therefore (Theorem 102) also for A’, and in particular in
8(r). That is, given ¢, we have | x| << e[14%(e){| for all { ot 6(»). Hence
[ x| << 2e for | {| < Min (r, 1/k), giving the result.

Return to . Our hypothesis involves that in any 8(r) we can find
a line A such that for { of \ y+({) runs from a value near a to a value
near b. The perpendicular bisector of (ab) meets the track of y, and
the corresponding values of Y—a, Y—b have moduli not less than
3|b—al|. That is, there is a { in 8(r) for which |y[> }|0—a®. This
contradicts x — 0 and proves the theorem.

19. The representation of D' on A’ when D and A are bounded by
curves.

19.1. Let C be a simple closed contour in the z-plane, D its interior.
Let A be the {-circle. By Theoremn 121 there is an f(z) such that
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{ = f(2) represents D on A. We show now that, with appropriate com-
pletion of its definition, f(z) is continuous in D'. Given a point 4, or
z=ua, of C we have to show that there exists an a such that
lf(z)—-al<e in dd, nNt (r<<r).

We observe first that, by Lemma 1 (§11.4), the lower bound of
| f| for z of d tends to 1 as »—0. We must now consider arg f.
Let (4, r)=o(r) be its oscillation in d(4, r). We shall prove
that o(r)—~0 with r. If not, let ¢’ be the upper limit of &(+), and
0<oy<o’, oy<w. For some arbitrarily small r we have then o(r)> oy.
Considering always such r we can now draw in d(r) a simple line ! on
which osc arg f > ¢, There corresponds in A a simple line A\’ whose
extremities P and Q' have arguments ¢,, ¢} with ¢s—¢; >0, [The
intuitive basis of the subsequent argument is as follows. A’ lies near
the circumference. If it were an actual arc of the circumference we
should have, roughly, ¢({)—a small on this arc, bounded on the rest of
the circumference; therefore (compare, e.g., §9.8) small at points well
in the interior of the circle, which is false.] Let ¢s= ¢:+00; we then
obtain a line PQ as in Fig. 8, with extremities of arguments ¢;, ¢s.
Let M be the mid-point of RS, so that OM = cos }oy.

Fig. 8.

If 7 is small enough every point of PQ [corresponds to a point of d(¥
and] is distant more than OM from O. MR and MS therefore cross PQ, for

+ We use the notation of the introduction, § 6.
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the first time (from M) at, say, T and U. Let ¢({) be the inverse function
of f. By 2 transformation { = {,e""+¢ We may suppose SR the real axis
of 1. Let ¢()—a = ¢1({;). The curve UT and the chord UT bound
a domain A,, and the reflection of A; in SR is evidently interior to the
circle. TLet AL = A;4A,+chord (UT)+boundaries. If ¢ lies in A}
#1(C). ¢:(§) are regular functions of their arguments, and their moduli
de not exceed Max|¢({)—a|<C K, where K is the diameter of D. On
the boundary either |¢i(&)| or |¢1(G) | << m(r), since for { of QUTP
¢ (0) lies in d(r), and so is at a distance not exceeding m(r) from 2z =a.
Hence

I ¢1(§1)‘¢1(§) ! < Km(r)

on the boundary of Aj;, therefore also (Theorem 106) in A,. In particular
the inequality holds on the chord UT, where { = §, giving

| (&) | < A/ {Em(n)}.

[This is, in fact, a case of the result proved on p. 112 (fig. 5), but we have
repeated the argument for completeness.] In particular

(1) |plw—a| < v/ {Emn}.

The right-hand side tends to 0 as r - 0. But {4 lies on |{| = cos o,
and to this corresponds a z-contour distant k(o) > 0 from the boundary
C, contrary to (1). Hence o(r) = 0.

18.2. It follows that there exists an a satisfying |a|=1, such that
f(z)—>a as z—>a in D. This being true for every A4 f is evidently con-
tinuoue in D’. It follows that { = f(2) makes correspond to every a of
C a point a of the circumference |{|=1, and that a« is a continuous
function of a.

We show next that as ¢ describes C, a moves continually in the same
sense, and returns to its starting point when a does. If this were not so
there would be two points a;, a; of C to which the same a corresponded.
To two non-intersecting simple lines L,, L, from an interior point b of D
to a;, as (see § 6) correspond in A two non-intersecting simple lines I'y, T
from B to the same point a of |{|=1. Then ¢ —>a; or a; as { — a along
I or I';. Theorem 123 shows that this is impossible.

19.3. We prove finally that ¢({) is continuous in A’. Let g(r) be
B, C,. Te By, C, correspond, in the sense of our work above, 3, and v, of
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|¢I=1, and to q(r) corresponds a cross-cut 3,7y, or K, of A.

é(a, ) be the domain cut off by K, which has « on its boundary. 2 near
a give { mear a (since f is continuous). Also to points of D separated,
or not separated, by gq(r) correspond points of A separated, or not
separated, by K,, and conversely. Hence to ¢ of 8(r) correspond z of
d(r), for which |z—a|<< m(r). Hence

|pd—al << m@)

for { of 8(r). Since m(r)— 0 with 7, it follows that ¢ is continuous at
boundary points, provided we define ¢(a) to be a.
Summing up we have

TaeoreM 124.—If D is bounded by a simple closed contour the func-
tion f representing D on the unit circle A is continuous in D', while its
inverse function ¢ is continuous in A’. The correspondence { = f(z) between
D’ and A’ is one-one and bi-continuous.

20 .1. The more ‘‘regular’ is the curve C bounding the domain D,
the more ‘‘regularly ” does the function f(z) representing D on the unit
{-circle behave at the boundary. Many propositions could be given corre-
sponding to different degrees of regularity in hypothesis and conclusion.
We shall content ourselves here with two.

We prove first the analogue of (part of) Theorem 128 for harmonic
functions. We apply this in a moment, but it has a certain interest for
its own sake.

TarEOREM 125.—Suppose that C is a closed simple Jordan curve and
that D is its interior. Let the function u be harmonic and bounded in
D, and continuous wm D' except at a point a of C, and suppose that
u—>a as z —>a along C; and C, (the two portions of C abutting at a).
Then w 15 continuous also (in D') at 2 = a.

A harmonic function of z,y remains harmonic if z-iy undergoes a
conformal transformation (see §7.45). Hence we may suppose, in
virtue of Theorem 124, that C is the unit circle, a is the point z = 1, and
a=0. We have then, forr<<1,

u(r, 8) = 2—1; Si'u(R, ) P (—1-;—, w,b——G) dr,

where r < R <1,
L2
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By hypothesis we have

lim w(R, ¥) = vy (pFv.
R—>1

Let us define U(0)=0. Then in virtue of our hypotheses U(y) is
continuous in (—m, m)f. Since u(R, ¥)—>U(Y) p.p. and boundedly,
‘we may take the limit B-—>1 under the integral sign. Hence u is the
Poisson integral of the continuous U, and the theorem follows from
Theorem 59.

20 . 2.—TEEOREM 126.—Let C be a closed simple Jordan curve, D its
interior, and let { = f(z) represent D conformally on the umit {-circle A.-
Snppose now that C possesses a properi tangent at 2= a, and that I is a
straight line through a. Then to any curve in D touching | at a corre-
sponds a curve in A touching a straight line A, depending only on I,
through a = f(a). Further, the angle between two lines Ay, Aq is the
same as that between the cortesponding 1y, la.

Let u=arg%§=arg§_—__—g.

% is harmonic in D, and continuous in D' except at z =a, arg({—a) is
bounded, and the hypothesis of a tangent at z = @ implies that arg (:—a)
is bounded also§. Finally, when z describes C, starting at a+ and
ending at a—, arg(z—a) increases by =, and so does arg({—a)t. Hence
w tends to the same limit whether z—>a along C, or along OC,.
Theorem 125 now shows that % is continuous at z = a, and the results
of Theorem 126 follow without difficulty.

20 .3. TerorREM 127.—Suppose that the hypotheses of Theorem 126
are satisfied, and, in addition, that C has a continuous tangent in the

T But it does not, of course, follow at once that u is the Poisson integral of U; this,
indeed, is practically what we have to prove,

} z approaches a along the two branches of Cin opposite directions (a cusp is
excluded).

§ This is true for a neighbourhood of a, by the hypothesis. Moreover in the part of D
for which | z—a| >3& arg(s—a) is continuous, and so bounded.
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neighbourhood of z = a, or, more generally, that the chord from z to 2’
tends uniformly to the tangent at a as z and 2’ tend independently to
z=aon C. Then arg f'(z) is continuous at z=a. Hence also: to every
cyrve of continuous tangent issuing from a corresponds a similar curve
issuing from a.

This theorem is rather difficult (and the reader may ignore it if he
wishes). Lt z = ¢({) be the function inverse to { = f(2), and let

_#C =90 _ 5
ven =" Tame

For fixed r { is regular and never zero in A (note that { =0 requires
special consideration), and continuous in A’. Hence

w(, 7) = arg ¥ = arg (s, —2) —arg(;—90

is harmonic in A (in particular at the point { = 0), and continuous, for
fixed T, in A’.

‘We now make the provisional assumption that there exists a G, inde-
pendent of = and {, such that

1) lu] < G

upon |{| =1, and therefore in A'.

As 7—0 we have u(a, 7} > w, where o is the angle between the
tangent to C at @ and the tangent to [{|=1 at a. Now the hypothesis
about the chord z2’ is equivalent (in virtue of the continuity of f and ¢)
to the following assertion : For a given ¢ there exist 1, 8 such that, on an
arc of |{| =1 of length 7 on each side of a = ¢%,

@ [, N—wi<e ((7]<9.

We proceed to prove that a similar inequality holds for { near « and
interior to A. Let U*(y) = U*(, ) be the boundary function of the
continuous funection u—w at €¥, so that «—w is the Poisson integral of
U*. Now U* is bounded above (for varying = as well as varying y) by
G+ |w! and is not greater than ¢ for points of the arc (Yro—1,

+ The two contours are described in the same sense (Theorems 124, 117).
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Henece, if { = ré¥, |7] <, we have

9or {u (6, ) — o} = j:: U P, —0 dy + (L—ﬁ:) U* Pay

- j(1)+J’(2)’

zwlu—w|<eSa)Pd\p+<G+ lw]) Lz)P(-r, —0)dyr

< et (G0 ]) B (0, 7, 0),

where % is independent of T, and tends uniformly to zero as { = re® — ¢
(Theorem 59). We have proved, therefore, that there exist #;, 8, such
that

®) lu—w|<e (|{—a|<m, |7]<é.

If now we call A; the part of A for which |{—a|<C7s, then, for any
(interior) { of A,, we have, on making = 0 and so u —>arg ¢'({),

larg¢' O —wl< e

It follows that arg ¢’({) is continuous at the point «. Our result
follows, since f'(2) = 1/¢/(0).

20.4. It remains to remove the assumption (1). Consider the
domain d(a, r) and the corresponding &(a, 7) of A. & is bounded by an arc
By of the circumference of |{]|==1 and a simple line from B to y in A’
The main ideas of our argument are : (i) The hypothesis of the theorem
implies the result (1) for the domain d provided r is small enough, (i) it
is plausible that only the neighbourhood of z =a is really relevant to
the problem. ‘

Let (= fi({) represent 8(a,7) on |{|<1, or A,; then, by
Theorem 124, the coirespondence extends to the boundaries, and

G=AH1f@} = F@)
(say) is continuous in d’. Now we have, by hypothesis, if r is small
enough,
1) [arg (' —2) |[<'K

for z, 2/ of the part of the boundary of d belonging to €. An inequality
of the type of (1) holds also if one of 2z, 2/ belongs to C and the other to
the circular arc 8y, while yet another holds if both belong to By. Also,
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of course,
larg(('—0) | < 2mt.

Tt follows that the condition (1) of §20.3 is satisfied for the function
F(z) that represents d on A;, and we conclude that arg F'(z) is con-
tinuous at z =a. But f,({) makes part of a circular arc (containing the
point { =a) correspond to part of a circular arc. It follows, by
Theorem 118, that f, is regular at internal points of the arc; and,
further, that the conformal representation effected by f: extends to a
domain on the other side of the arc, in virtue of which fact #({) does
not vanish at any internal point of the arc. Consequently arg £1({) is con-
tinuous in |{|<1 at {=a. Hence, since f(z) is continuous in D',
arg fi{ f(2)} is continuous at z = a; and hence, finally,

arg f'(2) = arg F'(z) —arg fi({)

is continuous at z = a.

t It is supposed that 2, 2' (or ¢, (') start from some fixed pair of positicns, and vary in
any way subject to the restrictions thak they do not cross each other and that neither crosses

Z = Q.
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CaaPTER II.

The present chapter deals with the following problem. Suppose that
a function f(z), regular in the unit circle, is restricted by the condition
of never taking a certain value, or set of values. What influence has
this condition on the behaviour of the function; in particular, how does
it restrict the maximum modulus M(p, f) [or the means M,(p, f)] and
the n-th coefficient ¢, ? The most striking result in this field is the famous
theorem of Picard concerning functions that have 0 and 1 as missing
values. We consider the problem of missing values in a generalized
form, in which we suppose that the point w = f(z) moves, for varying z,
on some given Riemann surface. Our problem leads naturally to the
discussion of the class of functions f(z) that are ‘‘schlicht’’ in the unit
circle of z : this is in any case a subject of great intrinsic interest, and we
devote a special section to it.

We begin with a section on‘‘subharmonic’’ functions. The subject
is not prima facie connected with our main problem, but some of our
arguments find here their most fundamental application.

21. Subharmonic functions.

21.1. A real function w(zx, y), or for brevity w(z), where
z=ua+1y, is called subharmonic in a domain D if it satisfies a
certain pair of conditions (A) and (B). Condition (A) is of the nature
of a restriction to continuity. It is essential to have some such
restriction. We assume, in the first place, that for z of D

(a)(1) w(z) > lim w(l);
¢~>z, £z

and we assume further that
(A)(2) wiz) <o in D.

The value — oo for w is permitted.
The second condition (B) may take a number of forms (B,), ..., (B,),
all of which, however, we shall in the end find to be equivalent.
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(B,), .-., (B,) require respectively that for every (z, y) of D we shall have

b

(By) w(z, y) < %rj w(z+7cos §, y-+r sin 6) dO

-

for all small r;

(B,) wz,y) < :—-rg Y aé j;w(a:-{-p cos 8, y+peinB) pdp

-

for all small r;

o

(By) wiz, y) < —21;5 w(z+reosd, y+rsinb)d

for some (arbitrarily) small r ;

T

(B, wz, y) < #S do 5;10(x+p cos 6, y-+psin6) pdp

for some (arbitrarily) small r.

It follows from any form of (B) that for z of D w(z) <Iimw({).
>z
Combining this with (A) we see tnat o function w(z) subkarmonic in D

is upper-semi-continuous in D, that is, it satisfies
(A%) w(z) = mw({)
>z

at every point z of D.

We continue, however, to distinguish ¢ condition (A*)” from
“conditions (A)”, that is to say, conditions (A) (1) and (2), but not
necessarily (A¥).

21.2. A function w(z) satisfying conditions (A) in a bounded closed
set E is bounded above in F (by the usual covering argument for the
continuous case). Hence w(z) is bounded above in any bounded closed
subset £ of D. It attains its upper bound in any such set. For if
G, the upper bound, were unattained, the function w* = (G—w)™*
would satisfy conditions (A) in E, but would not be bounded above
in E. Obviously w(z) is measurable, and the -various integrals in the
conditions (B) exist, since w(z) is bounded above on the circles con-
cerned. These integrals may, however, have the value — co.

A function w(z), satisfying conditions (A), is the limat-function of a
decreasing sequence {w,(z)} of continuous functions wn any bounded closed
subset E of D.
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We may suppose that w(z) is not identically — oo [when we may take
w,(2) = —n]. Let { be any point of the (», y)-plane, and let us write,
for any fixed integer n > 1,

(1) w, (L) = uppzrmbémnd {w(z)—nd(z, {)},

where 8(z, {) denotes the distance between z and {: w,({) is finite, and
there exists a point 2, = 2,({) in & such that

w, () = w(20) —7d (20, §)-
For any other point {;
wy(Zy) 2 w(20) —nB(20, &1) = w(20)—n{8(20, {)+3(L, L)}
=w, ({)—nd(, &)

Hence w,(Z;) =2 w,({)—e, if 3({, {;) <e¢/n. Since we may interchange
{ and {;, w,({) is continuous (in the whole plane). Also w,({) > w, (),
and if we choose { as a 2, in E, (1) gives w,(2;) =>w(2;). Suppose first
that w(z;) > — o, and let 2’ be another point of F. By (A)(1),

w(z') Sw(z)Ffe; w(@)—nd(@, 2) <w(zy)+e,

provided that 8(2', 2;) < 8(¢). On the other hand, w(z) is bounded above
in Z. Hence there is a G such that

w(')—nd(z’, 2,) < G—nd

if 8(2", 2;) =8. The right-hand side does not exceed w(z,)+¢ if » is large
enough. For such n, therefore, w(z')—nd(2', z,) <w(z,)+e for all 2' of
B, e w,(z) <w(z)+e This proves that w,(z;)>w(z). The proof is
similar if w(z;) = — . '

21.3. The inequality in (B,) and (B;) asserts that w(z, y) does not exceed
the average of 2 over the circumference of the circle of radius » round (z, ¥);
the inequality in (By) and (B,) asserts that w(z, y) does not sxceed the
average of w over the area of the same circlet. For a harmonic func-

t Our results can be extended to higher averaging processes; for example, to the
inequality

wie,y) <+ rdr_‘r_J':dr A
o

or all (or some) small r, where 4 (r) is one of the averages considered in the text.
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tion u, of course, u(z) is equal to each of the averages; also u and —u
are both subharmonic. If W;, W, W, W, are the classes of functions
corresponding to’ the four definitions, it is trivial that W, contains W,
that W, contains W,, and that W, contains W, and so W;. The rest of
the proof of the equivalence of the four classes depends on Theorem 201
below.

Consider the special class of w with continuous second derivatives
in D. Let the circle d, |2—z,|<{r, be contained in D, and let

w

T = 2{;; 0(zg-re™) 6.

-

We have, as a case of (8) §7.12, the formula

dj 1 (0w 1

1 ar =*—2-7;Sa—n-ds=§;jsd Awdz dy.

If Aw =0 in D this gives J(r) = J(0) = w(zo) for every 2z, of D and
every small 7, so that w is subharmonic by every definition. Conversely,
the condition Aw >0 in D is necessary for a w (of the special class) to
be subharmonic in D by any definition, whence the equivalence of all
definitions within the class. If the condition is satisfied, then J(r) is,
by (1), monotonic increasing (in the wide sense) in r {s¢ long as & is
contained in D).

If all subharmonic w belonged to the special class, many arguments
would be as straightforward as this one. The special class is valuable
in suggesting results, and the ““Aw >0’ tendency should always be
borne in mind. [It is, in fact, true, though we must not prove it now,
that for a w subharmonic in D, Aw exists in a generalized sense, and is
not less than O, p.p. in D.] But quite practical applications force us to
consider the wider class, and we have to find other arguments, no longer,
but more delicate.

21.4. A function u will be called a harmonic frontier majorant of
a function g for the domain D if % is harmonic in D and continuous in D',

and %(z) >limg({) ({2 in D) for points z of ¥'(D), the frontier of D.

TreeoreM 201. Suppose that w is subharmonic, by any one of
the definitions, in the bounded domain D, and that u is a harmonic frontier
magjorant of w for D.  Then w << u for all points of D.

Conversely, a function w, satisfying conditions (A) in D, 4s sub-
harmonic in D according to the definition (B,) provided that w < u in
D, for every domain D, and function u which are such that Di is contained
in D and u 2s o harmonic frontier majorant of w for Dy.
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CoroLLARY 1.—The four definitions are equivalent.

COROLLARY 2. — A function w, subhbarmonic in & bounded D and
satisfying ___
imw() <@
>z

at every point z of F(D), satisfies w < Gin D.

CorOLLARY 3. Let (B;*) denote what the inequality (B;) becomes when
the sign < 8 replaced by =. Then a continuous function w, satisfying
any one of the four conditions (B;*) in a bounded D, is mecessarily harmonic
mn D. ‘

Suppose the first part of the theorem false. Define
d(z) = I {w ()} —u(2)
>z

for z of D’ and { in D. This is w(2)—u(z) for (interior) z of D, and
somewhere takes positive values. Alsot d(2) satisfies conditions (A) in
D’; it therefore attains an absolute maximum M >0 at a point P of
D', and the set, E say, of such points is closed. Let @, or (z,, y,), be
a point of F(KE), so that d(Q)= M, and [since d <0 < M at points of
F(D)], @ is an interior point of D. Consider now the circumference C,
of small radius » round . This must contain a point R belonging to
CE, at which therefore m =d(R) << M. Then, by the upper-semi-con-
tinuity, d <m-+38 < M for points of O, in a certain interval of §, whence

.‘2—17_1' Sﬁ d(zo+7cos 0, yo+7sin6)d0 < M = d(zy, yy);

and so, since the average of the harmonic function u is equal to u(z,, o),

él; s_ww(xo+r cos 8, yo+7sin ) df < w(z,, yy-
This is true for all small r, which gives a contradiction if our definition
is either (B;) or (Bj). Finally, the area of the interior of C, contains a
point of CE (for example, an R associated with C,,), and a precisely similar
argument, for averages over the area instead of over the circumference,
disposes of the remaining cases (Bs) and (B,). The first part of the
theorem is therefore established.

t Any upper limit Hm F(¢) clearly satisfies (4) (1).
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Consider now the converse. Given a point (z,, y,) of D, consider a
circumference C, of radius r surrounding it (containing only points of D).
On C,, w is the limit-function of a decreasing sequence of continuous func-
tionsw,, (§21.2). Let u, be the function harmonic in the interior of C, and
agreeing in value with w, on C,. This is a harmonic frontier majorant
of w,, and so of w, on C,. By hypothesis w(z,, y,) < %, (%g ¥o), OF

1) W(Tq Yo < 1 ‘r Wy (zy+7 cos 0, y,+r sin 6) db.

21 J_»

Since the interchange lim j w, = flim w, is permissible for a monotonie
sequence [Theorem 11, Cor.], we have, by taking limits in (1),

w(Zy, Yo < -217‘_- J": w(zg+7 cos 6, yy+7 sin 6) db,

and, since this is true for all small 7, w satisfies the definition (B,). This
proves the converse.

Next, the complete theorem shows that a function subharmonic
according to any definition is subharmonic according to definition (B,);
conversely it is trivial (as was pointed out in §21.3) that a function
subharmonic according to (B,) is subharmonic according to any of the
other definitions. This proves Corollary 1.

In Corollary 2 (a generalization of the maximum principle for har
monic finctions) & is a harmonic majorant.

-Finally, in Corollary 3, both w and —w are subharmonic; inside any
circle C (in D) w is consequently hoth not greater and not less than the
harmonic function agreeing with w on the circumference; w is harmonie
ingide C.

THEOREM 202.—If A is @ conformal transformation of D, then a
function subharmonic in D transforms into a function subharmonic in A.

The converse part of Theorem 201 provides, in fact, an alternative
definition of a subbharmonic function in which the conditions are in-
variant under conformal trahsformation. .

This proof is curiously indirect. An easy direct ome would be avail-
able by means of

2
Agw = I%i Az yw>= 0,

if we might assume continuity of the second derivatives.
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TeEOREM 203.— Let w be subharmonic in a domain containing
a circle |2—z,| << n, and let u be the Pojsson integral of the values of w
on the circumference. Then w << u for interior points of the circle.

N.B.—It must be borne in mind that jw(re"’) df may be — o ; in
this case the Poisson integral u is evidently — o« at all interior points of
the circle, and the theorem asserts that then the same is true of w.

Let §, = z,+p,¢® be an interior point of the circle.. A linear trans.
formation of |2—z0| << 7 into itself which transforms {, into the centre
transforms w into a subharmonic w* (Theorem 202). Also it transforms
the Poisson integral #({y) into
jw*(z‘,—l-— re’) do

u*(z,) = —2—1;

[see § 7.45 (ii)]. Thus

u(ly) = %r sw*(zo+re") a6 = w*(z) = w({y.t

TuerorEM 204.—Suppose that w ts subharmonic in |z2—zy|<< R, and
let u(z, ) be the Poisson integral of the values of w on the circumference
C, of centre 2z, and radius r << R. Then, for fized z, u 1s an incregsing

Sfunction of r (for r > |2—z2,|). In particular jw(zo—}-re“) df increases with r.
If ¥ > r we have w(d) < u(( »') for { of C. (Theorem 208). Hence
u(z, ) = |Poisson integral of w({)}
< {Poisson integral of w({, ')} = ulz, ).

CoroLLARY. If wis not everywhere — oo in D then the integral of w
over any area D’ 1s finite (not — o).

In any bounded D_ w is bounded above, and so effectively of constant
(negative) sign. We observe now that the integral of w over either the
circumference or the area of a circle contained in D is finite. For by the
present theorem it is enough to prove this for the circumference; if the
circumference integral is — co then w= — oo in the interior (Theorem
203); the integral of w along the circumference of any circle contained
in D and intersecting the first is — co0; and by & chain of circles w = — o

t If w is continuous on the circumference » is a harmonic majorant of w (Theorem 60),
and the result of Theorem 203 follows from Theorem 201. This line of argument could be
extended with a little trouble to cover the discontinuous case also.
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at any assigned point of D, contrary to hypothesis. Finally, if the
integral of w over some area D’ is — oo it will be — o also for some
area of arbitrarily small diameter, and so for a circular area (containing
this) contained in D, which we have seen to be impossible.

21. 5. THEOREM 205.— A4 finite sum, or & uniformly convergent infinite
sumt of functions subharmonic in D is subharmonic in D. The function
Max (wy, Wy, ..., Wa), where wy, w,y, ..., w, are subharmonic in D, is sub-
harmonic in D. If k =1 and w is a non-negative function subharmonic
in D, then w* is subharmonic in D.

For the last result we have, in respect of condition (B),

k
w* () < (2—17; Sw(zo+re‘°) d6> < % jw*(z°+re“) a

(Theorem 1). The other cases of condition (B), and all cases of conditions
(A), may be verified immediately.

TrrorREM 206.—Let A >0, k= 1. If f(2) is regular at every point
of D and | f| is one-valued in D, then |f|* log|f|, and

15g|f| = Max (0, log | £])

are subharmonic in D. Further, |z|*|f|* ts subharmonic, for every real
. in the domain consisting of D less the point z = 0. If u (not neces-
sarily real) is harmonic in D, then |u|* is subharmonic in D.

For | f£|* we have to show that for a 2z, of D
[fl | < %, {!f(zo+re“>_1* 6

for sufficiently small #. This js evidently true if f(20) =0 If f(20) 5= 0
we have f 5= 0, and so f* regular, in some circle |z2—zg| << 7. Then

[ o) | = ‘ —Z-z‘q;jf"(zo+re"") (zei < 517—:_ S|f|"d9.

A similar proof applies to |z[*| f]* and to log|f| [harmonic where

+
fzg) £ 01, log| f| is the maximum of two subbarmonic tunctions, there-
fore subharmonic.

T 1f this is interpreted as =¢,f. (coefficients ¢, other than uniiy) the coefficients are to be
posilive.
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Finally, if » is harmonic,
; E 1 .
. | w(zo) [¥ = Iél; Ju(zo+re") d@l <3 jlu(zo-l-rc")lkde,
go that |u]* is subharmonic.
21.6. THEOREM 207.—(i) Suppose that w is subharmonic in ry <|z| <r,
and not everywhere — . Then '

Iw, =5 f_ w(pe®) db

8 o continuous convex function of logp in ry < p < 7.

(ii) Suppose that w is subharmonic in |z| <r and not everywhere — co.
Then I(w, p) is a continuous increasing function of p in 0 <p <7, con-
tinuity at p= +0 being interpreted as lim I (w, p) = w(0) = — o in case

>0

w(0) = — c0.
(i) Let vy <p3 <p < py <7y and let
logp=1logp,+(1—t)logp, (0<t<1).

There exists a decreasing sequence of continuous functions w,(z)
decreasing to w(z) for all z in p, <|2|<p, [§21.2]. By Theorem 717
there exists a function

(1) u=1wu,==Fklogp+Z(a, cos nf+b, sinnb) p™
0
+3(c, cosnb+-d, sinnb)p~™,
continuous in p; < p < py, harmonic in py < p < p,, and agreeing in value

with w, on the boundaries of this annulus. « is a harmonic frontier
majorant of w for the annulus; hence

(2) I(w,p) <I(u,p)="Flogp+a,==t(klogp,+ay)+(1—t)(k logpi~+a,)

=tI(u, pg)+(1—1) L(u, p) = tL(wp, po)+(1—1) I (wy, py).
Since w, decreases to the limit w, I(w,)—I(w), and (2) gives in the limit
3) I(w, p) StI(w, p3)+(1—1) I(w, py).

This proves the convexity.
Next, if I(w, p) is — o for any p of (p,, py), it must, by the convexity,
be —co for an interval of values of p; this, however, would involve

t This is the sole, but essential, occasion on which we appeal to this theorem,
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the integral of w being — oo over the area of an annulus, contrary to
Theorem 204, Corollary. Thus I(w, p) is finite in the open interval
(rla 72)'

Finally, w is bounded above in p, <|2| <p, [§21.2]; so therefore is
I(w, p), and being convex it must be continuous. This completes the
proof of (i).

In (i) we know already that I(w, p) is increasing in 0 <p<r
[Theorem 204], and continuous in 0 < p <7. For the remaining result,
continuity at p = +0, we need only observe that on the one hand

I(w, 0) =w(0) < I(w, p)

for small p, and on the other w(z) and sot I(w, p) is less than w(0)--€ for
p <38(e) [by (A) (1)], whence lir;lOI(w, p) =w(0) = I(w, 0).

21.7. Theorem 207 gives, in particular, interesting results about the
mean values of analytic functions and harmonic functions. We recall
the definition

1 ( . 1/A
Mip, f) = (Q;S 1fGenlrae)” o> o

TaEorREM 208.— Suppose that f(z) is regular in |z| <r. Then
M, (p, f) is @ continuous increasing function of p, and log M) is a continuous
convex function of logp, in 0<p<r. The last result holds further in
7y < p <1y if [ is regular in the annulus only (or if f is regular of each point
of the annulus and | f | is one valued).

Similar results hold for harmonic functions u provided that A > 1.

The first part follows from Theorem 207, since | f|* is subharmonic
(Theorem 206).

In the second, it is enough to prove the result in an arbitrary smaller
closed annulus; we may suppose >0, and that w=|z|*|f|* is con-
tinuous (and subharmonic) in 1 << p << 7. Following the plan of the
proof of Theorem 108 we choose p so that

1) My, ) = s M(re, /) = T

By Theorem 207, I{w, p) is a continuous convex function of logp. Since
the extreme values (at p = r1, r2) are equal to T we have

Iw, p) K T = {I(w, )} {IGw, ryt*™

+ Supposing (0) is finite: the case w(0) = —=® needs only obvious modifications.
M
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for every t; and choosing t = t(p) to satisfy
® p=rirt
we have
P () < (MY ) P A MY (rg)
= p* M¥r) MYy,
log My (o) < ¢ log My (r)) 41 —%) log Mx(ry),

which expresses the required convexity.
The results for harmonic functions require only obvious modifications
in the argument.

21. 8. The following result, though we do not need it in the sequel, is
so powerful and striking, and so easily and attractively proved, that we
include it to end the present sectionf.

A function w, subharmonic in D, is the limit function in D of a
decreasing sequence of continuous subharmonic functions w,; more gener-
ally, is the limit function of a decreasing sequence of subharmonic w, with
continuous partial derivatives of any assigned order.

We may suppose w is not always — oo (when we can take w, = —n).

Let us define w, (z) to be the average, 4, w say, of w over the area of
the circle of radius 1/n about z}. By Theorem 207 (ii) w, - w decreasingly
at each z of D. Since w is Lebesgue-integrable [Theorem 204, Corollary],
w,, is continuous (in any D_ for large enough #)§. Finally, if we denote
by 4z an average over a circumference of radius R, we have relations
which we can write briefly and intelligibly as

dp(w,) = 'A‘R(Jﬂ’nw) = "g’n("d‘R w) = An(w) = W,.

These show that w,, satisfies condition (B).

This proves the result about continuous w,. We can repeat the
averaging process, obtaining &,(w,), &,{4,(w,)}, .... It is hardly
necessary to give a formal proof that a high enough average leads to a
function with continuous partial derivatives of any assigned order

1 For a report on the state of the theory of subharmonic functions to the date 1937,
see T. Radé, ** Subharmonic functions * (Ergebnisse der Math.).

+ Naturally w, is defined only for n > 1/d{z, F(D)}.

§ The difference of the values of w, at two near 2’s is a multiple of the difference of
the integrals of w over two small areas.
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22. Subordination.

22.1. In what follows we shall denote the unit circle |z2| <1 always
by y. We generally use p for |z|, and in any case p will always satisfy
p<1l. We denote by » any complex constant satisfying || = L.

We denote by w(z) any function, regular in y, and satisfying «(0) =0
and |w(2)| <1 in y. By Schwarz’s lemma (Theorem 107) |w(z)| < |z|
in y. Hquality holds if and only if w =72." In fact, ® = w/z is regular
and |®|<1liny. Hence, by the maximum modulus principle (Theorem
101), |®(2)| = 1 for some z, z, say, if and only if ® = ®(z,) = 1.

Let f(z) be a given function, regular, or, more generally, meromorphic
in y. Iff(z) is any function of the form

(1) f&) =F(o@),

we shall say that f is “subordinate” to f in y. It is evident that
f(0) =7(0), and that f also is meromorphic in y. We say similarly that
f is subordinate to f in |z|< R, if f(R{) is subordinate to f(R{) for { in y.

The definition (1) may seem rather abstract; but there is a simple
geometrical interpretation. Let us first suppose that w = f is a schlicht
function in y, 7.e. that it takes no value more than once. f conformally
represents y on a simply-connected domain W& = W (f) (on the simple
w-sphere) which does not overlap itself, or, as we shall say, ‘“is a schlicht
domain”. In this case, if fis subordinate to f, we have f(0) = f(0), and
f takes only values inside 4. [Note that f itself need not be schlicht.]

Conversely, if f has these properties, it is subordinate to f. Let Z(w)
be that function, inverse to w = f(z) and so regular in 1, for which
Z(f(0))=0. Clearly w(z) = z( f(z)) is regular, and [w| <1, in y. Also
»(0) = Z(f(O)) = Z(f(())) =0. Hence f= f(w) is subordinate to f.

More generally, let w = f be *‘locally schlicht ” in y, ¢.e. let f have no
poles of order higher than 1, and f40 in y. f conformally represents
y on a simply connected domain W = W (f) on a Riemann surface (con-
sidered on the w-sphere), the point w,= f(0), in some particular sheet,
corresponding to z = 0. Let f be subordinate to f. To each point z in
v corresponds a well determined point w =f‘(w (z)) of 1. In particular
Jf(0) = w,, and to any curve in y beginning at z =0 corresponds a well
determined curve in & beginning at w,: the values of f(z), if continued
analytically from f(0) = w,, remain inside W. [Note again that f itself
need not be locally schlicht.] Conversely, if f has these properties, it is
subordinate to f. The proof is the same as in the ‘‘ schlicht”’ case.

M2
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Finally, if f is not locally schlicht, the only difference in the state of
things is that the domain W (f) on the Riemann surface possesses alge-
braic winding points in &. This general conception of subordination,
if less easy to grasp intuitively, is clearly the inevitable extension of the
simple one, for schlicht f.

We begin with some simple consequences of our definition.

LemMa 1.—If f is subordinate to [ in |z| < R, and %(z) = ¢{f(2)} is
meromorphic in |2| < R, then x(z) = (f) is (meromorphic and) subordinate
to x tn |z| < R.

For x=9(f)=

- 2.—If fis subordinate to f in |2| < R, and R’ < R, then f is
subordinate to fin |z| < R'.
Let [=R'¢/R. If (isiny, |w({)| < R'/R, and s0 w(l) = (R'/R) w,(£).
Hence f(B) = f(Rew({)) becomes f(R'§) =J (B wy(§)).
The following slight generalisation of Lemma 2, based on the

inequality |w(2)| <|z| and our remark on the case of equality, is
important enough to be formulated as a theorem.,

THEOREM 209.—Let f be meromorphic in vy, and let W, denote the closed
sub-domain of W (f) corresponding to the values of f in |z| <p. If fis
subordinate to f in vy, then the values of f in |z| <p [by analytical continua-
tion from f(0)=f(0) =wy] remain in W,. Frontier points of &, are
attained if and only if f=f(nz). In particular, if f (and so f) is regular
in 2| <p,

@) Max | /()| < Max | f@)l.
with equality if and only if f = f(nz).
22.2. We recall (Theorem 1) the results
Mylp, f) = lim Mo, /) = exp o= | log| fipe®)| a0
M. (o, ) = }_1_1)11 Mi(p, f) = M(p, f) = Max| f(2)].

|z]=p

THEoREM 210.—Let §(z) = g(z, y) be subharmonic in y, w(z) = utiv
regular and \w |sSp=|2|in v, g(z, y) =5 (u, v). Then

[oeergo< | soema
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Let G(z, y) = G(z, y; ) be the Poisson integral of the values of g
on |z| =r <1, and let G(z, y) = G(u, v). Then, by Theorem 203,
7@, P < G, y) (p <.
Hence, since |w| << p
9@, y) =g, v) < G, v) = Gz, y).

Also G is harmonic in p <7 (or everywhere — c0). Hence, if I denotes
the average integral,

I(g, p) < I(G, p) = G(0, 0) = G(0, 0) = I(F, ».
We now make r->p-+-0 and use Theorem 207 (ii), obtaining
I(g, p) < I, p)-

CoroLLARY.—Let f be subordinate to f in y. Then if f (and so f) is
regular in |z| < p,

1) Mip, < Mo, Hh O AL @),
1 i + ) 1 " + -

(2) 57:5_, log|f i dd < E—_};j‘_'log | 7| ae,

3) Mi(p, BS) < Myi(p, BS) (1 <k < ).

For | f|*, log | fl, ‘o+g]f[, |3.f|* are subharmonic, and the cases A =0,
k = oo follow from Theorem 209.

We observe in passing that the result (Theorem 208) that M, is an
increasing function of p is a particular case of the corollary. In fact, if
p1 < p, the obviously f(p,2/p) is subordinate to f(z), and thus

Milpw, /) < Mi(p, /),
22 . 3. This is a convenient moment to discuss ‘‘Jensen’s theorem’’.
THEOREM 211.— Let f(z) be meromorphic in |z|<r, f(0) 5% 0, co, and let
@y, Gy, ..., a, be the zeros, by, by, ..., b, the poles, of fin [z| <r. Then
W) log Mytr, /) = o [ _tog ] flre®) |6 =1log (v £(0) ]| 22:20m]).
‘We can reduce the theorem to the special case in which, with R > 0,

we have

logR (R>=1)
@) J(R) = j' log | 1+ Rei®)| d6 = log B = {

0 (R<1).
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For

>

log| f| =log | f,|-+1og | /(0) [+  log|1— 2| & 10g|1_ 2

v =1 ®~

where log f;(2) is regular in |z <7 and zero at z = 0, so that
3 | g f(re) | 48 = g | ,(0)] = .

‘Next, the first case in (2) is reducible at once to the second by the
identity

log|1+4-Re®| = log | R|+1log 1+% e

(and a trivial change of 6 to —@ in the integration). Finally, the second
case in (2) is trivial when B < 1.

Thus we have J(R) = lggR unless B =1, and this case B=1 is the
only point that cannot be disposed of trivially. There are naturally
many ways of settling it, but none can be called trivial. With the
theorems at our disposal we can appeal either to the continuity or the

non-decreasing property of r log| f(2)| 26, with f(z) = 1-2.

At an opposite extreme the result is equivalent to the definite
integral
5.4
5 log cosec 6 df = 4 log 2,
0

which we may suppose known !

22.4. If f, and therefore f, is regular at z = 0, they are regular in some
circle y;, or |z|<<p. We then have expansions

(1) f@)=2Za,z", f(z)=xa,z",
0 o
valid in y;. We have, of course, a, = G,.

THEOREM 212.—Let f be subordinate to finy, and f regular at 2= 0.
Then

@) [a:] <[a,],
with equality if and only if f— Flnz). Also
(3) loy] < Max (@), |a@,).
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We have f = f(w). Let w =a,24ay2%+.... Obviously |a,| < 1, with
equality if and only if w =7%z. Hence

lai| =1F ) |=|F ©0)]|'©)| =] | as| <|al,
with equality if and only if f= f(-qz).
Next, let [a;]<<1. The function

w/z—a Qg X
' el = (a1 T

is also of the type w. Hence |ay| < 1—|a,[?, and this remains true if
|a;] =1 (when w=mnz, a,=0). Now f’'=f"(w) w2+ (w)w’, and so

|as] <|52||Q1P+|all (1—]ay[?) <Max {|a,|, |@,}-

We note explicitly the special cases A=0, 2, co of Theorem 210,
Corollary. They give respectively, for f regular in y,’,

L[ - Fogh
@) o j log| f(pe®) |d6\ Gy S_wlog | F(pe®) | 46,
(5) Sla, Fp™ < =3, 27,
(8) flMia.x]f|<Ma.x|f|,
z|=p

the last of which we have had already.

The case A = 1 is also important, since it provides inequalities for the
coefficients of f.

THEOREM 213.—If f is regular and f is subordinate to fin v, then,
forn>1,

l an| <e [——Ll(p’ )]

_(u—l)/n

For

= L7017 o) gm0 e (" i v M1p, )
janl =2 | [ steererman| <52 [ 7120 < s el

n-1
In this we take p = n—1 , and obgerve that p~®-V = (1+n“—_1_ 1) <e

THEOREM 214.—Let f be regular and f subordinate to f in y, and
f(O) =J(0)=0. Let z.(a), Z.(a) be the n-th non-zero roots of f—a = 0 and
F—a = 0 arranged in order of increasing moduli ;

| 2n(@) | = pala), |Z.(@)| = pala@).



168 SUBORDINATION.

Then

B G <, 1 G5) weo,

L),

v— £ @y -
lay [ IT ( (0)> <lasle lsn(omz <Pn(-0)

Pu(0)<p P t

where a, is the first non-zero coefficient of /., and &, that of f. If
product contains no factors it is interpreted to mean unity

Since f—a is subordinate to f—a, we have, on every circle |z| = p,
1 ( , 1 [ =
) 5 j_ﬂloglf——a]aﬂ <s J’_, log| f—a| dé.

By Theorem 211, if ¢ = §b,‘z” is regular in vy, b, == 0, and $a 18 the
A

n-th non-zero root of ¢ =0, we have

1 ) | 40 = r £
®) o L’loglcp(pe ) 1d0 = log | by p nyllﬂ ( n) .

From (7) and (8) we obtain Theorsm 214,

Further inequalities for the coefficients a,,.

22.5. The inequality (5) of §22.4 can be generalised. We have in
fact

THEOREM 215.—IF f is subordinate to fin y and § is regular at z = 0,
then

n n
(1) ?'a’kPg?;Eklz ('n=l, 2, "')‘
Let f =f(w), and let
n R n
8, (z) = E 273 z", En(Z) =3 Ek zk.
1 1
Then 3,(2), 8, (w) are reqular in |z| < 1, and we have, for |z]| < 1,
8, (w) = g—kwk = 8,(2)+ E by 2%,
1 n+4+1
say. Applying (5) of §22.4, with 8, for f and any p < 1, we obtain
n n
Blenfts® <Elaftp®+ $ (bt < F)a, pae,
1 1 n+1 1

and in this we make p—>1.
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From (1) we have at once
(2) |a,| < +/nMax (@], |a,), -.., |@,]).

In particular, if @, = O(1), then a, = 0(/n).

More than this is not true in the general case; for example (although
we cannot prove it here) there exist a regular f and a subordinate f, such
that @, = O (1) and a,, is not o(y/n). Butif the behaviour of a,, 13 sufficiently
regular (and @, is increasing) we can actually attain the ideal “|a, | <|a,|”.

TaEOREM 216.—Let f be subordinate to f in y, where f is regular at
2= 0, and let n > 2.

(i) If the set of numbers @y, Gy, ..., @, is non-negative, non-increasing,
and convex; i.e.

T, >0; Gpy—8,>0; B 2py+Tpee =0 (1 <k<n—2);
then Ianl <El

(i) If the set of numbers @y, Gy, ..., @, 18 non-negative, non-decreasing,
and convez ; i.e.

5120; 62—6120; —dk—Z'dk_l—i—t—zk_zZO (3 gkgn);
then |a,| < a,.

The proof depends on two lemmas, the first of which is of interest in
itself.

LeMMA 3.—Let g(2) = §by+Z b, 2%, where, for k=0,
1
bp=0; Bp=0bp—bp1=20; AF =by—2bpy1+bgi>0.
Then Bg(z) =0 in .
Let to =T %, &nd
() =3+32; 1,@)=2466E @>1).
1 0

With the notation of §5.31 (3), B7,(2)=3%R,(¢)=>0in y. Also asn—>x
tn(2) >3(1+2)/(1—z), the real part of which is non-negative in 9.
Summing twice by parts, we have

” n n
%bo‘i'% bzt = T A (2) +bp i, (2) = % B3 ()t Brs1Tn (2) +bp 4285 (2).
[1]
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Hence ® { %bo—}-)’.‘: bkz"} >b,.1®8¢,(2) in y, and the lemma follows when we
1

make

@,
LevMMa 4 —Let £ >1 and wk= 3 a®2n. Then in y

n=k

|Pate)] =| £ o

<L
We begin with the following general remark. If f= f(w), then
3) =3 o®g,
Now let |{|<1. The function h(z) =3(14+{w)/(1—{w) has a non-

negative real part in y. By (3), the n-th coefficient of % is P, (Z), and
the lemma follows from Theorem 110.

Proof of Theorem 216.—(i) By Lemma 3,
96) =3+ Gy2+ ... 4G, 247, élzk
has a non-negative real part in y- Also, by §10.4 (2),
@ p 1= -% r_' By (pe®)ei®-00g0 (1 <k <n).
Hence, using Lemma, 4,
| £ o] < L || Batpemjen 2, oan < L |” ®gteetyan -3,
Let p—1, when (i) follows from (3).
(ii) By Lemma 3,
h(z) =@, 4@, y2+... -{-Ezz"~2+61n§ 2k

has a non-negative real part in y. Also

@y pk = -"1- f Rh(pe) 299 (1 <k <),

Hence

n
IEI “ff) a; pnf-k

<31 r Bh(pe%) | P, (o)) 40 < L J’ Bh(pei")d0— g

T

and the proof is completed as before by making p->1.
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Lemma 4 enables us to give a proof of Theorem 213 independent of
Theorem 210. By Lemma 2, f(pz) is subordinate to f(pz), so that, for

some w, f(pz) =f(pw). Also the n-th coefficients of f(pz) and f(pz) are
a, p" and &, p”, respectively. Now

G =g | Fleeeas,

and so, by (3) and Lemma 4,

=|3 [ fos Pueyan| < [ | ipet .

»
lanPnl = ’{.‘.as"‘)ﬁkp"

93. The principle of subordination.

23.1. The general theory of subordination is a powerful weapon for
dealing with the problem of the set of values taken (or omitted) by an
analytic function. We may look at the question from two different
points of view.

I. In the first place let %(2) be a given function, meromorphic in y, and
consider the class # of all functions 4(z), meromorphic and subordinate
to &(z) in ». In order to apply the general theory of subordination to
the class & we begin with a special study of the superordinate function A.
If we suppose, to fix ideas, that our knowledge of it is complete, we obtain
results of several distinct types.

A. We know the domain 1¥,(k) in which the values of each % for
|2| < p must lie [Theorem 209]. In particular, if % (and so every k) is
regular in |z| <p, we obtain an upper bound for |A|in |z|<<p. More
generally, under the same assumption, we obtain upper bounds for the
means M, (p, h) [Theorem 210, Corollary]. All these results are ‘ best
possible >’ ones.

B. Assuming again % to be regular at z= 0, and writing & (z) = ‘Shn 2",
0
hy = hy, we obtain upper bounds for |%,|, for £|k.[?, and for Z|h,[2p2"
0 0
[§22.4, 5].
C. Lower bounds for the products II p,(a), where p, =|z,|5#0

Pm<p
h(z,) = a, are given by Theorem 214.
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II. The second point of view is to start with a given function f(z)
[or with a class & of such functions], meromorphic in y. Any subordination
of f to some other function F would imply certain consequences, of the
types A, B, C above, for instance. If we now know, by some given
property of f [or of the class ¥], that one of these consequences is impossible,
then the subordination to F is impossible, and 15 (f) cannot “lie upon ”
U (F). This can be important positive information ; for example, if F s
schlicht, f must take values that F does not. And (as will be amply illustrated
below) F is largely at our disposal.

The systematic application of these ideas in both directions (I and IT)
is what we call the *“ principle of subordination ” [Lindelof principle]. It
may be regarded as an extension of the simple ‘ maximum modulus
principle”” of §9. The most interesting and important applications are
those connected with the famous Theorem of Picard [§24.4], in which
the elliptic modular functions are the superordinate functions. We post-
pone these applications, however, to later sections, confining ourselves
here to more elementary and more general results.

23.2. We denote throughout by M the (very general) class of functions
f(z), meromorphic in y and satisfying
1) f0)=0, f(0)=1,
and by R the sub-class of A consisting of those functions of AL that are
regular in y.
Our first theorem is an immediate consequence of Theorem 212.
TEEOREM 217.—Let 0<t<1, O0<p<l If f(z) and F(z) are

Sunctions of M, then f(pz) is not subordinate to tF (pz), except in the case
t=1, fe)=F(2).

This theorem, simple as it looks, is of great importance in direction II
of our principle. Given an f of M, we can, by choosing suitable functions
F(z), or rather suitable Riemann domains U (F), obtain information
about the values taken by f. It may be noted that if W (F) is the
domain of F of M, the ““rotated’’ domain U3 (F) (with |y|= 1) belongs
to the function 7n.F (n~12) of AL.

23.3. The simplest applications of our principle come by choosing
the function F(z) to be z, and we devote the present sub-section (§23.3)
to it. The class of functions subordinate to z in v is the class of functions
w(z} (of §22). Here the elementary inequalities |a,|<1, and, more
generally,

) Sla <1,
1
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are the simplest examples of type I, B. For a result of type I, C, we
have

TaEOREM 218 (Jensen).—Let f(z) £ 0 be regular and | f2)| <M in y.
Let (p,) be the sequence of the moduli of the zeros z,#0 of f(z) in v,
counted according to multiplicity and arranged in increasing order. Then

(2) HPn > I a’vl M—‘},

where a, is the first non-zero coefficient of the power series of f in y.
In particular, p, =|a,| M- for each such p,.

CoROLLARY.—If f(2) is regular in vy, or, more generally, 18 meromorphic
in y and subordinate to a function f(z) for which Ilp,(0) > 0; and if there
exists a sequence of zeros # 0 of f(z) such that Ilp, = 0; then f(z)=0.

If no p,, exists, (2) is simply Cauchy’s inequality for |a,|. If there
are at least k such p,, and if p > %, we observe that zf(z) is subordinate
to Mz in v, so that, by the second inequality of Theorem 214, if p is near
enough to 1,

r
Pu<e Pn

|a | H"" <laly T (£)<H.
Pr

1

We obtain (2) by making first p— 1 and then p —»co.

The corollary is an immediate consequence of Theorem 214 if f is
regular. In the general case we have f=f(w). Denote by {w®} the sequence
of zeros of f in y, each counted once only, and arranged by increasing
moduli. Since f(z,) =f{w(z,)} =0, the values w(z,) are among the w®.
Let 2 denote those z,, if any, for which w(z®)=w®. Suppose that
wz£0. If 20 is a zero of order &Y for f and of order «? for w(2)—ay, and
w® is a zero of f, order 19, then clearly

3) 5O = 10,0,

Now w is subordinate in y to z. If one of the «®, w® say, is zero (that
is, if f(0) = 0), and if o, is the first non-zero coefficient of w, then by the
second inequality of Theorem 214

' pd = al,
where each p( occurs «{ times in the product. Hence, by (3),
) P > a, ",

where now p occurs according to multiplicity &{.
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Similarly, if w® 3 0, the first inequality of Theorem 214 yields
IV o) > ),
where each p occurs % times in the product. Hence
(5) Mpf = |w®,

where now pf occurs according to multiplicity kP. Combining (4) and
(5) we obtain

(6) M pn(0) =L p0 >[a, [V IT] " > |4, 11 5,(0) > 0.

This holds also, with |a,["” =1, if no »® vanishes. Since (6) contradicts
the hypothesis of the Corollary, w(z) =0; that is, J@)=F(0) is a constant,
which must be zero.

The corollary leads to an important extension of Vitali’s Theorem 113.
If we examine the proof in §10.6 it will appear that the essential fact
about the sequence {z,} is that a regular ¢ vanishing at every z, must
vanish identically (a ‘‘uniqueness’ theorem).  Corresponding to any
such type of sequence we may hope to find an extension of Vitali’s theorem,
and for the type in the corollary we have at once the following one.

TrEOREM 113% —Suppose (i) Jn regular and uniformly bounded in Y3
(ii) fr,— a limit (necessarily finite) for each 2 of 21, 2y, ..., an infinite sequence
(of different 2’s £ 0) in o such that Hp, =0. Then f,—fin y, uniformly
m every circle |z| <p<1.

To complete the results derived from the case F — z, we observe that
any (other) f of M must take, in |z] <p, values not taken there by F:
we thus have (a result of type II)

every function f of M satisfies

™) Max|f|>p (0<p<1),

1zl=p

equality being atiained only if f==.

23.4. Consider next the class B of all functions w — B(z) =;anz",
)

regular irr y and taking there no value w Sfor which Bw = 0. Clearly either
Rw >0 or Rw < 0 (according as Rb, 2 0) in y, and B(z) is subordinate to

) %= B =84,

1 . .
I iz +ve (b= By +2y,).
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The domain W (B) is the half-plane R = 0 according as B, = 0. The
domain W,(B) [of Theorem 209] is the open circle extended over the
stretch

(2) B 1 +P+ Yo Bo 1I— P+""}’o

as diameter; the values of each function B(z) for |z| < p must lie in this
circle. In particular

3) | B()| <|bo |+213°“’<|b |22,

This is the best possible form of Theorem 109 (with U = 0).
As a (best possible) result of type I, B we have, by Theorem 216
(etther part!)

4) |b,| <2B, (n>0) [Theorem 110].

23.5. Let a =0, and let us consider the function

) w=F.()=

az+1 =g—az?ta?2d—4....
F,(2) belongs to M and represents y conformally on the interior (when
0<a<1) or exterior (when a>1) of the circle K, on the stretch
—(1—a)™, (14-a) ! as diameter. If a =1, K, degenerates into the half-
plane Rip < {.

If a 5~ 1, the centre ¢ of K, and its radius r are given by

@) o= a1 ’=|a21—1]’
whence

{r(r—-l) (a< 1)
®) | "=

re+1) (a>1).

Taking all functions 7.F, (n~*2) into account, Theorem 217 now readily yields

THEOREM 219.—(i) Let ¢ be an arbitrary complex number. Every
function f(z) of M takes some value w with

(4) |[w—c|> 4+ (3+][c ) =r(0),
and, if ¢ # 0, also some w with
(5) |w—c| < —§+/(E+]c]2) = ra(0).

In each case the function F(z) must be excepted that maps y on the circle
complementary to (4) or (5).
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(i) Let ® be real. Every function f(2) of M takes some value w satisfying
(6) R (wel*) > 4.
The function F(z) = z/(2e"*+1) ts excepted.

Theorem 219 is a special case (n=1) of

THEOREM 220.—Let f(z) be meromorphic in y, and for small |z|
() f&)=Za,z"

1

Let C,.(c) denote the open circle with centre ¢ and radius r.

(i) Let [c| <r. If the values of f (regular in y) lie entirely in C,(c), then

® o <Z5LL

(ii) Let |¢]>r. If f takes no values belonging to C,.(c), then
2___7-2 c n-1
©) o] <17 (lely
If, in this case, f(z) has a pole { in vy, then
7
(10) L] = ok

We may assume ¢ >0. Put a=c/r and

a

R
¢ ==
al—1’

Then ¢ = Ac*, r=|A|r*, and A 2 0 according as ¢ =r. The relation (3)
between c* and r* gives
=rr+A); A=

c2—p2
r

In both cases, (i) and (ii), f(2) is subordinate to
AF (—2) = —A[z+az?+4-a?23+...].

Now a <1 if ¢ <7, and the sequence 1, a, a?, ... is non-negative, non-
increasing, and convex. Hence |a,|<|A|, by Theorem 216 (i). This
proves (8).

Similarly a> 1 if ¢ >r; in this case the above sequence is positive,
increasing, and convex. Hence (9) follows from Theorem 216 (ii).
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Finally, in this case, if { is a pole of f, (9) yields
41> [lim |a, /712 > .

There exists a simple direct proof for (10) which is worth noting, since
the idea of it can clearly be applied in similar cases. We may suppose
again that ¢ > 0. The function F,(z) has its pole at {¥ = —1/a = —rfc.
Since f is subordinate to AF,, the value f({) = co must belong to AU (F.).
Hence

HEIS e

Theorem 219 may be regarded as a generalization of the classical

TaeorEM 221 (Casorati-Weierstrass).—Any non-constant function,
meromorphic in the whole plane, takes values in every circle C,(c).

To deduce this from Theorem 219 we may assume, without loss of
generality, that f(0) = 0, f'(0) = 1, and that ¢ % 0. Then R-!f(Rz) belongs
to M for every B > 0. Hence, by (5) (with ¢/R in place of ¢), we find that
f takes some value in the circle with centre ¢ and radius 2Rry(|c|/R), say.
Since this radius tends to zero as R->o0, we obtain the desired result.

23.6. In this sub-section we give some more results of interest obtained
by various choices of the domain 3 (F). We omit the elementary and
straightforward calculations necessary to show that the corresponding F
belongs to M. The F are all schlicht, and then, by Theorem 217, every
function f of A (except F) takes some value outside (& (F). In particular,
if 1& (F) is the whole plane slit along certain curves, this means that any
f takes some value on the slits.

(i) A strip bounded by two parallel lines, containing w = 0, of width
A = {7 and eccentricity (distance of the mid-line from 0)

_‘*‘A— arc COSL
T ox 2A°

(ii) The whole plane slit along the part |w| =} of some straight line
meeting the circle |w|= }.

(iii) The whole plane slit along the parts |w| =/ (}) of n symmetric
rays from 0.

(iv) The whole plane slit along the stretch c, c/(1—4|c|), where
0<|cl <}

(v) The whole plane slit along an arc of length 4 arcsinp on the
circle |w|=p, 0<p<1.

N
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In example (iii), with n =1, the function
— % _ 2 9,3
1) K(z)= (l_z)g—z+2z +323+...

of M represents y on the whole plane slit along the part w <{ —} of the
negative real axis. In fact

i
(r@+1) =315,
where the right-hand side has its real part positive in y. The function
- K(z) plays a fundamental role in the theory of ‘‘schlicht” functions
(see § 26 below).
T 'f a function f is subordinate to K, i.e. if f takes no values w < —}, then
|@,| <n. This follows, for instance, from Theorem 216 (ii).

23.7. The following example is so important for the general applica-
tions of the principle of subordination that we state it as a theorem.

TreorEM 222 (Landau).—Let M >1. If f(z) of R satisfies | f| < M
wn y, then f takes all values wy with |wy| <7 (M) where

(1) r(M) = Mee; SERZ

=M (x>0).

If |wy|=r(M), that function F of R must be excepted which represents y
conformally on the part |w| <M of the Riemann surface of log (w—w,)t.

We may suppose w, real and positive. We begin by determining the
function F, which we do by easy stages; the calculations, if a little
tiresome, are forced. The function

belongs to R, W (F,) being the half-plane Bw > —3. Hence, if a is a
positive constant to be determined later,

Fy=a—ae /e

belongs to R, never takes the value a, and has for U3 (F,) the part
|w—a| <ae'/® of the Riemann surface of log (w—a). We can now

t The circle |w|< M with w, excluded is a doubly connected surface; the surface of
the theorem, with its infinite winding-point at w,, is simply connected. (An infinite
winding-point is & boundary point of a surface, and does not belong to it.)
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modify F, by the linear transformation

AF,
F2+A.

F belongs to R if F, never takes the value —J), and contains the

@) F=

undetermined @ and A. We choose A so as to make {= %—’7\ describe a

circle |{|= constant when {’ describes |{'—a|=ae!/®; this happens,
with |{| = M = sinh {1/(2a)}, if A="a(e¥2—1), and then F [given by (2)]

A
never takes the value p _;-z X (corresponding to the impossibility F,= a),
nor F, the value —A (corresponding to F, ¢ —1). We choose @ so that.
Aa

= a(l—e"Ye) = Me-1/@0, and then F, now completely deter-

mined, has the required propertiés; viz., it belongs to ®, and represents
v conformally on the part |w| < M of the Riemann surface of log (w—7),
M being connected with = by the relations (1), with = 1/(2a).

Now this Riemann surface W = U (F) is locally schlicht, i.e. has no
finite winding points, but only an infinite (logarithmic) one, and its
boundaries are the same in every sheet. It is evident, as a result of these
two properties, that any function ¢ with $(0) = 0, and taking no value not in
U (i.e. not taking the value v and not taking any value w with |w| > M), must
have its values, continued analytically from ¢(0) =0, confined to the surface
&, and so, by §22.1, be subordinate to F. (It is clear that this inference,
about surfaces & thatare both locally schlicht and “ alike in every sheet *’,
can be widely generalized, though we shall not attempt to state the con-
ditions with complete precision. We shall meet an even more important
instance than the present one in the ‘“Picard ” section, §24.) Now we
know that f (of R, satisfying |f| << M, and other than F) is not subordinate
to F, and we conclude (since |f| << M) that f must take the value r in y.

The rest of the theorem is now easy. It is evident that M increases
from 1 to oo as z increases from 0, while 7 = 7(M) decreases from 1 to 0.
Since M can be increased arbitrarily in the hypothesis of the theorem,
we see that f takes all values 7(M’) for M’ > M, and so all values
0 <w, <.

23.8. The importance of Theorem 222 for our general principle is
shown by

THEOREM 223.—Let f and F be two functions of M. Let M >1 and f
be subordinate to MF. Then f takes all values belonging to M\, pry n (F),
where (M) is defined in §23.7 (1).
N2
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We have f= MF(w), from which it follows that Mw(z) belongs to R.
Also M|w(z)|<M in y. Hence w(z) takes all values |w|<+(M)/M,
and this proves the theorem.

Note that +(M)/M decreases from 1 to 0 as M =1 increases.

If now f has appropriate properties, Theorem 223 gives us lower bounds
for the M > 1 for which f can be subordinate to M F. In particular, if
S belongs to R while ¥ has poles, then 1, )3 (F) must not contain the
point w = co, Thus we obtain

TrEOREM 224.—Let f belong to R, and let F of M have a pole in
(which we suppose that of smallest modulus). Let

" t|=ex, as—thE

If now M < M*, then f is not subordinate to MF'.
In particular, if F is schlicht, f takes some value not taken by MF.

This represents the improvement in the conclusion of Theorem 217
arising from the extra hypotheses that F' has { as a pole, and f is regular
instead of meromorphic. The value of the improvement is seen from the
fact that when F has only the single pole { in y the result of Theorem 224

18 best possible.
To see that this is so, let G be the extremal function of Theorem 222

that belongs to R and represents y on the part |w| < M* of the Riemann
surface of log (w—M*{), never taking the value M*{. Then clearly

(@) Fre) = 3+ F ()

belongs to R (since the argument { cannot occur on the right) and is
subordinate in y to M* F. Thus the inequality M < M* of Theorem 224
cannot become an equality, and the theorem is best possible.

23.9. As an example, let a > 1, and consider again the function

(cf. §23.5)
z

BETEN

F,

This has the pole {= —1/a. Hence, by §23.8 (1),
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With the notation of §23.5 (2) we have further

. 1 R 4 1 M*G *
M"'c—_—.—ﬁ, 1V*r=§rx= T.—_M*ce-x:-M*ce—l/(zM 2

The function F¥(z) derived from F, by the formula of §23.8 (2) repre-
sents v on the part |w—M*¢c|> M*r of the Riemann surface of
log (w—M#c). Replacing M*c¢ by ¢, we obtain the following improve-
ment of Theorem 219 (5) when f belongs to R instead of M :

THEOREM 225.—Let ¢ be an arbitrary complexr number 0. Every
Sfunction f(z) of R takes some value w with

(1) jw—c| <ol = 1y ()

That function F of R must be excluded which maps y on the part
|w—c| > r#(0)

of the Riemann surface of log (w—c).

[A simple direct proof of this theorem is possible by using the funetion
F,(z) of §23.7 as superordinate function.]

We add here the corresponding improvements for the class R of the
results (iv) and (v) of §23.6, omitting the elementary calculations.

(i) Let x> 0, and let & be real. Every function f of R takes some value
w on the stretch

1 1
(2) Zztanhx<|w|<;§:cota.nhz (arcw = 9).

That function of R must be excluded which represents y on the Riemann

surface of log (w—1/ (4x)) slit along this stretch (in every sheet).

(ii) Let 0 <p< 1. Every function f(z) of R takes some value w on each
arc A of the circle |w| = p with aperture

. l—e 2
(3) 4 arc sine—*, where 5 P (z > 0).

That function of R must be excluded which represents y on the Riemann
surface of log (w—a), slit along A (in each sheet), where a is the mid-point
of A.
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23.10. We now enter on a digression, and must begin with the
following

Lumma.—Let w = f(z) belong lo R and satisfy | f| <M in y. Then the
inverse function z=d(w), with $(0)=0, s regular and schlicht for
|w| < 1/(6M), and represents this circle conformally on a domain d inside
|2| < }/(14+M), while f is schlicht in & and represents it on the w-circlet.

CoROLLARY.—Let w= F({)=a,{+a,{*+..., where a, 0, be regular
and satisfy |F|<M in |{|<R. Then the inverse function ®(w), with
®(0) = 0, is reqular and schlicht for

2 R2
jw| < 8 =39 E

e
which circle is the image by F({) of & domain in || < R.

The corollary, an easy deduction from the main theorem, is what we
actually use. To prove the theorem, let f= Ziloa_nz” in y. Then a;=1,

M=, e, |<M If |2|=p<]1,

@ . Mp
M 1612 p(1-E ay| ) = __1.__[;>_
Let P*’—:é—(-l—_lm—). Then
@ O #0 (0<|2|<p¥),
while on Iz[_—_P*

Mp* 1 1
® 0] > (1~ 1-’2*) = (1M = 6"

Since f(0)=0, f(0) =1, it follows from (2) and (3) that f takes in
|2| < p* each value w satisfying |w|<< 1/(6M) exactly as often as the
value w = 0, that is exactly once. Hence z = ¢ (w) is regular and schlicht
in |w| < 1/(6M), and maps it on a domain d inside |z| < p*.

We are now in a position to prove

TaeoREM 226 (Bloch).—Let w == f(2) belong to R.. Then 1U(f) contains
an open schlicht circle of radius 5% ; that is to sayl there exists a simply-

t The lemma gives a lower bound for the radius of convergence about w = 0) of the
funetion ¢(w) inverse to f(z).
t To express the result in a form that does not mention Riemann surfaces.
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connected domain D in y such that f is schlicht in D and the f-image of
D contains an open w-circle of radius ¢ 7.

This exceedingly odd and striking theorem resembles Theorem 222,
but the condition | f| < M of the latter theorem is completely dropped
(and nothing replaces it, except that (M) becomes an absolute constant).
Tt can be used to prove some of the ‘ Picard *’ theorems of the next section
(indeed it gives proofs in which the function theory involved is of the
least possible ¢ depth ’). For these reasons this seems the best place for

it, although it is not actually connected with subordination.

Given the existence of the theorem, and (what will become plausible
in a moment) that the lemma is relevant to its proof, any competent
analyst should be able to find one: it is true that the oddity of the theorem
is reflected in the critical step of the proof, but the step is forced, and
then not difficult to make.

We may suppose f(z) regular in |z| <1. If the domain D is a circle,
as we naturally begin by trying, let it have centre z,, with |z,|=p. We
want

w= F(D‘:f(zo‘l‘g)_fl(zo) =ay{+a, +...,
where a;=f"(z),

to have an inverse ®(w), schlicht in |w|< s, where s is at least some
absolute constant (the value of which happens to come to ). The
corollary of the lemma provides a permissible s given by

6o LB
o B

where R is some radius, necessarily less than or equal to 1—p, in which
F is regular and |F| <M= M(R). Now given z, and E,
R s
M = Max | fleo+0)—f(eo)| = Max || F'Gotre) dr |.
KI<R @ 1Jo

A crude upper bound for this is

R

3 <[ e+ Rydr = Rulp+B),
]

where pt)= ll\gig [f'@)];

The constant ; is not best possible; the true value is not known.
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() increases from 1 at { = 0 to a finite value at = 1. The corresponding
value of s is now given by

6s = f'(zo) lzR
plp+R)”’

and we want to make this as large as possible, and greater than an
absolute constant. We have at our disposal p, B (< 1—p), and argz,.
The last we naturally choose to make | f'(z,)| have its maximum value
#(p); then

_ _Bu*lp)

" r(B+p)°

The denominator increases with R (for given p), and p 4 R must certainly
not be 1 [x(1) can be arbitrarily large]; it is reasonable to try B = (1—p),
which makes the ratio of the distances of p and p+ E from 1 equal to 27.
We thus have a permissible s given by

125 = L—p)p2(p)

e

We still have p at our disposal, and the final question is: is there
an absolute constant @ (ultimately @ = 1) such that, given any

F(2) = 1-byzt...
regular in |2| < 1, there is a p in 0 <p < 1 such that

p{3(14p)} < 2a(1—p) p?(p) :

or, simplifying by 1—p =2 and multiplication by =z, is there an z in
0 <2 <1 such that

4) frp(1—iz) <af{zp(l—z)}2?

The answer is affirmative, and it is sufficient to know about p(z) that
it is continuous in 0 <z < 1, and p(0) = 1. The graph of

y=h@) =ap(l—z)

in 0 <2 <1 it continuous, starts at 0 at x =0, and is 1 at x=1. Let
& be the least value such that k(€)= 1; ¢ cannot be 0 (but may be 1).
Then A(3£) < 1= h%(¢), and ¢ gives a suitable value of x when a is 1.

By inverting the point of view we have the following result, which is
what we shall actually apply to prove  Picard > theorems.

T Any absolute ratio greater than 1 would give some final absolute constant.
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COROLLARY .—Suppose ¢(z) = by+b,2-+by22+... is regular in v and
has some missing value wq in every circle |w—c| < k of given radius k. Then

(5) o |ba) < 24k,

If b, %0, we apply Bloch’s theorem to f= (g—&,)/b;. There exists
an open circle of radius % all of whose points are values taken by f.
Hence there is a circle of radius Z¢|b;| all of whose points are values
taken by g. This radius must be smaller than k.

24, 25, 26. The functions P, Q, R.

24.1. We denote by P(z) any (‘‘Picard’’) function which is regular
and never takes the values O or 1 in y; by @(2) any function which is
regular and never takes any value +2nwi (2 =0, 1, 2, ...) in v; by
R(z) any function which is regular and never takes any value —4=x*n?
in y. It is evident that the necessary and sufficient condition for a
function to be a @ is that it should be of the form log P, and that the
necessary and sufficient condition for s function to be an R is that it
should be of the form Q2.

When P and P occur together, it is to be understood that P is also
a function P(z), and that P is subordinate to P; similarly when , @ or
R, R occur together. Finally we denote the coefficient of z» in P by p,,
in @ by ¢q,, and in B by r,.

We use the symbol 4 (x, ¥, ...) to denote a positive constant depending
only on the parameters shown explicitly, viz. x, ¥, ..., but not the same
at different occurrences. In particular 4 always denotes a positive
absolute constant, but not always the same one. ¥When we wish to pre-
serve the identity of an 4 we write 4, 4,, ....
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24.2. In Fig. 9 4, B, C are the points z =1, ¢™%", ¢~ and 4B, BC,
CA4 are circular arcs orthogonal to the circle |z|=1. (4BC is thus an
equilateral curvilinear triangle with zero angles.) Let w = u(z) represent
D, the interior of triangle ABC, on II, the upper half w-plane, the points
4, B, C of the z-plane corresponding to w =0, 1, ®© of the w-plane.

Invert the triangle 4BC in each (primary) arc AB, BC, CA of the
triangle. Now invert the whole resulting figure in every secondary are
then the whole resulting figure in every tertiary (i.e. outermost) arc, and
so on. Inversion in a circle converts a figure exterior to the circle into
one interior to it, preserves angles, and leaves an orthogonal circle in-
variant. Hence we obtain a figure composed of sides of zero-angled
triangles, orthogonal to the circle ABC, and with all corners on this
circle. It is plausible that the complete figure inverts into itself with
respect to any side (shaded and unshaded regions being, however, inter-
changed) : this property is actually true, and follows without difficulty
from the geometrical principle : ‘‘if vy, & are circular arcs inverse with
respect to a circle a, chen the circles v/, &', «' obtained by inversion in any
fourth circle have the same property’’.

(c) - w0 ‘ W= (c)
< D ==
() K  B) )
) Fig. 10.

We observe next that the greatest of the outermost ares of the n-th
stage is small when » is large. If not, there must exist an are B
{orthogonal tv A BC) whose interior is free of sides of the figure, for sides
do not intersect. It is, however, evident that there must exist a con-
tracting sequence of sides, one for each stage of the generating process,
spanning 3 ; these have a limiting arc B, spanning or identical with
B, the interior of B, being free of sides. But evidently the inverse of
triangle ABC in a side of the figure nearly identical with 8, must enter
the interior of Be.

Next, every point P of the circumference |z| = 1 that is not one of
the denumerable set of corners is spanned by an infinity of sides 8, con-
tracting on to P as a limit point. Since sides do not intersect, the complete
triangles of which 8, i8 a side are inside B,.
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From this we conclude finally that every point in |z| <1 is ultimately
covered by a triangle and that every point (corner or not) of the circum-
ference [z| = 1 has an infinity of arbitrarily small triangles nesr it.

We show now that the function u(z) can be continued throughout
[2]<<1, and has |z|=1 for a line of essential singularities. By the
symmetry (or inversion) principle (Theorem 118) p is regular across AB
and takes in ABC,, at a point inverse with respect to AB to a z of D,
the value conjugate to w(z). [Then w = u(2) represents the interior
of AC;BC on the domain bounded by the continuous lines of Fig. 10.]
Similarly for a path crossing any number of sides. p is ‘‘schlicht’ in
every shaded, and in every unshaded region, taking in shaded regions
values w belonging to II, in unshaded ones values belonging to II, the
lower half w-plane. A point of the circumference |[z| =1 has an infinity
of small triangles near it; hence p takes any value other than 0 or 1
infinitely often near the point. We see also, since p is ‘‘schlicht” in
each quadrilateral composed of two adjacent triangles that u’ 40 in
|z| < 1.

It follows that ¢(w), the many-valued function inverse to w, has
w=20, 1 (and ©) as its only singularities. If, for example, w, is in II,
there exists in each shaded triangle a z such that up(2) = w, and there
exists & branch of ¢(w), regular in I and so in the neighbourhood of w,,
such that ¢(wy) = 2. There will exist an infinity of branches of ¢, but

each is regular at w,.

24 .3. The Riemann surface \& of w= p(z).

To a z-path from a point of triangle 4BC to one of 4 BC, corresponds
a w-path represented by the broken line in Fig. 10. We take an infinite
number of half-planes IT and IT. Start with II,, a particular II, correspond-
ing by w = u(e) to D. Corresponding tc 4C; B we must have a II, joined to
IT across (0, 1). If we now (in the z-cirele) cross BC, into 4, C, B we must
join a II, to II, across (1, @). And so on. We obtain a surface (S of @?
sheets with winding points of infinite order, in each sheet,at w = 0,1, .
Note that the w-paths corresponding to two z-paths from P to Q lead to
the same point of . [Proof by induction: if a path is deformed to go
into one new triangle it comes out by the same arc that it went in by.]

The equation w = p(2) represents y on . The inverse function ¢(w)
is regular and “schlicht” on U (the points w =0, 1, ® in every sheet
being taken as boundary points).

The precise definition of U is as follows. Take an infinite number of
planes, each cut from — o to O and from 1 to +®. Take one such -
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plane, W,. This has four edges, two companion edges from — o to 0,
two companions from 1 to 4+ . To each edge we join the companion
edge belonging to another cut plane (one plane for each edge, four new
planes in all). The assemblage W, of three sheets has twelve free edges
(and corresponds to a dodecagon in the z-figure). We now deal with
these free edges in a similar manner, affixing the companion edge of a
new cut plane to each. And so on. We obtain a sequence W,, W,, ...
of surfaces, and Y is im W, = ZW,.

The following remarks may instruct the suitably informed reader.
They are not used in the sequel and may be ignored if necessary.

(1) & is simply connected. This follows from the one-one continuous
correspondence with y; but it is intuitive from first principles, since a
closed contour on 1 cannot surround a branch point and can shrink con-
tinuously to evanescence.

(2) The existence of a function w = F(z, p,) representing v on W with
F(0) = p, ie a particular case of a general theorem that y can be repre-
sented (with a triple arbitrariness) on any simply-connected surface of
a certain type (to which 1> conforms). (It then follows by an argument
given below that P(2) is subordinate to F. Actually we shall arrive at
the function F' via the p of the preceding argument.)

(3) [Sketch only.] F(2) is certainly an automorphic function. For
let P, P’ be any two homologous points (points with the same w) of 10.
To a path PQ from P to a variable @ corresponds a homologous path
P'Q’, and the @' corresponding to a given ) does not depend on the path
P@. The relation set up between @ and @’ is evidently confermal in
the geometrical sense (is one-one and preserves angles), and transforms W
into itself. If z, 2’ are the z-points corresponding to @, @', we may expect
the transformation from z to 2’ to be a conformal transformation of vy into
itself, and this is in fact the case. Such a transformation is necessarily
linear (by Theorem 119), and since w is the same for @, @', it leaves F(z)
unaltered. F'(2) is therefore invariant for some linear transformations, and
therefore for their group.

24 .4. PicarD’s THEOREM FOR INTEGRAL FUNCTIONS.—An integral
function F(z) which takes neither of twe distinct values a, b is a constant.

We may suppose a = 0, b = 1. Then g(2) = ¢(F) is regular for all 2.
But |g|<< 1. By Liouville’s theorem g = constant, F = u(g) = constant.

CorROLLARY.—4 function F(z), meromorphic in the whole plane and
having three distinct missing values @, b, ¢, is a constant.
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(F—a)~' is an integral function with (b—a)~ and (c—a)-! as missing
values.

24.5. Prcarp’s THEOREM FOR 4 CIRCLE (Schottky)—

M (p, P) < A(p, po)-

We have p, = P(0) %= 0,1. Hence there exists a unique 2z = ay,
corresponding by w = u(z) to w = p, and lying in D+ D +(BA)+(40)
(D4 being the inverse of D with respect to BC). Then

. Z—ay _ $—aq
f_ a{,z—l' or z_a{,§'--1’

transforms y(2) into y({), 2 = a, into { = 0, and the triangle 4 BC into
a {-triangle 4’B’C’ with zero angles. The function

w = FG )=o) = (37%),
uniquely defined for given p,, represents y () on W, a w = p, (point Q say)
corresponding to { = 0. < is locally schlicht, and every sheet contains
all values w except 0, 1, 0. A P({) must have its representative point,
continued anaytically from Q (w = p,) corresponding to { =0, confined to
W, and so, by §22.1, must be subordinate to F({). [Compare §23.7.]
Consequently
. Mp, P) < M(p, F) = A(p, py-

24 . 6. There is an extension of the last result.
Tueoreu 227.—If | P(0)| < w, then

Mp, P) < 4,(p, ®).
CoroLrary.—If | P(0) | < @, then | p; | < 4,(@).

Suppose first that p, is confined to the closed D’ defined by |w| < =,
lw|>%, |w—1|> 4. Evidently o is a continuous function of p, (if we
allow a, to go out of the fundamental region) and so F({, py) is a con-
tinuous function of the pair of variables arg{ and p, (f |{|=p <1 is
kept fixed and p, is confined to D'). Hence M(p, F) is continuous in p,,

M, F) < A(p, =),
1) [Pl <4dlp, =) (&= ep)
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We show next that we may add the circle |2o—1|<< 3 to D' (giving Dj)
without prejudice to the form of this inequality. The two branches of
/P are P’s, and their constant terms are p} and —p}. linow [p,—1|< %
one of these must lie in D'. By (1) we have

|VPI< 4, »), |P|<A4lp, ).

Finally, we may similarly add | |<< % to Di, since if |p)| <3, 1—P is

a P whose p, belongs to D, | l—P | << A(p, w) and | P| < A(p, w). But

Di has now become |w|<(=w, and we have proved the main theorem.
The corollary follows since 3 |p; | < M3, =) < A@).

24 .71, The following theorem is an application of Theorem 227.

Suppose that « > B, and that ¥ (2), with only a finite number of sin-
gularities in © > (3, has the properties ; (1) for every 6 >0

(o) = [ [ (o+iy)|

is bounded in = > a+38; (2) for every § >0 ¥ 4s not bounded in
z>a—0. Then for every § > 0 takes every value, with one possible
exception, an infinity of times in |z—a| << $, y > 0.

Suppose this false. Then there exist @, b, ¢ > 0, », such that
Y #a,bin|z—a| <58, g > 5; in particular = a, b in |z—z, | <44
when z, = a6 and y, is large. We may suppose a =0, b =1 [other-
wise let ¥ = (y—a)/(b—a)]. Since | (z)| < K, Theorem 227 gives

Mgli:l Y7o+ 40pe%) | < 4,(K, }) = K;

V| < K, in |z—2,]| < 26.

Since the z circle touches z = a—dJ and y, may run through all large
values it follows that - is bounded in z > a—d as y — + @, and this is
false.

24.72. To give point to this application we digress to prove the
following famous result (Bohr).

The function {(z) = Zxn~* has the property of \r, with a=1.

It is well known that {(z) is regular except for z=1. In z > 1+,
|| < Zn~'-* <XK: it remains only to show that { is not bounded in any
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z > 1—46, y > 1, and we shall actually prove that ¢ is not bounded in
z>1, y> 1. To this end we must prove first:

Diricarer’s TuroreM.—Given 6y, 6,, ..., Oy, >0, and a positive
integer g, there exists a t > T, such that

[t} < 1/g < N,

and in fact such a t can be found satisfying also t < v¢”.
CorOLLARY. If Xa, 18 a convergent series of non-negative terms, then
1

. @ -
Iim BT a, v =2a,.
Yy—>0 1 1
Consider the unit cube in N dimensions: divide each side into g equal
parts and draw, through the points of division, *planes” parallel to the

coordinate planes, thus dividing the cube into ¢¥ compartments. -Con-
gider the ¢¥+1 points

{703, 16, ..., Oy) ¢ =1,2,...,¢"+1)

reduced (mod'l) in each coordinate. All lie in the cube, two therefore,
say for »; and vy, lie in one compartment. Then

H{roh—w b} < 1/g (< N),

<
and we have what we want by taking ¢ =7 |y,—u | > 7.
For the corollary, the theorem gives at once

a

n’

— ¥
ImBXq, el =
1

= M2

and we can replace N by co on account of the uniform convergence.

We return now to {(2). Given a (large) positive g we choose first z,
satisfying 1 <<z <2 and such that

Zn~*> 6¢;

o«

then N 8o that Znr<yg;

N+1

+ {a;} denotes in general the difference between « and the integer nearest to x, and in the
ambiguous case z = r +} it denotes +3.
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and then y greater than an arbitrary » and such that

cos(ylogn) >3% (<< N).

Then Rz +iy) = Sn~* cos (y log Mt T
+
N o 0 @
>3ZnF— I > 3EnF—2 I n~?
N+l N+l
>80—29=g.

Since this bappens for some y greater than an arbitrary 5, and ¢ is arbi-
trary, it follows that { is not bounded in =z > 1, y > 1.
Taking as known, (i) the corollary of the lemma, (ii) the general
principle
im > im 0im,

valid for any real function of z, y (defined in the relevant range), we
can condense the above proof into the single line:

— S o . — 2
lim R{R)> lim lim BE# V= lim Zn?=oc0.
y—>o (2>1) 2->140 y—>=n 1 a~>1+0 1

24 .73. Theorem 227 gives an easy proof that a uniform function with
3 missing values in the neighbourhood of an essential singularity is neces-
sarily a constantf. We may suppose the essential singularity at z = oo, and
the missing values to be 0, 1, 0. It is enough, by the maximum modulus
principle, to prove that F(z), regular and never 0 or 1 in R, <|z| <,
is uniformly bounded on some arbitrarily large circles |2|= R. Now
by Weierstrass’s Theorem there exist large circles |2| = R each containing
a point, z, say, with | F(z)| < 1 (say). We can find a chain of N4+1< 4
circles C,, Cy, ..., Cy, with centres zy, 2y, ..., zy on |z| = R and satisfying
Max (|2,—2, |2,—21, .., |2g—2x|) < R, while the circles themselves
have radius $R. Applying Theorem 227, with p=1, to Cy, Cy, ..., Cy
successively, we find | F(z,)| < A (0 <n < N); by a final application to
each C, we have |F(z)]< A in each circle |z—z,|<<}1R, and conse-
quently on the whole circumference |z| = R.

1 In the early history of the subject this mnatural extension of Picard’s original
theorem was regarded as a new major problem. That this is no longer true is another
instance of the effectiveness of the ** w ” form (Theorem 227) as compared with the **p,”’
one.



THE FUNcCTIONS P, @, R. 193

24 .8. The inequalities so far proved for P involve functions A(p, po)
or 4(p, @) of unknown form, depending on the form of F(z, p). We
shall show now that without any further inquiry into the special nature
of F, and assuming merely its existence, we can obtain results of fair
precision. We prove first :

LeMma— lq1] < A go|+1).

Let n be the least integer such that (|g,|41)/(2n7) <3. Then
Q@) /(@2n7) = agta;z+... is a P, and |a,|=]gq,|/@nm) <3}. By
Theorem 227, Cor., we have |a,| < 4, |¢,| < An < 4 (| go |4+1), the result
of the lemma.

Our subsequent arguments can take either of two forms.

() Consider &) = Q) = by+byz+..., where { = (r—=zp/(zhz—1)
and |z |=p < 1. isa Q(2), and its ¢, ¢, are

Qz) and —@'(z(1—]z|d.

Hence |@'(z) | < 4 | Q)| +1 Q(zll+1
0
105 {141 Qo |} < (LB < A

STH Q@S T=p

log {14+| Q=) |} < 4 log 17— +10g(1+l 9o ),

Q2 | < 14 Qz) | < A1+ go DA—p)~=.

Thus the “order ” of Q(2) in the circle does not exceed an 4.

(i) In proving the last inequality we may suppose without loss of
generality that 2z, = p. Let x(2) = Q{p+ (1 —p)z}: x is a Q(), and its
9o ¢ aTe Q(p). (1—p) @'(p). The lemma gives

1=p| Q@< 4{1+|QWI},

and the argument is completed on the same lines as before.

We shall meet again with arguments on the lines of (i) and (ii); we
call them respectively the {-argument and the p-argument. The former
gives a better inequality [since 1—p? ~2(1—p) as p— 1] and in some
connexions gives a best possible one. The latter, however, is always

o
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simpler in detail, and therefore preferable where neither method is best

possible.

What these arguments do is to show that in suitable circumstances
[those in which w = f(2) is restricted to move on a given Riemann sur-
face] all points of y are roughly on an equal footing : we can transfer a
property of the origin to an arbitrary point 2. When the property of
the origin is of type |@.| < F(ag, @i, ..., @x_1) the transferred property is a
differential inequation for f(z) of the n-th order.

24.9. The lemma can be deduced from Bloch’s Theorem (Theorem 226)
[and so without assuming even the existence of the function w(z)].

Let f = 4/(@Q/2n%) (any determination). f is regular in y, and f 5 4-4/n
(n >0). Since the function arc coshw has w= +1 as its only singu-
laritiest (any determination of) the function

g = arc coshf

is regular in y, and g # -+ arc cosh /n+4-2mmi (m an integer)i.

Now are cosh 4/(n+41)—arc cosh v/n—>0 as n—>o. Hence there
is an absolute constant % such that any w-circle of radius % contains a
missing value of g. By the corollary to Theorem 226 we obtain

|g'(0)| < 24k = A.

e g ey

and so

o <4 o/ {2 (2l 1)} < aqgp+1),

0
v
the desired result.

25.1. So far we have used only the bare existence of the function
u(z). To obtain ¢ best possible”’ results we need full information about
it; p(2) is actually an elliptic modular function.

Let z=8(r) be the linear transformation that makes the points

e~3" (points A4, B, C of figure 10) correspond to the points

t Consider the derivative.
} Otherwise coshg =f =«
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=00, 0, 1, respectively (points 4, B, C of figure 11). Then u(z) becomes
the function

() ) =p(8@)).

A(r) transforms the upper half r-plane into our Riemann surface 1¥, the
“circular” r-triangle 4, B, C being transformed into an wupper half
A-plane, the points 7=, 0, 1 corresponding respectively to the points

A

_

.=} =0 T=
B c
g, 11.

A=0, 1, 0. Now it is well known that the elliptic modular function
known as k2(r) transforms our r-triangle in exactly this manner. It
follows that

(2) A7) = k3(z).

This then is the nature of our function p(2).
Consider now the function

®) @ =2(xn—1) (r=i173)-

It transforms the unit circle y ({) into the Riemann surface W#* = 2(1W—}),

which is of exactly the same nature as the surface W, except that its

winding points are at w® =0, 1, —1, which are missing values of n*({)

iny. The “circular” {-triangle with corners —1, 1, ¢, and sides orthogonal

to |{|=1, is transformed into an upper half w*-plane, the corners
02
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corresponding to w* = —1, 1, c respectively. The symmetry principle
shows that the function —pu*(—{) transforms this triangle in exactly the
same manner. Hence u*({) = —u*(—{), s.e. p*({) is an odd function.

In particular p*(0)=0, and so A({)=#k2()=4%. Clearly u* (0)> 0.
Hence :
w¥(0) = —4X ¢) = 4| X @) | = o},

where the value o is known to be 4#%I'4(3). Finally the odd function

p1(2) = ap*(2)

belongs to R (see §23), has 4-a as missing values in y, and transforms y
into the Riemann surface a1U#* with winding points at 4-a (and o).

THEOREM 228.—Every function w =[f(z) of R takes at least one value
of each couple +-w belonging to the circle

42

(4) [0] <a=1.,—47(75~0'228....

In particular, every odd function of R takes all values of this circle. If
w=ma, |n|=1, the (odd) function nu,(y~1z) is excepted, and (4) is best
possible.

Let 0 <wy < a, say. - If f =2 Lw, in y, f is subordinate to tu,(z), where
t=wy/a < 1. By Theorem 217 this is possible only if {=1, that is
wy=a, and then f=pu,.

25.2. Put z=¢""" and consider the function
1
1) H(z).—_,\(r):)\(—‘%?).

If P(v) > 0, then |z| < 1. By the symmetry principle A(r) has the period
2, and so has ™. Hence H (z) is regular and uniform in 0 <|z] < 1. Also
H 50, 1 for these z. On the other hand, F(r)—> and so A(r) >0 as
z—0. Hence H(z) is regular at z= 0 also, and H(0) = 0. H transforms
y into a Riemann surface with an infinity of sheets and winding points
at 0, 1, oo, and differing from 1 only by the fact that in ome sheet the
point w = 0 = H(0) is not a winding point.
By a known formula for A(r) (given in §26.6 below) we have

=2 —_— m zm
(2) H(z) =16z exp {8 £ LRATNE
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whence H’(0)= 16. The function H,(z) = 16-*H (2) thus belongs to R,
and applying Theorem 217 once more, we obtain

TraeorEM 229 (Hurwitz). — Every function f(z) of R, vanishing at
z=0 only, takes all values |w| <. If w= s, |7|=1, however, the
Junction nHy(n1z) is excepted.

26.1. Aswe haveseen already in §25. 1, the elliptic modular function
A(r) = k?(r) transforms the upper half r-plane into the Riemann surface
W in such a way that the shaded triangle 4, B, C of figure 11 becomes
an upper half A-plane, the corners corresponding to A=0, 1, corespectively.

By the symmetry principle it follows that, given p, == 0, 1, there exists
in the region R composed of the shaded domain, its image in 4 B, and the
(open) arcs (4 B), (BC), a T, such that A(r)) = p,. Let 7o be the conjugate
of 14, and

’
T—T, To—To02

= 7 or T = 9 N
7 1—2z

so that the 7 half-plane corresponds to y. Let now A(r) = Pz, py-
This defines a unique P (given py). Then w = P(z) represents y on 1U,
and P is subordinate to P. 'We have, then,

THEOREM 230.—P(2) is subordinate in y to the function
P(Z) = P(Z, Po)’

uniquely determined, for given pg, by the relations

Pe) =), z=-—029,
T—To

A(To) = Pos
1 "1<£'To<1» |70“'%|>§'r ‘To+%|>i‘;

where \(7) [or k3(7)] is the elliptic modular function, and =g is the conjugate
of 7o

THEOREM 231.—(i) Q(2) s subordinate in y to the function

Q& = Q@ g0,

O(s) — =TT
Q) =logA(r), z= p——_

(2) IOgA(To) = 90



198 THE FUNCTIONS P, ¢, R.

where T, is subject to (1), and the determination of the logarithm is
fized by (2). '

(ii) R(#) is subordinate in y to
R@) = R, 7 = {QG, v/ro}™

For if p, = e we have, with appropriate logarithms throughout,
Q@ =1logP and Q(0)=gq, By Lemma I, § 22, @ =1log P is subordinate
to @ =log P. This proves the first part; the second is very similar.

26.2. Turning now to the study of the functions P, @, B, we have
first . ‘

THEOREM 232.—
| (R g0 1< fi_g%ﬂ,

IP(z’Po)‘g exP.(‘i{‘(‘Eo_)O,

(Rl < g2

~ We postpone a proof of thé:_fﬁrst result ; the second and third follow
at once, since P = exp @, B = @>. We deduce at once from Theorem 282.

THEOREM 233.—

M6, @ < T,

M(p, P) < exp (%)),
M, B) < 5,

~ There is little more of interest to be said about functions P, as such,
and we shall be chiefly concerned with functions Q( = log P) and R.

26.3. Consider first the functions @, and compare them with their
subclass B, discussed in §23.4. Whereas functions B have a set of
“‘missing values’’ filling the whole straight line 3w = 0, the assigned
missing values of @ are only the discrete set + 2nmi; the B’s are a very
special sub-class of the @’s. None the less Theorem 233 shows that an in-
equality similar to §23.4.(3) holds also for Q. It is natural to inquire
whether this parallelism holds also for the results §23.4.(4) and (5), the only
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change being a constant multiplier 4(g;) on the right-hand side of the
inequalities ; to inquire, that is, whether

1) lgal < 4(go),
and
@ S| gufip™ < #_E‘.

It will be found that we can prove (2). Our methods are essentially
incapable of proving (1), and it seems likely to be false, but they do give

lgn] < 4(gplogn (n> 1).

There is a corresponding parallelism between functions R and
functions C(2), regular in y, with missing values filling the half line
v =10, u < 0; and here we can actually prove our case.

A function C is of the form B* Hence if 3(p) and €(p) are the
majorants of B(z) and C(z), we have

(o) < B%(p),

the inequality, moreover, extending to the separate powers of p in the
two expansions. We therefore deduce from the results for %,

3) 10| < €(p) < |c,,|( +P)

€)) len]| < 4lepln n>0).

[For (4) we gave a direct proof above in §23.6.] We have seen
(Theorem 232) that (3) holds for functions R, save for a constant multi-
plier on the right, and we shall see presently that the same is true of (4).

26.4. We require the following results about @(2) = Q(z, go).
THEOREM 234.—
My, RY) = j | BQ(pe) |20 < A(gy log T
THEOREM 235.—
Mi(p, @ =Z|q.['p" < 14(5%’.

More generally Mi(p, Q)< —%ZYT) (r > 1).

The proofs of these theorems also we postpone.
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Since |R Q| is subharmonic, it follows from Theorems 210 and 234 that

My(p, BQ) < A(go) log

1—p°
Hence, for n>0.

|gaet =]+ [ emqan|< ami(p, R < 4@ log
and by taking p = 1—1/n in this we obtaint
THROREM 236.— |ga] << 4(gy logn (> 1).
From Theorems 210, Cor.. and 235 we have, again,

THEOREM 237.—

Mip, @ ==l q. o < $20.

More generally M(p, @ < _4;_{99_")_ (r> 1.

)r—-l

This gives at once

. THEOREM 238.— Rlp) < %—(}:} <),

where @(p) is the majorant Z|q.|p™ of Q(2).1

Thus the inequality for |@(z)] extends to @®(p), 1n accordance with
the behaviour of the functions B, and Theorem 238 is a generalization of
Theorem 233.

Finally, since B = @*, we have (with r, = ¢3

My(p, B) = Mi(p, Q) < Milp, Q)<A";?.

From this there follows, by Theorem 213,

THEOREM 239.— 72| < Argn  (n > 0.

T For M, (p, ¢) there is no better upper bound than 4 (g,) log? Ii-,
’ a4
1 In fact if 1—p, = ¥(1—p), we have

2. 10" < {210 P8 3(p/p) b < {f;(f;—)x;-l—-;}' f(":
= -
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26 .5. We take up now the postponed proofs of Theorems 233, 234,
235. These concern the modular function A(r); they involve rather
heavy calculations, which the reader need not take too seriously if he
is prepared to take results about classical functions for granted.

We need first some (very plausible) results about mean values taken
on circles |z| = p modified by a linear transformation

m {= £,

where |a]l<<1, and o is the conjugate of a.

LeMMA. Given an f(z) regular in vy, let F(2)= f(), where { is
given by (1). Then

@) M(p, F) < A(@) Map*. /) (A>0),
(3) M(p, F) <M(p*, f),
(4) My (p, BE) < A() My(p*, Bf) (k1)

where p* = 1—B(1—p), and B is a certain A(a).
Let b= (1—|a|)/(14|a|), and let us choose
B=1b, p* =1—B1—p).
Let z = pe'®, { =re®. The identity
1—|¢p_ 1—jal®

T—=|eP ~ [TFaal

shows that 1—»r>3b(1—p), so that r<<p* for all values of p, 6. Let
now Z = p*e™, and

¥ —p?
p*?—2p*r cos (Yr— ) +7*"

Wheu p and ¢ are fixed, P is a function of 8 (through [) satisfying

_—1_- L _ . piﬁﬂ__ a 2
0 = [ P@ 0@ = piz, c0 = =Lt

p*+|al 2
p*—] al< 1—2%b—

PZ, § =

<

< A(a).
lal

t For P{Z, ((#)} is, for fixed Z, harmonic in s for |z| < p, and the left-hand side of
(5) is therefore equal to the value of this at 2 = 0.
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The function |F(z)|* = |f(|* is a subharmonic function of
(Theorem 206) ; hence (Theorem 203)

|[F@&P < f' |FD*PZ, Hdy.

Integrating with respect to 6§ we have
) - 1 " k.
[irerw<g [ irar (] P o) ey

<4@ | _lr@ray.

by (5). This proves (2). (4) can be proved in the same way, sinc
[BF(EO [ is subharmonic in { when k>=1. The result (3) is a
immediate consequence of the inequality r << p*.

26.6. Returning now to the function @(z), we start from the formul

N _ N i
K(T) = log)x('r) = 4 log 2+w}+8m§l m 1 +eomnu

valid for a certain determination of the logarithm. Since Q(0)= g
we have from the definition of § (Theorem 231)

Q) = go—«r(ro+x(7), T= '5"1;__‘—35
Now $(z) = ™ = exp (-ri I"f—;—_—’—:f)

satisfies |¢|<1 in y, and ¢(0) = a, where a is a constant depending
only on go. Hence .¢(2) is subordinate to {(z), where

_ 2%a
$@) = 732
and 8% —+— (=1= e

m 1™
is subordinate to

V) = yie@} =83 20 LD

1+
Thus Q@) = L()+T),
where L(2) = go+mi(r—79) = qo-—g%g’)*g,

and T'(2) is subordinate to ¥ (z2) —¥(0).
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26.7. The inequalities we have to prove are

® MG, P <52,

P
@) Mp, @ < ai_f%)—l%‘%p r>1),
®) Mi(p, 5 < A(gy) log T

Since M, (g-+h) < M\(g)+ M, (h) when A=1, it is enough to prove the
corresponding inequalities for L(z) and T(2). Those for L(2) are easily
verified.t To prove (1) and (2) for T(2), it is enough, by Theorem 210,
to prove them for ¥ (2), and the same thing is true of (3), since |BT| is
subharmonic. The lemma shows finally, since (1—p*)™" < A(aq)(1—p)7,
that the inequalities are true for ¥(z) if they are true for Y(z).- It
remains, then, only to prove that

(=™ zm

vo=s3 ST o

satisfies (1), (2), and (8) (with Y n place of Q).

26.8. Let p=e-Y, and let v be the greatest integer contained in t.
‘We have )

_ v 2\ (=™ o _
W v=8(3+3) SL fm =8t

say. For m of ¥r, p™ < e~'; hence

4 1 4

Ld 1 -
@) Wal<d 2 2 e" <3175

For m of ¥-, we have p™ >el 1—pm > (1—p)me*. Hence

v » 1
3) ¥ <43 i S A= E = AU

4 M is brivial. For M, see §8.4 (12) [a=1, 8= 0], while § 8.4 (11) shows that
M, (p, L) < 4 (g0) 1og {2/(1 —p)}

M,(BL) itself is bounded [by an A4 (go)], since RL is substantially the kernel of a Padsson
integral.
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Also, forr>1,

1 Zm _ v L _1_ L] __i"_l__ r 1}
Molp, ¥ < AEM ( m 1+z"‘> =4 12 m (2vr j_, 1+42m d9>
But if M= =7 = —p™e®,
i i raze—_-r —“-Z—"de <j" |1—Z |- a0
— 1+Zm. o 1 Z = e

<4AnQA—pm=-P

by §8.4(12); and for m of \, this does not exceed A(r){m(1—p)} -0,
Hence

@ M, ¢1><A<r><1—p)-<’*‘>/’ ZmTm < AN L —p) I
Finally
v 1 1 "
wp s <3| |8

" _Z _
0 = L a&—l_zlde L

Zm
7| %

1— R
LR ey - < g

ae

L]

zm
142"

1—R? 3
< S- CR Py e+R°) d6 = 2,
and so
®) Mi(p, B <AE L < dlog 2

The desired results for yr follow from (1), (2), (3), (4), and (5).

26.9. A companion formula to that for «(r) = logk?(r) =log A(r) in
§26.6 is

l krg 1 sz + il
0og ( )= —lmeo 2m+1 1+q‘3(2m+1) (q:e )

valid for a certain determination of the logarithm. Replacing ¢ by 2z
in this (as in §25.2) we obtain the function [a companion of y/(2) of §26.6]

@© 1 22m+1
x(z) = 62 o 2m+1 1 2@miD

The function x(z) never takes any value -2nmi for z £ 0 [compare H (2)
of §25.2]; it differs from a Q by taking one of the forbidden values
(viz. 0) just once. The reader can easily verify that the coefficient of
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2" in x(z) is not O(1); actually it can be as large as 4 log logn. Thus a
result ¢, = O(1) is very improbable.

26.10. We conclude our study of functions @ by showing that the
similar behaviour of the functions B, Q breaks down in respect of means
M, (p) for which 0 <A <C1. In the first place we have (§8.4)

4)) Mp, AL by O<ASI<).
On the other hand
@) Mi(p, @ #0Q) (A >0),

as p—>1. A direct proof of (2) does not exist, and we argue indirectly
as follows. If the mean is bounded (for any particular 1) it follows,
by a known theorem, that @ tends almost always to a finite limit as
z tends radially to the circumference of v, further, that this limit cannot
have the same value in any set of positive measure, and therefore differs
almost always from all the values of any given denumerable set, in
particular differs almost always from all numbers +2nmi. Then P =%
tends almost always to a finite limit other than 0 or 1. Now the interior
of y can be divided into fundamental regions for the function P. These
are curvilinear triangles with corners on |z| =1, and the sides are of
three types, corresponding to (real) values of w between — oo and 0,
0 and 1, 1 and + oo respectively. A radius vector to a point of |z|=1
other than a corner crosses one, and therefore two, sides of each of an
infinity of triangles. It crosses, therefore, an infinity of sides of at least
two types; it follows that the limit of P can in general only be 0, 1,
or oo, and we arrive at a contradiction.
It is interesting to observe that we can prove

2 - )
j 1B (e a0 < A% g9 O <A<LI<D),
0

so that the real and imaginary parts of @ behave differently. The proof,
however, requires elaborations into which we cannot go.

27. Functions S and S.

27.1. We define a function § to be any function 5z+5,2°+...,
regular and ‘‘schlicht’” 1iny, for which 5, = S(0)=0. Wesawin §11.2
that a “‘schlicht” w = f(z) conformally represents y on a simply-con-
nected domain 1 of the w-plane which does not overlap itself (is
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‘‘schlicht’’). We define a function S to be any function that is sub-
ordinate to some 3.

We denote by I' the set of ‘‘missing values”” of S in y.

By Theorem 217 (with t=p=1) the function 3,z is either identical
with S(z) or not subordinate to it, so that I' contains at least one point w
for which |w|<|[s,;| Also it is the complement of a domain W and is
therefore closed. It'is unbounded, and contains no bounded component,
I isolated from I'—TI', in particular no isolated point, since W is simply
connected. Thus I' is perfect and connected. Since w=0 belongs to
1%, T has a positive distance ¢ from 0. Also d <|3;|.

To sum up: T 2 a connected (closed) continuum extending to infinity,
and contains at least one point w.for whichk 0 <|w|=d <|3,].

In what follows I" will always denote a connected continuum ex-
tending to « and not containing w =0; J(I'") the distance of w =0
from I'; T'(S) the set of missing values of S.

TreorEM 240.—The necessary and sufficient condition for a function,
reqular in y and vanishing at z = 0, to be an S, is that its set of missing
values should contain a I When T’ is given, S is subordinate to an S
with 8; > 0, untquely determined by T', whose set of missing values con-
tains T

The condition is evidently necessary, since the superordinate S satisfies
it. If, on the other band, the condition is satisfied for a given I', the
complementary set of I' is a sum of simply-connected domains, each
having as complete boundary part of I'. One of these domains, &
say, contains w = 0. Let w = Z(2) give the conformal representation
of v on W with 2(0) =0, 2'(0) >0, so that X is uniquely determined.
T is clearly a part of the set of missing values of £. Now any contour
in y beginning and ending with z =0 transforms by w = S(z) into a
contour lying in W&, and beginning and ending at w = O (otherwise the
transform has a point in common with the boundary of W, and so
with I). That is, S is subordinate to ¥. This completes the proof.

We may now abandon our original definition of functions S, and
take instead : A function fis said to be an S if f(0) =0, and the set of
missing values of f in y contains a (given) set T,

We may for convenience write I' (S) for the T' of the definition, and
S(I) for the (unique) function § of Theorem 240.

We see then that we can obtain inequalities of types (A), (B), (C) for
the general function § of the class just defined, provided we can obtain
appropriate inequalities for the general function S, that is, for the general
function ‘‘schlicht”’ in y (and vanishing at 2z =0). The subject of
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functions S is of very great interest in itself, and we shall now study it
systematically, not always confining ourselves to results that have a
bearing upon the theory of functions S.

For convenience we shall state our results for functions § whose 3, is

unity, and we shall write o for such a function, o, for its n-th coefficient,
so that 0g =10, oy = 1. ‘

27.2. We begin with ar important group of theoremst.
THEOREM 241.— |og] < 2

THEOREM 242.—

TEsle@I<qlos (el=p)

THEOREM 243.— d=1.
THEOREM 244.—
1+p
< Pl Y
Trgp <l @l < g2 f-
THEOREM 245.—
1—p o’'(z) 1+p

1

1+p <| o2
The function
00@) = K (2) = 15—mys = 2+ 222+ 328+ ...
is a o whose I' is the set of points # =0, v <X —} (§23.6). It shows that
all the above inequalities are best possible. Theorem 241 turns out to
be the key theorem, from which the whole group can be deduced fairly
easily. We shall give two proofs for it; but it is convenient to postpone

them, and to begin with the proof of the ¢ deductions”. The deduction
of a Theorem Y from a Theorem X will be denoted by (X 7).

27.21. Proof of (241->243). Let B be any point of I'(c), Then
—"‘7/6 Z+(a',+ ,8):,+

is regular and ‘‘schlicht’’ in y. Hence

leat1/81< 2, (1B 2+ |al<4 |BI=1

and this is the desired result.

{ They are fundamental in the general theory of the conformal representation of
Riemann surfaces.
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27.22. Proof of (241->244). This is an example of the ‘‘{-method
(§24.8).

Let ¢(2) = o ({)—o(z), where { = (z— —2zp)/(z0z—1). Then ¢ isan §
WIth .8 == 0" (Zg)(ag[az)y = —(1—pD o’ (zp), p =2, and

25, = (1 —pA% 0" (2p) — 228(1 — p?) o' (2y).

The inequality |3, | < 2|5 | becomes (if we drop the suffix 0)

) 1—p?) “,E‘; —22' ‘ <4 (z|=
This is equivalent to
a'"(z)_ 2p? 4p
(2) z a_r(z) 1__P2 < 1_P2’
in which we have (for z = pe®?)
e Jp(a/ap) log | o’ | 25" [p(a/ap) arg o’

'

o T | ©/20) argo’ 3= 1—(8/86) logla’l,

and so, from (2),

902 —4 d L 2p3+4
®) Bt <pyloglo| < L
—4 ) 4
‘1T§2<P§; 3Y8“'<1—_p-a-

From (4) we can derive results concerning argo¢’; we confine our-
selves, however, to (3), which gives on division by p, integration and
exponentiation [remember that ¢'(0) = 1],

)

1— ' I'-T,] +P
TP~ = @T—p

and this i1s Theorem 244.

27.23. Proof of (244> 242). The right-hand inequality of 242 follows
at once by integration from the right-hand inequality of 244. To deduce
the left-hand inequality let z =z, be the point of |z| =p for which |o|
agsumes its minimum value. This minimum increases with p |the image
of |z| <p by w=o0(z) expands] and is less than d. Hence the radius
vector from w=10 to w=0(2,) does not meet I', and there is a cor-
responding z-path from z == 0 to z,. We take for parameter of this path
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the distance r of the variable z from z=0. Since |z;—2,|>|r;—r,|, we
have on the path (taking the limit) |dz/dr| > 1. Hence, if |2,| = p,

|o(zg) | = (length of w-path) =L°| o' (@) dz| = j:""'(g)l g_z_ dr

But the integrand is at least (1—7) (147)-3%.1. Hence

o) | > S T ¥ = T

27.24. Proof of (242> 245).—Consider again the function

¢ @) = o({)—a (z).
where { = (z—2,)/(z," 2—1) [§27.22]. Theorem 242 gives

(1)) (e <lo@—ote)] < =52 "] iyl (o= ml)
This becomes Theorem 245 when we put { = 0 and 80 z = 2,.

27.31. We come now to the proof of the crucial Theorem 241. Our
first proof depends on the following result, which is of interest in itself.
THROREM 246.—Let
| F(2) =0(1/2) = L—oyta, L1t ag B0 ...

8o that F(Z) i8 a function * schlicht” and regular (e:wept at Z==oo) n
|Z|> 1. Then

Enla, ' <1
1

As Z describes | Z| = R > 1 positively, ¢ describes negatively a closed
(simple) contour, and F describes positively a closed (simple) contour C.
Let J = J(R) be the (positive) area of the interior of C, and let

FRe¥) = u(@) 4+ (6).

By the formula for an area (note that the sign is correct: the point is
vital to the argument)

J=13 -r' uv’' —u'v)d0 = fuv’ dé
0
=3 f {(Re+ Re By + S (ane 4, ) B
0 1

x {(Re"’—}-Rc'“’)——in(ane""“-l-E,. %) R""} 0
1
P
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‘We need consider only terms of the product independent of 8, and obtain
J= WB’——WEnIa,.PR"”‘.

Since on the one hand J >0, and on the other B may be arbitrarily
near 1, we must have

Snlas]f < 1.
1

Remarks. (1) As Rincreases C expands. For, by Theorem 117, Cor.,
the o contour shrinks. (Or we may observe that two C’s for different R’s
do not intersect, and C is approximately a large circle when R is large.)
It can be shown that limlJ (R) is the area of the region left uncovered in

R—>

the w-plane when Z ranges over the whole exterior of the unit circlé.

(2) A variant of the proof of Theorem 246 proceeds on lines which we
may sketch as follows. We prove first that J1(E), the area of the image
of 1<|Z|< R, is of the form

w32—7r+1r%n | an [P4o(1),

when R is large. Next, it is not difficult to show that for large R J(R)
differs infinitesimally from the area of the ellipse w = Z4-a,Z !, and so
that J(R)=nR%*{o0(1). Since J = J; we obtain the desired result when
we make R —> .

‘We can now deduce Theorem 241. Given a o (z), let
6@ = {o(@}? = 2+30+....

¢ is regular and ‘'schlicht’’ iny. [¢(2) = a 5= 0 has at most two solutions,
of type z= +{. But ¢(—) = —¢({), and +{ cannot both give ¢ =a.]
Let Z = z"! and

FZ)=1/¢@) = Z—3}0y 27 +...;
F is ‘‘schlicht’’ in |Z|>1. By Theorem 246
[Ho=lal’< Zn|ja <1,
loal < 2.

27.32. We proceed now to develop the ideas for another proof of
Theorem 241.

TeeOREM 247. Suppose that f(z) is regular in |z|<<r. Let p be
the mazimum number, for varying w, of solutions in |z |<<r of f(z) =w.
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Let po (< p) be the number of zeros of f(2) in |z|<r. Let
M = Max |f|, m=Min|f|

for |z|=r. Finally let f(z) = Re® and let h(z) be a monotonic and abso-
lutely continuous function of x> 0. Then (i), if h ts increasing we have

@ Poh(m) < I < poh(m)4-p{h(M)—h(m)},
(i), ¢f h is decreasing we have

(2 Pohm)+p{h(M)—h(m)} < I < ponim),
where

1 1 8<I>(,9)
I_%_L,I:Th(R)d@_—z-;j_ R{R(, 6)} =22 gg.

Case (ii) reduces to case (i) if we change the sign of h. In case (i)

we have p,= 21 Ll rd‘b and so, defining

0 (R
h(R) = { E<m
h(RB)—h(m) (B > m),

I, = I(h) = I—pgh(m).

1 2 pi(t)
Also I, = ﬁsm_rdé L ¢ tdt.
This, on the one hand, is the integral of the non-negative function
hi(R)/R over the area (multiplicity counting) of the image of [z| <7 by
w = f(z), and is therefore non-negative; on the other, it does not exceed
p times the same integral taken over the circle |[w| =M. Thus

M
<L<p | H®BaR = pra0,

which is equivalent to (1).

A more geometrical version of the proof may be sketched, taking for
simplicity the case po=p = 1. Consider the curve which is the image
of |z| =r. Tt contains the w-origin O, and the radius vector from O
meets the curve in an odd number of points Py, Py, ..., Py,yy. As @
increases points with odd suffixes move in the positive direction round
the curve, points with even ones in the negative direction. The sector

d® contributes to 271 = j‘hdd) an amount

9w dl = (hy—hg+ ... — hap+ hani1)dP.
P2
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This lies between %, d® and he,.1dP, @ fortiori between h(m)dP and
R(M)d®. Thus I lies between h(m) and h(}), the appropriate result.

CoroLLARY.—For a function o (z) we have

3) AmMp) < d {Myp)} < AMMp) (A>0),
@ p&‘fl;f' |o@)|*d0 <0 (8> 0).
For any | f(pe®) = Re*® we have, by the Cauchy-Riemann equations,
o _ p OB
9~ Rop’

Hence, by the main theorem with p, = p = 1, h(%) = z* and z~* respec-
tively, we have

A < p ; (o SRMw) TjR"d@gxM*,

; (SR "dG) = —ﬁjR“"d<I>< 0,

which are the desired results.
To prove Theorem 241 let now

f@ —("‘z)) = 1—3oaz+...s

a function regular in y. Then

1(~ 1 _ ” .
E‘S_Ja’\—ldezp 1§;5|f|2d9 = 1(1+%I02|2P2+1‘§2knp2 ),

where k, > 0. The differential coefficient of this with respect to p is
non-positive, by (2) of the Corollary, with 8 = 1. Hence

—p=2 41| o3 P4+ 2 @n—1)knp™ 2 < O,
2

loal? < 4p72

’

and so |os|? < 4.

27.41. So far we have succeeded in proving best possible results in

all cases. Our remaining theorems about functions o are (in general)
not best possible,
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THEOREM 248.—

Myl o) < 72,

Ia"nl < en.
Proof (i). Clearly
$&) = (o} =24 b+ b2+

is regular and ‘‘schlicht’’ in y, and in virtue of Theorem 242 (applied
to o),

@ 19| < T2
Now

xS0 ba|Tp? = j’ rdr (27r§| nba [trn=?) = 5’ rdr r' | ¢ (e |2d0
1 0 1 0 0

= {area of the transform of |z| < p by w = ¢(2)}
2 <nM*(p, 4),

since ¢ is ‘schlichi’’, so that the area does not exceed = times the square
of the greatest radius from w=0. Hence

S 2 _on—1 Y
?”'bnl P < d—pH2"

Integrating this from 0 to p we obtain

- 2 2 P2
(8) ?Ibn| Pt l_p,.
But
2 2
j lo(pe) | dy =j | oot %) | 26
(] 0

= 5:”1 #(pe®) |2 d6 = 2= e:E] bal? ™.

Hence (3) becomes
2mp?
1— p,'

27 MI(P11 o) <

We may writé p for p? in this, obtaining the first part of the theorem.
The second part follows by the usual inference from M, to c,.
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27.43. Proof (ii). This extends naturally to prove the more general
result (obtainable also by the other method) :

THEOREM 249.—

@ Mmoo E<mp o< [wnZ aso.
Jo 0

@ 2w Y P-Y(1r)2 dr < MA(p, 0) < 2Am s: P1(1—r) B dr.
. . )
In particular
(3) Mi(p, 0) < AN)(1—p)2 (A>1}),
(4) Mi(p, o) <AQ) (A<D).

(1) follows by integration from Theorem 247, Cor. (3), and (2) from
(1) and Theorem 242. It is interesting to observe in connexion with the
second inequality in (1) that for any function regular in y and vanishing
at the origin we have the opposite inequality

My(p\*_ 1 (* (M(\*
(52) > L[ () e

It follows from (4), the theorem mentioned in §26 .10, and Theorem
210, Cor., that functions S and § tend almost always to a limit as z tends
radially to the circumference of v.

We actually uset the result for S m a moment, and therefore digress
to give an ad hoc proof of it.

If B is a missing value of S and ¢ = (8—B)t (say), it follows from (4)
that My(¢)= O(1). It is therefore enough to prove that a function w,
harmonic in y and satisfying M,(u) = O(1), has a p.p. radial limit. If

% = 2 (a, cosnf+b, sinnf)p”,

the condition M,(u)= 0(1) is Z(|a,|2+|b,[?) p2* = O(1), equivalent to
2(|a, |2+ |b,[*) convergent. By the Riesz-Fischer Theorem (Theorem 44)
Z(a, cosnb+-b, sinnb) is the Fourier series of a function U (of L2), and
by Theorem 36 o, (8)>U(6) p.p. This is a stronger result than the p.p.
convergence of w to U as p~>1, (The *“ Abel limit > exists if the Cesaro
mean converges, the proof being a summation twice by parts.)

T Unexpeetedly !
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27.43.—THEOREM 250.—The perimeter of the transform of |z|=p

4p

by w = o(2) does not exceed a—pr

The perimeter being Szrlo"(pe“)[pde =pM(p, o'), our result follows
from Theorem 248 and the following lemma :—
If f(2) is regular in y, and
Mip, N < KEQ—p)™* (a=>0),
then Myp, < Al @ K1 —p)— L ¢
Let 1—p, = 3(1—p), = = pe¥, 2 =p,e*. We have

J1r@iae=[as| o [ LD ieas | < 4 [ g1 01 | 72

™ A
< Ajo d¢|f(z)|;1—__—’; < ‘i“:‘; M, (p;, f)r

and Moy, N < KQ—pp* L KEA(@)(1—p)™=.

Alternatively we can argue from Theorems 245 and 248 (without the
lemma):

,)=EI;H ld0<p (1+P)M1(, o) < (1+:)2

27.44. Let p(z) = z+pu2%+ps25+4... be an odd function, ‘“schlicht”
in y. p?(z) =224-2uz2%+... has different values for different values of
2% in y. Hence p(2) = {a(2?)}}, where

o(2) == 24+ 2uz 224 ..
8 ‘“‘schlicht”> in y. Conversely, for any o, the function w so defined is
an odd schlicht function. This relation enables us to deduce properties

of functions w from those of general o. For example, Theorem 241 gives
Jps] < 1: this is a best possible result, as is shown by p(z)=z/(1—2%).

We prove now

Mip, o

THEOREM 251.— o] <A

The best possible 4, is not known. It is known, however, that for
any assigned odd » >3 it is possible to have |u,|>1. To prove

t If a=0 it is possible to prove a little more, viz. thak
Myfp, ) =o{(1~p)'}
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Theorem 251 consider p,(2)= {n@*)} and pa(z = {p1 (@)}, p(2) and
50 pg(2) are ““schlicht” in y. Also

pa(z) = {pE} = {o(®)},

where o(z) is “schlicht”. Ifz = pe’®, and p =4,

(" oldo= o [ P'*S‘ PREENE
E,,;S__Jl“‘(z)l =8 ), - pa(2h)® po

1 4w 4w , 3
<pt (8—,, [ lnatenican) (5 [ Instenieas)
= p-t Pt QF,

By Theorem 249 (3),

— L[ jeepar=gi [T lowenta=g |
= 87 )t 167 )_g. ' 7P = o

-

1) < A(l—P“)'§+1 <A(l—p)t.
Now Q= 2ij luo (pEeit) |2t

increases with p, so that

1

A )

) S ms | (et 2.

Hence, by (2) in §27.41t1 and Theorem 242,

Q < A(1—p) M2 (ph, py) < A(1L—p) Mi(p, o)
@) < AQ—pi(1—p)t < A(1—p)E.
It follows from (1) and (2) that

| wela<da—p

and so, taking p=1—1/n, 2> 1,
1 ’
n| | <p” ”“2”5 | )| 26 < A(L—p) 1= 4n,

the desired result.

1 Valid for eny ‘‘schlicht ¢. We take ¢ = p,, and pt for p.
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27.5. We have seen (Theorem 241) that |o,| < 2. It can also be
proved (by a long and difficult argument) that |oy| <<8. Since |g,|<en,
by Theorem 248, it is natural to inquire whether |o,, | < is true generally.
(No stronger result is possible, as the example o,(2) shows.) This problem
is still unsolvedt. It is therefore interesting that we can answer it in
the affirmative for two important sub-classes of functions ¢ (the function
oo(2) belonging to both of them).

27.51. THEOREM 251.—Suppose that o(z) has real coefficients. Then

Since ¢ is real on the real axis of z, the image D of y by w=0o(2) is
divided symmetrically by the real axis of w, and the two halves are
images of the two z semi-circles. Thus

2(p,.0) = Jo(pe®) = Ecrnp” sinn =0 O<LIL ),
1

(this being the sense of the inequality for small p). Now |sin nﬂ/s.in 6| <n,
and so

1) ptlo,|=-2 “"v(p, 9) smnado‘ggﬁ Sﬂv(p, 8) sin 0df = no, = n.
7 |Jo ™ Jo

This, in the limit p -1, gives the desired result.

27.52. A domain 1 (containing w = 0) is called ‘‘starshaped’ (with
respect to w ==0) if, for any point w of &, the whole radius vector from
0 to w belongs to W. A closed (simple) contour is called ‘“starshaped
if its interior is a ‘starshaped” domain.

The following results are so striking and complete that we include
them, but the proofs are rather difficult, and the reader may omit them if
he wishes.

THEEOREM 252.—Suppose that o(z) transforms y into a *starshaped’
domain. Then |o,| <n.

The proof of this is based on

THEOREM 253.—For o(z) to transforms y into a * starshaped ” domain
it 18 necessary and sufficient that, in vy,

o’(z)
Bz o(z) > 0.

+ The corresponding result for function u(z), viz. |u,|< 1, is false. There are, how-
ever, differences in the two cases which make this no presumption against the truth of
|ral < 1.
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CoroLLARY.—If W (o) is « starshaped” the transform by o(z) of each
circle |z| = p is ““ starshaped . '

We must use the result noted in § 27 .42, that o (pe?®) >o(0) as p—1 for
almost all 8. () is a point of I" (see §27.1), and o(8) # 0.

Let 0 <0 < 2m, and define ®(p, ) =arg a(pef®) by continuation along
the radius pe starting with ®(0,0)=0. Then ®(f)=1im ®(p, 6) exists
and is finite for a p.p. set B of §. For a 8 of E we denote by c¢,(9) the
transform of the radius z = pe®, 0 <p < 1. ¢,(9) joins w= 0too(f). We
denote by c,(6) the ““ray” w=2Mo(6), A\==1. If W(o) is “starshaped’ ¢,(9)
and ¢,(6) have only the point o(f) in common, so that c(6) = ¢4(8)+ca(0)
is 'a simple curve extending from w = 0 to infinity. Let 04, 0, be 0 of &
satisfying 0 <0, <0, <2m. The curve c;(#,) has with c(6,) (besides
w == 0) at most the point o(f,) in common, which then must be on ¢,(6,).
From this [and our definition of ®(p; 0)] we conclude that for 8, 8, of E

1) Min® (p, 8) < ®(p, 6;) < Max ®(p, 63)+2m,
p<1 p<1l

the extremes being finite, and also that
(2) D (0,) < D(By) < P(61)+ 27
From (1) we deduce further that |®(p, 8)| < M for all p<1 and all 87.

We may assume, without loss of generality, that ®(0) exists. Now

oz @
(3) 32;(-2—)—55(1)(% 9).

Hence, if z = pe?® and p < r < 1, Poisson’s formula gives

re—

oz) 1 (> @ P’
”‘z?(‘zi“'z_wﬁ 53 0P 5 cos G0y 152 ¥

r2—p? 1 72— p2

2 a
— T 3 )y 0 3y e =07

Since ®(r, ¢) is uniformly bounded, we may (making 1) replace r by 1,
obtaining

a'(z)_ ]___pz ___.1_ 2 _a_ 1___P2
Rz o(z) 1—2pcosf+p? 2w So ) o 1—2p cos (p—0)+p? dy.

t In the first instance for all ¢ of E, but the restriction to E (for a fixed p) can be
dropped !
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Now by (2) ®() increases from ®(0) to ®(0)+2x as ¢ increases (in K)
from 0 to 27. Hence, for a certain mean value £,

a'(2) 1—p2
Bz 2B — 1=%p cos 657

1 3 ' 1—p?
—ﬂ[q)(o) So+(¢(o)+2”) a*ﬁl 2P°°5(‘Z 9)+p”d¢]

— i " 1—p?
T 12 cos@—}—pz—j: 1—2p cos (£—0)+p? > 0.
This proves the necessity part of our Theorem.

To prove the sufficiency, we note that the inequality ®zo'(2)/o(2z) >0
impliest, by (3), that ®(p, 8), for fixed p, increases as 0 increases. Since
the transform c(p) of |z2|=p by ¢(z) is a simple contour including w = 0,
this again evidently impliest that c¢(p) is ‘‘starshaped . This, combined
with the necessity part. proves the corolfary. Finally, sinceany w
belonging to W (o) is inside ¢(p) for sufficiently large p, the whole radius
from 0 to w will then be inside c¢(p) and so in W(o), t.e. W(o) is “star-
shaped .

It is now easy to prove Theorem 252. Since o, =1, we can proceed
by induction. Let n > 1 and let us assume that |o;| <k forall k <n—1.
Let '

f@)=2z2 z ((:)) 14-ci2+4652%2 ...,

From of =zo’" we obtain, equating coeflicients of 2%,
(n—1)o,=2¢10,_1+C30, s+...+Cp 1.

By Theorem 253 ®f(z) > 0 in y. This implies |c,| <2 [Theorem 110].
Hence
(n—1)] 0| < 2[(n—1) + (142)+ ...+ 1] = n(n—1),

the desired result.
27.53. A dowmain W& is called convex if, for any two points w, and w,

of 1%, the whole stretch joining w; and w, belongs to 1. It follows that,
for any » points w,, w,, ..., w, of a convex W, their arithmetic mean

w= (wyt+wy+...+w,)/n
belongs to W. :

t Actually ‘“is equivalent to” (in both cases marked t).
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THEOREM 254.—Suppose that o(z) transform y mio @ conver domain.
Then |a,| <1.

This is a best possible result, since z(1 —2)~! =z+2?+2%+-... transforms

y into the (convex) half-plane » > —3.

The proof of Theorem 254 is much the same as proof (iv) of Theorem 110.
If w = e?mi/",
i o(w’z/")

1
Unz+02n22+... = ‘—77
r

is subordinate to o(z), since the right-hand side is the arithmetic mean of
n points of W. Hence |o,| <|oy|=1, by Theorem 212.

27 .61. From the theorems about functions ¢ we can draw conclu-
gions about functions S. )

THEOREM 2855.—
81p 4dp
T S T=p)"

where 8, = 5,(T) and d = &(T), as defined in §25. 1.

M(p, 8) <

By Theorem 240 § is subordinate to an § with 5, > 0 whose I'(S)
contains I'. Hence d(I) > d{T'(5)} =d(8) > ¥s,, by Theorem 243.
Theorem 255 now follows from Theorem 242.

From Theorem 248 we deduce

THEOREM 256.—
Myp < 2B <
|8,] < €8,n < dedn,
where 8, = 81(T") and d = d(I).

For 5 < 4d, and we use Theorems 213 and 248.
THEOREM 257.— |se] < 281 < 8d.
For, by Theorems 212 and 241,

|s5] <Max (5q, |52) <25, < 8d.
27.62. It is another open question whether |s,| <<n|3;| whenever §

is subordinate to S; the function o,(z) (subordinate to itself) shows that
more cannot be true We actually know it to be true for n=1 and
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n = 2 (Theorems 212 and 257). For general s,, we shall now prove some
results similar to those of §27.5 for 0,. We begin with

THEOREM 258.—Suppose that S(z) transform y into o convex domain.
If 8(z) is subordinate to S(z), then |s,|<|3,|.

The proof is exactly the same as that of Theorem 254.

27.63. We need the following results, which are of considerable
intrinsic interest and have other applicationst.

THEEOREM 259.—Let |S,(0)| <1 for all real 0, where
8,,(6) = a, sin §+a, sin 20+-...+a,, sinnb.

1 Q (A

Then

Exah

CorROLLARY 1.—
| @+ 25+ ... +-na, | <n.
CoroLLARY 2.—Let |Q,(2)| <1 for all z in y, where

Qn(z) = bo+b1z+...+bnzn.
Then |Qn(2)| <n in y.

Both the theorem and the corollaries are ‘‘best possible’, as the
examples S, (0) =sinnf and @, (z) =2 show.

We may assume 0 <0 < 7. If }n/n <0 < 3w, then sinf > 20/n > 1/n,
and so |(sin8)-18,(0)| <n. Similarly if 47 <0 <m—4n/n. Let now
0<O0<4n/n or m—inm/n <O<Ln. Let cosd == The function cosnf
is a polynomial 7', () of degree n, whose zeros are at x; = cosf,, where
0. =32k—1)m/n, 1 <k <n. Alo

, in nd ’
(1) Tn(x)=n%%%; | Ty ()| <nm2.

This formula shows that (sinf)-18,(6) is a polynomial in z of (at most)

degree n—1. Hence, using Lagrange’s interpolation formula,

(0) % 8,,(8z) 1 T (97)__ Z (—1)%-18, (0) ,,(x)

<m6 i1 SING, To(xz) x—2, M 1o

+ Corresponding inequalities with an extra factor A on the right-hand side are
comparatively trivial, the essential exact ones not at all.
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Now for our 6 WeAha,ve p<r<s<lor —1 <2<y, respectively, so that
T, ()] (x—=,) is of constant sign for all .. Hence

8,(0) 3 T.@)|_
sin @ —1 Ty

1 1 y
< LT <n.

This completes the proof.
Corollary 1 is the limiting case 6=0. As for Corollary 2,

S, 0) = Qn(le");fn(ze*“) — byl sinO+4...4b, sinnd  (L]=1)

satisfies | S,(0)| <1, and so, by Corollary 1,
1@ (0) | =12Q' Q)| =51 L+2by L2+ ... A 0by | <2

This (and the maximum modulus principle) proves Corollary 2.

97 64. THEOREM 260.—Suppose that S(z) has real coefficients &,. If
S(z) is subordinate to S(z) then |s,| <n|8]|.

We recall [§22.5, Lemma 4 and (3)] that, if S(2) = S (a) (z‘)),‘
8y = )3 aP & ; ok(z)= 3 a®rzn
k=1 n=k

and that in y

|P,,(z)|=\ $ amzr| <1,
k=1

~P, (%) ‘ <l
We may assume that §; > 0. Then by §27.51 (1),
2 (* n 2 (=
_ — ( i 1 [
=2 jo‘v(p, 0 2 o prsinkodo = Sov(p, 8) 8,,(6)db,

where v(p, 6) = IS (),

19,00 =| £ a0t sin o | = | Pl T 0D

22

<p™ (2= pe?)
and v(p, 6) =0 if 0 <6 <n. Hence, using Theorem 259,
—n

2 n
lsnl < —@5—— Sov(p, 9) sin 8 d6 = np~"~V3,.

Making p->1 we have the desired result
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27.65. THEOREM 261.—Suppose that S(z) transform y into a  star-
shaped’ domain. If 8(z) is subordinate to S(z), then |s,|

[

Consider
GR) = j’: g—ég af = 812+ % 224,

We have 2@ (z) = S(z), and so, by Theorem 253 and §27.52 (3),

380 arg (zzG’ (z)) a 36 378 (zG' (z)) 8 56 28 S(z) = zg’ >0 (z2=pei®).

Let c(p) be the transform of |z| =p by G(2). Then arg{iz &(z)} is the
angle made with the positive real axis by the tangential vector of c(p)
at the point w = G (z) (for increasing #). If z moves once round the circle
|z] = p in the positive sense this angle increases steadily by a total 2.
This evidently implies that c(p) is convex; thus G(z) is “schlicht” in y
and transforms it into a convex domain+.

Let now S(z) = S(w). The function

9() = G(lw@) = nzt+g2+... (L]<1)

is subordinate to G’ (£z), which maps v on a convex domain. Hence by
Theorem 258,

10,1 =] 2 a® 3 1| = g, <[5t <[5].
Theorem 259, Corollary 2, now gives

—| £ awa| =@ <nl5.

27.7. We turn now to type (C), which is particularly simple for
functions 8. We define generally for a function f,

w(a) = w(a, f) = II (P (a))
where (as in Theorem 214) z,(a), 23(a), ... are the non-zero roots, in order
of increasing moduli p,(a), py(a), -.., of the equation f—a ==0, the

product being taken over all p,, and a product containing no factors being

t This result provides a new proof of Theorem 252, since, by Theorem 254, applied to
the coefficients of @, |3,/n|<|5,|.
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interpreted to be unity. w=(a) < ® means, of course, that the product
is convergent.

TaEOREM 262.—For a function S,

(1) s =vl9<+2 542\ (L+T) o,

5, 4d
@ 5O <4<
where s, is the first coefficient in X s,z that does mot vanish, and where
d=d(T') is defined asin §25.1. (2) gives in particular |s,| <7, < 4d.

For a “‘schlicht” function S there is at most one 7,(a), 7(a) 88y, when
a#%0. By Theorems 214 and 243 we have

2 £
® IGE) <

where N is determined by py(a) < p < py+1(a). But the left side of (3)
is not increased either if we increase or if we decrease the value of N
(for fixed p), and it follows that (3) is valid for all values of n and .
Making p— 1, we have therefore, for any &,

LG <5

Hence
1
) = (a) < :ﬁ‘z;j .

Now by Theorems 242 and 243

136 nlp@  4dpa)
Ial-—-lS{Z(a)H< ‘{1-‘5(01)}2 < {1——;(0)}2;

1 d d &
ow i)
and the first part of the theorem follows from (4).

If a=0, we have u =1, Il =1, in the right-band side of the in
equality of Theorem 214, and so

VR P -
‘SV‘P ﬂgl"’(pn(o)) <]SII<4d:
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first for a special N, and then, as above, for all N and p. Making first
p—1 and then N -> o we obtain the second part. '

For special functions § pla) is known, and (4) gives more precise
results. Consider, for example, functions B (z) (§23.4). Here

z

Be—by =227 (1= fotiyy,
which is an 8, §,(2) say;

7o B) = Fla~by, §) = Z‘E‘Z‘“ (@< b)),
‘ 0
and we have
a5
a—b,

@(a, B) < (@ 5 by,

where 3; is the conjugate of 2,. Similar results hold, e.g., for functions
C (§26.3), and for functions f satisfying | f| < 1in y.

28. Various developments.

28.1. THEOREM 263.—Suppose that f(2) = a,z+a,2%--... 13 regular in
|z] <1, and that ay = 1. Let 7(f) be the radius of the greatestt cir-
cumference |w|=r [not circle |w|< r], all of whose points are values
taken by fin |2|<< 1. Then r(f) = A}.

If we add the hypothesis that f is ‘“schlicht’’ the theorem is con-
tained in Theorem 243 ; the additional hypothesis is, however, unnecessary.
Before proving the theorem we generalize it a little further. Let
p(f) = lM{az;{fl, and let we replace the hypothesis a; =1 by u(f) = 1.

To see that the change does generalize the theorem, suppose the final
form true. If now a; ='1, Cauchy’s inequality |a,|<C»~*M(») shows that
> }, whence, writing ¢ = f/u(f), we have r(¢)> 4,,

r(f) = r(p) u(f) > 34,.
We have, then, to prove :
If f is regqular in |2|<< 1, f(0) =0, and u(f) =1, then r(f) = 4.

+ The values of r, of which 7(f) is to be the greatest, form a ‘closed set.
1 It is not known whether r(f) » % is true; no stronger result is, of course, possible, as

the example oy(2) shows.
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This follows easily from Theorem 227. In fact, if r(f) <k, then, for
appropriate values of a and 8, ke™ and 2k¢* are missing values of f, and
‘ ' _ _[oke®
¢ = et — o=
is a P(2), with |po| < 1. Hence

.u'(¢) < Al’
1=u(f) < k+8k4,,
k> @a+384p~,

and thie proves the result.

28.2. A theorem on integral functionst. What are the conditions
that an integral function of an integral function should be of finite order?
The answer seems very obvious, but the only known proof has to appeal
to the very sophisticated Theorem 263.

TEEOREM 264.—Suppose that f, g, h are integral functions of z, and
that f =g(h). If now f is of finite order, then either (i) h 1s a poly-
nomial and g is of finite order, or (ii) g is of zero order and h is of finite
order.

If we set out to prove that g and k are not both of ¢large’ order
we naturally begin a reductio ad absurdum : ““h is of large order in z
for some z, say |h|=R; g(w) is of large order in R on |w|= R’’. But
this much does not prove that f(z) is of large order; the difficulty is that
the h(z) that have |h|= R may have the wrong amplitude to make g(w)
large in R. The point is met by the following

Lemma.—Let
F(r) =M f), Gr)= M., H(r)= M h).
There exists an absolute positive constant a such that, if h(0) = 0, then
F@) > G{aHGn)}.

Let o) = I};((;C:) .

-1 regular in || <1 and p(4) = 1. By Theorem 263 (generalized) there

t No knowledge of the special theory of integral functions is required here. An integral
function f(s) is said to be of finite order p if | f| < exp (| s]°-¢) for (arbitrary positive ¢ and)
large | z |, and if p is the smallest number with this property.
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exists an absolute constant o« and an R > aH(}r) such that every w
satisfying |w| = R is a value of &(2) in |2| <Cr. There is a w, such that

lwy| =R, |gwy | = GR) = G(|w,).
There exists a 2o satisfying |z,|<C 7, for which wo, = h(2,). Then

GlaHEN} < G(lw ) = g0y | =|g(h))|< F,

the result of the lemma.

28.3. Consider mow Theorem 264. We may suppose h(0)=0
[otherwise let h* = h—h(0), g*(w) = g{w—+A4(0)} ; then g(h) = g*(h*),
and the result is true for g, h if it is true for g*, h*] and that neither
g nor h is a constant. Let

h(z) = ayz+...Fanz"+..., gw) = Zhw",
and let m be an integer for which a, = 0. We have
F(r) < K exp(r™),
H@r =|amlr™,
Gla|an|27™r™ < GlaHEN} < Fl) < K exp(r¥),
(1) G(a|an| 2 ™r) < Kexp(*™).
‘We now distinguish two cases :

(a) h is not a polynomial. Then m may be taken arbitrarily large,
and it follows from (1) that g is of order zero. Further we have, for
every n, ‘

@) |ba{aHGN} ™ < G{aHEGN} < K exp(r).

Since | b, |> 0 for some n > 0 (g not being a constant), (2) shows that h
is of finite order.

Case (b). h is a polynomial. Here (1) shows that g is of finite order.
We observe that case (ii) (with % not a polynomial) is a possible one.
It occurs, for example, if A is any function of finite order and
g(w) = Ze " w™.
A comparison of Ze ™ R" with the integral j'e“’_R’dx shows without
difficulty, in fact, that
G(R) < Aexp(4 log’R),

whence if h is of order p, f is of order 2p at most (in point of fact of order
2p exactly).
Q2
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28.41. The inequalities (3) for functions C (§2.63) show that a set
of missing values filling a half-line restricts the “‘order’ of the function
to that of (1—p)~? at most ; Theorem 233 shows that the same restriction
is effected by a discrete set (—4n?n? of points on a half linet. Finally
Theorem 242 shows that the same restriction of order is effected by
any T of missing values, for example, any Jordan curve extending
to ®!. A comparison of these results inevitably suggests that if the
curve, in its turn, is replaced by a discrete string of points, with gaps
not too large, the order of the function will still not exceed (1—p)~2
Since it combines the depth of the very special modular theorems with
the generality of the “schlicht’’ functions, this theorem can hardly he
easy. Provided, however, that we abandon the ideal of a best possible
power of (1—p)~! for the order, we can not only prove the suggested
result, but extend it materially. It will appear, in particular, that a
very sparse set of missing values is enough to reduce the order of the
function below a constant power of (1—p)~2

TreorEM 265.—Suppose that we are given an integer k > 0, a constant
¢>1, and an infinite sequence w,, w,, ..., where | w,| =1, 1, >0,
P K Tny1 < CTwy and 71,>®© as n—>o. Suppose now that, im vy,
f@&) = agta,2+... 1s regular and takes no value w, more than k times.

Then
Mp, /< AEmA—p)~t,

where  h= A& c(ry+1), m=Max(, |a, |a], ..., |a]).
The proof depends on

LeMMA 4.—Suppose that, in vy, ¢(2) = uo+u,2+... is regular and
takes neither of the values 0 and 1 more than k times. Suppose, further,
that

¢V lun [ <1 (n < A).
Then

(2) Mp, ¢) < A%, p),

(3) ks | << ACk).

t Thus is, we may observe in passing, in striking contrast to the effect of even a domain
of missing values, provided the domain is bounded. Thus the function exp (y ) has a
-z
domain |w| <1 of missing values, but its order is as high as exp ( IA— )
—p
1 A precigely similar group of results holds for the order of the n-th coefficient.
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The second part follows from the first by taking ,=3% in
Ugs] p¥* < M(p). The first is a particular case of

THEOREM 266.—Given m > 0, n > 0, positive numbers &, k,, ..., ky,
0<8 <1, B>0;there exists a H=A(m, n, ky, ..., kn, S, B) with the

following property. Let f(z) = Za,z* be regular and have at most m
0

1-points and n zeros in |z|<<R. Further let |a,|<<k (v <n). Then
IfISE (21<%R).

28.42. This theorem we deduce from two more lemmas.

LeMMA 5.—Let N be integral and N > 0, and let K, K,, ..., Ky be
positive numbers. Then there existsaJ = AN, K,, ..., Kx) with the Jollow-
ing property. Let F(z) = ZB,7" be regular and have ezactly N zeros in
2] <1, and let |B,| <K, W <N). Then

P=Min|F|<J.

Jz|=1
This is true for N = 0 since P <<|Bo|. Suppose then N > 0; also that
P>0. Let &, ..., £&v be the zeros, and let G(2) be defined by
N N
1) ]i[(z—fv) = 1;[(1-—5,’,:3).F(z) G(2),
where £, is the conjugate of £,. G(2)=Zy,2* (say) is regular in |z| < 1.
For |z|=1 the two II's are equal in modulus ; hence
lal=1/|F|< P
Therefore |B,| < P~*. The right-hand side of (1) is therefore majorized

>y AH 2 DY Eyt .. +Euls 4. P2 al,
a fortiori by
@) 2N°:z|z|V(K.,+...+K,,|z|-'+...)1>-1%:lziv.
Hence | coefficient of ¥ in (1)| < coefficient of | £ |V in (2),
1 << 2Y P! {coefficient of 2% in (Ky+...+Enl2|MHA—|2)~?%,
P

28 .43. Lemma 6. — Let E>0, 0<Ry<R,. There ezists an
Q = A(E, R, Ry with the following property. Let f(z) be regular
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and never equal to 0 or 1 in B, <|z| < R, and let Ry = }(R,+R) and

Min | f| < E.
|#}=Rg

Then /1< Q (z|=Ry.
Let Ry—RB, =2r, and let z, be a point on |z| = R, for which
| fz9| < E. By Theorem 227t
fl<4EB)=E, (J2—2|< ).
Let z, be the point in which | z2—z,| = }r cuts | z| = B, ; then
Ifl< 4,(E)=Ey (e—zn|<in.
This process can be continued, and covers the circumference |z|= R,

in A(r/Ry) = A(B,, B, stages. Lemma 6 follows.

28.44. To prove Theorem 266 we now divide the interval R to R into
m+n+1 equal parts. For at least one of them, which we call (R,, B,

we have
f#0,1 (B <|z|<RB,.

Also, taking F of Lemma 5 to be f(R;z) and observing that
18| < kR, < k,B", N <n, we have
Min|f|=Min |F|<E=AWN, ky, kR, ..., ks BY) < A(n, ky, ..., kn, B).

l5]=Ry Isl=1
By Lemma 6
| I<Q@=AE, R, B) =Am, n, ky, ..., ky, 3, B)
for |z2[= R, A fortiori this holds for |z|= 3R.

28.45. We have now established Lemma 4. Return now to Theorem
265 ; it is enough to prove | f(p)] < A(F)m(1—p)~". Let

F@@) = flp+(1—p)2} = by+byz+...,
where by = Q:—;,ﬂ): S™(p).

Since |p+(1—p)z| < 1 in +, the function F(z) is regular in y and
takes no value w, more than k times. Lt

(1) w= @) =nt b+ b [+ o >
It is evident from the hypotheses about the w, that there exists a v >1

such that
% L | w, | < 2.

Note that Theorem 227 is Theorem 266 with m = n = 0.
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Thus
@) w,—w, | < 2w, | < 4ou
and
(3) < 2u—r L |w, | —lw | <l w,—w,]-
F(z) —
Tiet now P(z) = —;ﬁf_—_—%‘:—l = Uyt z+....

Clearly ¢ takes neither of the values 0 and 1 more than k times; also,
for 0 <n <k,

'u’_“=lwﬁw1|<\w.iwll<1’

| = Ibo—wll <’bol:‘"'1<l.

and | g (0w,
Thus Liemma 4, (8), is applicable to ¢, and we have

[ | < 4(R),
(4) | brrr | = | k1w, —w) | < depnd (B) < ed(o)ri+| bl +...+1bx ]

< B(L+|bo |+ 10y |+ ... 4] oD,

where we denote by h a constant of the form 4 (k)c(r;-+1) (not always
the same at different occurrences). (4) may be written

) (L—p)* | FE ()| < Iy (A —pV* | fP () [F- ...+ A —p) | &) | ] F ()| +1)
=mnT, R
say. Now let (o) = (1—p"**T. Since D|F(p)| <|F’(p)|, where D®(p)
is the upper right-hand derivate of ®(p), we have
k
Dy (p) = A—p"*' 2 A—=p)"D| /™)
. .
— %o(h-1+ 14+l —pM** | f™(p) | —(Ry+1 (A —p)>
k+1 k
< A= E A—pr] 7O | —Uat DA™ ( Z =" ) +1)

k )
1—p { A—p)*H fED0) | =T (Eo(l—-p)” | f® ) l+1) 5
0,

A
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by (5). Hence
k
Y << P(0) = %olf(")(o)l-l-l < AR+ ag)+... Hlah < AF)m,

and so finally (L—p+| flo) | < ¥ (p) < A(k)m.

98 .5. It is natural to generalize ‘ schlicht funetions” to “functions
of valency p ’, which take (in y) no value more than p times. The questions
at once arise: are such functions of order 2p and coefficient order n??-!
(at most)? The answers are affitmative. The proofs, due to CartwrightT,
are difficult, and depend on ideas unlike any we have been considering.
A further important generalization is to functions of ¢ mean valency p”’,
which, in a certain defined sense, take values ‘“on the average’’ not more
than p times: » now need not be integral (and may be less than 1). [See
D. C. Spencer, Trans. American Math. Soc., 48 (3) (1940), 418-435,
and references there given.] Cartwright’s theorems (and to a great
extent their proofs) are, rather surprisingly, true for the wider class, and
this greatly extends their scope.

* M. L. Carbwright, Math. Annalen, 111 (1935), 98-118.
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Addenda and Corrigenda.
P. 25. Before §3 insert the following :

Suppose that f,(z) >f(z) at each point z, or (z, ), of a bounded
closed set B. Let d,(z) = f,—f, so that d, >0 at each z of R.

The convergence of f, to f (or of &, to 0) is uniform in R if and only if
d,(2,) >0 for every function (or sequence) z, of n (z, always belonging.
to R).

Let M, be the upper bound of |d,| in R. TUniform convergence
is equivalent to M,-0. Also |d,(z,)| <M, for all functions z,,
|2, (z,)| = %M, for some function z,.

Suppose f,~>f at each z of a bounded closed R, and that each f, is
continuous in R. Then (i) of the convergence ts uniform the continuity (of
) ts uniform (in n)i; (ii) conversely, if the continuity is uniform so is the
convergence.

Further, (iii) of f, is uniformly continuous in R, and convergent, to f
say, in a set B dense in R, then f, converges uniformly to a limit f in R.

(i) Given the convergence uniform, f is continuous, f,—f is con-
tinuous, and we may suppose f=0. If all 2’s concerned belong to R,
and Az =2'—z, AF = F(2')— F(z), we have

AL SR+ @) | <tetde=e (n>n),

where ng==mny(e) is independent of z and 2’. Also fy, fs, ..., f,, are con-
tinuous. It follows that

|Af,|<e for |Az|<8(¢), independent of n.
(ii) Given the continuity uniform, we have
[Afn] < e for [Az] < 3(e).

Hence |Af|=1im|Af,| <e for |Az|<8§; f is continuous, f,—f is uni-
formly continuous, and we may suppose f=0. If the convergence is
not uniform, there exists a function z, giving | f,(z,)|>ae¢>0. If { is

t The results that follow are true in n dimensions; n = 2 is perfectly typical.

t The continuity of an F continuous in (a closed) E being necessarily uniform in z of
R, reference to it is usually suppressed; any uniformity actually mentioned is with respect
to some further parameter. The f, of the text is thus continuous uniformly in z and n.
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a limit point of the z,, f,({) differs little from f,(z,) when 2, is near {,
by the uniform continuity. Hence |f,({)|> la for some large n,
contrary to f,({) 0.

(iii) It is enough, by (ii), to prove f, convergent at each z of R.
Now given e there exists a 8(¢) (independent of n) such that for all n
|Af,| < 3¢ whenever |Az| < 8. If now z is any point of R, there exists a
point 2’ = 2’(2, €) of E for which |Az| <3. Then

|Fu@)—fn(@) | <[ F@)—Fn(@) |+ Afn |+ | Afm]
< fal@)—Fn@) |+ Ret-de
The first term on the right, however, is less than e for
m,n >N (2, €)= N(z, €),
on account of the convergence of f, at 2’ (a point of E). We have, then,
| faE)—fu@| < [m,n> N, )],

and f, is convergent at z.

We can use these results with advantage later. Meanwhile, the
¢ Continuous Selection Principle ’, namely the Corollary of Theorem 5, is
an immediate consequence.

Note first, however, a correction and an addition to the Corollary.
(i) At the end of the first sentence of the enunciation add: “and f, s
bounded (as n—> ) for some fired z of D.”” (i) Add at the end :

" There is a corresponding result with a bounded closed set R in place of
the open D. If f, is uniformly continuous in R and bounded at some
fized point of R, then there exists o subsequence (n,) such that f, converges
to a continuous f, uniformly in R.”

After the proof of Theorem & we continue: A function F,, uniformly
continuous in a bounded closed set, and bounded at a fixed point of the
set, is uniformly bounded in the set. (There is a finite network of
squares covering the set, independent of », and such that |AF,| <1 in
any one square). Hence f, is uniformly bounded in any D’ and in R
in the respective cases. Choose a denumerable set Z dense in D
(in R, in the easier “closed” case); by the Theorem there exists a
subsequence (n,) for which f, converges to some f in E. Then in
any D’ f, converges uniformly to some f, and clearly this involves
the existence of an f, continuous in D, such that f, —f uniformly in
any D’
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P. 37. Omit Theorem 16 (used only to prove the vital Theorem 21,

but originally an unpleasant necessity. Theorem 21 now receives a new
proof).

P. 42, 1. 6 to 1. 15. Substitute: ‘““By the Addendum to 'p. 25 f, con-
verges uniformly in E, to a continuous limit, which must be f,.”

P. 42, Theorem 21. The first two sentences of the proof stand. For the
rest substitute :

We prove first that for any bounded function k(8)
(1) j' g,,hdo—>5' gh dé.

Suppose |A| << C. For arbitrarily small positive e, 3 there exists, by
Theorem 6, a step function A* such that |A*| << C and |h—h*| < € except
in a set X of measure mX < 8. Then

S (gnh—gh) dG——S (g, h*—gh*)db |

<(,, gal+1gD) cdo-+]_(gnl+IgD1hI+ a%])ds.
The first term on the right-hand side is small with e [since g is integrable
L and M,(g,) <M, (9,) <G]. The second is small with mX since
|h|4|h*| < 2C, g is integrable L, and j]gn{ is u.a.c. Hence the right-

hand side is small with § and €. Finally the second integral on the left-
hand side tends to 0, since A* is a step-function. This proves (1).
Now let ¢ = [glx, ¥ = |$|"15gn . Since ¢ is bounded,

jg,,a/vdﬁ»jga/xd@

= [igl1r-2as;
3 | 16ras <g[lgll#r-2d
= lim o~ jg,,n/:dﬁ

<lim M, (g,) 1,6 = (55 [ I#ra0)"”
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where A= lim M,(g,). Since S[gS[’ d8 is finite this gives
L ((4rde <x
_5:7.; I‘?S! =M

1 . 1
2) o [lgrdo = tim 5= figrae<x,
which includes the desired result.

P. 43, proof of Theorem 22. This should read: By Theorem 5,
Corollary, there exists a subsequence (n,) such that f, —f uniformly in

(]
(the whole of) B, By Theorem 20, f =j gdf-+c”. Conclude with the
V]
last sentence of the text.

P. 46, Theorem 26. For the proof substitute: ¢ This follows (with f,, for
g,) from (2) of the Addendum to Theorem 21 (p. 42) ”,

P. 64, §5.91, Lemma. Replace from ““hence” (I. 1 of the proof) to the
end of §5.91 by “and if |A|<K, |o,|<K (Theorem 34), and so
|o,—k| < 2K. The result follows by Theorem 10.”

P. 66, §6.1. Add (at appropriate places): ““ F(D) is a closed set. . . .
C is the frontier of each of the domains (and is a closed set). The
domains have no common point, and a Jordan curve joining a point of
one to a point of the other must.have a point in common with C”.

4 lines from end. For * continuous’’ read ¢ bi-continuous .

3 lines from end. For the second “D” read *‘A”.

P. 67, line 13 on. We must distinguish L,, —L,, ly, —1,, upper and
lower bounds for positive ¢t and negative ¢ giving p(t) =7, and make the
obvious modifications in the subsequent argument.

P. 83. From “and” (L. 18) to « >=p).”’ (1. 19) substitute <and let B be
a frontier point of B'”’. After «Clearly” (L. 19) insert ““ B is interior
to D,”.

P. 105, end of §9.2. The “minimum” idea can be applied to prove
the existence of a solution of z* =k also; we therefore give a complete
proof of the “fundamental theorem ™, independent of the theory of
circular functions (or processes of integration).
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If f({) = {*+a, {*'+...+a, is never zero, then, since | f| is large for
large ||, | f| attains a minimum other than 0, at {, say. Let {={,+2,
fl&)=A,+A4,24...+2", where A,#0, and A, is the first of
Ay, Ay, ...y Ay =1 that is not 0. If m = 1 we can choose z= —84,/4;,
when | f({)| = | 4,|{1l—8+0(8%)} < | 4,]| for small 8, a contradiction. A
similar argument succeeds, with z = 8«, and  a solution of um= —4,/4,,,
provided we can always solve

FQ)={m—k=o.

Repeat the “minimum at {,” argument on |F({)]| itself. If {, is not 0
then “A4,” is not 0, and the crude form of the argument succeeds. It
remains only to show that for k%0 |F| is not a minimum at {=0,
We now observe first that we can always solve {m = +1, +i. For we can
solve (% = a-+1b, 4 being solutions, with

{=v/{da+1/(a2+b2}+i sgnb v/ {—da+3 4/(a2+5%)};

and we may therefore suppose m odd, in which case ¢ takes the 4 values
41, +¢ in some order when ¢ does. Finally, if », (v=1, 2, 8, 4) are
respectively solutions of w™ = 41, 44, the four points (du,)™ are at the
small distance 6™ respectively E, W, N, 8 of the origin. One of these
must be nearer the point £ than the origin, and |F| is not a minimum
at {=0.

Alternatively we can apply the “ N, 8, B, W” idea at the {, of the
general case f({). '

The history is interesting. The theorem was stated by d’Alembert
in 1746, and is called ‘“d’Alembert’s theorem ” by Gauss. The first
“proof”, by modern standards, was given by Gauss in 1799; of this
Klein says “vom heutigen Standpunkte . . . er ist im Prinzip richtig,
aber nicht vollstindig”. His second proof, not merely complete, but
the best from the purely algebraic standpoint even to-day, is dated
December 1815. (There is a third of 1816.) In 1815 Argand [Gergonne’s
Annales, 5 {1815), 204] gave a proof by the ‘“ minimum’’ argument, but
took the solution of zm = k for granted (by the ‘ Argand diagram’ and
circular functions). The ideas of the proof given above are all to be found
(heavily overlaid with detail) in Cauchy [Journal de I’Ecole Polytech.,
11 (1820), 411; also later in Hzercices de Mathématiques, 4 (1929), 98, or
Cours de ’Analyse, Ch. X, 331]. The alternative proof indicated above
is given (still overlaid) in Todhunter’s < Theory of Equations” (pp. 16-20
in the 3rd edition, 1875; Cauchy’s name is mentioned). Since then the
proof seems to have been largely forgotten.
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P. 110,1. 15. The regularity of ¢ is a consequence of the following very
general theorem.

Suppose that for each fixed t of a finite range (a, b) of the real variable i
F(z, t) is regular in z of a fixred domain D, and that F is continuous tn

b
(2, t) forall z of any D’ and t of (a, b). Then j F(z, t)dt is a regular
Sfunction of z in D. The result s valid also for an infinite range (a, b) of
b
t, provided j 12 convergent uniformly in z of any D’.
[ ]

This follows immediately from the following ¢ Converse of Cauchy’s
Theorem ’ (Morera’s Theorem), which we suppose known.

If F(z) is continuous and one-valued in a domain D, and if for every

simple polygon C whose interior is contained in D we have 5 F(2)dz=0,
c
then F is regular in D.

For 50 (j:ﬁ'(z, 1) dt) dz = f' (L Fe, )de) dt =£0dt —o.

[The scope of the “ F(z, t)*’ theorem and its dependence on Morera’s
Theorem have not everywhere been recognized. Morera’s Theorem gives
a similar immediate proof of Weierstrass’s Theorem on the regularity of
a uniformly convergent series of regular functions (and its differenti-
ability term by term.)]

P. 112, after §9.8. We add one or two additional theorems.

TeROREM. Suppose that A >0, and that ¢;(z), ¢9(2), ..., ¢x(2) are
regular in a bounded domain D, and continuous in D'. Then

N
86)= 3 @)

attains its upper bound for D' at a point of F(D).

We shall have established this if we show that, given any 2z, of D,
either (i) there is a z, of D' with S(z,) > S(z,), or (ii) there is a z, of
F (D) with 8(z,) > 8(z,). [The bound is attained, at { say. If { belongs
to D (i) is impossible for z, = {.]

Let n be a typical suffix for which ¢,(2,) =0, » one for which

Then the ¢)(z) are regular at z, (whatever branches are
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taken). Let
F&)=Z8() R a0,

so that F(zy) =| F(ze) | = S(2y)-
If F(z) is not constant there is a 2z, near z,, where | F(z;)| > | F (zy)|,
and so

8(zy) = | F(z)] > | F(zp)| = S(2,),

a case of (i). If, however, F is constant, it is constant in the whole of
D', and for any point z; of F (D)

8(z1) = | F(z) | =] F(2,)| = 8 (o).
There is an application of this to prove:

Let ¢(z) be regular in |z| <R and continuous in |z| << R. Then
M, (r, ¢) is @ monotonic increasing funcrion of rin 0 <r < R.

Let bn = P(ze® ) (L<<n < N).
Let r < R. TFor any z, of |z|=r there exists,"by the Theorem, some z;
of |z| = R, varying with N when that varies, such that
1 N 1 N
@ ¥ |$Eem P < g S|l e,

Since |$(z)|* is continuous in & for |z|=p << R, we have, for any {n
varying with N but satmfymg | x| =p»

lim 3 3 [$lyemi) = o [ 4o ao.
N—s>wo
Applying this to (1) with p =7, B; {5 = 2, 21, We obtain
Mi(r, $) < MY(R, ¢),
and this is equivalent to the desired result.

THEOREM. Suppose that f(z) is regular for all (finite) z, and suppose
for simplicity that f(0)#0. Let M(r)=M(r, f), and let n(r) be the
number of zeros of fin |z| <r. Then

n(r) << i—5 1 log M(3r)+ K,
where K 1is a constant.

Let a, [n =1, 2, ..., N =n(r)] be the zeros of f in |z| <r, and let

$@) =@ I (1-7).
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Then
1O =160)]| <M (3, §) <M@r. f)[TL(EE 1) <3r(an) 2.

P. 118,1. 4. f/z is bounded as z— 0 since f'(0) exists.

P. 116, end of §10.4. Add: As a typical application we have:
If f(z) 18 regular for every (finite) z and
7 = O (el#*)
as z— 00, then f(z) is a polynomial of degree not exceeding k.
Let f(z) = Za,2*. For large positive B
BF(RL) < 2R* (L] < V).
By Theorem 110 |a, B*| < 2(2R*—Ray) (n>0),

and making R—oco we have a, =0 if n > £.
This result is fundamental in the theory of integral functions, and
something like Theorem 109 or 110 is indispensable to its proof.

P.118,1.5. For “Also . ... Thus [8 lines lower]” read ‘“Since the
continuity is uniform in any D’ .
L.16. For “may . . . deduced” read ‘ follow .

P. 119, Theorem 115. Add at the end of the enunciation: ¢ Further, if
r’ is sufficiently small, f takes no value more than n times in |z—a| <r'”.
Add at the end of the proof [p. 120, 1. 3]: “For the last part we
observe that if s, » have the foregoing properties, then an ' <r such that
| f—b| <s for all z satisfying |z—u| <7’ will have the desired property ™.

P.120,1. 4 Omit “f'(z) %0 in D, and”’; and omit the second sentence.
Add: “By Theorem 115 [’ is never 0 if f is ¢ schlicht’”’.

P.121. At the end add: “Similar arguments give the following result
for a circle, in its way best possible.
Let f(z) = ayz4-a,2%4-..., where a, 0, be regular in |z| <r, and never
zero there except at z=0. Let |l\’.}[m |f(z)]| =m. Then the inverse function
z

(w) = byw+byw+... (certainly regular and “schlicht” in some circle
about w = 0) ts regular and “schlicht” in |w| <m, and satisfies |¢| <r
there.
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Suppose the value w satisfies |w| <<m. Then as z describes |z|=r

A arg {f(z)—w} = A arg f(2)+A arg (l—ﬁg—))
= 2710,

since |w(f| <1 on |z2|=r. Thus f—w has exactly one (and a simple)
root, $(w) say, in |2| <7. Let w+dw be a value near w;f takes this
value somewhere near z, and nowhere else: thus ¢(w+dw)=:
where 6z is small. Hence (since 82— 0 when dw is made to tend to 0)

tim 3 tim 2 i B gim 1 /2y
82—>0 2

>0 OW 5> OW  gp—>q SW
{where the last denominator is not 0 since z is a simple root of f—w).
Thus ¢ is one-valued and differentiable in |w| < m, and so regular. In
this domain it is further the inverse function of f, since ¢(w) is a 2z
giving w = f(2).

P. 132, Lemma 4. Whatever the relations of D to the point at oo, if z;
and z, are points of F(D) a closed contour composed of points of D
cannot separate z; and z,. In the proof of the Lemma we can, without
reducing to z,=oco, suppose 2;, z, finite points of F(D) and take
L= {(z—21)/z—2)}

L. 2 of the proof. After ‘‘Then’ insert ‘ the point at”’.

P. 141, Lemma 9. After the first two sentences of (a), substitute the
following for the rest of the proof of (a): ‘“Since the nuclei D, A are
domains, they contain z= 0 and { = 0 as interior points; also

J(O)=1imf, (0) =1im0=0,

and similarly ¢(0)=0. If now f is constant, its value is 0, and since
f»n—f uniformly in any D/, we have f,(z,)—>0 for an arbitrary z, of any
D’. Let 7 be a small positive constant, so that |{| <7 is a A, and let
{, be a point other than 0; for large » A, DAL and ¢, is defined at {,;
let z, = ¢,,({o). ¢ is continuous, so ¢({,) is small; so also then is ¢,({,),
since ¢, ¢ at {,. Hence z, = ¢,({,) is small, and belongs to a D., and
also to D,,. Consequently f,(z,)—0, a contradiction since the left-hand
side is {o”.
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(b) and the first two sentences of (c) stand. Continue: “It is enough
to show that any 8’ C A, for latge n.. If D’ corresponds to 8” by f, and
D! cD;cD, we have DjcD,, the image of D) by f, contains 8, a
fortiort A, contains &,

[(d) stands).]

P.142,§17.3. Inl 8insert “in A” after “®”. 1In L. 10 insert “By
Vitali’s Theorem, ®,,—~® in A*” after the full stop. Substitute for the
passage from “It follows . . .”” in 1. 11 to the end of Case (i) the
following : “Thus A* and so @ are completely determined, and every
convergent subsequence leads to them. Hence ¢,—~®, and A*, ® are
respectively A and the inverse of f°.

P. 142, last line. Delete from “and” to “8 ”, and delete ““D,”. For the
first three lines of p. 143 substitute: ‘‘z-domain (D_ contains z = 0).
Since D’ € D, for large =, we have 8_ C A, ; 8_ being arbitrary this gives
8 C A, which is false .

Minor or small corrigenda.
P. 20, fn. In the second inequality the &’s should be «’s.
P. 33. Delete the Corollary, the line above, and the proof.
P. 34, Theorem 13. Delete the line after (5).
P. 35. Delete from “Tosee . . .” (. 11) to “= 2" (I. 15).

P. 39, Theorem 19. The necessity part is a luxury from the point of
view of applications.

P. 41,1l 5-7. Substitute for the expression in 1. 7 «“Im f(§)”.
>0,

o
Note : the same points occur several times later; we shall sometimes
indicate the alteration by the phrase use Fm .

P. 48, 1. 4 from bottom. For f, vead f, .

P. 71, Theorem 49. Use “ Lm .
>P in D

P. 78, last four lines. ‘U, () = Iim U(Y), U_() = lim U(y).”
Y=rda P>y,

P. 81, Theorem 63. In the second and third lines of the proof, for D
read D', and insert *“ continuous ” before * limit *’.
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P. 90. A less awkward notation would be », u_ for u,, u, (leaving the
rest, e.g. Uy, o, unaltered) Note a slip: in 1. 9 below (2), for uy read Uu,.

P. 103, Theorem 101. Use “ IIm |f|<M”.

z—)f in D

P. 104, Corollary 3, 1. 2.. Before ‘“ constant’’ insert ‘ the same *’.

P. 105 Theorem 102; p. 106, Theorem 102¢; p. 107, Theorem 103: Use
lf{ <M’)

>§'mD

P. 107, 1. 3 from bottom. After “H > insert ‘““depending on e (at any
rate in the possible case of M = 0)”

P. 108. In lines 1, 2 for «“ M ” substitute *“ M+¢>. Add at the end of
1 3: ““and then e>0”. Compare the fn., p. 109.

P. 110, Theorem 106. Use “Iimy << M .

P.113,1. 3. 4 is bounded near z= 0 since f'(0) exists.

P. 114, 1. 138. For “A” read “ U”'.

P.117,1.2. For |Bf|read 5|  |%f|ab.

P. 121, 1. 5 from bottom. For lying in D read containing only poinis
of D.

P. 122, 1. 12. After ‘“every ” insert “ convergent”. -

P. 123, §11.52, (2). After the parenthesis insert ‘“We show that if £
is any point of A then f3 £ in D.”’

P. 133,1. 12. For DP read P.

P. 138, 1. 6; 7 from bottom. . For since . .. = M (D) read by Theorem 120,
Cor. 1.

P. 142, 1. 4. Should begin “ (d) ACS”.

In Theorems 62, 63, 64, 102, 102a, 106, 113, 116, and in Lemma 8
(p. 134), the domain D should be given bounded.
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