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AUTHOR’S PREFACE TO THE
POLISH EDITION

The theorems of any geometry (e.g. Euclidean) follow, as is well
known, from a number of axioms, 7.e. hypotheses about the space
considered, and from accepted definitions. A given theorem may
be a consequence of some of the axioms and may not require all of
them. Such a theorem will be true not only in the space defined by
all'the axioms, but also in more general spaces.

It will, therefore, be of importance to introduce axioms gradually
and to deduce from them as many conclusions as possible.

We thus arrive at the concept of an abstract space (Fréchet),
‘1.e. a set of elements whose nature is immaterial, and as to which
we assume only certain conditions given by the axioms defining that
space. Theorems obtained for a given abstract space are true for
each set of elements which satisfies the axioms of that space;
however, the set may also satisfy other axioms. Herein lies the
practical advantage of the study of abstract spaces. For, with a
suitable choice of axioms for such a space, the theorems obtained
for that space may be applied to different branches of mathematics,
e.g. to various types of geometry, to the theory of functions, and
to others.

This book is divided into seven chapters. In the first chapter
we consider an abstract space, which is a set K of any elements,
and the only assumption we make is that certain parts of the space
considered are called open sets, and that open sets have certain
simple properties specified in hypothesis I (page 1). From these
simple suppositions, after having introduced the corresponding
definitions, we deduce a series of conclusions. In each of the follow-
ing chapters we add new axioms (4.e. introduce new conditions to be
satisfied by the open sets of the space considered) and we deduce
a new series of theorems.

The axiomatic development based on the concept of an open set
(as a basic concept) seemed to us simpler and more intuitive than
other axiomatic treatments which will be mentioned.
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Such an axiomatic treatment of the theory of point sets, apart
from its logical simplicity, has also an advantage in that it supplies
excellent material for exercise in abstract thinking and logical
argument in the deduction of theorems from stated suppositions
alone; 7.e. in proving the theorems by drawing logical conclusions
only and without any appeal to intuition, which is so apt to mislead
one in the theory of sets.

The contents of this book are divided in such a manner that
theorems are proved in those chapters in which the axioms necessary
for the proof are introduced. The theorems of a given chapter will
not in general be true in spaces which satisfy axioms of preceding
chapters; an exercise very useful to the reader would be to prove,
by suitably constructed examples of abstract spaces, that a given
theorem is not true in a space which does not satisfy all the axioms
of the chapter considered. It must be noted, however, that a strict
adherence to the principle that each theorem be placed so that it is
not true in spaces satisfying only the conditions of preceding
chapters, is not always possible; for, it may happen that we are not
able to decide whether a given theorem follows already from a given
set of axioms, or else such a decision may be very complicated.
The consideration of such a theorem in a given chapter is, therefore,
not advisable from the pedagogical point of view, especially if its
proof in a later chapter (z.e. under an increased number of axioms)
is much simpler.

WACLAW SIERPINSKI
Warsaw, February, 1928.



TRANSLATOR’S PREFACE

In view of the achievements of Professor W. Sierpinski in the
field of the theory of sets it was thought desirable to make his book
on the Theory of Aggregates accessible to English-speaking students
of Mathematics. Since, however, the first volume! on “Transfinite
Numbers’’ has been already translated into French by the author
himself, only the second volume is being offered in English trans-
lation, especially since its contents are for the most part independent
of those of the first volume. Moreover, in order to enable the
reader to follow the English translation, I have outlined in an
appendix? some of the ideas and results supplied by the first volume
and made use of in this.

I had hoped that Professor Sierpinski would himself write a
brief note on transfinite numbers, but certain arrangements with
his French publishers stood in the way. It is to be hoped that
the reader not already acquainted with the subject may find the
appendix useful.

I should like to take this opportunity to express my gratitude
to Dean A. T. DeLury and Professor E. F. Burton for their kind
interest in the publication of this book, and to Professor S. Beatty
and Professor W. J. Webber whose encouragement and generous
help made this translation possible.

My sincere thanks are also due to the staff of the University
of Toronto Press for their untiring co-operation.

C. C. KRIEGER
Toronto, September, 1933.

1Lecons sur les nombres transfinis, Borel series, Paris, 1928.
2] have been guided by the author's Introduciion to the Theory of Sets and
Topology, Lwow, 1930 (in Polish).
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CHAPTER 1
CLASSES IN WHICH OPEN SETS ARE DEFINED

1, Let K be a set of any elements. We shall suppose that
certain subsets of K are called open, where the convention deter-
mining which of the subsets of K shall be called open is quite
arbitrary apart from satisfying the following axioms:

(‘ (2) A null setis an open set,
@O (#¢) The set K 1is an open set,
Jl (¢it) The sum of any aggregate of open seis C K is an open
- set.

In this chapter we shall deduce results which follow solely
from the axioms stated above and from the definitions to be
given below. When we speak of sets in this chapter, we shall
always mean sets which are subsets of the same fundamental set K.

2. We call p a limit element of the set EC K if every open set
containing p (whether $ belongs to E or not) contains at least one
element of E different from p.

It is easily seen that if p is a limit element of E, then p is
also a limit element of the set E—(p) (where (p) is the set con-
sisting of the element p only). The set of all limit elements of
the set E is called the derived set of E and is denoted by E’. (If the
set £ has no limit element, then its derived set is a null set, 7.e.
E’=0; in particular, the derived set of a null set is a null set.)

From the definitions of a limit element and a derived set we
get immediately

Theorem 1. If E,CE, then By CE’.

3. A set containing all its limit elements is said to be closed.
It follows at once from the definition of a derived set that
for a set E to be closed, 1t is necessary and sufficient that E' C E.
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If E be a given set, the set K —E will be called the comple-
ment of the set E (with respect to the fundamental set K) and will
be denoted by CE.

It follows at once from the definition of a closed set that,
if the set E is closed-and p is not an element of the set E, there
exists an open set UC CE and containing p. In fact, if there were
no such set U, every open set containing p would contain at least
one element of E different from p.(since p¢ E); this would imply
that p is a limit element of E and so, since E is closed, an element
of E, contrary to the hypothesis.

Theorem 2. In order that a set E be closed, it is necessary and
sufficient that its complement CE be open.

Proof. Let E be a set whose complement U=CE is open.
If E were not closed, there would be an element p such that peE’
but p& E. Since p ¢ E, therefore, peCE, 1.e. pe U; from the fact that
U is open and peE’, U would have to contain at least one element
of the set E, which is impossible, since U=CE. The set E is,
therefore, closed, and so the condition of the theorem is seen to be
sufficient.

Let now E be a closed set. Denote by U the sum of all
open sets contained in CE; evidently, UC CE, where by (I) the
set U is open. :

It will be shown that U=CE; since UC CE, it will be
sufficient to prove that UD CE, i.e. every element of the set CE
belongs to U. Let p be a given element of the set CE; we have,
therefore, pé E. Since the set E is closed, there exists an open
set G such that peG and GC CE. According to the definition of
the set U, since GC CE, we have GC U, and since peG, it follows
that peU.

We have thus proved that U=CE, and hence CE is an open
set. The condition of Theorem 2 is, therefore, necessary. From
Theorem 2 and hypothesis (I) it follows at once that the set K is
closed, and that a null set is closed.

Theorem 3. The product of any number of closed sets is a closed
set.

Proof. Let P=IIE denote the given product of closed sets E.
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From the well-known formula of De Morgan, we shall have CP =
>ICE, where the sum extends over all sets E which are factors of
the product IIE. The sets CE are open by Theorem 2; the set
CP =3 CE will be open by (I), and so by Theorem 2 the set P will
be closed.

Theorem 4. If E be a closed set, then every set containing E and
contained in E is closed.

Proof. 1f a set E is closed, we have E'C E. If, further, a set
T satisfies the conditions E’C T C E, then by Theorem 1, 7/ C E’,
and since E'C T, it follows that 77 C T, which proves that T is
closed.

In particular, the derived set of a closed set is closed.

4. Theorem 5. The set E+E' is closed for every set E.

Proof. Let E be any set, ¢ a limit element of the set T=E+E’;
it will be sufficient to show that ¢ is an element of the set T, in
other words, that if gé E, then ge¢E’. Let us suppose, therefore,
that ¢g¢ E, and let U be any open set containing ¢.

From the definition of a limit element, since ¢e7”’, there is
in U an element p of the set 7T, different from ¢q. If p& E, since
peT =E-+E’, we have peE’; thus, there is in U (which is open and
contains p) an element of E different from g, since ¢ E. U being
any open set containing g, it follows that ge £’.

We note, however, that it does not follow from (I) and the
definitions of limit element and derived set that the derived set of
every set is closed.

The set E+E’ is called the enclosure of the set E and is denoted
by E. By Theorem 5, the enclosure of any set is closed. Let
now F be any closed set containing E. We have ECF, and,
therefore, by Theorem 1, E'C F’; since F' C F, F being closed, we
get also E‘'C F. Hence E =E-+E'CF. The enclosure of the set
E is, therefore, & subset of every closed set containing E. In other
words, it is the smallest closed set containing E, or the product of
all closed sets containing E.

Furthermore, it is easily seen, that if

(1) L, CL, then E.CE,
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for by Theorem 1, E; C E implies £, C E’, whence
E.=E;+E/'CE+E=E.
A closed set is evidently identical with its enclosure, and, there-
fore,

2 E =E,

i.e. the enclosure of the enclosure of a given set is itself the enclosure

- of the set.

5. The sum of all open sets contained in a given set E is
called the interior of E and is denoted by I(E). (In particular,
the set I(E) may be a null set.) The interior of a set E is, there-
fore, the largest open set contained in E. It is obvious that, if
E,CE, then I(E,) CI(E). We shall prove that

3 I(E)=E.C((CE)").

Let T=E.C((CE)"). Then by the Theorem of De Morgan, CT =
CE+(CE)’, which shows that CT is the enclosure of CE and so,
by Theorem 5, is a closed set. It follows that 7 is open, and hence
from the definitions of T and I(E), since TCE, T C I(E).

On the other hand, since I(E) is open and contained in E,
the set CI(E) is closed and contains CE, and, therefore, contains
CE=CT, since CE, as the enclosure of CE, is by § 4 a subset of
every closed set containing CE.

We have, therefore, CI(E)>D CT, which gives I(E)C T, and,
since we had above I'C I(E), it follows that I(E) =T; this proves
(3). Since CT=CE, we have proved also that
4) I(E)=C(CE).

Every element belonging to the interior I(E) of a set E, is
called an interior element of the set E. Hence, in order that a
given element of Z be an interior element of E, it is necessary and
sufficient (by (3)) that it be not a limit element of the complement
of E.

Every element belonging to the set I(CE) is called an exterior
element of E.! The set of all exterior elements of E is denoted
by E*(E); from (3) and (4) we shall have
" IThe exterior elements of E are, therefore, those elements that do not belong
to E and are not limit elements of E.
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4) E*(E)=I(CE)=CE.C(E") =C(E).

Those elements which are neither interior elements nor ex-
terior elements of E constitute the fronizer setof E, which is denoted
by F(E); we have then from (4) and (5)

F(E) =C[I(E)+E*(E)|=ClI(E)].CIE*(E)]=CE.E.
From (4)
(6) F(E)=E .CE=E —I(E).

Since E.CE=(E-+E").[CE+(CE)|=E.(CE)'+E’.CE and since
E.CE=0 and E'.(CE) =FE'.(CE).[E+CE]CE.(CE) +E'.CE,
it follows from (6) that

) F(E)=E.(CE)'+E'.CE.

In virtue of Theorem 3 and the fact that the enclosure of a
set is closed, the relation (6) provides the information that the
frontier of a set is a closed set.

Also it follows at once from (8) that a given set and its comple-
ment have the same frontier.

The set
(8) B(E)=E.F(E)=E.CE=E.(CE) =E—I(E)

is called the border of the set E and its elements, the border elemenis.
The border elements of E are those elements of E which are not
interior elements of E. A set consisting of border elements only is
called a border set. Hence in order that a given set E be a border
set, it is necessary and sufficient, by (8), that

E=B(E),
which may be written in either of the equivalent forms
EcC (CE), I(E)=0,

the latter indicating that E does not contain interior elements.

It follows at once that a subset of a border set s a border set.
Since, by (8), the border of a set £ does not contain any

interior elements of E, and certainly not its own interior elements,
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_any set

the border of a border set is a border set. We have, therefore, for
every set E
(9) BB(E) =B(E).

From the definition of the interior I(E) it follows at once,
that in order that E be open it is necessary and sufficient that

E=I(E).

It follows from this, that for every set &
(10) II(E)=I(E).

We have, from (5), CE*(E)=E, and hence E*E*(E)=ICE*(E)=I(E),
which, by (1), gives (when E, C E,) E*E*(E,) C E*E*(E,).2
Since ED E, we have
I(E) D I(E),
and, therefore,
E*EX(E)=1I(E) D I(E),
and, hence, from (10),

E*E*E*E*(E)=E*E*I(E) D II(E) = I(E) = E*E*(E),

while
E*E*(E)=I(E) CE,
and so _
E*E*E*E*(E) C E*E*(E) =I(E) =I(E) = E*E*(E).
Therefore,

E*E*E*E*(E)=E*E*(E)3
As to the frontier of a set, it follows from (6) and (8) that
for a closed set E,
(11) F(E)=E —I(E)=E—I(E)=B(E);

the frontier of a closed set is, therefore, always a border set (a
property which need not be true for non-closed sets); we have,
therefore, for a closed E

(12) IF(E)=0.
Since F(E) is always closed, we may substitute /7(/9) for E
in (11); by (12), this gives, for a closed 7,
FF(I = Foid,

2Again from (5), we have /2% (/50 D 17 i, for 14 C 1.
See M. Zarycki, Fund. Math., vol, 1X. p. 6.
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from which we get at once, by replacing E by the closed set F(E),
(13) FFF(E)=FF(E)

for all sets E, a result also obtained by Zarycki.

6. A set, every element of which is a limit element of the set,
is said to be demse-in-itself. According to this definition, a null set
is to be considered dense-in-itself. It follows at once from the
definition of the derived set, that, for a given set E to be dense-in-
itself, it is necessary and sufficient that E C E'.

Theorem 6. If E be a set demse-in-itself, then every set con-
taining E and contained in B’ is dense-in-itself.

Proof. 1If E is dense-in-itself, we have EC E’. If further, the
set T is such that EC T C E', then, by Theorem 1, we have Ey C 7",
and so we get TC T". '

In particular, the derived set of a set dense-imn-itself is dense-
in-itself. Furthermore, it follows that the enclosure of a set
dense-in-itself is demse-in-itself, for EC E' implies E =E+E' =E'">

Theorem 7. The sum of any number of sets dense-in-thenselves
is dense-in-itself.

Proof. Let S=2E denote the sum of sets dense-in-themselves.
We have then EC E’ for every set E of the sum S=2ZE. Onthe
other hand, since EC S, we have, from Theorem 1, E'C.S’, and,
therefore, EC S’ for every E of the sum .S; thus SC.S".

Given any set E, denote by NV the sum of all sets dense-in-
themselves and contained in E; by Theorem 7, the set N will be
dense-in-itself. N will be, as is easily seen, the largest subset of E
dense-in-itself, i.e. the subset containing every subset of E dense-
in-itself. The set IV is called the nitclenus of E. A set, whose
nucleus is a null set (z.e. a set not containing any subset dense-in-
itself other than the null set) is said to be scattered.

Theorem 8. FEvery set E can be represented in the form
E=N-+R,

where N is the nucleus of E, and R 1is scattered or null.

)
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In fact, if N be the nucleus of E, we have NC E, and we may,
therefore, write E—N=R, where RCE, and where E=N-+R.
If R were not a scattered set, it would contain a subset dense-in-
itself, which according to the definition of the nucleus, would have
to be contained in N; this is impossible, since N.R=0. R is,
therefore, scattered, which proves the theorem.

A set which is dense-in-itself and closed, is called perfec:.
Obviously, 7z order that a sei E be perfect, it is necessary and
sufficient that E=FE'. (In particular, the null set will be con-
sidered to be a perfect set.)

7. The set E; is said to be closed in the set E, 1f
(14) E/.ECE,,

i.e. if the set E; contains all those of its limit elements which
belong to E.

If E;C E, then (14) is equivalent to the equality
E,=(E.,+E\).E,

for (14) gives E,/.ECE,.E, from which (E,+E\).E=E,.E+
E/.E=E,.E=E, On the other hand, if E:=(E:+E!).E, (14)
follows.

Hence if E;CE is closed in E, we have E;=E;.E. There-
fore, a set contained in E and closed in E, is the product of E
and a closed set. Conversely, if E1=F.E, where F is a closed set,
then E; is closed in E, for from E,C F, F being closed, we have
(by (1)) E.C F, and so E,=F.E gives E;=E,.E.

A set contained in a closed set, and closed in that set, is
itself closed. This follows immediately from the relation E1=F£,. E
and Theorem 3.

A closed set is evidently closed in every set (since the relation
Ey C E, implies (14) for every set E).

If a set E; is closed in a set E, then it is closed in every
subset of E (forif E\/. EC Eyand E2C E, then E\ . E;C E\/.ECE,),
but it may not be closed in a set TDE.

Theorem 9. The product of any number of sets closed in the set
Eq is a set closed in E,.
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Proof. Let P=JIE denote the given product of the sets E
closed in E,. We have then PCE for every factor E of the
product, whence by Theorem 1, P’ C E’ and, therefore, also P’ . E,
CE'.E,. But E'.E,CE for every E of P (since the sets E are
closed in Ey); we have then P’.E(C E for every E of P and, there-
fore, P'.E(C P, which proves that P is closed in E,.

Theorem 10. Tle nucleus of any set is closed in that set.

Proof. Let E; denote the nucleus of the set £ (§6). Since
the nucleus E; is dense-in-itself and contained in E, we have
E,C EY.E, and since obviously E,". E C E,’ we have, by Theorem 6,
that the set E,'. E is dense-in-itself and is, therefore, contained in
E,, the nucleus of E (as a subset of E dense-in-itself). We have
then E,'. EC E,, and so E; is closed in the set E.

It follows from the above that the nucleus of a closed set is
closed and dense-in-itself and therefore perfect.

A set E1C E is called perfect in the set E if E\'.E=FE;. Hence,
in order that a set contained in E be perfect in E, it is necessary
and sufficient that the set be closed in £ and dense-in-itself.

A set, perfect in a closed set, is evidently perfect.

8. Two sets 4 and B are said to be separated, if
(15) A#0, B#0,A.B=A4.B"=4’.B=0.

Theorem 11. If A and B be separated sets, and A, and B, be
sets such that

(16) A:5#0, B0, A,C A, B,C B,

then the sets A1 and By are also separaied.

Proof. From (15) and (16), we have 4,.B1C 4 .B =0, whence
A,.B;=0; since 4:.C A4, B,C B, it follows, by Theorem 1, that
A/ CA’, B/< B, and so from (15) and (16), A:.B/CA.B' =0
and 4, .BiC A'.B=0, which gives 4:.B,"=A4,.B;=0. We have
thus proved, that the sets 4; and B, are separated.

A set E which cannot be expressed as the sum of two separ-
ated sets, is said to be comnected (Hausdorff).*

tAccording to L.ennes, a set of points is connected if at least one of any two

complementary subsets contains a limit point of pointsin the other set (American
Jour. of Maths., vol. XXXIII (1911), p. 303).
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Theorem 12. In order that a set E be connected it is necessary
and sufficient that it be not expressible as the sum of two mutually
exclusive, non-null sets closed in E.

Proof. Suppose the set E to be the sum of two mutually
exclusive, non-null sets 4, B, closed in E. We have then E=
A B, where

(17) A0, B#0,4.B=0,4".ECA4, B".ECB.

From E=A-+B, we have A=A4.E, B=B.E, and from (17),
A.B=A.E.B'CA.B=0, t.e. A.B'=0;
similarly,
A'.B=A'".E.BCA.B=0,14e A'.B=0.

We obtain thus (15), which proves that the sets 4 and B
are separated. The set E =4 4B is, therefore, not connected. We
have thus proved that the condition of our theorem is necessary.

Suppose now that the set E is not connected. It can, there-
fore, be represented as a sum of two separated sets A and B which
satisfy (15). From E=A4 4B and (15), we get

A" E=A".(A+B)=A""A+A" . B=4"ACA,

whence A’. E C A4 ; this proves that 4 is closed in E. Similarly, it
may be shown, that B is closed in E. The set E is, therefore, by
(15), the sum of two mutually exclusive, non-null sets closed in E.
The condition of the theorem is, therefore, sufficient.

If E be closed, sets closed in E are obviously also closed
(§ 7) and conversely; we thus get as an immediate deduction from
Theorem 12,

Theorem 13. In order that a closed set be connected, it 1is
necessary and sufficient that it shall not be the sum of two closed,
mutually exclusive, non-null sets.’

We now proceed to prove

Theorem 14. A connected set which is contuined in the sunt of
lwo separated sets is contained in one of these sels. :

5An analogous theorem follows, as is easily seen, also for open sets.
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Proof. Let us suppose that E is connected and contained in
the sum of the two separated sets 4 and B. We have then (15) and
EcC (4-+B), whence

E=E.(A+B)=E.A+E.B.

Put
E.A=A4, E.B=5B;;
then
A, CA, BiC B,
and

A1.Bi=E.A.B=0

(since, from (15), 4.B=0). If we had 4.0, B,>0, the sets 4,
and B, would satisfy all conditions of Theorem 11 and so would be
separated, which is impossible, since

E=E.A4+E.B=A4,+5B,

and E is connected. Hence, either 4;=0, or B; =0, and, therefore,
either

E=B,=E.BCB,
or

E=4,=E.ACA.

Theorem 15. If E be a connected set, then every set containing E
and contained in E is connected.

Proof. Let us suppose that E is connected, and let 7 denote
a set such that ECTCE. If T were not connected, we could
write T'=A4+B, where the sets A and B are separated. Now
E is connected, and EC T =4 -+ Bj; therefore, by Theorem 14, it is
contained in one of the sets 4 and B, say ECA. Hence, by
Theorem 1, E'C 4’, and, therefore, E'/. BC A’.B. But 4'.B=0,
A and B being separated; we thus have E'. B =0.

Similarly, E.B=0, since EC 4, and A.B=0. The supposition
regarding T requires, then, that

B=(4+4+B).B=T.BCE.B=(E+E).B=E.B+E'.B=0,

which is impossible. The set T must, therefore, be connected. In
particular, if we put T'=E, it follows from the above theorem
that the enclosure of a connected set is a connected set.
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Theorem 16. A connected set which contains elements of each
of two complemeniary sets comfains at least one element of their
frontier.

Proof. Let S be a connected set containing elements of each of
two complementary sets E and 7. Put 4=E.S, B=T7.S; evi-
dently, S=A4+B, and 4 0, B5£0, 4.B=0. Since Sis connected,
the sets 4 and B cannot be separated, and so all conditions of (15)
cannot be satisfied; it follows that 4.B’+A4’.Bs0. But, from
A=E.SCE,B=T.SCT,and Theorem1l,we have A’C E',B'C T/,
and, therefore, 4.B'+4'.BC E.S.T'+T.S.E’; thus

S(E.T'"+E.T)=ES.T'+T.S.E'D>A4.B"+4'.B0,

ie. S.(E.T'+E’.T)0, which establishes the theorem, since from
T =CE and (7), the set E.T’+E’.T is the frontier of the set E.

Theorem 17 (Hausdorff). If every two elements of a set E
belong to some connected subset of the set E, then the set E is connected.
Proof. Suppose that the set E is not connected, 7.e. E=4 + B,
where 4 and B are separated. Let a denote any element of 4, b
any element of B, E; any subset of E containing the elements a, b.
Putting
ALZA.El, Bl=B.E1,

we shall have 4,540, B150, since a e 4.E, b e B.E, and obviously
4:C A4, B.C B; by Theorem 11, the sets 4,, By will be separated.
The set E; is, therefore, not connected. We have thus proved
that no subset of E, containing the elements @ and b is connected,
contrary to the hypothesis of our theorem. The set E must,
therefore, be connected.

LeMmma (Hausdorff). The sum of two conmected sets having an
element in common is connected.

Proof. Let us suppose that E=E;+E, where E, and E, are
connected sets containing a common element «, and let us assume
that E is not connected, 7.e. E=A4 + B, where A and B are separated.
Since a e E=A+B, a belongs to one of the sets A, B, say to 4.
On the other hand, since B0, and BC E =L+ E,, at least one
of the sets B.E;, B.E,, the former say, is not a null set. Putting
A1=A.E,, Bi=B.E,, then 4,0 (since ae A.E1=4,), B:>0, and
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A, C A, B,C B; by Theorem 11, then, the sets 4, and B; are sepa-
rated, and, therefore, the set E;=E.Ei=(4-+B).E;=A4.E;+
B.E;=A;-+B; cannot be connected, contrary to hypothesis. The
set Z must, therefore, be connected.

Theorem 18 (Hausdorff). Thesum of any aggregate of connected
sets, every pair of which has an element in common, is a connected set.

Proof. Let S denote the sum of the connected sets E, every
pair of which has at least one element in common, and let ¢ and &
be any two elements of S. There are, therefore, two terms E;
and E. of the sum S, such that a ¢ E;, b € E», where we can have
E\#FE, or Ei=E, In any case, E;..E:0 by hypothesis, and,
since E; and E. are connected, the set E;-+E5 is connected, by the
above lemma. Finally, since this set contains the elements ¢ and
b, we have proved that the set .S satisfies the conditions of Theorem
17, and is, therefore, connected.

Let E be a given set and a one of its elements. There are con-
nected sets contained in E and containing the element e, e.g.,
the set consisting of the single element a. Denote by C(e)
the sum of all connected sets containing ¢ and contained in
E; by Theorem 18, this will be a connected set. The set C(a),
i.e. the greatest connected subset of E containing the element a,
is called the component of E corresponding to the element a. In
a particular case, the component C(a) may reduce to the element
a itself. It follows at once from the definition of components, and
from Theorem 18, that components corresponding to two different
elements of E are either identical, or have no elements in common.

A connected set S is said to be locally connected at a point p° if
for every open set U containing p there is a connected subset T
of S, contained in U and containing #, and such that p& (S—7)".
A connected set, which is locally connected at every one of its
points, is said to be uniformly connected.

9. Let P and Q be given sets. Suppose that each element of
the set P is correlated with some element of the set Q (where the

fAccording to the terminology of Mazurkiewicz. Hahn employs here the
term: susammenhangend im kleinen.
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same element of Q may be correlated with different elements of P,
and where there may be elements of Q which are not correlated
with any of the elements of P). Each such correlation is said to
determine a mapping (single-valued) of the set P on the set Q, or
to define a single-valued function of the elements of the set P;
thus if ¢ denotes an element of the set Q, which is correlated with
an element p of the set P, we write

g=f(»)

and call g the transform of the element p.

The set P* of all the elements f(p), correlated with the elements
p of the set P is called the transform of the set P (obtained by means
of the function f) and is denoted by f(P). If, further, p; and p.,
different elements of the set P, are correlated always with different
elements f(p1) and f(p2), we say that the function f establishes a
one-to-ome or (1, 1) correspondence between the elements of the
sets P and P*; corresponding to each element ¢ of the set P*
there exists, then, one and only one element p=¢(g) of the set P,
such that #(g)=2p, and the function ¢ establishes a mapping
nverse to that which is established by the function f, namely a
mapping of the set P* on the set P, and we have ¢(P*)=P. We
then say that the function f has an inverse funciion (or, that it is
biuniform in the set P).

In particular, the sets P and P* may be identical; we then have
a mapping of the set P on itself.

If f be a single-valued function defined for the elements of the
set P, and if E be any subset of P, then the set of all elements
f(p), corresponding to the elements p of the set E, will be denoted
by f(E).

It is easily seen that for every (single-valued) function f, defined
in the set P, we have

JEL+E,) =f(E1) +f(E»), for E,C P, E,C P,
and generally, for every sum S=>F of sets EC P,
f(ZE) =X f(E),

where the summation extends over all the sets E which form the
sum S. Hence the transform of a sum is the sum of the transforms.
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As regards the transform of a difference, we can merely state
that in general

F(E,—E3) Df(Ey) —f(Es), for E,C P, E:C P

1.e. the tramnsform of a difference contains the difference of the
transforms.

If E,C E,C P, we have evidently f(E,) C f(E>), i.e. the transform
of a subset of a set is a subset of the transform of the set. From this
it follows at once that for every product I1E of given sets EC P,
we have

(18) FI1E) c1If(B)

(where the product on the right hand side extends over all the
factors E of the product II), i.e. the transform of a product is con-
tained in the product of the transforms.

If, however, the function f establishes a (1, 1) mapping (of the
.elements of P) then, for every product 11E of sets EC P, we have

(19) fAIE) =111(E).

In fact, let us suppose that the function f establishes a (1, 1)
mapping of the elements of the set P, and let ¢ be its inverse
function, defined in the set P*=f(P). Let further f(E)=E* for
every factor E of the product IIE; since EC P, we shall have
E*C P* and, therefore, from the result just established, that the
transform of a product is contajned in the product of transforms,

(20) ¢(I1E*) c 1I¢(E*),
where the product extends over all the factors E of the product I1E.
It follows at once from (20) that

floIEN c flIle(E")],
whence

117(E) cf1E);
on account of (18) this gives (19).

Similarly, it can be easily shown, that, if the function f estab-
lishes a (1, 1) mapping of the elements of the set P, and if E,C P,
E,C P, then

f(Ez —E») =f(E1) '"f(E2>-
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Let f(p) denote a single-valued function (not necessarily biuniform),
defined in the set P. For each subset T of the set f(P) denote by g(7) the set
of all those elements p of the set P for which f(p) e T. It can easily be proved,
that

gZT)=2g(T)
for every sum Z T of sets contained in f(P); also that

Ty —T2)=g(T1)—g(Te), for Ty Cf(P), T, Cf(P),
and

g(IIT)=TIg(T)

for every product IIT of sets contained in f(P).
In the case, where the function f is biuniform in the set P and ¢ denotes
the inverse function of f, we have, as is easily seen, g(T) =¢(T), for T Cf(P).
It may be noted that, in accordance with Lebesgue’s notation, the set g(T)
may be denoted by E [f(p) © T].

10. Let E be a given set, f a function (single-valued), defined
for the elements of the set E. We shall assume that the set E
is composed of elements of some class K, which satisfies hypothesis
(I), and that the values of the function f are elements of the same
class K, or of another class K1, provided that the latter satisfies
also hypothesis (I) (when K, is substituted for X). In fact, for the
discussion of §§ 10-14 it would be sufficient to assume that open
sets which do not necessarily satisfy hypothesis (I) are defined in
the classes K and K.

A function f is said to be continuous on the set E at an element po
of that set, if, for every open set 17 such that f(p,) € V, there exists
an open set U such that poe U, and such that the condition

peUE
implies

fB)eV

(or, what amounts to the same thing, f(p) € V.T, where T =f(E),
since f(p) e T, for p ¢ E).7

7We note that the continuity of a function could be also defined as a so-called
limit-continuity (Limesstetigket, see e.g. H. Tietze, Uber Amnalysis Situs,
Hamburg, 1923, p. 2).

The infinite sequence py, pz, . .. of the elements of the class K is said to

have for its limit the element p (written, lim p, =p), if, for every open set U
np
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If the function f is continuous in the set E at every element of
that set, the set T'=f(E) is said to be a continuous transform of
the set E, obtained by means of the function f. It is easily seen,
that if poe E1C E and if the function f is continuous in the set E
at the element pg, then f is continuous also in the set E; at the
element po.

Theorem 19. If the function f be continuous in the set E at the
element pg of that set, and the function g be continnous in the set T =
F(E) at the element gy=f(po) of that set, then the function ¢(p)=
glF(P)] is continuous in the set E at the element pq.

Proof. Let W be an open set such that

(21) (Do) € W.
Since ¢(po) =glf(P0)] =g(g0), (21) gives
2(g0) e W;

since the function g is continuous in the set T at the element go,
there exists an open set V, such that

(22) Qo € 174
and
(23) . g(q) € W, whenever ge V.T.

From (22), since go=f(po), we have f(po) € V; since the function f
is continuous in the set £ at the element p,, there exists an open
set U, such that

(24) Po € U,
and
(25) f(p)eV.T, whenever pe U.E.

containing p, there exists an integer u, such that p, € U7, whenever n>u. A

function f(p) is said to possess limit-continuity in the set E at elements p of

that set, if, for every infinite sequence pi, ps, . .. of elements of E for which

lim pn=2p, we have also 1_i>m f(pn) =f(p). Clearly a function which is con-
n [ee]

n-H» 0
tinuous at a given element in the sense described in the text, has also limit-con-

tinuity at that element. It could, however, be shown, that the converse is not
necessarily true (unless special assumptions be made with regard to the class K ;
¢f. § 31 and § 33, Theorem 40).
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From (25) and (23), we have

glf(»)] e W, whenever p e U.E,
or
(26) ¢(p) e W, whenever p e U.E.

We have, therefore, proved that for every open set W, for
which (21) holds, there exists an open set U, for which (24) and (26)
are satisfied; the continuity of the function ¢ in the set E at the
element 2y, is thus established.

In particular, if f be continuous in the whole set E and if g be
continuous in the whole set T'=f(E), then the function ¢(p)=
g[f($)] is continuous in the whole set E. In brief, a continuous
transform of a continuous transform of a given set is a continuous
transform of that set.

Theorem 20. In order that a function f, defined in a set E, be
continuous in that set, it is necessary and sufficient that the transform
of a limit element of any subset of E and belonging to E be an element
or a limit element of the transform of that subset of E. In other words,
it 1s necessary and sufficient, that

(27) f(E.E\) Cf(E) +[f(E)], whenever E;C E.

Proof. Let f be a function defined and continuous in the set E,
let E; be a subset of E, and po an element of the set E.E,, and
suppose that f(po) € f(E1). Let further V denote an open set
such that f(po) e V. It follows, from the definition of continuity
of the function f in the set E at the element p,, that there exists
an open set U, such that pye U and

(28) f(p) € V, whenever p e U.E.

But, since pg ¢ E.E,’, we have poe E,; since pg e U and U is open,
there exists an element p e U.E,, from which it results that f(p)
e f(E:), and, from (28), f(p) € V; since f(po) e f(E1), we have f(p) =
f(po). Hence, in every open set containing f(p,), there exists an
element of f(%,) different from f(po), which proves that f(p¢)
e [f(E)]. We have thus proved that the condition of Theorem 20
is necessary.
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Suppose now, that f is a function defined in the set E, and
assume that f is not continuous in E at an element p, of that set.
It follows from the definition of continuity that there exists an
open set V, such that f(po) ¢ 17, and that in every open set U
containing p,, there is an element p of the set E, such that f(p)e 1.
Denote by E; the set of all the elements p of the set E for which

Kp)e V. Then in every open set U containing p, there is an
element p of the set E;, which element is different from p,, since
f(po) € V,but f(p) € V from the definition of E;. Therefore, poe B/,
and so p ¢ E.Ey (since poe E). But from the definition of the
set E; it follows that V.f(E,)=0, and, therefore, V.[f(E;)]'=0
(since V is open); since f(po) € V, we have f(p,) € f(E1), and f(po)
é [f(ELY, but since pq ¢ E.E/, we have f(po) ¢ f(E.E,). Hence the
set E1CE does not satisfy condition (27). Therefore, if the
function f is not continuous in the (whole) set E the relation (27)
is not true. It follows, therefore, that (27) is a sufficient condition
for the continuity of the function f in the set E.

Theorem 20 is thus proved.

Let now f be a function biuniform and continuous in E. Let
further, E; denote a subset of E, and p, an element of E.E,’, and
17 any open set containing f(p,). Since f is continuous there
exists an open set U, containing p,, for which (28) holds. But from
poe E.E, we have pge E;; since poe U and U is open, there exists
an element pe U.E;, different from p, whence f(p) e f(E;) and
F(P)#=f (po) (since f is biuniform in E). We conclude then (since
7 is any open set containing f(pc)) that f(po) e [f(E:)]’. We have
thus proved, that

(29) f(E.E{) C[f(E], whenever E;C E.

If, on the other hand, a function f defined in E satisfies (29) it
certainly satisfies (27) and, therefore, by Theorem 20, it is a con-
tinuous function in £. We have then

Theorem 20a. In order that a function f, defined in the set E
and biuniform in that set, be continuous in E, it is necessary and
sufficient that

f(E.E)C[f(EY], for E.CE.

We may also deduce from Theorem 20, the following
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COROLLARY. If f be continuous in E, and T be a set closed in the
set T =f(E), then the set E, of all the elements p of E for which f(p) e T,
is closed in E.

Proof. Let po denote a limit element of E; which belongs to E.
We have then p, ¢ E.E;’ and so, by Theorem 20, either f(po) ef(E;) =
T, or f(po) € Ty'. In the first case, po € E1 by the definition of E,
while in the second case (since p, € E), f(po) € T1.T, and, therefore,
f(po) € T, this set being closed in T° (§7), and so again pge E;.
Consequently, in either case, the relation p, ¢ E.E,’ implies that
po € Ey; this proves that E.E,’ C E;, i.e. that E; is closed in E.

11. Theorem 21. A continuous transform of a connected set
1s connected.

Proof. Let E be a connected set, T'=f(E) its continuous
transform; suppose that 7T is not connected.

There is, then, a division T"=A4;+ B, such that

(30) A1#0, B1'7"£0, Al..Bl=A1-B1/ =A11.Bl=0.

Denote by A the set of all elements p of E for which f(p) € 41,
and by B the set of all those elements p of E for which f(p) e Bi.
Since 4.0, B1#0, A,+B:i=1T=f(E), A1.B1=0, we have, evi-
dently, 4 0, B=#0, A.B=0, A+B=E; since E is connected, we
cannot have simultaneously A.B’=A4’.B=0. Suppose A.B’ 0.
There exists, then, an element p, e A.B’. Let V be any given open
set such that f(po) € V. Since poe d.B'CACE, and since f is
continuous in E, there exists an open set U, such that poe U and

(31) f(p) € V, for pe U.E.

Since poe A.B’C B’, and from the definition of a derived set there
exists an element p15% po, such that p, e U BC U.E, and so, by (31),
f(p1) e V. But, since pre UBCB and f(B) =B;, we have f(p)
e Bi; but poe A.B’C 4, from which it follows that f(po) e f(4) =4,;
the relation 4:.B;=0 gives, therefore, f(p1) #Zf(po). Hence, every
open set 17, containing f(p,), contains at least one element f($1) of
B, different from f(po), and so f(po) e Bi'. Since f(po) € 4,, it
results that 4.8, 0, contrary to (30).

Similarly, it can be shown that the assumption 4’. B0 also
leads to a contradiction. The set 7" must, therefore, be connected.
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It is easily seen that the set of all real numbers can be considered
as the class K which satisfies hypothesis (1), if, apart from the
null set, open sets are defined to mean sets U of real numbers
having the following properties: that if xoe U there exists two
numbers ¢ and b such that a<x,<b, and that every number x
such that ¢ <x <b belongs to U.

A connected set of real numbers has, evidently, the propertv
that, if two numbers ¢ and & belong to it, so does every number
contained between a and b. It follows that a connected set of real
numbers must be an interval, closed or otherwise, finite or infinite.
In fact, suppose that a € E, b ¢ E, a <c<b, and c¢ E; if we denote
by Ui and U, the set of all real numbers < ¢, and > ¢ respectively,
then putting E;=E.U;, E2=E.U, (since U; and U. are open sets),
we shall have E=E;-}+E,, 2.e. E is expressible as a sum of two
separated sets.

If a function whose values are real numbers be defined in a set
contained in the class K, we say that this function is a real function
defined in that set.

From Theorem 21 and the properties of connected sets of real
numbers deduced above the following result may be deduced at
once.

COROLLARY. If a real continuous funciton f be defined in a con-
nected set E, contained in the class K, and if 31 and y. are any two
values which the function takes at the elements of E, then f takes, in E,
every value intermediate between y1 and ys.

This theorem is a generalization of a well-known result in
Analysis, concerning a similar property of real functions of a real
variable which are continuous in a given interval.

It is easily seen that the converse of this theorem is also true.
If every real function, defined and continuous in E, takes in the set E
every value between two assunted values, then E 1s connected. In fact,
if E were the sum of two separated sets A and B, then the function
f(p) equal to zero in 4 and equal to unity in B, would be obviously
continuous in the whole set E, but would not take any wvalue
between 0 and 1.

12. If the function f establishes a (1, 1) mapping of the set E
on the set U, and if f is continuous in the whole set E, and if ¢,
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the inverse function of f, is continuous in the whole set U, then U
is said to be a biuniform and bicontinuous transform of E. Evi-
dently, the set E is then also a biuniform and bicontinuous trans-
form of U.

Two sets E and U, each of which is a biuniform and bicon-
tinuous transform of the other, are said to be homeomorphic, or, in
symbols, E £ U;? if we wish to express that the function f trans-
forms the set E into U in a (1, 1) and bicontinuous manner, we
write E hy U.

Evidently, if

E hf U, E1CE, andf(El) =0,
then
E1 ]lf U1;

hence, if two sets are homeomorphic, any two corresponding sub-
sets of these sets are homeomorphic.
It follows, from Theorem 19, that if

Eh;U,and Uh, T,
and if we put

¢(p) =glf(p)] in E, then
Ehy T

the relation of homeomorphism is, therefore, transitive.

Theorem 22. The necessary and sufficient condition for two sets
to be homeomorphic is the existence of a (1, 1) correspondence between
the elements of the sets such that the transform of a limit element
(belonging to the set) of any subset of either set, is a limat element of the
transform of that subset.

Proof. Suppose, Eh; U, and let po be an element of E, and
also a limit element of E;, a subset of E, z.e. po e E.E,, where
E,CE. The function f, which establishes a homeomorphic
mapping of E on U, is continuous and biuniform in E; by Theorem
20a, the relation (29) (§10) is satistied, and so f(po) e [f(ED],
81t is evident, that in such a case ("% [7; the relation of homeomorphism is
therefore, symmetrical.
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since poe E.E', E;C E, which proves that f(po) is a limit element
of the transform of Z:;. The condition of the theorem is, therefore,
necessary.

Let now E and T be two sets such that between their elements
a (1, 1) correspondence f can be established satisfying the con-
dition of Theorem 22. Since the conditions are symmetrical with
respect to E and T, it will be obviously sufficient to prove that f
is continuous in E. From the conditions of Theorem 22, we get
at once (29); since f is biuniform in E, it must accordingly be con-
tinuous in E, by Theorem 20a. The condition of Theorem 22 is,
therefore, sufficient.

Theorem 22 is, therefore, proved.

CoROLLARY 1. I order thatiwo sets be homeomorphic, ii is neces-

sary and sufficient that there exist such a (1, 1) correspondence between
. their elements, that the transform of a subset of either set closed in the
set is closed in the transform of that set.

Proof. Suppose E iy U, and let E; dencte a subset of £ which
is not closed in E. There exists, therefore, an element a, such
that a ¢ E.E,/, but ¢ E;. Since f is biuniform, f(e) ¢ f(E.), and
since a e E.E,/ CE,, then, by Theorem 22, f(a)¢[f(E1)], and,
therefore, also f(a) ¢ f(E).[f(E1)]. Therefore, f(E1) is not closed
in f(E) (since f(a) & f(E1)). We have thus proved that the trans-
form,of a subset of E not closed in E, is a subset of f(£), which is
not closed in f(£). Hence the condition of Corollary 1 is necessary-.

Suppose now that a (1, 1) correspondence U =f(E) satisfying
the condition of the corollary can be established between the
elements of the sets E and U, and let a be an element of E but not
a limit element of E;, a subset of E. Then f(a)&[f(E)). For
let Es=F,—(a), Es=FE.E; E; is, obviously, closed in E (as a
product of E and the closed set E,), and does not contain a, since
Es=FE;+Ey and ¢é Es=FE,;—(a), and a& Ey (since a¢ E,’). By
the condition of the corollary f(E;) is closed in f(E), and, hence,
Fflaye [f(ED]); for fla)if(E;) (since aé Ej; and f is biuniform).
But E;=E..EDE;D E,—(a), and hence, f(E;) Df(Ei—(a)), and
FE) DFIE) —f(a); if then f(a) ¢[f(E1]), we should have f(a)
e [f(Ey)], which is not the case. We have, therefore, f(a) € [f(ED]".

We have thus proved that the transform of an element of

R
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which is not a limit element of E;C E is an element of U=f(E),
which is not a limit element of the transform f(E;) of E;. Hence,
as is easily seen, the condition of Theorem 22 is satisfied, and so
E h; U. The condition of the corollary is thus seen to be sufficient,
and so Corollary 1, to Theorem 22, is proved.

From Corollary 1, we get at once

CoOROLLARY 2. The necessary and suficient condition for two
classes Ky and Ks to be homeomorphic is that there exist a (1, 1)
correspondence between their elements such that the ‘transform of a
closed set of each class is always a closed set of the other.

Passing to complements, from Corollary 2 we obtain immedi-
ately

CoOROLLARY 3. The necessary and sufficient condiiton for two
classes K; and Ko to be homeomorphic is that there exist a (1, 1)
correspondence between their elements such that the transform of an
open set of each class is always an open set of the other.

The following corollary may also be easily deduced from
Theorem 22.

CoROLLARY 4.° The necessary and sufficient condition for a
biuniform function to establish a homeomorphic mapping of the set E
on the set U =f(E), is that it should satisfy the condition

SE.EY) =f(E).[f(E)],
for every E,C E.

COROLLARY 5. The necessary and sufficient condition for two
classes K and Ky to be homeomorphic is the existence of a (1, 1)
correspondence between their elements such that derived sets of corres-
ponding sets ave corresponding sets, t.e., if U=f(E), then U’ =f(E’).

If a set P is homeomorphic with a certain subset of a set Q and
Q is homeomorphic with a certain subset of P, then P and Q are
said to have the same dimensional iype (type de dimensions,
Fréchet; Homoie, Mahlo). We denote this by dP=dQ. Ob-
viously, if dP =d(Q, then also dQ=dP, and, if dP =d(Q and dQ =dR,
then dP =dR. Homeomorphic sets have evidently the same di-
mensional type, but the converse is not necessarily true. If P is

9S. Saks, Fund. Math., vol. V, p. 291.
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homeomorphic with a certain subset of Q, but Q is not homeo-
morphic with any subset of P, we say that 2 has a smaller dimen-
sional type than Q, and we write dP<dQ (or dQ>dP). It is
easily seen that if dP <dQ, and dQ <dR, then dP <dR.

13. A property of a set E, which is possessed by every set
homeomorphic with £, is said to be a topological properivof E. The
purpose of Topology is the investigation of topological properties
of sets, i.e. of properties invariant under biuniform and bicontinuous
transformation.

We shall give a few examples of topological properties.

It follows from Theorem 21, that the connectivity of a sef is a
topological property (since by Theorem 21 the connectivity of a
set is invariant under any continuous transformation of the set).

Density-in-itself of o set is a topological property. We shall
even show that density-in-itself is invariant under every biuniform
and merely continuous transformation.

Let E denote a given set dense-in-itself, and f a function bi-
uniform and continuous in £. Let gy be any element of U=f(E).
It is required to show that gy is a limit element of U.

Let V denote any given open set, such that goe V. Since goe L,
there exists an element p, of E such that f(pq) =g

It follows from the definition of continuity of the function
(§ 10), and from f(po) € V, that there exists an open set W, such
that po e W, and the condition p ¢ W.E implies f(p) e V.

Again, since E is dense-in-itself, the open set W containing the
element p of E contains an element p; of E different from p. From
P17 p and the properties of the function f, we have ¢ =f(p.) =f(p).
On the other hand, since p, e W.E we have, by the definition of ¥,
f(p) e V; also p1e E implies that f(p:) e U, and, therefore, there
exists in the set V an element gi=f(p:) of U different from g,.
Hence g is a limit element of U.

From the fact that density-in-itself of a set is a topological
property it follows at once that the property of being a scattered set
is a topological one (§ 6). (The property of being scattered is not,
however, invariant under a (1, 1) and merely continuous trans-
formation; for a continuous and biuniform transform of a scattered
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set may be dense-in-itself; e.g., the set of rational numbers may
be a continuous and biuniform transform of the set of natural
numbers). It is easily seen that a homeomorphic mapping trans-
forms the nucleus of a set into the nucleus of the transform.

A set which does not contain any of its limit elements is said
to be 7solated. (Hence in order that a set E be isolated it is neces-
sary and sufficient that E.E’=0.) It has been shown previously
that a biuniform and continuous transformation maps a limit
element of a set into a limit element of the transform. It follows
at once, that the property of being isolated is a topological property.

14. An element ¢ (belonging to E or not) such that every open
set containing ¢ contains a non-countable number of elements of E
is said to be an element of condensation of the set E. This definition
will be referred to as the Lindelsf definition.

Fréchet calls an element of condensation of a set E an element g
(belonging to E or not) which is a limit element of every set obtained
after a finite or countable set of elements have been removed from E.

It is easily seen that the definitions of Lindelsf and Fréchet
are equivalent. In fact, if ¢ be an element of condensation of E
according to Lindels{’s definition and if P be any finite or countable
set and U any open set containing ¢, then U contains a non-
countable set of elements of E, and, therefore, also of the set £E— P,
and so ¢ is a limit element of E— 2, 7.e. an element of condensation
of E according to the definition of Fréchet.

On the other hand, if g is not an element of condensation of £
according to Lindelsf’s definition, there exists an open set U
containing ¢, such that P=U.E is finite or countable. But
U(E—~P)=U.E—U.E=0; hence, ¢ is not a limit element of the
set £—P, and, therefore, not an element of condensation of £
according to the definition of Fréchet.

The definitions of an element of condensation given by Lindelsf
and Fréchet are thus seen to be equivalent.

We proceed to prove next that the set of all elements of condensu-
tion of a given sel (belonging to that set or not) 7s closed.  In fact,
let E denote a given set and Q the set of all the elements of con-
densation of E (belonging to £ or not). Let p be any limit element
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of Q, and U any open set containing . Then U contains at least
one element g of Q. But, since ¢ e U, it follows from the definition
of Q, that U contains a non-countable set of elements of E. Since
U is any open set containing p, it follows that p is an element of
condensation of E, and so an element of Q. Hence, Q contains
every one of its limit elements and is, therefore, closed,



CHAPTER 1II

FRECHET’S CLASSES (H)

15. We shall introduce now two new axioms concerning the
class K:

(4v) If p and q are two different elements of the class K,
(1) tlzf:’re. exists an open set containing p, but not con-
laining q;
(w)  The product of two open sets is an open set.

We shall deduce now a series of results from hypotheses (I)
and (II).

Theorem 23. The derived set of a sum of two sets is the sum of
the derived sets of these sets.

Proof. Let E; and E; be two given sets (of elements of the
class K). We have evidently from Theorem 1,

(1) E/+E)/ C(E\+E,);
it will, therefore, be sufficient to show that
2) E/+E) D (Ei+Ey)".

Suppose that p is an element of K such that p¢ E/ and pé E,'.
There exist, accordingly, open sets U; and U, such that pe U,
pelUs UnEi—(p)=0, UpEs—(p)=0. From axiom (v), the set
U=U,.U, is open, where evidently pe¢ U and U.(E:+E,) —(p) =
lIE1+ UEz'—(P) C U1.E1"|" Uz.Ez - (P) =0, Whence PE (E1 +E2)/.
The assumption that p¢ E/, and p & E,’, implies that pe (E1+E,)’;
therefore, (2) is proved. (1) and (2) give

(Ex+E,)' =E/+E,.

This result may be extended by induction to any finite number
of sets.
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From Theorem 23 and the expression & =E-E’ for the en-
closure of a set (§ 4) we get

E1+E2 =—-E—1 +Egy

1.e. the enclosure of the sum of two sets is the sum of the enclosures of
these sets.

Theorem 24. The derived set of a finite set is a null set.

By Theorem 23, generalized to a finite number of terms, it
will be sufficient to prove that the derived set of a set, consisting
of one element only, is a null set. Let E, then, be a set consisting
of one element p only. It follows from axiom (7v) that no element
g is a limit element of E, whence E’ =0.

COROLLARY. If p be a limit element of E, then every open set
containing p contains an infinity of different elements of E.

In fact, suppose that some open set U containing p contains a
finite number of elements of E. Put E;=E.U, Es=E—U. The
derived set of E; is, by Theorem 24, a null set; hence p¢ E,’; but
also pe E¢, since the open set U containing # does not contain
any element of E,. It follows, therefore, from Theorem 23, that
p does not belong to (E:+E:2)' =E’, Z.e. p is not a limit element of
E. This proves the corollary.

As a further corollary to Theorems 23 and 24 we note that
the derived set of a set does not change when any finite number of
elements is removed from the set. TFor if E; is a finite set contained
in E, then, letting E—FE;=F,, we shall have E=E,+E,, whence,
by Theorem 23, E' =FE, +E,’; since E;is finite, E;"=0 by Theorem
24, and, therefore, E'=E,’.

Theorem 25. Tle derived set of every set is a closed set.

Proof. Let E denote a given set. It is required to show that
(E'Y C E', t.e. if ¢ is a limit element of E’ then it is an element of
E’. Suppose, then, that ¢ is a limit element of E’ and let U be
any open set containing g.

Since g is a limit element of E’, there exists in U an element
peFE'. Since pis a limit element of E, the open set U, containing
$, contains an infinity of different elements of E (Theorem 24,
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Corollary) and so an infinity of elements of E different from gq.
Hence every open set U, which contains ¢, contains an infinity of
elements of E different from ¢, and so g ¢ E’.

It follows easily by induction from axiom (v) that the product
of any finite number of open sels is open. From which, passing to
complements (see proof of Theorem 3) we get at once

Theorem 26. The sum of a finite number of closed sets is closed.

We may note that it could be easily proved that axiom (iv) is
equivalent to the theorem, that the derived set of a set consisting
of one element is a null set.

16. A finite set or a set, every infinite subset of which has a
derived set different from zero, is said to be compact. Obviously
a subset of a compact set is compact.

It is easily seen that the sum of a finite number of compact sets
is compact. (Forif E=E+E,+ ... +E,, and if T be an infinite
subset of E, then one at least of the sets T".Ey, T.Es,. .., T.E, is
infinite and so will have a derived set different from zero, if the
sets E1, Eq, ..., E, are compact; by Theorem 1, this derived set
will be a subset of the derived set of 7', whence 770.)

The sum of a countable set of compact sets is said to be semi-,
compact. 1t is easily seen that a subset of a semi-compact set is
semi-compact and that the sum of a countable set of semi-compact
sets is semi-compact.

Theorem 27 (Cantor). If
E.DEDE;. ..

be an infinite decreasing sequence of closed, compact, non-null sets,
then the product of these sets is not a null set.

Proof. From each of the sets E, select a single element p,.
Let P, denote the set consisting of all the different terms of the
sequence 9, (=1,2,3,...). If P;were finite, then at least one
of its elements would occur in the sequence p, an infinite number
of times and would be, therefore, as is easily seen, a common
element of all the sets E, (z=1,2,3,...).

We may, therefore, suppose that P, is infinite. As an infinite
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subset of the compact set E;, P; will have a derived set P,’, which
isnot a null set. Denote by P, the set consisting of all the different
terms of the sequence pu, ppo1, Puyo, - - . ; this set is obtained by
removing a finite number of elements from Py; hence (§ 15) P’ =P/,
forn=1,2,...

But, since p; € E; D E; 1, we have P, C E,, whence
P, CE,/’CE,,
since E, is closed; therefore, since P, =P/,
E,DP/#0,forn=1,2,3,...;

this establishes Theorem 27.

17. Theorem 28 (Borel). Let E be a closed and compact set.
If
Oy, Oz, Oy, . ..

be an infinite sequence of open sets, such that
@) EC0:140:+0s+ . . .,
then, there exists a finite number n, such that
4) ECO0:4+0:+ ... +0s.

(In other words, a closed and compact set, which can be covered
by a countable set of open sets, can be covered by a finite number
of these sets.)

Proof. Put
01404 ... +0,=38,,

K—S§,= Fn,

E.F,=E,,
forn=1,2,3,...

The sets S, are open (as sums of open sets by (447)) ; hence, their
complements F, are closed, and, therefore, E, is closed (as a product
of closed sets, Theorem 3), and compact (as a subset of the com-
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pact set E). If the sets E, were not null sets for n=1, 2,3, ...,
then, by Cantor’s theorem (Theorem 27, § 16), their product P
would not.be a null set, and we would have

PCEnC F;;'—:K—Sn,
whence
P-Sn=07

and (since 0, C.S,) certainly
P.O,=0,forn=1,2,3,...;

from this and from (3)
P.E=0,

which is impossible, since P40, and PCE,CE.
There exists, therefore, an integer #, such that
E, =0,
i.e. E.F,=0, and so, since F,=K —S, and EC K, we get

E ) Sn,
7.e. the relation (4).

Borel's theorem can be stated more generally as follows:

If E be closed and compact and everyone of its elements be interior!
to at least one of the infinite sequence of sets Py, Ps, Ps, . . ., there
exists a positive initeger n, such that every element of E is interior to
at least one of the sets

Py, Py, ..., P

To prove the above it would be sufficient to denote by O, the
interior of P, (for k=1,2,3,...) (§5) and to apply Theorem 28,
which is justifiable, since the interior of each set is open.

18. For all sets 4 and B contained in the class A, satisfying
hypotheses (I) (§ 1) and (I1) (§ 15), we have, as we have seen (§§ 4
and 15),

1].e. an interior element.
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1) A4+B=A4A+B,

2) Ac4,
3) 0=0,
4) A =A4.

In his work on the operation A in topology,®? Kuratowski

assumes the relations written above as axioms defining the symbol
A. He assumes, namely, that to each subset 4 of a given class
K can be attached a certain set A4, satisfying the axioms 1)-4)
but otherwise perfectly arbitrary, and he investigates what are
the conclusions which follow from these four axioms (and corres-
ponding definitions).
" Theorems, obtained by Kuratowski in this manner will be
true in every class K which satisfies hypotheses (I) and (II). There
are, however, theorems which can be deduced from hypotheses (I)
and (II), but which cannot be deduced from axioms 1)-4); such,
for-instance, is the theorem that (q) =(a) for every element of the
class K.

19. Let K denote a given class satisfying hypotheses (I) and (11),
and let a be any element of that class. We shall understand by a
neighbourhood of an element @ any open set containing a. It is
easily seen, that neighbourhoods, thus defined, have the following
four properties:

(a) To every element a (of the class considered) corresponds at
least one of its neighbourhoods; every neighbourhood of a contains a.

B) If Vi and V. are two neighbourhoods of a, there exists a
neighbourhood V of a such that V< 1. V.

(v) For every pair of different elements there exists a neighbourhood
of either not containing the other.

(8) For every element b contained in a neighbourhood 17 of an
element a, there exists a neighbourhood W of b, such that W 17,

Property (a) follows directly from our definition of a neigh-
bourhood and from the fact that K is an open set containing
every element a ¢ K (i.e. K is a neighbourhood of every element
of the class K).

Fund. Math., vol. T11, pp. 182 et seq.
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Property (8) follows immediately from our definition of a
neighbourhood and from axiom (v) (§ 15). Similarly, the property
(v) follows from the definition of a neighbourhood and from
axiom (7v) (§ 15).

Finally, property (8) follows directly from our definition of a
neighbourhood. For, if b ¢ V, and if V is a neighbourhood of the
element a, then V is open, and since b e V, V is a neighbourhood
of the element b.

Properties (a), (8), (v), and (8) are, therefore, proved.

Suppose now that with each element a of any given class K
there is associated a certain set of subsets of X, which are called
neighbourhoods of a; this association may be quite arbitrary, apart
from having the subsets satisfy the conditions (a), (8), (v), and (é).
Classes, in which neighbourhoods are so defined, are called by
Fréchet classes (H).?

We have thus proved that if, in a class K satisfying hypotheses
(I) and (II), we define the neighbourhood of an element ¢ to be
an open set containing @, then the class K will be a class (H).

Let K denote a given class (H), E a given set contained in K,
and let a be a given element of the class K. Fréchet calls a a
limit element of E, if every neighbourhood of a contains at least
one element of E different from a. The set of all limit elements
of E is called by Fréchet the derived set of the set E; a set containing
its derived set is called a closed set, and the complement of a
closed set an open set.

It is thus seen that, for the class K, satisfying hypotheses (I}
and (II), in which neighbourhoods are open sets, these definitions
are in accordance with those accepted in §§ 2 and 3.

Suppose, now, that K; and K. are two classes (H), consisting of
the same elements, in which, however, neighbourhoods may be
defined in a different way (e.g., a neighbourhood ¥ of a certain
element a belonging to K, may not be a neighbourhood of
a when considered as belonging to K.). If, however, for every set
E contained in K; and K, a limit element of EC K; is also a limit
element of £EC K, and conversely, then the classes K; and X, are
described by Fréchet as equivalent. Derived sets of the same set

sAnnales de ' Ecole Normale, vol. XXXVIII (1921), p. 366.
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contained in two equivalent classes are obviously identical, and
every set, which is closed (open) when considered as a subset of
one of these classes, is also closed (open) when considered as a
subset of the other.

It is easily seen that for two classes (H), K; and K. (consisting
of the same elements) to be equivalent, it is necessary and suffi-
cient that, for every neighbourhood 1, of any element a of the
"‘class K, there should exist a neighbourhood V7, of a, considered
in K., such that V,C V,, and conversely.

Let K be any given class (H). We shall show that an equiva-
lent class (H) will be obtained if we consider the open sets of X to
be the neighbourhoods of elements of K.

We shall investigate first which sets of the class K are open
(according to the above definition of Fréchet).

It will be shown that every open set of the class K is identical
with the sum of an aggregate of neighbourhoods of elements of the
class K.

In fact, let U denote the sum of a set of neighbourhoods of any
elements of K. If be U, then it follows from the definition of
the set U that there exists a neighbourhood 17 of a certain element
a, such that be VC U. But by (8) there exists a neighbourhood
W of b, such that Wc V, and hence WC U. Put K—U=F;
hence, W.F =0, and so, since W is a neighbourhood of b, b cannot
be a limit element of F. Hence, U does not contain any of the
limit elements of F=K — U, therefore, every limit element of F
belongs to F, i.e. F is closed, and so U=K —F is open.

On the other hand, let U denote an open set of the class K.
The set F=K —U is, therefore, closed. If, then, ¢ e U, a cannot
be a limit element of F; there exists, then, a neighbourhood 17 of «
such that V.F=0, and hence T"C U. Denote by S the sum of all
neighbourhoods 7 of elements a, belonging to U, such that 1'C U7;
obviously S=U.

We have thus proved that for a set consisting of elements of
a class K to be open, it is necessary and sufficient that it should
be the sum of a class of neighbourhoods of elements belonging
w K.¢

‘In particular, every neighbourhood of the class (H) is an open set.
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Denote now by K, a class consisting of the same elements as
the class K in which open sets containing a are considered to be
neighbourhoods of the element a. We shall show that the class
K, so defined, is a class (H) equivalent to the class K.

That the neighbourhoods in the class K, so defined, possess
property (a) follows from the definitions of neighbourhoods of the
class K, and from the fact that every neighbourhood in the class
K is an open set (with respect to K).

Let now W; and W, be two neighbourhoods of an element a
in the class K; and hence two open sets of K containing a. W is,
therefore, as previously proved, the sum of a certain set of neigh-
bourhoods of K; since a ¢ Wi, there exists a neighbourhood ¥ of a
certain element 4 in K, such that ae VC W;. But, since ae 1.
from the property (8) of neighbourhoods of the class X, it follows
that there exists a neighbourhood Vi of ¢ in K, such that

WS VG Wi Similarly, since ae W, we conclude that there
exists a neighbourhood V5 of a in K such that V,.C W5; but, by
the property (8) of neighbourhoods in the class X, there exists a
neighbourhood W of a in K, such that W V1.V,, and hence
W W1 W,; consequently, in the class K;, W is a neighbourhood
of a, contained in W;.W,: 7.e. the neighbourhoods of the class K,
satisfy (8). The property (v) of the neighbourhoods of K; follows
at once from the corresponding property of the neighbourhoods of
K and from the fact that every neighbourhood of an element in K,
being an open set in K, is at the same time a neighbourhood of that
element in K.

Finally, the property (8) of the neighbourhoods of K, follows
directly from their definition.

Hence the neighbourhoods of the class K; possess the properties
(a), (B), (v), and (8), and, therefore, K; is a class (H) of Fréchet.

Since every neighbourhood of an element in K is also its neigh-
bourhood in K, it follows that, if a be a limit element of E in K|,
it will certainly be a limit element of E in XK.

Suppose now that a is a limit element of E in K, and let W
denote any neighbourhood of @ in X;. Then W is an open set of
K and so the sum of a set of neighbourhoods of K. Since ¢ e W,
there exists a neighbourhood V of a certain element b of K, such
that ae VC W. But, from a« € V and property () of neigh-
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bourhoods of the class K, it follows that there exists a neighbour-
hood ¥V, of @ in K such that 1,C 17, and so 1, C . Since « is
a limit element of E in K, there exists an element p of E, such that
p7#a, and p e V and so, since 17,C 1V, certainly p e 7. We have
thus proved that in every neighbourhood of @ in K, there exists
an element of E different from «, and that, therefore, ¢ is a limit
element of E in K,.

Hence the classes K and K, are equivalent.

It follows, from the above, that open sets are the same in the
class K as in K;. Hence the neighbourhoods of elements in K,
are open sets of K; containing these elements.

Furthermore it is easily seen that open sets of a class (H}
satisfy hypotheses (I) and (II).

In fact, axiom (7) is satisfied, since the set of all elements of
the class (H) is evidently a closed set in that class (according to
Fréchet’s definition).

That axiom (47) is satisfied follows from the property (a} of
neighbourhoods, and from the fact that the sum of any set of
neighbourhoods of elements belonging to the class (H) is an open
set of that class.

That axiom (727) is satisfied follows from the necessary and
sufficient condition, given above, for a set of the class (H) to be
open in that class.

Axiom (i) follows at once from property (y) and from the
fact that neighbourhoods of a class (H) are open sets of that class.

It remains, therefore, to prove axiom (v). Let W;and W, be
two open sets of a given class (H), and let P=W1.W,.. Let a
denote an element of P; hence, a ¢ W1.Wa. Since a € Wh, it follows
from the property of open sets of the class (H) that there exists a
neighbourhood U of some element b, such that UC W,. According
to property (8) there exists a neighbourhood V) of a, such that
Vi< U, and so certainly 17C W,. Similarly, since a ¢ Wa, we
conclude that there exists a neighbourhood V, of a, such that
VoC W, But by property (B) there exists a neighbourhood 1°
of a, such that VVC V1. Vs, and hence certainly VC W1.W,.=P.

Now it is evident that P is the sum of all these neighbourhoods
(of its elements), contained in P; P is, therefore, an open set.

We have proved, therefore, in this article, that every class A,
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in which open sets are defined quite arbitrarily apart from their
satisfying hypotheses (I) and (II), becomes a class (H), if open sets
containing an element ¢ be accepted as neighbourhoods of that
element; on the other hand, every class (H) of Fréchet is equivalent
to a class K in which neighbourhoods are open sets (and conversely),
and where the open sets satisfy hypotheses (I) and (II).

Hausdorffs gives the name topological space to a class in which
neighbourhoods are defined to possess properties (a), (8), (8),
together with the property

(y1). For every pair of dzﬁezent elements (a, b) there exists a
neighbourhood Vi of the element a, and a mneighbourhood Vs of b
such that V1. Ve.=0.

Property (v) follows evidently from property (v1) and, there-
fore, Hausdorff's topological space is a class (H) of Fréchet. (The
converse, however, is not necessarily true, as can be easily shown.)

We shall conclude with the remark that Fréchet also investigates
classes in which neighbourhoods are defined to possess only
property (a). Such classes are called by Fréchet classes (V).

20. Let K be a given class of any elements, and suppose a
law to be established which assigns to each set EC K a certain
set E'C K (E’ may be a null set), which is called the derived set of
the set £. The law of assigning this set may be quite arbitrary,
apart from its satisfying the following 3 conditions:

1) The derived set of a set consisting of one element is a null

set.

2) The derived set of the sum of two sets is the sum of their

derived sets.

3) E'D(E') for every set EC K.

Furthermore, let every element of E’ be called a limit element
of E; the set E will be called closed if ED E’, and open if the set
KN —E is closed.

It can be easily shown that, if by a weighbourliood of an clement
a (belonging to K) we mcan any open set containing «, then the

5Grundziige der Mengenlelire (1st editionn, Teipzig, 1914, p. 213.

5Not all the theorems of chapter | are true for I'réchet’s classes (\'): ¢.g.
Theorem 5 is not true; the set I:+/" may not he closed in the class (\).
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class K, in which the derived set is defined to satisfy conditions
1), 2), and 3), will become a class (H) of Fréchet.

Conversely, it can be shown that, given any class (H) of
Fréchet and if by a limit element of £ we mean an element a,
such that every neighbourhood of a contains at least one element
of E different from a, and if by the derived set E’ we mean the set
of all limit elements of E, then conditions 1), 2), and 3) will be
satisfied.

It may be concluded from the above (as in §19), that the
study of classes satisfying conditions 1), 2), and 3) is equivalent
to that of classes (H) of Fréchet” (and, therefore, also to that of
classes K satisfying hypotheses (I) and (II)).

In conclusion, we note that classes have been investigated, in
which derived sets not restricted by any conditions are defined.$

In his work ILsquisse d'une théorie des ensembles abstraits, Calcutia,
1922, p. 335, I'réchet calls classes (H), classes which satisfy conditions 1), 21,
and 3).

sSee ¢.g. my paper: ‘'La notion de dérivée comme base d’'une théorie des
ensembles abstraits'’, Muth. Innalen, vol. XCVII, p. 321,

+



CHAPTER III

CLASSES (H) WHICH SATISFY THE AXIOM OF
COUNTABILITY

21. We shall subject the class K to another axiom, besides
those included in hypotheses (I) and (II), namely:

(IIT) (vi). There exists an infinite sequence of open sets
(1) WI) W?v W3) .

such that every open setis a sum of a certain aggregate
of sets belonging to the sequence (1).
We shall deduce in this chapter a number of results from
hypotheses (I), (II), and (III).
The sets of the sequence (1) shall be called for brevity rational
sets.

CoroLLARY 1. If a be a given elemeni of the class K, and U an
open set containing a, there exists a rational set W contaiming a and
contained in U.

In fact, by (#7), an open set U is the sum of a certain number
of sets of the sequence (1); since a e U, there exists a term of that
sum to which @ belongs; if W of the sequence (1) is this term, we
have a e WC U.

Furthermore, it follows immediately from axioms (vz) and (iv)
that every element of K 1s the product of all rational sets containing
that element. In fact, even more can be proved, namely:

CoroLLARY 2. Corresponding to every element a of K there exists
an infintie sequence of rational sets Vi, 1, Vs, . .., the product of
which consists of the element a only, and such that for every open set
U contaiming a, oll but o finite number of the sets Vi, Vo, Vs, . ..
are contained in U.
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In fact, let @ be a given element, and let

Wu,v Wn.“ WTI@_! ..
be all the successive terms of the sequence (1) containing a.
The set Wy, W, . . . .W,, is by (z) an open set and obviously

contains a; by Corollary 1, there exists, therefore, a rational set
V., such that
ae V,CWy Wy ... W,

”k'
(It could be assumed that V. is the first term of the sequence (1),
which satisfies the above condition.) It is easily seen that the
sequence V} is the required one. For, it is clear that every one of
the terms of the sequence V1,V,, Vs, . .. contains a. On the other
hand, let U be any open set containing a. By Corollary 1, there
exists a rational set containing ¢ and contained in U, and hence
a set belonging to the sequence W, (=1, 2, . ), say the set
W, But it follows from the definition of the sets 17, that
Ve C W,,, for E=gq; therefore, certainly (since W, cU)V,CU,
for k= ¢g. Furthermore, the product V1.V, V. .. consists of the
single element ¢ ; for, if b were an element different from a, then
by axiom (27), there exists an open set U containing a but not con-
taining b; hence the terms of the sequence V%, which for &
sufficiently large will be contained in U, will not contain b.

Corollary 2 is, therefore, proved. Note that to the conditions
already given we could add the condition that the sequence T7
(=1, 2, 3, ... )is decreasing.

From Corollary 2, we get at once

CoroLrLaRY 3. The set of all elements of the class K has the
potency of the continum at most.

By Corollary 2, every element a of K. can be correlated with
an infinite sequence of rational sets V75, 1%, 17, . . . such that
Vi.Ve. Vs . . .=(a), and different elements of K will be correlated
with different sequences. Hence, the set of all elements of K has
the same potency as a certain subset of the set of all infinite se-
quences, whose terms are elements of the countable sequence (1).
But the set of all such sequences is known to have the potency
of the continuum. Hence Corollary 3 is true.
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CoroLLARY 4. T'he set of open (closed) sets contained in K has
the potency of the continuum at most.

In fact, every open set U determines by (92) a certain subset
of the countable set (1), namely, that one which consists of all
the sets of the sequence (1) contained in U. At the same time,
to different open sets, correspond evidently different subsets of
(1). Hence, the potency of the set of all open sets (contained
in K) is not greater than the potency of the set of all subsets of a
countable set, which, as is known, is that of the continuum. Hence,
Corollary 4, with reference to open sets, is true. It follows also
immediately for closed sets, since the set of all closed sets of the
class K, as complements of open sets, has the same potency as the
set of open sets of K.

Note that it would be impossible to deduce from the axioms
defining thus far the class K, that the set of all open sets of a class
K consisting of an infinite number of elements has the potency of
the continuum. This result will be obtained in the next chapter
(§ 37), after the class K has been subjected to an additional hypo-
thesis (axiom (v),, § 30).

In fact, let K denote a class consisting of a countable number of elements
p1, Po, D3, - . .. Let open sets of K (apart from the null set) be sets consisting of
all but a finite number of elements of K. It is easily seen that this class satisfies
hypotheses (1), (II), and (I1I) (the open sets may be considered to be the rational
sets), but the set of all the open sets (and, therefore, also of the closed sets) is
countable.

22. Theorem 29. The set of all the elements of a given set which
are not its elements of condensation is at most countable.

Proof. Let E be a given set C K, and £E; the set of all the
elements of E which are not its elements of condensation. For
every element a of E; there exists, therefore (from the definition of
an element of condensation, § 14), an open set U containing « and
containing at most a countable set of elements of E. There
exists, therefore, by Corollary 1, for every element a of £, a rational
set W containing ¢ and contained in U and so containing at most
a countable set of elements of E. Let S denote the sum of all
such terms of the sequence (1), which contain at most a countable
set of elements of 2. Obviously, E;C S (since every element of
E; is contained in at least one of the sets of the sum S). From
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E,CE, we shall have E, C S.E (or, even, as is easily seen, E;=S.E).
But from the definition of the sum S, the set .S.E is at most count-
able; hence, the set E; is at most countable.

As an immediate corollary from Theorem 29 we get the follow-
ing:

Every non-countable set contains a non-countable sibset of elements
which are elements of condensation of the set. A set, every element
of which is an element of condensation of the set, is called a con-
densed set.

Theorem 30. The set of all elements of a given set, which are its
elements of condensation is a condensed set (if not a null set).

Proof. Retaining the same notation as in the proof of Theorem
29, let E—E;=EF,; it is required to prove that every element of
E, is an element of condensation of E.. Hence, let ¢ be a given
element of E,, and let U be any open set containing ¢. Since
a e Eo=FE—FE,, o is an element of condensation of E; the set E.U
is, therefore, non-countable. But E,.U=E.U—E;.U, and E,..U
C E,; is, by Theorem 29, at most countable. The set E..U is,
therefore, non-countable. Since U is any open set containing a,
it follows that @ is an element of condensation of E.. Since a is
any element of E,, Theorem 30 is proved.

A condensed set is evidently dense-in-itself. It follows, there-
fore, from Theorem 30, that the set of all the elements of a given
set which are its elements of condensation is dense-in-itself. More-
over, since every non-countable set contains a non-countable
subset of elements which are elements of condensation of the set,
it follows, therefore, that

Every non-countable set contains a non-countable subset which is
dense-in-itself.

From this and the definition of a scattered set (i.e. one not con-
taining any subset non-null, dense-in-itself, § 6) we have at once

Theorem 31. FEvery scattered set is at most countable.

Furthermore, it follows immediately from Theorem 29 that
the set of all elements of a given set, which are not its limit elements,
is at most countable (since every element of condensation of a
set is a limit element of that set). Hence, every isolated set is at
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most countable. (This last result is otherwise a special case of
Theorem 31, since an isolated set (§ 13) is scattered.)

Suppose now that E is closed. By Theorem 8 (§ 6), every set
E can be expressed in the form E=N-+R, where N is the nucleus
of E, and R is scattered (or null); we have shown towards the close
~of § 7, that the nucleus of every set is perfect in that set, and that
.a set perfect in a closed set is perfect. We shall then have from
Theorem 31

Theorem 32 (Cantor-Bendixson). ZEvery closed set is the sum
of a perfect set and a scattered set (where the latter is at most coun-
table by Theorem 31 and where either may be null).

We note that the division of a closed set into a perfect set and a
scattered set is unique.

In order to prove this we shall show at first, that if E be dense-
wn-2tself and U be any open set, then the set E.U is dense-in-itself
(or null).

In fact, suppose that the set E.U is not dense-in-itself; it con-
tains, therefore, an isolated element p. Hence, there exists an
open set V such that p ¢ V, and no other element of E.U belongs
to V. The set U.1 is open by axiom (#), and it contains p, since
pe E.U and pe V, and, obviously, it does not contain another
element of E different from p (since such an element would belong
to E.U.V, contrary to the definition of V). Hence, p is an isolated
element of E, contrary to the hypothesis that E is dense-in-itself.

Suppose now that two different divisions E=P 4R and E=P,
+R; of the closed set E are possible, where P and P; are perfect
and R and R, scattered (or null), and where P.R=0 and P,.R,;=0.
Since the divisions are different, we have R R;. In one at least
of the sets R and R, in R, say, there is an element p not in the
other, that is, not in R. Since pé¢ R (and pe RiC P1+Ri=P+R)
we must have p ¢ P.  On the other hand, since p € R, and P.R; =0,
we have pé Py, and since P, is perfect and so closed, p is neither
an element nor a limit element of P;. There exists, therefore,
an open set U such that pe U and P,.U=0. Hence, E.U=
(P1+R:).U=R,..U, from which it follows (since R; is scattered)
that E.U is scattered. But since pe P and pe U, the set P.U is
not null and it is also dense-in-itself (as the product of a set dense-



III. TueE AxioM OF COUNTABILITY 13

in-itself and an open set); the set E.UD P.U cannot, therefore,
be scattered, and so we have arrived at a contradiction. We have,
therefore, proved that the division E=P-+R is unique.

Similarly, it can be proved more generally that every set E
can be represented as the sum of two sets, one of which is dense-in-
itself and closed in E and the other scattered (where either of the
two sets may be null).

23. Theorem 33. Euvery set E contains a fintte or a countable
subset T, such that ECT.

Proof. Let E be the given set. Corresponding to every
member W, of the sequence (1) (§ 21) such that W,.E0 select
an element p, e W,.E, and let T be the set of elements so obtained.
Evidently, T is at most countable, and TC E. Suppose ¢ to be
an element of £—7T, and let U be any open set containing ¢- By
Corollary 1 (§ 21), there exists a member of the sequence (1), say
W, such that ¢ge W, C U. Since p, e W,.T, therefore, p,e U.T,
where p, g, since ¢ is not an element of 7. Hence, every open
set containing ¢ contains an element of I different from g, from
which it follows that g e 7. We have thus proved that E—7TC T’
and so ECT+T'=T.

If, in particular, the set E be closed, then, since TCE, we
have T/ C E and, therefore, T C E, which with EC T gives E=T.
Hence, every closed set is the enclosure of a certain set countable at
most. Furthermore, it can be easily proved that if E be perfect,
then 7 is dense-in-itself, and so TC T”, and 7 =7, which gives
E=1T'. Hence,a perfect set is the derived set of a certain set countable
at most.

24. Theorem 34. FEvery set of open non-abutting sets is at most
countable.

Proof. Let M be a given set of open non-abutting sets. If U
be a set belonging to 3 and p an element of U, there exists, by
Corollary 1 (§21), a set of the sequence (1) containing p and
contained in U. Hence, for every set U of 1/ there exists a set
of the sequence (1) contained in Uj let every set U of A7 be corre-
lated with the smallest index # such that W, C U. Since the sets
belonging to Al are non-abutting, it is obvious that different sets
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of M will be thus correlated with different indices. If we order
the sets of M according to increasing indices, we shall obtain a
sequence (finite or countable) consisting of all the sets of M.
Theorem 34 is, therefore, proved.

25. Theorem 35 (Lindelsf). If E be a given set and M a set of
open sets such that every element of E belongs to at least one of the
sets of M, then there exists a finite or countable sequence of sets of M,
the sum of which contains E.

Proof. Let every set Wy of the sequence (1) which is contained
in at least one of the sets of A be correlated with one such set,
U, say. The sets U, of M thus obtained will form a finite or
countable sequence. It will be shown that this sequence satisfies
the required condition.

For, let p denote any given element of E. It follows from the
hypothesis of the theorem that there exists an open set U belonging
to M and such that pe U. Hence, by Corollary 1 (§ 21), there
exists a set W, of the sequence (1), such that pe W, U,,. From
the definition of the sets Ux it follows that U,, is a member of our
sequence, and since W,, < U,, we have p ¢ U,,. Hence, Theorem 35
is proved.

By means of Theorem 35, we may generalize Theorem 28
(Borel) as follows:

Theorem 36 (Borel-Lebesgue). If E be a closed and compact set,
and M an aggregate of open sets such that every element of E belongs
to at least one of the sets of M, then there exists a finite number of sets
of M, the sum of which contains E.

26. Theorem 37. Every transfinite sequence of different decreas-
ing sets

EDEDED ... DE,DE, D ... DEDE,D ...,

such that the set Egyy is closed in E, is countable.

Proof. Consider any member, E; say, of our sequence, which
has at least one successor. Since E;#FE;; and E;D E;,, there
exists an element p of E; which does not belong to E,,;. Further-
more, since E,; is closed in E¢ and since p e Eg and p& Ey,q, there
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exists an open set U such that p e U and U.E;,;=0. Hence, by
Corollary 1, there exists a set W, of the sequence (1), such that
pe WoC U, and so Wy.E;,, =0.

Hence, for every such set E: of our transfinite sequence there
exists a set W, of the sequence (1) for which W,.E¢5£0, and W,.E;-;
=0. Let every such set E; be correlated with the smallest index
1, such that W, E¢#0 but W, Ee.q=0.

It is easily seen that different sets of our transfinite sequence
will be correlated with different indices #. In fact, if two sets
E; and E,, where £<7, were to be correlated with the same index
m, we should then have

Wm.Eg #0, Wm.E$+1 =0, W,,I‘E,}#O, Wm'ErH-l =0,

which is impossible, since from £<7n we have £+1=7, and so:
since the sequence is decreasing, E;; D E,; consequently, W,,. Eq
=0 gives W,,.E, =0.

If now the terms of the transfinite sequence be ordered accordmc
to the indices correlated with them, we thereby obtain a countable
sequence containing all the terms of the transfinite sequence
except, perhaps, the last. Theorem 37 is, therefore, proved.

The analogous theorem about an increasing transfinite sequence
of sets, each of which is closed in the succeeding one, can be proved
in like manner.!

The following corollary may be deduced immediately from
Theorem 37:

Given a transfinite sequence of ordinal type Q of decreasing sets

(2) EDEDED...DE,D...DEDE;; D...,((<Q

such that each Eg is closed in E,, for n<t<Q, then there exisls an
ordinal number o <Q, such that E; =E,, for a <£<Q.

In fact, if in the given sequence we consider only the terms
which are different from all the preceding ones, we have a sequence
satisfying all the conditions of Theorem 37 and so, a countable
sequence. We have, therefore, at most a countable set of different
terms in the sequence (2); let these terms be

®3) Ey,. E, Esy, - - .

$ar

1For the generalization of these theorems see my note in Biuletyn Polskicj
Akad. Um. (1921), pp. 62-65.
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where &, £», £3, ... are ordinal numbers <Q, and so there exists
an ordinal number a <, such that a > ¢,, for n=1,2, 3,... Let
now £ be an ordinal number such that a<¢<Q. The set E; is
one of the sets (3), say E¢=E;,. From £ <a<f and since the
sequence (2) is decreasing, we have E;, D E,DE; and, therefore,
E;=E, since E;=E;,. The corollary is, therefore, proved.

27. Let E be a given set. We shall define by transfinite induc-
tion sets E:(0 = £<Q) in the following manner. Put E;=E. Let
now a be an ordinal number >0 and <@ and suppose that all sets
E:, where 0 ={<a, have been defined. If a be a number of the

second kind, put E,=I1E.. If « =841, put E, =Fg.Eg'.
¢<a
It is evident that the sets E; thus defined satisfy the con-

ditions of the corollary to Theorem 37 (that the transfinite sequence
E:(£<Q) is decreasing follows from the definition of the sets, and
from E,.; =E;.E; it follows that E..; is closed in E (§7), since
E;’ as a derived set is closed (Theorem 25)). There exists, therefore,
an ordinal number a < @, such that E: =F,, for e <£{<Q. We may,
of course, suppose that o is the smallest ordinal number with the
above property.

¥From E,, =E,, and E,, =E,.E,, we conclude that E,C E,’;
E, is, therefore, dense-in-itself (or null).

Furthermore, it is easily seen that for £¢<a we have always
Ey#E;y ;. For if Eg=Eg,;, for some B<a, then from the defi-
nition of the sets E; it could be easily concluded that E; = Eg, for
£> 3, which, since 8<a, is in contradiction with the definition of a.
Hence E;#E;.E, for £<a, and so none of the sets F; is dense-in-
itself, for ¢<a. Furthermore, we have
4) E =Ea+§§ (Ee—Egy1).

For, it is evident from (2) that the set on the right of (4) is a
subset of the set Eo=FE. On the other hand, let p be a given
element of E. If pe E,, there exist indices £ = o such that pe Fg;
let 7 be the smallest of them. 1t is easily seen that n cannot be a

number of the second kind, for then we should have EﬂzII Fy,
£E<n
and since (from the definition of 5) p belongs to every E: for

£<=, p would belong to E,, contrary to the definition of ». Hence
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n={-1, where (from the definition of 7) p e E; but p& E.,;, and
so pe(E;—E.;). Since { <n=a, p belongs to a term of the sum
on the right of (4).

It follows from (2) that the terms of the sum (4) are mutually
exclusive sets.

It will be shown that the set E, is the nucleus of the set E.

For, let P denote a subset of E dense-in-itself. We have, there-
fore, PC E=E, Suppose that for some <, PCE;, for £¢<n.
If 4y is a number of the second kind, we evidently have PCE,
following from the definition of E,. If n=£--1, then E;, =E..E; .
But from £<%, we have, by hypothesis, PC E; and so P'C E;;
since P is dense-in-itself, P C P’; hence, P C E;’, and so P C E:.E;’
=FE;. ;. We have proved, therefore, by transfinite induction that
PC E, for every ordinal number n <Q; hence, in particular, P C E,.

E, contains, therefore, every subset of E dense-in-itself, and
since, as we have seen, E, is dense-in-itself, it is the nucleus of E.

It follows that the set

(3) E—E,=2 (E:—Eqgyy)
i<a

is scattered. Relation (4) furnishes a division of the set E into its
nucleus and a scattered subset.

With reference to the terms of the sum (5) we note that E; —E, .,
=F;—FE: FE/=FE; —FE; consists of all the isolated elements of E:.

Hence, it follows from (4) that in order to obtain the nucleus
of a set E it is necessary to remove from E itsisolated elements, from
the set E; thus obtained to remove the isolated elements of E; and
to proceed similarly with the set E, thus obtained, repeating the
process of removing isolated elements from the sets obtained at
cach stage transfinitely. After a countable number of such
operations we shall arrive at a set dense-in-itself (which may be
null). Thus the expression in (4) given by Cantor illustrates
the structure of sets.

28. We shall define now by transfinite induction sets P'® for
every set P and every ordinal number a, as follows. PY denotes
the derived set of P. Let now a be an ordinal number >1, and
suppose that all sets P® where £<a, have been already defined.
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If a is a number of the second kind, we put P =I1P®;if a =41,
we put P =(P®) £<a

The set P9, so defined, is called the derived set of P of order a.
It follows from the definition of this derived set and from Theorems
3 and 25, that the sets P are always closed (for every ordinal
number «>0). We have, therefore, P D (P)" =P+ (for
every ordinal number «>0), which proves (from the definition of
P for a, a number of the second kind) that the transfinite sequence
of successive derived sets

P'oOP/'DP"D ... DPWopeth s | op@ oS

is a decreasing sequence of closed sets. The corollary to Theorem
37 (§ 26) may, therefore, be applied to that sequence. Hence,
for every set P, there exists an ordinal number o<, such that
PO =P® for a<t<Q, and so also P =P®, Moreover, it may
be obviously supposed that a is the smallest ordinal number with
that property.

Hence every set P possesses at most a countable number of different
derived sets of transfinite order; for every set P there exists an ordinal
number a <Q, such that P =P®D  Obviously, if a be the smallest
ordinal number with the above property, then the derived sets of
order = q are all different.

Let now E be a closed set and recall the definition of the sets
E, from §27. Since E is closed, we have E,=E.E'=FE'; hence,
E;is closed and so also is E; =E,.E,/=FE,=(E’)’=E’"; and, finally,
by transfinite induction we have E,=E"), for every ordinal number
a<Q. Hence for a closed set E relation (4) takes the form

E =FE®@ + > (E(E) —E<E+1)),
f<a

where o« denotes the smallest ordinal number (always <Q) such
that E® =E®+D, Hence the nucleus of a closed set E is the set
E®,

It follows at once from the above that for a closed set E to be
scattered, it is necessary and sufficient that E‘? =0. The set E is
always perfect (or null).

29. The set E is said to be bicompact (Urysohn, Alexandroff),
if for every infinite subset E; of E there exists an element a (be-
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longing to E or not), such that every open set containing a, con-
tains a subset of E; which has the same potency as E;.

Theorem 38. [Every compact set 1s bicompact.

It will obviously be sufficient to prove, that if £ be compact
and non-countable, there exists an element a (belonging to E or
not), such that every open set containing a contains a subset of E
of the same potency as E.

Let mt be the cardinal number of E. We shall consider two cases.

1. The cardinal number M is not the sum of a countable series
of cardinal numbers smaller than itself. In that case, it can be
easily shown that the set E contains an element ¢ such that every
open set containing ¢ contains a subset of E of cardinal m. For,
if not, then for every element p of E there exists a rational set W
containing $ and such that the set W.E has cardinal <tt. Let
Ui, U, . . . be the successive members of the sequence (1) (§ 21),
such that U,.E has cardinal M, <m. Evidently EC U+ U=+-...;
hence, E=U.E4+Us.E+4..., and M =0, -+-M,+-. . ., which, along
with M =M, +M,+ . . . (since M =N, and so M =mNyand M, <M,
for n=1, 2, 3,...), gives m=N,4+M,+ ..., contrary to the
hypothesis about the number nt.

2. m=m4+m,+ ..., where M, <m, for n=1, 2,.... Put
8, =m;+nt,+. .. +m, (for n=1, 2, 3,...). Since M, < M, we
shall have 8, <mt (since, as is well known, a transfinite cardinal
number is not the sum of a finite number of cardinal numbers
smaller than itself).

Since 8, <M, there exists an element p, of E such that for everyv
open set U containing px, the set U.E has a cardinal number=$,.
For, if not, we should have E=U,.E+U.E+...., where U,.E
has cardinal = 8, for k=1, 2, 3,..., from which it would follow
that the cardinal of E is = 8,.8, and, therefore, <m (for, if 8, <N,
then 8,.R,=N,<m; and if 8,= N, then 8,.N;=8,< M), which
is impossible.

From the fact that E is compact we conclude further that
there exists an element a of the class K such that every open set
containing a contains an infinity of terms of the sequence pi, ps,
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$3, - . . . This conclusion obviously applies also in the case when
only a finite number of terms of the sequence are different.

Let U denote any open set containing @, # any given integer.
It follows from the property of the element a that there exists
an element p; in U such that 2> #, and so from the property of
the element 2, it follows that U.E has potency = 8, =$%,. The
set U.E has, therefore, potency = 8,, for every integer =, from
which, since M=y +M,+..., and S,=M4+ ... +mM, (=1,
2, ...), it follows, as is known, that U.E has potency = .

Theorem 38 is, therefore, proved.



CHAPTER 1V

TOPOLOGICAL SPACES WHICH SATISFY THE AXIOM
OF COUNTABILITY

30. We shall now strengthen somewhat axiom (s2) (§15) in
replacing it by the axiom:

(1).. If p and q be two different elemenis of the class K, there

exist two open, mutually exclusive sets, one of which con-
tains p and the other g.

We shall deduce in this chapter conclusions from axioms (),
(43), (411), (w),, (@), and (z3).

We have seen in § 19 that if by a neighbourhood of an element
is meant an open set containing this element, then the investigation
of classes satisfying axioms (), (i2), (41), (¢9), and (v) is equivalent
to the investigation of Fréchet’s classes (H). We have given in
the same article the definition of Hausdorff's topological spaces,
which differ from Fréchet’s classes (H) in that the property (v) of
Fréchet is replaced by the more stringent property (v1)-

If, however, a neighbourhood of an element be defined to be an
open set containing that element, then properties (v) and (v1)
become axioms (49) and (i), respectively. It follows then at once
that the investigation of classés K satisfying axioms (7), (#1), (¢11),
(12),, and (v), is equivalent to the investigation of Hausdorft's
topological spaces.

Hence the investigation of classes K, satisfying axioms (¢), (i),
(i21), (i), (), and (v¢), which will be the subject of this chapter,
is equivalent to the investigation of Hausdorff’s topological spaces,
satisfying the axiom of countability (vi).

31. DEFINITION. An element @ is said to be the limit of an
infinite sequence of elements pi, ps, ps, . . ., Written

lim p,=a, or p—>a, as n—> o,
R ]
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if for every open set U containing «, there exists an integer u such
that
pn e U, for n > p.

The following properties of the limit of a_-sequence follow -im-
mediately from the above definition.

PRrROPERTY 1. If pu=p, for n=1,2,3, ..., then lim p,=p.
7P
In other words, an infinite sequence whose terms are all equal
to the same element has that element for its limit. The proof
follows directly from the definition of the limit of a sequence.

PRrOPERTY 2. If lim p,=a, and lim p, =0, then a=b.
700 7-)-00
In other words, an infinite sequence cannot have two different
limits. In fact, if lim $,=qa, and bsa, then by (49), there exist

nyco

open sets U and V such that ae U, beV,and U.V=0. Since
lim pp,=a, pne U for n>pu, and so (since U.V=0), p,c 1, for
7y

n > u, and, therefore, we cannot have lim p,=0.

N0
PRrROPERTY 3. If lim p, =a, and if ny, na, n3, .. . 15 an infinite
1Py
sequence of increasing indices, then lim pn, =a.
k>

In other words, if ¢ is the limit of the sequence p,(n=1,2,...),
then a is also the limit of every sequence obtained from the given
one. The proof follows at once from the definition of the limit of a
sequence.

Fréchet considers in his thesis! a class (L) to be a set of any
elements in which the limit is defined in such a manner that, for

every infinite sequence p1, P, ps, . . . of the elements of the given
set and every element a of that set, it is possible to state whether
« is the limit of the sequence p.,(n=1, 2, 3, ... ) or not. The

convention which establishes this test is quite arbitrary except

2

that properties 1, 2, and 3 are retained. In the paper referred

1Rendiconti del Circolo Mutemutico di Pulermo, vol. XXIT (1906); see also
Bull. des Sciences Math., vol. NLII (1918).
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to above Fréchet investigates the conclusions following from these
hypotheses and from the corresponding definitions.

It is obvious that every class K satisfying axioms (), (42), (ii7),
(iv),, and (v7) may be considered as a class (L) of Fréchet. (It
could be shown, however, that the converse is not true.)

Some of the other properties of a limit (which follow from
our hypotheses and definitions but do not hold necessarily in the
classes (L) of Fréchet) are as follows:

The limit of a sequence (or its existence) does not depend on the
order of the terms of the sequence. The proof follows immediately
from the definition of the limit.

The limit (o7 its existence) is not affected if we remove, add, or
change a finite number of terms of the sequence. The proof is im-
mediate.

If lim p,=a, and im g, =a, then the sequence p1, qi, P2, Qo - - -
n-p n—y 0

also has the limit a. The proof follows easily from the definition
of a limit.

32. Theorem 39. In order that an element a be a limit element
of a set E, it is necessary and sufficient that there exist an infiniie
sequence p1, Pa, O3, - - . , Stch that

(1) lim p»=q,
nHp-
and
(2) a#Epn e E, forn=1,2,3,...

Proof. That the condition is sufficient follows directly from
the definition of a limit (§ 31). It remains, therefore, to prove
the necessity of the condition.

Hence suppose that ¢ is a limit element of £. Let 13, 7., 17,
.. .denote an infinite sequence of open sets satisfying the con-
ditions of Corollary 2 of § 21 with reference to the elementa. From
a € V7, and the hypothesis that a is a limit element of E, it follows
that there exists an element p, of E different from a and contained
in V. The infinite sequence p1, P2, P3, - . . is the required sequence.
In fact, condition (2) is evidently satisfied. Let now U denote
any open set containing a. From the property of the sequence

5
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Vi, Ve Vs, ... it follows that 1V, C U for # > pu; hence, p,e U
for » > u, and so (1) follows. Theorem 39 is thus proved.
ReEMARK. We note that we may add in Theorem 39 the

condition that the terms of the sequence p1, p», ps, . .. be all dif-
ferent. )
In fact, the sequence i, p2, Ps, . . . must contain an infinity of

different terms, for, otherwise, one of the terms, p, say, would be
repeated an infinite number of times, and so from (1) and properties
3, 1, and 2 of a limit we should have p;=a, contrary to (2). If
DPnys Py Pnyy - - - be the infinite sequence obtained from the sequence
b1, D2, . - . on removing from it every term duplicating some pre-
ceding term, then from (1) and property 3 of limits we shall have
lim $n=a, which proves the truth of our remark.
PR

33. Theorem 40. In order that a function f be continuous in g
set E at an element by of that set, it is necessary and sufficient that for

every infinite sequence p1, ps, ps, . - . of elements of E, for which
3) lim . =po,
PO

we should have

4) im f(pn) =f(po)-
)

Proof. Suppose that the function f(p) defined in the set E is
continuous at p,, an element of E, and let p,, (n=1,2,3,...) be
a sequence of elements of E for which (3) holds. Let further V
denote any open set such that f(po) e 1. By the definition of
the continuity of a function at a given element (§ 10) there exists
an open set U, such that pye U, and the conditions $ € U.E im-
plies that f(p) e V. But from (3) and the definition of a limit
(§31), we have pn e U, for n > pu; hence also f(p,) e V for n >y,
from which, since V is any open set and from the definition of a
limit, (4) follows. The condition of our theorem is, therefore,
necessary.

Suppose now that the function f(p) is not continuous in E
at an element pg of E. It follows then from the definition of
continuity of a function, that there exists an open set 1/ containing
f(po) such that in every open set U containing pg there is an element
p of E for which f(p)e V.
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By Corollary 2 of § 21 there exists an infinite sequence of open
sets Uy, U, Us, ... containing p, and such that for every open
set U containing po, we have U,C U, for > u (where u is an
integer dependent on U). By the above, there exists an element
Pn in U, such that f(p,) V.

Since p, € U, and from the property of the sequence Ui, U,

., it is clear that (3) holds. However, (4) is not true, since
Ff(pn) eV, for n=1, 2,3, ... Hence the condition of the theorem
is sufficient.

Theorem 40 is, therefore, proved completely.

We shall deduce now an important corollary from Theorems
40 and 33.

Let E be any given set. There exists by Theorem 33 a finite
or countable subset P of E such that EC P.

Furthermore, let f(p) and ¢(p) be two functions continuous
in E and such that f(p) =¢(p), for p e P. Then f(p)=9¢(p) in the
whole set E.

Let po denote an element of E—P; from ECP=P-+P, it
follows that py e P’, and so by Theorem 39, there exists an infinite

sequence p,(n=1, 2, ... ) of elements of P such that
lim Dn =P,
72-p- O

whence, since f and ¢ are continuous in E, by Theorem 40,

lim f(p.) =f(po), and lim ¢(px) =¢(po).-
72—y O 72900

Since pu ¢ P, for n =1, 2,..., f(p.) =¢(p») and so we get at once
F(po) = (po).

Hence f(p)=¢(p), for pe E—P, and since Dby hypothesis
f(p)=a¢(p) for pe P, therefore, f(p) =06(p) in the whole set E.
Hence, wiere E 1s a given set and P « finite or countable subset such
that EC P, there is at most only one function continnous in E and
having assigned values in P.

Since in a finite or countable set there can be defined at most a
continuum of different functions (the values of the functions being
given by the elements of K, which by Corollary 3 of §21 is of
potency of the continuum at most) therefore:
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There is at most a continuum of different continuous funciions in
every set E.

It follows from the above that every set possesses at most a con-
tinuunm of different continuous transforms, and furthermore, that
there exists at most o continuum of different sets homeomorphic with a
given set.

Let now all sets contained in a given class K be divided into
topological types, with two sets belonging to the same type if
and only if they are homeomorphic. To each topological type
will then belong a continuum of different sets at most. If the class
K has the potency of the continuum, then there are 2° different
subsets of K, and since each topological type consists of at most
¢ different subsets of K, it may be concluded that K contains
2¢ different topological types.?

34. Theorem 41. A continuous transform of a closed and com-
pact set is a closed and compact set.

Proof. Let E, denote a given closed and compact set, f(p) a
function defined and continuous in E,. Let 7 be any infinite
subset of To=f(Ey). There exists, therefore, an infinite sequence
gn(n=1,2,...) consisting of different elements of 7. Since

gn € TC To =f(ED),
there exists an element p, of E; for every integer %, such that

@ =f(Pn),

with the terms of the sequence p.(n=1, 2,...) all different (since
the terms of the sequence ¢,(n=1, 2, . .. ) are all different).
Denote by E: the set of all terms of the sequence p,(n=1,
2,...); E; is, therefore, an infinite set contained in E, and so
has a derived set which is not null, since E, is compact by hypo-
thesis (§ 16). Let a be an element such that a € E,; since E, C E,,
and E, is closed, a € E,.  Since a ¢ E{, there exists by Theorem 39
an infinite sequence of elements of E,; different from a, with a as
its limit; this sequence will differ in order only from a sequence
obtained from p,(n=1, 2, ...), and, since (§ 31) the limit of a

2For, if m be the potency of theset of all different topological types contained
in K, and K =C, then M =2¢=m¢, and so M =2¢ (Appendix, § 4).
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sequence is independent of the order of the terms, we conclude
that there exists an infinite sequence p,z(k=1, 2, ... ) obtained
from the sequence p,(z=1, 2, .. .), such that
lim P’lk =a.
By
From the continuity of f in E, and from Theorem 39, it follows
that
lim f(pur) =f(a),
k)

z.e.
lim g”k =f(a’) ’
ky o

and since the terms of the sequence ¢, (and, therefore, those of the
sequence ¢»p) are all different elements of T, it follows from the
above that f(a) € 77, and, hence, 7" 0.

We have, therefore, proved that T is a compact set.

Let now b denote any element such that b e T'.

By Theorem 39 (and Remark to Theorem 39) there exists an

infinite sequence g,(z=1, 2, ...) of different elements of T,
such that
©) lim g, =b.
70
Since

Qn € To =f(Eu),
there exists an element p, for every integer #, such that
Pn € Eo, and f(?n) =n,

in which the terms of the sequence p,(n=1,2,...) are all different
(since the terms of the sequence ¢,(n=1, 2, . . .) are all different).
Denote by E; the set of all terms of the sequence p,(n=1,
2, ...); E, will be an infinite set contained in the compact set
E,, and, hence, E;0. There exists, therefore, an element a,
which is a limit element of E;. We conclude, as before, that a is
the limit of some sequence obtained from the sequence p.(rz=1,
2,...), and that lim pn; =a, where s, (=1, 2,...)is an infinite
k>

sequence of increasing integers.
Since E, is closed (and since p. e E.C Ey), we have ae Eg;
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from the continuity of the function f in E,, and from lim p,; =a, it
Eyco
follows that lim f(pni) =f(a),
Eyo

i.e.
lim ank =f(a)v
k-y 0

which, from (5) (and from the properties 2 and 3 of limits) gives
b=f(a) and proves (since a ¢ E;) that b e f(Eo) =Th.

We have thus proved that if b e 7/, then b e Ty, which proves
that T is closed.

Theorem 41 is, therefore, proved.

A closed, compact, and connected set which contains more
than one element is called a continuum. It follows at once from
Theorems 41 and 21 that a continuous transform of a continuum, if
1t contains more than one element is again a continuum. It follows,
in particular, that the property of being a continuum is a topological
property.

35. Theorem 42. If a function f(p) defined at the elements of a
closed and compact set Eq is continuous and biuniform in that set,
then the inverse function of f(p) is continious in the set Ty=f(E,).

Proof. Let f(») be a continuous and biuniform function in a
closed and compact set E; and let ¢(¢) be the inverse function of
f(p); ¢(g) will, therefore, be defined for g ¢ To=f(E,).

Suppose that ¢(g) is not continuous at an element ¢, of T%.
Hence, by Theorem 40, there exists an infinite sequence g¢i, qs, - - .
of elements of Ty for which

(6) lim g» =qq,
n-y
but not
lim ¢(gx) =(g0)-
70
Put
(7 Pr=0(qs), for n=0,1,2,3,....;
the relation
lim p. =po
IS =]

will, therefore, not be true. It follows from the definition of the
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limit of a sequence (§ 31) that there exists an open set U containing
o, such that
pne U

is true for an infinite number of values of the index #. There
exists, therefore, an infinite sequence of increasing indices #,(k =1,
2, ... ) such that

(8) ptup€ U, for k=1,2,3,..

If among the terms of the sequence p,.(k=1,2,...)a certain
term, r say, were repeated an infinite number of times, then

F(Dnr) =qne, f(P0) =q0

(which follows from (7) and the fact that ¢ is the inverse function
of f) and from (6), we should have

f(m) =qu=f(p0),

and so, since f is biuniform, = = p, € U, whereas for = =p,, for some
k, (8) gives me U. Hence, the set of all the terms of the sequence
Pnp(k=1, 2, ...) is infinite and so as a subset of the compact set
Eo has a derived set which is not null. Hence, there exists an
infinite sequence of increasing indices &, (r =1, 2, ... ) such that

(9) lim Pnkr =9,

7>
and, since E, is closed, we have p € E,. The function f, being con-
tinuous in E,, (9) gives

llm f(PnLr) =f(p)v
r»
i.e., since f(pn) =qn,
lim Q)r];r =f(P)v
7

and so from (6) (and properties 2 and 3 of limits)
F(P) =qo;
hence, from f(po) =¢o and the fact that f is biuniform,

(10) P = po.
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But from po e U and from (9) and (10), it follows that, for » suffi-
ciently great,

Prr, e U,
contrary to (8).

We have thus proved that the hypothesis that ¢(g) is not con-
tinuous in T, leads to a contradiction. Theorem 42 is, therefore,
proved.

It follows from the above theorem that a continuous and
biuniform transform of a closed and compact set is homeomorphic
with that set.

36. A set E is said to possess the Borel property if, for every
infinite sequence of open sets Q1, Qs, Qs, . . . such that EC Q:4Q-
+ ..., there exists an integer # such that EC Q1 +Q:+ . . . 4+Q...

By Theorem 28 every closed and compact set has the Borel
property. We shall prove the converse, 7.e. a set possessing the
Borel property must be closed and compact.

To prove it, suppose that the given set £ is not compact;
hence it contains an infinite subset E; such that E,=0. Let
1, P2 P3, ... be an infinite sequence of different elements of E;;
denoting by P, the set of all terms of the sequence p., p, .y,
Puyos - . - we shall have P, C E;, hence P,’C FEy/, and so P,’=0;
the sets Py(n=1, 2, ... ) are, therefore, closed, and so the sets
Q.=K —P, are open. Furthermore, it is clear that EC Q:+Q:+
Qs+ ... (For if p e E—Ps, then obviously p e Q1=K —P;, and if
p ¢ Py, for instance p=p,, then peQpyy =K —P, 4, since Ppy,
consists of the elements p.1, Prra, . .. which are different from
pz) On the other hand, it is impossible to have EC Q:+Q,
+ ...+Q, for any =, for p, € E but p,& Qp, for k== (since Q, =
K —Pp, and p, € P, for E<n).

Hence a set which is not compact does not possess the Borel
property. Suppose now that the set E is not closed. There exists,
therefore, a limit element a of E which does not belong to E.
There exists, by Theorem 39, an infinite sequence 1, p2, $3, . . . of

e¢lements of E different from «, such that lim p.=a. Denote by
-0
P, the set of all different terms of the sequence g, Pyi1s Prgns - - - -

It is easily seen that the set P,’ consists of one element « only.
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(That @ is the limit element of P, follows from the property of the
sequence pi, po, . . . and-from property 3 of a limit. If there were
a beP, then, by Theorem 39, a certain sequence obtained from
the sequence 1, ps, . . . would have the limit & and so, by properties
2 and 3 of limits, we should have b=a.) Put Q,=K —P,, where
Pn=P,+P, ; these will be open sets, for =1, 2, . ... Itis easily
seen that ECQ:4+Q2+Qs+ .... For if peE—P,, then from
aé E and Py =(a), we have peE—P;and certainly pe K —P1=0x;
and if p e Py, for instance p =, then p € Qpr;. On the other hand,
ECQi+Q:4+ ... 4+Q, is not true for any =, since p, ¢ E, but
Du€ Qp, for E=n. .

Hence, a set which is not closed does not possess the Borel
property.

By virtue of Theorem 28, it can now be stated that

In order that a set possess the Borel property it is necessary and
sufficient that it be closed and compact.

37. Theorem 43. The set of all open (closed) sets has the
potency of the continuum (for classes K containing an infinite
number of elements).

Proof. Taking into consideration Corollary 4 from axiom (zz)
(§ 21) it will be sufficient to prove that the set of all open sets of
a class K has the potency of the continuum at least. It will be
sufficient for that purpose to show that there exisis in K an infinite
sequence of open, mutually exclusive, non-null sets. Different subsets
of such a sequence (and there is, as is well known, a continuum of
such) will determine different sums, which will be open sets.

We shall distinguish two cases for purposes of proof.

1. The class K does not contain elements which are limit
elements of K. Hence, for every element p e K there exists an
open set U(p) which contains only the element p, i.e. U(p) =(p).
It follows, therefore, that sets consisting of the single elements
of K (one by one) form an infinite set of open, mutually exclusive,
non-null sets.

2. An element a of K is a limit element of K. Let p; be an
element of K different from ¢. (Such an element exists since we
suppose that the class A is infinite.)
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There exist by axiom (7v), two open sets U; and Vi such that
pre Uy, ae Vi, and Ur.Vi=0. Since ae V; and a € K, there exists
in Vy an element of K different from a, say p..

By axiom (4v), there exist open sets U, and V, such that
pae Us, a € Vs and U, Vy,=0, and it may be supposed that U, C 7,
and V., C V3, for otherwise we could take the products of the sets
U, and Vs respectively by Vi, which are open sets by axiom ().

Suppose, in general, that we have determined a sequence of
elements p1, P2, . . . , Pu, and the sequences of open sets Uy, Us,
o, Uyand Vh, Vo, ..., Vy, where p, e U, CV,_1,ae V,CV,_4,
and U,.V,=0. Sincea e V,and a e K', there exists an element p,,
of K different from a in 77, and by axiom (#v), there exist open
sets U,y and V44 such that p, 1 e U,y ae Vypg,and Uiy Vg
=0; as before, it may be supposed that U, ; C V, and 17,,,; C V.

The infinite sequence of open sets Uy, Us, U, ... is thus
defined by induction; we have also 1ND VoD Vy, ..., U, 1 C Vs
but U,.V,=0, for n=1, 2, 3, ..., from which it is readily seen
that the sets Ui, Us,, Us, . . . are mutually exclusive.

Theorem 43 may, therefore, be considered as proved com-
pletely.



CHAPTER V
NORMAL CLASSES

38. To the axioms introduced so far in the investigation of
classes K we shall add the so-called axiom of regularity (Tychonoff):

(vig) If an element p belongs to an open set U, there exists an
open set V which contains p and whose enclosure is con-
tained in U (i.e. VS U).

It is easily seen that every compact class satisfies the axiom of
regularity.! In fact, let K denote a compact class, p a given
element of K which belongs to an open set U. The set F=K—U
is, therefore, closed and compact (since it is a subset of the compact
class K) and pé F. For every ge F (and so g=p) there exist by
(i), open sets V(g), and W(g) such that pe V(g), ge W(g), and
7(¢).W(qg) =0. Since F is closed and compact there exists, by

Theorem 36, a finite number of elements g1, gs, . . ., gu of F such
that FCW=W(q)+W(g)+ ... +W(gs). If we let T"=T(q)
.V(ga) . . ..V(gs), we shall have, as is easily seen, two open sets

Wand Vsuchthat FC W, p e V,and W.V=0 (since W(g;). 1 (g;) =0
by the definition of the sets V(q) and W(g), for =1, 2,...,n).
From W.V=0 we get VCK—W, and since KX —T is closed we
have VCK—W and so VCK—F=U, since FCW. Hence
pe ¥ and VC U, and so, " being any open set, the class K satisfies
the axiom of regularity.

We note that axioms (iz), and (vii) can be expressed as a single
axiom in the following form:

If p and ¢ be two different elements of K, there exist two open
sets U and V such that peU, geV, and U.1"=0. The proof
that this axiom is equivalent to axioms (i), and (viz) combined,
does not offer any difficulty.

1See E. . Chittenden, Bull. of the Amer. Math. Soc., vol. XXXIIIT (1927),
p. 23.
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A class K is said to be mormal (Urysohn) if it satisfies the
following

CONDITION OF NORMALITY: If P and Q be two closed, mutually
exclusive sets, there exist two mutually exclusive, open sets, one of which
contains P and the other Q.

Axioms (iv), and (viz) follow, as is easily seen, from the con-
dition of normality (and hypotheses (I) and (II)). In fact, to obtain
axiom (19), it is sufficient to apply the condition of normality (for
two different elements p and ¢ of the class considered) by letting
P=(p) and Q=(g). To deduce axiom (v¢z) from the condition of
normality it will be sufficient to put P=(p) for p e U, where U
is an open set, and Q=K — U;since P and Q are closed and mutually
exclusive sets there exist by the condition of normality open sets
V and W such that PC V, QC W, and V.W =0, and so, since W
is open, V.W=0; hence, VCK—-WCK—-Q=U.2

39. Theorem 44. A class K which satisfies axioms (2)-(z1i) is
normal.?

We shall even prove a stronger property than that of normality
of a class K which satisfies axioms (7)-(v¢7), namely:

If P and Q be two mutually exclusive sets neither of which contains
limit elements of the other, then there exist open sets U and V such
that PC U, QC V, and U.V=0.

Suppose, therefore, that the class K satisfies axioms (7)-(viz),
and let P and Q be two sets contained in K and such that P.Q=
P.Q=0.

Thus if p ¢ P, then p ¢ K —(, and since K —( is open (Q being
closed) there exists by (v22) an open set V such that p ¢ 17 and
VCcK—Q, and so V.0 =0. By Corollary 1 of § 21, there exists
arational set W such that p e WC V; hence, W V; and W.() =0.

Hence for every element p of P there exists a rational set W,
such that p e W, and W.Q =0.

Let
(2) Uy, U, Us, . ..

*Hypotheses (I) and (II) are required here to be able to conclude that a
set consisting of one element only is closed, and the complement of an open
set is closed (Theorems 24 and 2).

*A. Tychonoff, Math. Annalen, vol. XCV (1925), pp- 139 et seq.
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denote a sequence (_)£ successive terms W, of the sequence (1) of
§ 21, such that W,.Q =0. We shall have then

3) PCcUi+Us+Us+ ...; U,Q0 =0,forn=1,2,...

Similarly, let
(€)) Vi, Vo, Vay . - ..

denote a sequence o_f_ successive terms W, of the sequence (1) of
§ 21, such that W,.P =0. Then

(5) QC Vit Vot Vet ... VP =0,for n=1,2, ...

We may suppose that the sequences (2) and (4) are infinite,
repeating one of the terms an infinite number of times if necessary-.
Let now
(6) : Gi=U, Hi="—G,,
and for n>1,

(7) G, = Un'_ (El"*'ﬁg_{_ PR +I'_In_1>, H,=1, _(al_i_ag_i'- - +én);
finally,

(8) G=G1+62+G3+ « e vy H=H1+H2+H3+ o o o

It follows at once from (6), (7), and (8) that the sets G and H
are open (since the sets (2) and (4) are open and because of Theorem
26). It will be shown that

) PCG,QCH, and G.H=0.

Suppose p € P; there exists an index = by (3) such that pe U,,.
But by (6) and (7) H,C V,, and so H, < V., and by (5), H,.PC
7,.P; hence, H,.P=0, for =1, 2,3, ... ;since pe P and pe U,
it follows from (6) and (7) that peG,, and so peG by (8). We
have thus proved that PC G. Similarly, it may be proved that
QC H.

Evidently, from (8), in order to prove that G.H =0, it will be
sufficient to show that G,.Z7; =0 for every pair of integers, & and I.
If <1, then by (7) H=V,—(Gi+G+ ... +G) SV, —Gs
C 1, —G,, and so G,.H, =0. If k>1, then by (7) G, = U, — (I1, +11,
4+ ...+ ) CU.—I, < Uy—1I1, and so Gp.FH,=0.

Hence (9) is proved. The class K is, therefore, normal.
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40. Theorem 45. Every perfect, compact, non-null set has the
potency of the continuum.

To prove the above we shall first establish the following

LemMA.  For every perfect, non-null set P there exist perfect sets
Py and Py such that

0#P,C P, 0P, CP and P,P:=0.

In fact, let P be a given perfect set, po and p; two different
elements of P4 By axiom (i), there exist open sets U, and
U, such that po e Uy, p1e Uy and Uo. Uy =0. In virtue of (vi7) we
conclude that there exist open sets V, and Vi such that pye V,,
pre Vi, Vo Uy, V1< Uy, and so V. V1=0 since U,.U;=0.

Since P is perfect the set V,.P is dense-in-itself (§ 22) and not
null (since po e P and poe V). But, by the corollary to Theorem 6
(§ 6), the enclosure of a set dense-in-itself is dense-in-itself and,
therefore, perfect; the set Po=(V,.P) is, therefore, perfect, not null
(since poe Vo.PC Py), and P,CP =P. Moreover, PyC V,since
VoP C Vo

Similarly, it may be shown that there exists a perfect set P,
not null, such that P,C P and P, C V3. Since V. V1=0, the con-
ditions of the lemma are obviously satisfied by the sets P, and P;;
the lemma is, therefore, proved.

We shall apply this lemma to prove Theorem 45. Let P
denote a given perfect, compact set. There exist by the above
lemma two perfect sets P, and P; such that

0=#P,C P, 0#P,CP, and Py.P,=0.

Applying the lemma to the perfect set P, we find that there
exist two perfect sets Py and Pg such that

05£P00CP0, 0¢P01CPO, and ng.Pm‘—‘O.

Suppose now that all the perfect, non-null sets Pq, a,..q, have
been defined, where aiaz ... a;, denote any combination of %
numbers each of which is equal to zero or one. By Pq, q,.. .00 and
Pa, a,. .. a;,1 we shall mean perfect sets such that

4Such elements exist since a non-null, perfect set cannot consist of one element
only.
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(10) 07£-Pa1a2...ak0CPa1a-_-...ak, 0¢Pa1a2...ak1CPa1a._-...ak ]

and
(11) Pala»_»...akaa;agu.ak1=0;

these sets will certainly exist by our lemma.
The sets Pg, q,...a, where aias ... a; denote any finite com-

bination of the numbers 0 and 1, are thus defined by induction.
Let now

(12) a1, as, as, . . .

denote any infinite sequence obtained from the numbers 0 and 1.
Consider the infinite product of the sets

(13) Pal.Palaﬂ.Pa’Iagas . ..

It follows from (10) that the factors of the above product form
a descending sequence of non-null, compact sets, since they are
subsets of a compact set; they are also closed (since perfect).
The conditions of Theorem 27 (Cantor) are therefore satisfied,
and so (13) is not a null set. Let p(ai, as, as, ... ) denote any
element of this product.

To every infinite sequence (12) which consists of the two
numbers 0 and 1 (and there is, as is well known, a continuum of
such sequences) there corresponds a certain element p(ai, a2, . . . )
of P. It is easily seen that to different sequences (12) there will
correspond different elements of P. In fact, let

B, B2, B3, - -

denote an infinite sequence cbtained from the numbers 0 and 1
and different from the sequence (12); hence, there exist indices
i for which a,,83,. Let m be the smallest of these indices; we shall
have then

(14) a;=pB;, fori=1,2, ..., m—1, and a,, #B,,
and so if e.g. a,,<pB,,, then
(15) a»l =0' B})Z =1'
From the property of the elements p(ai, as, . . . ) and

p(B1, Ba, . . .) it follows that
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(16) P(ax, az, . . ~)5Pa|a2...am
and
(17) P(ﬁly ﬁz, e ) € P,B]Bg-. ,Bm

But from (14) and (15) we have PBg,...8n =Paa,...am—11, and
Poia,. ..am=Pa;...am-10; hence, from (11)
Poya,. . .am- P[%B._,. .Bn=0,
and so from (16) and (17)
play, asz, . . . )Zp(By, By - - . ).

The set of elements p(ai, a2, . . . ) which are correlated with
the infinite sequences ai, a2, a3, . - . consisting of the two numbers
0 and 1, is, therefore, a subset of P of the potency of the continuum.
Hence the set P has the potency of the continuum at least. On the
other hand, the set P formed of elements of the class K has, by
Corollary 3 to axiom (2z) (§ 21), the potency of the continuum at
most. The set P has, therefore, the potency of the continuum;
this proves Theorem 45.

Let now p denote any element of a perfect and compact set P,
and U any open set containing p.

It follows from the lemma that there exists in U a perfect non-
null subset of P and so, by Theorem 45, a subset of the potency of
the continuum (since a subset of the compact set P is compact).

If, therefore, p be an element of a perfect and compact set P, then
every open set containing p contains a continuum of elements of P.

It follows immediately from the above that every element of a
perfect and compact set is an element of condensation of that set.

From Theorems 32 and 45 we get immediately

Theorem 46. Every non-countable, closed, and compact set has
the potency of the continuum.

In fact, it follows from Theorem 32 that a closed, non-countable
set is the sum of a non-countable perfect set and a set countable
at most; Theorem 45 will apply to the above perfect subset, which
is compact, since it is a subset of a compact set.

41. We shall now prove an auxiliary theorem which will be
made use of in the present as well as in the following chapter.
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UrvysonN's LEMMA. If P and Q be two mutually exclusive, closed
sets, there extsts a real function f(p) defined and continuous in the set
K, and such that O<f(p)=<1 throughout, with f(p)=0 for pe P,
and f(p)=1 for peQ.

Proof. Let P and Q be two mutually exclusive, closed sets.
Put G(1) =K —Q; hence, G(1) will be an open set and PC G(1)
(since P.Q=0). By the condition of normality (§ 38; Theorem 44,
§ 39) there exist open sets U and V such that PC U, QC V, and
U.V=0; put G(})=U,; hence,

PcCG@E) and GE) CG(1).

(Since UV=0 and_V is open, we have .V =0, and so certainly
U.Q=0; therefore, UCK—Q=G (1).)

Let now m denote a given integer and suppose that all sets
G(%) have been defined, where # is an integer < m, and k=1,
2,3, ...,2"—1, and where

k—[—l

(18) PCG )CG(zn)CG

forn=m, k=1,2,...
We have then from (18) PC G (2—m) , and so, as formerly in the
case when P C G (1), there exists an open set which will be denoted

by G (2 +1) and such that
1 1 1

If, however, 1=k= Q'n_l,‘theﬂ by (18) G(;ﬁ%) CG(I—az——*:n]:), and

2 1
so there exists an open set, which we shall denote by G (%), such

£\ 2k +1 2k +1 E+1
G(QW>CG(ZW+1>CG(()"1 l)CG( 2»; )

that
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The open sets G < k) are thus defined by induction for every

integer » and for £< 2", and they all satisfy relation (18).

We shall define now a real function f of the elements p of K as
follows.

Let p denote a given element of K. If p e Q, then put f(p) =1.

If pe Q, 1.6 pe K—Q=G (1), then there are numbers % such that

peG ( k > if ¢ be the lower bound of such numbers —;7,, putf(p) =t.

Obviously f(p) =0 for p e P, since by (18) PCG F) , for n

=1, .. ; the lower bound of the numbers in‘ such that p ¢

(Ek—) is in this case equal to zero. It is also clear that we have

0=7(p)=1 throughout (since the numbers;— areall >0 and <1).
Hence, it only remains to prove that the function f(p) is con-
tinuous in the set K.
Let po denote a given element of K, e any positive number.
We shall consider three cases:

1. f(po)=1. Let m be an integer such that <e, and put

1
oQm

2" —1 . .. .
U=K—G(——2m—>; U will be an open set containing #g (for if

2" —1 ol —1 -,
poeG 5 cG ST ) We should have from the definition

m-+1
2m+1

of the function f, f(po) = 2 <1, Acontrary to hypothesis). If

m

peU then pe G <u> and so certainly pe G (2

—1
- )i by a®)

2m
r k

the relation p&éG (g%) implies that pe G < ) for — 55 < oy and,

therefore, from the definition of the function fit will follow that

Fpy= 21 L

=1— S > 1 —e¢,and since, on the other hand, we have




V. AxioM viI—NORMAL CLASSES 73

f(»)=1 throughout, hence 1 —e<f(p)<1 for p ¢ U. Since e (which
determines the open set U containing p) is an arbitrary number,
the function f is continuous at p.

2. f(po) =0. Again let m be an integer such that 2_1".‘ <€ and
put U=G 2% ; U will be an open set containing p,. For it
follows from the definition of the function that if f(po) =0, there

exists a number of the type 2i < = 1 — and such that pg e G{ 5= k and

k 1 k
so by (18), since 5 < = G W have G (2 ) cG (2—”,) . Hence for
e U we shall have, from the definition of f, f(p) < —1— <¢,and since

Ff(»)=0, we get 0=f(p)<e whenever pe U; this proves the con-
tinuity of the function f in the set K at the element p,.

3. 0<f(p)<1l. In this case there exist, as is easilv seen,

integers #» and & both > 1 and such that 1 ; <e and o <Sf(pd <

k+1 ( )

and certainly po & G( 2”> but poeg<k+1), PutU=G k-i—l)

G k— 1) then poe U, and U is obviously an open set. If pe U,
then pe G < +1) and p G ( 1) and so certainly pe G < ‘)nl) :
1

from the definition of the function it will then follow that k—‘)-n—

=flp)= kt . Since poe U and — 271 s— <e we have [ f(D) —f(pa)|=<e

whenever p ¢ U; the function f is, therefore, continuous in K at
the element p,.
Urysohn’s lemma is, therefore, proved.

42. Let S be a connected set containing more than one element,
and let po be a given element of S and U an open set containing
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po. 1f there were no other elements of .S in U than po, the sets
(o) and S—(po) would be, as is easily seen, separated, contrary
to the supposition that S is connected. There exists in U, there-
fore, an element p; of S different from po. Put P =(p0), Q= (p1) +
(K —U); P and Q are clearly two closed, mutually exclusive sets.
Hence, by Urysohn’s lemma, there exists a real function f(#) defined
and continuous in K and such that 0=f(p)<1, where f(p)=0
for p € P (i.e. for p=p,), and f(p) =1 for pe Q. f($) being con-
tinuous in K will certainly be continuous in SC X, where f($,) =0,
and f(p,) =1 (since p1 € Q).

By the Corollary to Theorem 21 (§ 11) the function f will take
in the connected set S every value between 0 and 1. But
K—-UcCQ, and f(p) =1 for p e Q; hence f can take values 1 in
U only. Hence f must take every value between 0 and 1 in the
set S.U. The set S.U has, therefore, the potency of the continuum.
Hence

Theorem 47. If S be a connected set contarning more than one
element, and if U be an open set such that S.Us£0, then S.U has the
potency of the continuum.

We may remark (with the hypothesis of Theorem 47) that the
set .S.U need not be connected and that it may not even contain
any connected subsets consisting of more than one element.5

As an immediate result from Theorem 47 it follows that

Every comnnected set containing more than one element has the
potency of the comtinuum.

From the fact that a continuum is a closed, connected, and
compact set containing more than one element (§ 34), we may
deduce by means of Theorem 47 the following

COROLLARY. If a set C be a continuum, then every open set
containing an element of C contains a continuum of elements of C.

This property justifies the name of a continuum.

We shall note here that the property of a continuum deduced
above follows also immediately from an analogous property of
perfect sets (deduced in § 40), namely from the fact that every
continuum is a perfect and compact set (since it is compact and
closed, also connected and containing more than one element,
hence not containing isolated points).

5See Fund. Muth., vol. 11, p. 244.
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METRIC SPACES

43. An aggregate M is called a metric space (Hausdorff) if to
every two elements ¢ and b of M there is assigned a certain real
non-negative number p(a, ), called the distance of the elements ¢
and b, in a perfectly arbitrary manner apart from requiring it to
satisfy the following three conditions (so-called distance axioms):

1) p(d, a) =p(a, b) (law of symmetry);

2) p(a, b) =0, when and only when a =1

3) pla, ¢) < pla, b)+p(b, ¢) for every three elements a, b, ¢ of

M (the triangle law).!

A subset of a metric space is evidently a metric space.

Let E denote a set contained in M. An element a of M (be-
longing to E or not) is said to be a limit element of E, if correspond-
ing to every positive number e there exists at least one element p
of E such that
n 0<p(a, p)<e.

The set of all limit elements of E is called the derived set of E
and is denoted by E’. A set E, such that ED E’, is said to be closed.
The complement of a closed set (with respect to M) is called an
open set.

44. Denote by K(p, 7) the set of all elements g of the aggregate
M which satisfy the condition

p(p, @) <,
for a given element p and a given positive number 7.

1A. Lindenbaum remarked that conditions 1) and 8) can be replaced
(retaining, of course, condition 2)), by one condition:

p(a, ¢) < pla, b)+p(c, b),
for every three elements a, b, ¢, of M (Fund. Math., vol. VIII, p. 211).
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Then for a set EC M to be open, it is necessary and sufficient
that for every element p e E there should exist a positive number r such
that K(p, r) C E.

In fact, if the existence of a number 7 for a certain element
of E is denied, it follows that the set

XK (p, _71;) (M=E)=0, for n=1,2,3, . ..,
and for every integer n there exists an element ¢, such that
@) qneK<p, ;1{) (M —E), forn=1,23,...;
.flence, from the definition of K(p, 7)

o(p, gn) < %—,for n=1,2,3,...,

and, therefore, since by (2) ¢» e M —E, for n=1, 2, 3, . . ., from the
definition of a limit element and a derived set, we have
pe (M—E).

But p e E; hence, M —E is not a closed set, and so £ is not an
open set. The condition of the theorem is, therefore, necessary.

Suppose, on the other hand, that the condition is satisfied, and
suppose that E is not open. Then M —E is not closed, and so
there exists a limit element p of M —E, which does not belong to
M—E. Thus pe(M—E), and peE. Since pe E and from
the fact that the condition is satisfied for E, there exists a positive
number 7 such that K(p,7) S E. But, since p e (M —E)’, it follows
from the definitions of a derived set and a limit element that there
exists an element ge M —E such that p(p, ¢) <7, and so ge
K(p, #); from this it follows that K(p, 7). (M —E) 0, contrary to
the result K(p, r) C E deduced above. The condition is, therefore,
sufficient.

We shall prove next that every set K(p, ) (where p ¢ M, and
r>0) is open.

Let p denote a given element of the aggregate M, r a given
positive number, and suppose that g e K(p, r); we have then from
the definition of the set K(p, r)

P(Pr Q) <r.
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The number ri=7—p(p, ¢) is, therefore, positive. It will be
shown that K(g, r1) CK(p, 7). In fact, if g1 € K(g, 71) we have

plg, q)<n,
and so, by the triangle law (condition 3)),

p(p, @)= p(P, @ +p(g, @) <p(p, @ +ri=r;

hence p(p, ¢1) <7, 2. q1 e K(p, 7).

Hence, from the condition for a set to be open deduced above, it
follows at once that the set K (p, 7) is open.

The set K(p, r) (where p ¢ M, and 7> 0) is called an open sphere
of centre $ and radius 7.

We shall next show that for an element p € M to be a limit element
of a set EC M, it is necessary and sufficient that every open set contain-
ing p contain an element of E different from p. The sufficiency of
the condition follows at once from the definitions of a limit element
and the set K(p, 7), and from the fact that the latter is an open
set (for pe M, and r>0).

Suppose now that p e E/, and let U be an open set such that
p e U. By the property of open sets deduced above, there exists a
positive number 7 such that K(p, r)C U. But, since p ¢ E’, there
exists an element ¢ ¢ E such that 0<p(p, ¢) <7; hence ¢g#p, and
qge K(p, 7), and so certainly ge U. The condition is, therefore,
necessary.

45. It will now be shown that the distance p(p, q) is a continuous
function of the two variables p and g (in the whole metric space 1).
In other words, it will be shown that for every two elements po
and g¢o (different or not) of the metric space considered, and
for every positive number e there exist open sets U and V such
that poe U, goe V, and for which the relations

peUand ge IV
imply the inequality

[ p(p, @ —p(po, q0) | <e.

In fact, put U=K <po, -5-), V=K (qo, —;—) for the given ele-

ments po and ¢o and a given positive numbere. If pe Uand ge T,
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then p(p, ) < 2i, and p(qo, q) <—;—, and so, by the law of sym-

metry and the triangle law,

p(p, @)= p(p, Po) +p(Po, 20) +p(q0, @) <p(Po, go) +e,
and
p(Po, @)= p(po, P)+o(P, @) +0(g, q0) <p(p, O+,
whence
—e<p(p, @ —p(po, qo) <e.

46. We shall next show that open sets of a metric space
satisfy hypotheses (I) (§ 1) and (II) (§ 15), and the condition of
normality.

Axioms (4) and (¢7) follow immediately from the definitions of
an open, closed, and derived set respectively and from that of a
limit element. Axiom (777) follows from the necessary and sufficient
condition for a set to be open, deduced in § 44.

To prove axiom (iv), it will be sufficient to remark that, if p
and g are two different elements, then p(p, g) =#>0; the set K(p, 7)
is, therefore, an open set which contains $ but does not contain gq.

To prove axiom .(z), suppose that T=U.V, where U and V are
two open sets. If p e U.V, then, since p ¢ U and from the condition
for an open set (§ 44), it follows that there exists a number 7;> 0,
such that K(p, 1) € U. Similarly, since p ¢ V (and Vis open), there
exists a number 7,>0, such that K(p, rs) C V. Denote by 7 a
positive number <7, and < r,; then, obviously, K(p, r) C K(p, n),
and K(p, r)C K(p, 72), and so K(p, r)C U.V=T. Hence, for
every element pe T there exists a number >0, such that
K(p, ) © T, and this, as we know, proves that T is an open set.

We shall prove now that metric spaces satisfy the condition
of normality (§ 38).

Hence let P and Q be two mutually exclusive, closed sets
(contained in a given metric space M).

If p is an element of the set P, then, since P.Q=0 and Q is
closed, we have P.Q=0; there exists, therefore, by the definition
of a limit element, a positive number » =¢(p), such that K(p, 7). Q
=0. Similarly, there exists for every element ge Q a positive number
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r =¢(q), such that K(g,7) . P=0.2 Denote by U the sum of all
sets K(p, 3¢(p)), where p ¢ P, and by V the sum of all sets
K(g,3¢(g)), where ge Q. The sets U and V are evidently open
(since they are sums of open sets); also PC U, and QC V (since
p e K(p,7), for every >0). It remains to be proved that U.V =0.

Suppose, on the contrary, that U.V »0; there exists an element
a, such that ¢ ¢ U, and a ¢ V. Since a ¢ U and from the definition
of the set U, there exists an element p ¢ P, such that a e
K(p, 2¢(p)). Similarly, since ¢ ¢ V and from the definition of
‘Q, we conclude the existence of an element ¢ge Q, such that a e
K(g, 3¢(¢)). We have then simultaneously

p(p, a) <39(2), and »(g, @) <34(9),

and so (by the law of symmetry and the triangle law)

p(D, 9 <3¢(p)+34(9)-
If ¢(p)=¢(g), we have then

(P, @ <o(p);

hence, ge K(p, ¢(p)), contrary to the definition of the number
o(p) (since geQ, and K(p, ¢(p)) . Q=0). Similarly, we arrive
at a contradiction if we assume that ¢(g)=¢(p), which gives
p(p, @)<¢(q), and peK(g, #(g)). We must, therefore, have
U.V=0.

We have thus proved that metric spaces satisfy the condition of
normality. From this and hypotheses (I) and (II) we conclude
(§ 38) that axioms (v), and (vi7) are satisfied.

Looking over the proof of normality of metric spaces, we
realize that we have proved a property of them stronger even than
that of normality, namely the property expressed in § 39.

1t follows at once from the properties of open sets proved in
this article and from the necessary and sufficient condition for
a given element to be a limit element, deduced towards the close
of § 44, that every metric space is a class K which satisfies

?To avoid the axiom of selection it could be here assumed that 7 =¢(p) is
the first term of a given infinite sequence of rational numbers satisfying the
condition K(p, ) . Q=0 with a similar convention for ¢(g).
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axioms (7), (41), (#41), (#v),, (v), and (viz). It can also be stated
that, if open sets be taken to mean neighbourhoods of elements a
(in a metric space), then a metric space will be a normal (§§ 19,
38) topological space (Hausdorff) ; it will also be a normal class (H)
of Fréchet.

Axiom (vz) may not, however, be satisfied in a metric space.
This follows already from the fact that the set of elements of a
metric space may have any potency. In fact, every aggregate
may become a metric space if the distance between every two
elements of the aggregate be appropriately defined. It would be
sufficient to put p(p, g) =1 for every two different elements of the
given aggregate. (Conditions 1), 2), and 3) of the distance
function (§ 43) would here be satisfied, as could be easily shown.)
Moreover, we shall show in the next article that axiom (27) is
satisfied in every compact, metric space.

47. Let M be a given metric space, £ a given compact set
contained in M (s.e. such that every infinite subset of E has a
non-null derived set), and let ¢ be a given positive number. Take
any element p;, of E. If there are elements p in E such that
o(p1, P)=¢, then let p; denote one of them. If, further, there
are elements p of E such that

p(p1, P)Z €, and p(pe, )= ¢,

let p; be one of them.

Generally, suppose that we have obtained the elements p;,
P2, - . -, pn of E;if there are elements p of E such that

p(Pr, P)Z €, for k=1,2,..., n,

let p,4.1 be one of them.

It will be shown that the sequence of elements py, p2, ps, . . . thus
obtained, cannot be infinite. In fact, if it were infinite, then (from
the fact that the terms of the sequence are all different, since every
element is at a distance ¢ at least from the preceding one) the set
E; of the terms, as an infinite subset of the compact set E, would
have a non-null derived set, and so there would exist a limit element
a of the set E,. The sphere K(a, ¢/s) would have to contain an
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infinite number of elements of E;; in any case, there would exist
indices k& and >k, such that
p(a, pr) <e/s and pla, ) <e/s,

and so, by the law of symmetry and the triangle law,

p(rs £1) < p(Prs @) +o(a, 1) <e

whereas from the definition of the sequence p.(n=1, 2, . . .) it
follows that (for > %) we must have

. p(?k’ Pl) Ze.
We have thus proved

Theorem 48. If E be a compact set, then for every positive
number e there exists a finite sequence pi, ps, . - . . , Py, of elements of E,
such that every element p of E is at a distance less than e from at least
one of the elements of thai sequence.

. 1 . e .
Let now in Theorem 48 €= where m is a positive integer,

and denote the corresponding sequence by 1™, p”, . .., Pan:
Denote by P the set of all different terms of the infinite sequence

plly P21, ey Pnlly Plz, Pzz, .« e ey Pﬂzz: Play .. sy Pn:;s; P147 -

For every element p of E and every positive integer # we shall
have for some index k<#,, (dependent on p and m)

1
p () PF) < -—,
m

and so, from the definition of a limit element (§ 43) and the above,
we conclude that p is either an element or a limit element of P.
In any case, we have EC P+P’=P. Hence, we obtain

Theorem 49. Every compact set (in a metric space) contains
u jinite or a countable subset P such that

EcCP.
REMARK. Theorem 49 is a particular case of Theorem 33 of

chapter I11; the theorems of chapter III, however, deduced as they
are from axiom (vi), which axiom may not apply in a metric
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space, may not hold in a metric space, and in any case, any attempt
at their proof in a metric space should avoid the use of axiom (7).

Theorem 33 itself is not true in some metric spaces (e.g. in
spaces of potency greater than that of the continuum).

As an immediate corollary to Theorem 49 we get:

A closed and compact set is the enclosure of a certain set countable
at most.

We shall note also the following immediate corollary to Theorem
48:

T'he set of all distances between pairs of elements of a compact set E
1s always bounded.

If Ebe a given set, then the upper bound of the set of all dis-
tances between pairs of elements of E (z.e. the upper bound of the
set of all numbers p(p, ¢), where p e E and ge E) is called the
diameter of the set E, and is denoted by §(E). Hence the diameter
of a set is a non-negative, real number, finite or infinite, and
completely defined for every given set E (contained in the metric
space considered). It is easily seen that for a set to be bounded
(i.e. for a set of all the distances between pairs of elements to be
bounded), it is necessary and sufficient that it should have a finite
diameter.

Diameters of sets E possess the following properties:

0(E) =0 when and only when E is a null set or contains owe
element only.

If E,CE, then 6(E1) <é(E).

(This follows at once from the fact that the upper bound of a subset
of a given set of real numbers cannot be greater than the upper
bound of the whole set.)

If El.Eg;éO, then 5(E1+E2) < 5(E1) +5 (Ez) M
(the proof is left to the reader).

For every set E

3(E)=3(E).

(This follows from the continuity of the function p and the defi-
nition of a diameter; the complete proof is left to the reader.)
Theorem 48, as is easily seen, can be also expressed as follows:

Every compact set can be divided into a finite number of sets of
arbitrarily small diameters.
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The diameter of the sphere K (p, ) is certainly <27, but may
even be <27 (e.g. if in the metric space considered there is no
element at a distance less than r from p, then the diameter of
K(p, r) is ). We note also that the diameter of a set E is not in
general the lower bound of the diameters of the spheres which
contain E.

Theorem 49 is true also for semi-compact sets in metric spaces.
(To prove this, it will be sufficient to refer to the definition of semi-
compact sets, § 16.)

Let now M denote a compact, metric space. By Theorem 49;
there exists a set P C M countable at most, such that

M=P.
Let p1, ps, Ps, - . - be a sequence (finite or countable) consisting
of all the elements of P. Consider the spheres K (pk, %), kandn

positive integers, to be rational sets.

It will be shown that every open set of the space M is the sum
of a certain aggregate of rational sets, namely those which it
contains. It will obviously be sufficient to show that, if p is an
element of the open set U, there exists a rational set which contains
p and is contained in U.

Hence, suppose that U is an open set, and p e U. There exists,
therefore (§ 44), 2 number >0, such that K(p, r) C U.

Let # be an integer greater than —f— Since M =P, there exists
an element p, of P, such that p(p, ) <%. If now g be an element
) 1
of the aggregate M, such that p(p,. q) < gl then

1 1
p(p, Q=p(p, Pr)t+r(ts @) <5 + o <7

this proves that ge K(p, r)C U, i.e. ge U We have, therefore,

K(pk, %—)c U
1
4

. 1
On the other hand, p e K(pk, —>, since p(p, pr) <7.

¥
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The sphere K (pk, %) is, therefore, a rational set, which con-

tains p and is contained in U.

We have thus proved that ¢ compact, meiric space satisfies
axtom (vi). Hence, all theorems proved in chapters I-V are true
for compact, metric spaces.

Since Theorem 49, as remarked above, is true also for semi-
compact metric spaces, it follows that these too satisfy axiom
(v2) and all theorems of the preceding chapters.

It should be noted that we have also proved that, if a metric
space M contains a subset P countable at most, such that }/ =P
(z.e. a subset everywhere dense and countable at most), then M
satisfies axiom (v7). On the other hand, every metric space
satisfies axioms (7)-(v), and so, if it also satisfies axiom (vz), Theorem
33 of chapter III will be true in that space, which implies that the
latter will contain a subset everywhere dense and countable at
most. Hence:

For a metric space axiom (vi) is equivalent to the condiiton of
separability, i.e. that the space considered contains a subsel countable
at most and everywhere dense (Fréchet, séparabilité).

It follows readily from the above (by Theorem 33) that, if a
metric space contains a subset countable at most and everywhere
dense, then every set contained in that space contains a subset
countable at most and dense on this set (i.e. such that the set is
contained in the enclosure of the subset).

Furthermore, we shall prove that in a meiric space the following three
properties of a set E are equivalent:

(A) The set E possesses a countable subset dense on E.

(B) The set E possesses the Lindelof property (i.e. Theorem 35 is satisfied in E).

(C) Every non-countable subset of E has at least one element of condensation
which belongs to E.

It will be sufficient to show that the property (4) implies (B), (B) implies
(C), and that (4) follows from (C).

Suppose then, that the set E (contained in a metric space) has the property
(4),and let P (p1, pu, P, - . . ) denote a countable subset of E dense on E, i.e., such
that E C P. Let M be an aggregate of open sets, the sum of which contains E.
To each pair of positive integers (&, n), such that K (pk, 11‘) is contained in at

least one of the sets of M, let there be assigned one of those sets, Uz, » say. Let
p denote a given element of E. It follows from the property of the aggregate M
that there exists an open set U which belongs to M and contains the element p.
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Since p € U, there exists a number >0, such that K(p, ) CU. Choose an
2
integer n> 7 it follows from the property of the set P that there exists an

2
index k such tha.t p(p, )< —; , and so, since # >—- , we conclude readily that

peK (pk, -7;) CK(p, r)C U, which proves that p € Ug, 5.

Assume now that the set E has the property (B).

If E does not possess the property (C) there exists a non-countable subset
N of E such that no element of E is an element of condensation of N. Hence,
for every element p of E there exists a sphere K(p, ), >0, which contains a
subset of IV countable at most. By the property (B) the set E will be contained
in the sum S of at most a countable number of such spheres. We should then
have NC EC .S, which is impossible, since the sum S contains a countable set
at most of elements of N. We have thus proved that the property (B) implies
the property (C).

Suppose now that the set E has the property (C).

Let #» be a given positive integer. To establish the property (4) it will
evidently be sufficient to show that there exists a subset P of E countable at

. . 1
most, and such that every element of the set E is at a distance less than — from
n

some element of P. Suppose, therefore, that such a subset P does not exist.
Let ¢1 be an element of E. Let now a be an ordinal number such that

1<a<, and suppose that all g; have been defined for £<a. The set of all

elements e £<a, is at most countable (since a<Q). It follows, therefore, from

1
our assumption that there exists an element g, of E, such that p(ga, gz) = -;z_ for

£<a.

Denote by N the set of dll elements gz, where £<Q; the set N will ob-
viously be a non-countable subset of E. Clearly, no element of E is a limit
element of N, for if » were such an element, there would exist an element g, of N’

such that 0<P(P1Qa.)< l, and an element gg of N, such that p(p, ¢z)>
p(p, 9ﬁ)< , and so a7, and p(pa, 98)< —. contrary to the property of the

elements of N.

We have thus proved that the property (C) implies the property (4). We
note that we have proved rather more, namely, that the property

(C") Every non-countable subset of E contains at least one limit element belonging
to E implies the property 4.2

With regard to any metric space we can merely state that
it satisfies a condition not quite as strong as axiom (vz), namely

sProved by W. Gross in 1914 (Fund. Math., vol. VIII, p. 234).
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Corollary 2 to axiom (vz) (§ 21), when open sets be substituted
for rational sets in that corollary. In fact, it will be sufficient to

put V, =K< ,-—:—L-) for every element ¢ of a metric space to obtain

an infinite sequence of open sets which satisfy the conditions of
Corollary 2.

We note, that Hausdorff treats this property as a distinct con-
dition which he refers to as the first axiom of countability, in dis-
tinction to (the more stringent) axiom (¢z) which he calls the second
axiom of countability.

Thus all the theorems of chapters III, IV, and V, the proofs of
which are based on axioms (7), (#2), (¢42), (#v),, (v), and (viz) and on
the property just proved (and which do not require axiom (v7) in
all its implications) are true for every metric space. Such are all
the theorems of chapter IV except Theorem 43, and all the theorems
of chapter V except Theorem 47; a modification of this last theorem
will be true for every metric space whereby the expression
‘“‘potency of the continuum’’ is replaced by the expression “potency
not less than that of the continuum’’. But none of the theorems
of chapter III are true for every metric space, except Theorem
38, which follows, as is easily seen, from Theorem 49 after a slight
modification in the proof of Theorem 38.

47a. Two elements p and g of a given set E are said to be con-
nected by an e-chain in E if there exists a finite sequence pg, pi,
P2y . .. -, Dnof elements of E such that

po=2p, Pn=q, and p(pPp_1, ) <e, for k=1,2, ..., n.

It will be shown that if E be a connected set, then for each ¢>0,
every two elements of E can be connected by an e-chain in E.

To prove the above, suppose that the elements ¢ and b of E
cannot be connected by an y-chain in E for some 7> 0. Denote
by A the set of all those elements of E (not excluding « itself)
which can be connected with a by an 7-chain in E; let B=E—A.
We then have aed, b e B; hence A and B are not null sets.

It follows that A.B’=0. For, if there should exist an element
peA.B’, then, since peB’, there would exist an element ¢e B
such that p(p, g)<n. Since p eA4, then by the definition of 4,
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pcanbeconnected with @ by an n-chain in E; and since p (p, g) <=,
it follows at once that ¢ can be connected with a by an n-chain in
E, contrary to the fact that ge B=E—A. Similarly, should there
exist an element p ¢ A”.B, then, since p € 4’, there would exist an
element g e 4, such that p(p, ¢) <7, and so p could be connected
with @ by an n-chain in E, contrary to the fact that pe B. We
have, therefore, 40, B><0, A.B=A.B'=A4".B=0, i.e. E is a
sum of two separated sets, and hence is not a connected set. Our
theorem is, therefore, proved.

The converse is, as is easily seen, not true; e.g. the set of all
rational numbers is not connected, although every two elements of
the set can be connected by an e-chain for every ¢>0. We shall
prove, however, that

If a set E 1s closed and compact, and if every pair of its elemenis
can be connected by an e-chain in E, for every € 0, then E is connected.

To prove it, suppose that E is not connected. The set E being
closed and not connected is by Theorem 13 the sum of two mutu-
ally exclusive, closed, non-null sets 4 and B. Since 40, and
B0, there exist elements ¢ and & such that a ¢ 4 and b e B.
Suppose that @ and b can be connected by an e-chain in E for
every e. In such a chain, in which the first term is ¢ (hence an
element of 4) and the last term is b (and so an element of B), there
exist two neighbouring terms, one of which belongs to 4, the other
to B. Hence, for every positive integer # there exist elements

pn» and ¢, such that pned, g.e B, and p(pa, gn) < —117 If only a

finite number of the terms of the sequence p.(n=1, 2, . ..) were
different, then one of them, p say, would be repeated an infinite

. 1 - . .
number of times, and we should have p(p,g.) < - for an infinity

of n’s, from which it would follow (since g ¢ B, for =1, 2, ...}
that p e B; this is impossible, since p, being one of the terms of the
sequence p. (=1, 2,...), belongs to 4, and 4.B=4.B"=0.
The set of all different terms of the sequence p.(n=1, 2, .. .) is,
therefore, infinite and so, as a subset of the compact set E, hasa
limit element p. Since 4 is closed, and p, ed for n=1,2, ...,
we have peAd. It follows from the definition of p that for every
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. . 1 . .
>0 there exists an index n>—;, such that p(p, p») <o, and since

at the same time p(pn, gn) <%<«r, we, therefore, have p (p,¢:) <20.

From g. ¢ B, for n=1, 2, ..., we conclude that for every ¢> 0 there
exists an element g of B such that p(p, ¢) <20. Since B is closed,
this leads to the result that p ¢ B, which is impossible, for, as
shown above, p ¢ 4 and 4.B=0.

We have thus proved that the elements @ and b cannot be
connected by an e-chain in E for every ¢>0. Hence the condition
of our theorem would not be satisfied. The theorem may, there-
fore, be considered as proved.t

In view of the theorems proved above we are now in a position
to state that in order that a closed and compact set be connected it is
necessary and sufficient that every pair of elements of the set can be
connected by an e-chain in it for every €> 0.

We shall also prove the following property of metric spaces.

The derived set of a compact set (contained in a metric space) s compact.

Procf. Let E be a compact set (which consists of elements of a given
metric space), and let 7 be an infinite subset of E’, the derived set of E. There
exists, therefore, an infinite sequence g1, ¢z, g3, . - . of different elements of E’.
Since q1 € E, it follows, from the definitions of a derived set and a limit element,
that there exists an element p; of E, such that p(q, $:)<1. Let »n derote an

integer >1, and suppose that all elements py, ps, . . ., py—10f E have been defined.
Since g, € E’, there exists, as is easily seen, an element p,, of E different from p,

1
P2, - - -y Pu—~1 and such that p(gy, £,)< —. The infinite sequence 21, 2., p3, . . .
n

is thus defined by induction, and the terms being all different, this sequence is
an infinite subset I, of £. But E is compact; there exists, therefore. a limit
element ¢ of E;. Let 1 denote an arbitrary positive number Since a eEl’

there exists, as is easily seen an index # such that — < — and pla, pu) < ~—,
n 2
and so from p(gy, p,l)< < —_ and the triangle law, we ﬁnd that p(a, g, )<m; it

may obviously be supposed that gn7=a, since the terms of the sequence g1, ¢, . . .
are all different, and so the inequality ¢,,7 ¢ will certainly be true for sufficiently
large #. The element « is, therefore, a limit element of T, and so 7770.

4This theorem is not true for closed sets which are not compact. Z.g. the
set consisting of all points of a hyperbola and its asymptotes is not connected
although it is closed and every pair of its elements can be connected by an €-chain
in it for every e >0.
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Since the sum of two compact sets is a compact set (3 16), it follows at cnce
from the above that

The enclosure of a compact set is a compact set.

48. In §31 we have given the definition of the limit of an
infinite sequence of elements of a topological space. This definition
applies also to sequences of elements of a metric space, where
properties 1, 2, and 3 of §31, and Theorems 39, 40, 41, and 42
(see last paragraph of § 46) still hold good. We shall next prove

Theorem. 50. The relation, lim p,=p is equivalent to the
7y
relation lim p(p, pn) =0.
70

Proof. Suppose that lim p.=p, and let ¢ be an arbitrary
n-y

positive number. From the definition of the limit of an infinite
sequence of elements (§ 31) and the fact that K(p, €¢) is an open
set, we conclude that there exists a positive integer u such that

(3) pn € K(P, E) for n> K,
1.e.
4) o(p, Pn) <e, for n>p,

and so lim p(p, pu) =0.
nyp0

Again, suppose that lim p(p, p») =0, and let U be any open
7P

set such that pe U. There exists, by the property established
in § 44, a positive number e such that K(p, ey C U. But, since
hm o (P, pn) =0, there exists an index u (determined by €) such

that (4) and therefore also (3) hold, which, since K(p, ¢) C U, gives
pn € U, for n> p; this proves that lim p,=p.
n-p 0

Theorem 50 is thus proved.

Suppose now that we have two metric spaces M and 1/,
consisting of the same elements, but such”that, if p(p, ¢) be the
distance of two elements p and g in M, and p,(#, ¢) their distance in
M,, then we do not necessarily always have p(p, g) =pi(p, ).
We then say that there are two metrics, which may be different,
established in the space M. If, however, the relation li‘n p(p, pu)

”n [ee]
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=0 implies the relation lim pi(p, p») =0 (for all elements of the
n-p

aggregate M) and conversely, then we say that the two metrics
are equivalent.

EXAMPLES.

1. In every metric space M a metric, which is equivalent to
the given one, can be established, and such that the new distances
between the elements of M are all =1. It will be sufficient to
put p(p, @)=p(p, ¢ (p(p, q) the former distance) whenever
o(p, ) =1 and pi(p, ¢) =1, if p(p, ¢)>1. The proof, that the new
metric is equivalent to the former one, does not offer any difficulties.

2. The aggregate of all sets of real numbers x;, %,..., x,
will be a metric space if by the distance p(p, g) of two sets
p(x1, %2y« . ., %) and g(y1, Y2, - - - ; ¥m) We shall mean the number

p(?, _fl) =\/(x1—3’1)2+(x2—'3’2)2+ .. +(xm—ym)2
(since, then, the distance properties 1, 2, and 3 of §43 will be
satisfied). The above will be the so-called Euclidian #-dimensional
space.
An equivalent metric will be obtained by putting e.g.

pi(p, @) =|xi—yi|F|oe =32+ . . . X — Yl ;

the proof does not offer any difficulties. The reader can find
easily the geometrical meaning of the new distances and the new
‘‘spheres” (for m =2, and m =3).

Let E and E; be two given sets, the first contained in the
metric space M, in which the distance is denoted by p, and the
second in the metric space Mi, in which the distance is pi. (In
particular, we may have M =M, and p=p;.) If it is possible to
establish a (1, 1) correspondence f between the elements of £ and
E,, such that for every pair p and g of elements of E we have

(5) p(f(2), f(@) = (P, @),

we say, then, that the set £ is congruent to the set E;.  Obviously,
the set E, is then also congruent to the set E. The sets E and E;
are then said to be congruent; in symbols E = E;.
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The function f which satisfies condition (5) (for every pair
p and g of E) is said to establish an zsometric mapping of the set
E on the set E;=f(E). It follows easily from (5) that the function
f is biuniform and continuous in the set E.

If each of two given sets 4 and B can be expressed as a sum
(A =A1+A2+ .« .. +An, .B=B1+B2+ .. +Bn) of the same
finite number of mutually exclusive, congruent subsets (4; 2 B,
Ay ~B,, ..., Ay==B,), then A and B are said to be equivalent by
division (into a finite number of subsets).

If a set P is congruent to a subset of Q, and Q is congruent to
a subset of P, then the sets P and Q are not necessarily congruent
to each other; it can, however, be shown that P and Q are then
equivalent by division.? Two sets, which are equivalent by division
to a third, are equivalent by division to each other. (The proof
follows readily.) If A, C A4, B,C B, A=~ B, A=~ B,, then the sets
A —A, and B—B, are not necessarily congruent, and may not be
even equivalent by division.

49. The aggregate of all infinite sequences of real numbers x,
X9, X3, . . ., such that the series

X2 F 292+ L L.

is convergent and where the distance between two elements
p(x1, %2, X3, . . . ) and g(v1, ¥2, V3, - . . ) is given by the number

(5 ) = Gy a3+ G

(which is always finite, since, owing to the convergence of the series
of squares of the coordinates, the series under the radical sign is
always convergent) is called a Hilbert space.

* An m-dimensional Euclidian space is evidently congruent to
a certain subset of the Hilbert space, namely to that one which
consists of all infinite sequences x1, Xs, X3, . . . such that x, =0 for
k>m.

Let P and Q be two metric spaces in which the distances are denoted by
0 and p: respectively. Fréchet denotes by [[P, Q]] a space which consists of all
the pairs (p, g), p € P and ¢ € Q and where the distance p between two pairs
(1, ¢1) and (ps, ¢2) is defined by the relation

5See S. Banach and A. Tarski, Fund. Math., vol. VI, p. 251.
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pl(p1, q1), (B2, @)1=~ (P1(P1, £2))2+(p2(gs, g2))? €
Fréchet calls the sum of the dimensions dP and dQ the dimension of the

space [[P, Q] .. .
If H be a Hilbert space, then, as is easily seen, the space [[Z, H]] is isometric

with the space H. In order to obtain an isometric ‘mapping it will be sufficient
to correlate with each sequence (x1, %3, %3, . . . ), which is an element of a Hilbert
space, the pair of sequences

(%1, %3, X5, - - - ) and (xz2, X4, Xs, - - - )-

Theorem 51 (Urysohn). A topological space which satisfies the
axiom of countability and the condition of normality is homeomorphic
with a certain subset of a Hilbert space.

Proof. Let T denote a given topological space, which satisfies
axioms (vi) and (vi7). Consider all the pairs W;, W; of rational
sets (i.e. terms of the sequence (1), § 21) such that W; C W;. Let

(6) (Wku I/Vl)>1 (sz! I/I/lg)y LR <Wkn’ VVln)y O
be an infinite sequence consisting of such pairs.”

Let # be a given index. The sets I/_an and T—W, are closed
and mutually exclusive (since Wkﬂ C W, and W, isopen). There

exists, therefore, by the lemma of Urysohn (§ 41) a real function
f»(p) defined and continuous in the whole set T, and such that
0=<f,(p)=<1 throughout, fu(p)=0 for peWs, and fu(p)=1 for

peT—W,.
For every element p of T denote by ¢(p) the infinite sequence
1 1 1
) f(®), é-fz(P), —z;fs(;b), cees an(?), e

61t is left to the reader to prove that the distance p so defined satisfies the
three required conditions (provided these conditions are satisfied by the distances
p1 and p3).

“Such pairs do exist. For let p denote an element which belongs to an open
set U. By axiom (i) there exists a rational set W such that p e W U; by
axiom (v7f) there exists an open set V such that pe V and ¥V < W; hence, by
(v2) there exists a rational set W* such that pe W*C V, and so W*CV C W
We can always suppose that the sequence (6) is infinite, repeating if ngcessary
one of the terms an infinite number of times. :
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The sequence (7) is an element of a Hilbert space, since, on
account of 0=<f,(p) =1, the sum of the squares of the terms of (7)
is convergent.

It will be shown that T is homeomorphic with the set ¢(7T).

In order to prove it we shall show first that ¢ establishes a
(1, 1) correspondence between the elements of the sets T and (7).
It will be sufficient for that purpose to show that, if $ and ¢ be two
different elements of the set T, then ¢(p)#*¢(¢). Hence, suppose
that pe T, g e T, and p54g.

By axiom (7v) and Corollary 1, § 21, there exists a rational set
U, such that p ¢ U and ¢g¢ U; by axiom (v22) (and Corollary 1,
§ 21) there exists a rational set ¥V such that pe V, and VC U.
Since U and V are terms of sequence (1) of § 21, and VC U, and,
from the definition of the sequence (6), the pair of sets U, V is a
term of the sequence (6); we have, therefore, for some 7, U=W',n
and V=W, ; hence p ¢ W, , and g¢ W, (since g¢ U, and vcu),
ie. ge T —W, . It follows, therefore, from the definition of the
function f, that f,() =0 and f.(¢) =1. Hence the sequences ¢(p)
and #(¢) differ in their #*® terms and thus represent different
elements in the Hilbert space. We have proved, therefore, that
from p =g follows ¢(p) #Z¢(g).

In virtue of Corollary 4 to Theorem 22, it will be sufficient for
the proof of the relation T #4¢(T) to show that, if E be any subset
of T, then
(8) $(T.E)=¢(T) . [¢(E)]"

Let, therefore, E denote any subset of 7. Let, further, b denote
an element of the Hilbert space such that b e ¢(7.E’); there exists,
therefore, an element a ¢ T.E’ such that b=¢(a). Let n be an
arbitrary positive number. Take a positive integer m such that

1 N
9 w3 = 7.

Since the real functions f,(p) are continuous in T at a, there
exists for every positive integer » an open set U,C T such that
p e Uy, and
10) [fula@) —fu(p) | <——, for p € Un.

2m
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Put U=U,.U. . . . U,; this will be an open set containing «,
and from (10)
(11) | Fu(a@) —fa(p) | < 5’;7 forpeU,n=1,2,...,m.

Since ¢ e T.E'C E’, and a € U, there exists an element p ¢ U.E,
different from a; (11) will, therefore, hold for such an element p.
From the definition of distance in a Hilbert space we have
an 6@ 6N =4/ T L (fu@ )

n=1

But |f,,(a) —fa (D) [S 1, for n=1, 2, 3,. . . (since f, is contained
in the interval (0, 1)); we have, therefore, from (11) and (9)

© z 1 s _1
Z @ —fm@FS B o (@ —L0F + 2 o
n* L < 7 0
<m. 4m2 +22m_1 - 4 + 2 <17 !

arid so from (12)
(13) p(e(@), ¢(p)) <n;

since ps£a, and the function ¢ is biuniform, we have ¢ (p) =¢(a),
and since pe U ECE, we have ¢(p) e9p(E). We have thus
proved that for every positive number n there exists an element
o(p) of ¢(E) different from ¢(a), and for which (13) holds. It
follows from the definition of a limit element and a derived set
of a metric space (a Hilbert space is such) that d=¢(a) ¢ [¢(E)]’,
and so b ¢ ¢(T).[¢(E)]’ (since a e T, and b=¢(a) e $(T)).

Since b is any element of the Hilbert space belonging to the set
¢(T.E’), we have proved that

(14) o(T.E") Co(T).[s(E)]"

Let now b denote an element of the Hilbert space such that
bed(T).[¢(E)). We have then b e¢(T), and so there exists an
element a e T such that b=¢(a). Let U be any open set contained
in T such that a e U. Since a ¢ U, by axiom (2iz) and Corollary 1,
§ 21, there exist two rational sets 77 and V, such that a ¢ V1, and
V1C VaC U. Thus the pair (V3, ) is a term of the sequence (6),
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and so we have for some positive integer m, Vi=W;_ and V,=W,
Eom (I

1
2m—1

Put 9= ; since ¢(a) = b ¢ [¢(E)]’, there exists an element e of

" the Hilbert space different from b and belonging to ¢ (E), and such
that
(15) p(b, &) <m.

Since e ¢ ¢(E), there exists an element p ¢ E such that e=¢(p).

It follows that pe U. In fact, if p& U, then certainly pe W, _,
since W, =V, C U, and so peT —W, ; from the definition of
fm it would follow that f,,(p) =1, while f,,(a) =0, since a e V:C V1
%,

Hence, from (12)

p(b, ©) =p(3(@), 6N = gy =,

contrary to (15). We must, therefore, have p ¢ U. From ¢(p)=e
#“b=¢(a) we get p£a. We have thus proved that in every open
set UC T, and containing a, there exists an element p of E different
from a. This proves that a ¢ E’, and so alsoa e T.E’ (sincea e T);
hence, b=¢(a) € $(T.E’). We have thus proved that

o(T).[o(B)) Co(T.E),

which, on account of (14), gives (8).

The relation T hy¢(T) is, therefore, proved and with it also
Theorem 51.

It follows from Theorem 51 that in a topological space satisfying
the axioms of countability and normality a metric can be established,
i.e., for every pair of elements of such a space a function p(a, b)
can be defined such that the conditions 1), 2), 3) of § 43 are satisfied
and such that the definition of a limit element given in § 43 is in
accordance with that given in a topological space.

Since, as was proved in §46, every metric space (with a
proper definition of neighbourhoods) is a normal topological space,
Theorem 51 leads at once to the following

CoOROLLARY. Every metric space which satisfies the axiom of
countability, is homeomorphic with a certain subset of a Hilbert space.
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It may be easily concluded from the above that of all metric spaces which
satisfy the axiom of countability, a Hilbert space has the greatest dimensional
type. To prove the above it will be sufficient to show that a Hilbert space
satisfies the axiom of countability.

Hence, let every element (xi, xs, X3, - .. ), for which the numbers x;(z=1, 2,
3, . . .) are all rational with only a finite number of them different from zero,
be a rational element of the Hilbert space. The set of all rational elements is,
as is easily seen, countable. Furthermore, let a rational sphere be a sphere
K(p, 7), in which p is a rational element of the Hilbert space and » a rational
number. The aggregate of all rational spheres is evidently countable. Hence,
it will be sufficient to show that every open set contained in the Hilbert space
is a sum of a certain number of rational spheres, 7Z.e. that if g is an element of
the open set U, there exists a rational sphere containing g and contained in U.

Hence, let ¢ be an element of the open set U'. By the condition for an
open set, deduced in § 44, there exists a positive number e such that K (g, €) C U.
The element ¢, being an element of the Hilbert space, is an infinite sequence of
real numbers

X1y X2, X3y + - -
such that the series x;2+x:2+x35>+ . . . is convergent. There exists, therefore,
an integer m such that
2 2 62
(16) Xl + Xz + . L < Th

For every real number x; there exists a rational number w; such that
€
an X —wp | = ——.
[ —u | o

Let 7 be a rational number such that
(18) e/ <r<¢€/s.
Denote by p the infinite sequence
Wiy, W2y « - ., Wiy, 0,0,0, ...
P will be a rational element of the Hilbert space, and from (17), (16), and the
definition of distance in a Hilbert space,

(19) (P, P<e/s.

It follows from (19) and (18) that ge K(p, ), where the sphere K(p, r) is obviously
rational. But from (18) and (19) it follows readily that K(p, ) CK(qg, €) and
so C U. We have proved, therefore, that a Hilbert space satisfies the con-
dition of countability.

50. A set which is the sum of a countable aggregate of closed
sets is called (Hausdorff) an F, and its complement, i.e. the product
of a countable aggregate of open sets, a G5s. Obviously, the sum
of a countable aggregate of sets F, isan F,, and the product of a
countable aggregate of sets G; is a G;.
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Theorem 52. Every closed set (in a metric space) is a G;.
Proof. Let F be a given closed set. Denote by I', the sum
> K(p, —’];—), where the summation extends to all elements p of F.

The set T',, is evidently open (as a sum of open sets).
It will be shown that

(16) F=I‘1.1‘2.I‘3 . e o
Since obviously FC T4, for n=1, 2, . . ., it will be sufficient
for the proof of (16), to show thatif geT,, for n=1,2,3, ..., then

ge F. Hence, let g be an element such thatg e Ty, forn=1,2,3, ...
It follows from the definition of T', that, if ¢ € 'y, there exists an

element p, of F, such that ¢ e K (p,., —?lz—> , 1-€. p(Pmy @) < %

Since this inequality holds for n =1, 2, ..., gis either an element
or a limit element of F and so is an element of F in any case,
F being closed. (16) is, therefore, proved; and this establishes the
truth of Theorem 52.

Passing to complements, we obtain at once from Theorem 52

Theorem 62a. [Every open set (in a metric space) is an F,.

51. Suppose a function f(p) to be defined at the elements of a
set E contained in a metric space so that the values of f are
elements in the same or another metric space.

Let po be an element of the set £ =E-+E’, i.e. of the enclosure
of E. (Hence, if p,¢ E, then f($0) may not be defined.)

Denote by w(po, €), for every positive ¢, the upper bound of all
the numbers

p(f(2), £(2)),

where p and ¢ are any two elements of the set E.K (o, ¢). Clearly

w(po, €)= w(po, €), for € <¢;
hence, the limit

an w(po) =lim w(pq, €)
>0

exists and is a non-negative number, finite or infinite.
This limit is called the oscillation of the functzon f in the set E at
the element p.
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Theorem 53. If f(p) be a function defined in a set E, then the
set of all those elements of E, at which the oscillation of f in E is 2 a,
s closed.

Proof. Let f(p) be a function defined in E, a a given real
number = 0. Denote by P the set of those elements p of E, at
which ()= a, where w(p) is the oscillation of f in E at the element
p. Let p, be a limit element of P and e an arbitrary positive
number. Since p, e P’, there exists an element p of P such that
9 € K(po, €), and, since K(po, €) is open, there exists a number 7> 0,
such that K(p, n) CK(po, €). From p e P and the definition of P,
we have w(p)= a, and so certainly w(p, 7)= a. It follows from the
definition of the number w(p, 7) that there exist two elements p,
and p. of the set E.K(p, n) such that

(18) p(f(p1), f(22)) > a—¢;

and, since K(p, n) T K(fy, €), £1 and p. belong to the set E.K(po, ¢).
and so from (18)
w(?Dy 6) > a—¢€,

since e is an arbitrary number, we conclude from (17) that w(po) = a,
i.e. that py e P. We have thus proved that P is closed. Theorem
53 is, therefore, established.

CoRroLLARY. If f(p) be a function defined in o set E, then the
set of all those elements of E, at which the oscillation of f in E is zero,
s a Gg.

In fact, denote by P the set of all elements p of E, at which

«(p) =0, and by P, the set of all elements p of £, at which w(p) = 717

The sets Pu(n=1, 2, 3, . ..) are all closed by Theorem 53; hence,
theset S=Pi+P,+...is an F,, and so CS is a G;. But,
obviously, P=E ~S=E.CS. Since E is closed, it is a G; by
Theorem 52. The set P is, therefore, a product of two G;’s and

so itself a G;.

Theorem 54. In order that a function f(p) defined in a set E
be continuous in E at an element py, it is necessary and sufficient that
the oscillation of f in E at the element p, be equal to zero.
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Proof. Suppose that the function f is continuous in £ at an
element po of that set. Let ¢ be an arbitrary positive number.
Since f is continuous in E at the element p,; and the set K(f(p0), €)
is open and contains f(#,), there exists an open set U containing
po and such that the relation

peUE

implies the relation f(p) e K(f(bs), €)-

Since py € U, and U is open, there exists a number 7>0, such
that K (po, 1) cu. For p € E.K($0, 7) we shall have p ¢ U.E, and
so f(p) € K(f(po), €), i.e. p(f(®0), f($)) <e.

If then p1 e E.K(po, 7) and p» € E.K(po, 1), we have

p(f(p1), F(22)) = p(f(£0), F(£1)) +p(F (1), f(£2)) <2e.

It follows from the above and from the definition of the number
w(po, 1) that w(po, 1) <2¢ and so certainly w(po) <2¢; hence, since €
is arbitrary, w(po) =0. The condition of our theorem is, therefore,
necessary.

Suppose now that w(p,) =0 at a given element p; of the set E.
Let V be any open set containing f(p,). There exists, therefore,
a number >0 such that K(f($o), €) S V. Since w(po) =0, there
exists by (17) a number 7> 0, such that w(f,, 1) <e. From the
definition of the number w(pq, 7) it follows that, if p ¢ U.E, where
U =K (po, 1), then p(f($0), f(£)) = (o, n) <e, and so f(p) e K(f(po), €
C V. We have thus proved that, if w(po) =0, then for every open
set V containing f(p,), there exists an open set U containing po
and such that the relation p e U.E implies the relation f(p)C T
This proves that the function f is continuous in E at p,. The
condition of the theorem is, therefore, sufficient.

52. Theorem 55. If f(p) be a function defined at the elements p
of a closed and compact set E, and continuous in that set, then for
every positive e there exists a positive number n such that the conditions

(1) peE,qeE, p(p, 9 <n
imply the inequality
(2) p(f(P), (@) <e.

Proof. Let € be a given positive number and a any given
element of the set E. Since f is continuous in E at a and since
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a) e K| f(a ,—e— , there exists an open set U containing a, such
2

that the condition b e U.E implies the relation f(b) e K (j’(a), —;_>

From a € U and the condition for an open set as in § 44, it follows
that there exists a positive number 7 =r(a) such that K(a, 7(a)) C U.
Hence, for every element @ of E there exists a sphere K (a, 7(a))

such that
3) p(f(@), f(8)) < 5, for be E.K (a, ().

For every element a of E denote by Q(e) the set
(4) Q@) =K(a, % r(a))-

Let M be the aggregate of all spheres Q(a) corresponding to the
elements ¢ of E. Hence, every element of E belongs to at least
one of the open sets of the aggregate M (since we have from
(4) a € Q(a) for a ¢ E). By the Borel-Lebesgue theorem (Theorem

36, § 25) there exists a finite number of sets Q(a1), Q(as),. . ., Q(ax)
of the aggregate M such that
(5) EcQ(a)+Q(as)+ - .. +Q(an).

Let n be a positive number satisfying the inequalities
(6) 7= 3ir(e), fori=1,2,...,n

Let now p and ¢ be any two elements of E, which satisfy con-
ditions (1). By (5), there exists an index E<#, such that p ¢
Q(ax), and so from (4), p € K (az, 37(az)), e

(7N plar, )< 3r(ap),
and since from (1) and (6), p(p, ¢) <n< %r(az), therefore,
P(ak) g)s p(akr P) +P(P: g) <7(ak) ;

i.e.
(8) g e K(ap, 7(ar)),
and so from (7) certainly,

(9) p e K(ay, r(az)).

It follows from (8) and (3) that
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(10) p(flar), F@) <
and from (9) and (38), that
an p(fla), F#)) <5

relations (10) and (11) give at once (2).

Theorem 55 is, therefore, proved. We express it also by stating
that a function continuous in a closed, compact set is uniformly con-
tinuous in that set.

63. We shall consider now, in particular, countable metric
spaces. These are of importance owing to the fact that many
‘metric spaces have countable subsets everywhere dense, which
are themselves countable metric spaces. We proceed to prove

Theorem 56. Every couniable metric space is homeomorphic
with a certain set of real numbers.®

Proof. Let P be a given countable, metric space, and let
p(#, ¢) denote the distance of two elements p and ¢ of the space P.
For every element » of P and for every positive real number 7,
denote by S(p, 7) the set of all elements ¢ of P such that p(p, ¢) =7
(in particular, the set S(¢, ) may be a null set).

Let p be a given element of P, and ¢ a given positive number.
The sets .S(p, 7), where 0 <7 <e¢/,, constitute a non-countable aggre-
gate of sets (since 7 can take a continuum of different values) and,
as is easily seen, S(p, 7).S(p, #") =0, for r=+'. Since P is countable
there exists (for every element p ¢ P and for every positive number
€) a real number r =¢(p, €), such that 0 <»<e/s, and S(p, ) =0.

The sets K(p, ¢(p, €)) are, as is easily seen, both open and
closed (since the sets K(p, ) are open, and the sets K (p, r) +S(p, )
are closed),? and for » =¢(p, €) we have S(p, ) =0. This is true also

sEvery set of real numbers constitutes a metric space, if by the distance
of two numbers x and y belonging to the set in question, we mean the number
| x—y].

9The set K(p, ) +S(p, r) is evidently the set of all elements g of P, which
satisfy the condition p(p, ¢)=7; it is, therefore, a closed set (since the distance
p(p, q) is a continuous function of the variables p and ¢, § 45).
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in case K (p, #(p, €)) is a null set (since a null set is both open and
closed).

LemMa. If Q be a subset of P, which is both open and closed,
and € be a given positive number, there exists a division Q=Q;+
Q2+ Qs + . . . of Qinto the sum of mutually exclusive sets Qun(n = 1,
2,...), which are both open and closed and such that 8(Q,) <e,

for n=1,2, .... (where §(Q.) is the diameter of the set Q,, § 47).
Proof. If Qis a null setit is sufficient to put Q, =0, for n=1,
2,.... If Qisa finite set, e.g. a set consisting of the elements

qi, 2, - - - , m» it is sufficient to put @, =(gx), for n=1,2, ... ,m and
Q»=0, for n>m. It will be sufficient, therefore, to consider the

case when Q is countable. Hence let

(1) q1, 42, 93y « -

denote an infinite sequence, consisting of all the (different) elements
of Q.

Put 0:=0Q.K (g1, (g1, €)); Q1 will be a set both open and closed
(as a product of two such sets) where obviously ¢ € Q1.

Let now # be a given integer >1, and suppose that we have
defined already the sets Q1, Q2, . . ., Q,_1, which are both open and
closed, and whose sum contains the elements ¢i, ¢2, - . -, ¢o—y. If
there exist terms of the sequence (1) which do not belong to the
set O1+Q:+ . .. +Q,_1, then let g; denote the first of them, and

put
(2) Qn=Q'K(gs: d)(gsr e)) _(Q1+Q2+ L +Qu-—l);

otherwise put Q. =0.

The set 01 +Q2+ . . . +Q, will, in any case, contain the elements
q1, @2, - - ., qn, since the set Q1 +Q.+ ... +Q,_; contains the elements
qi, G - - - 5 @y—1, and, if it does not contain the element g,, then
from the definition of the element ¢;, we must have ¢, =¢,, where
gs is an element of the set (2).

Since the sets Q1, @, ..., Q,_; are both open and closed, the
same property is possessed also by their sum Q1 +Q:+ ... +0Q,_;;
furthermore, since the sets Qand K (g,, ¢(qg;, €)), and, therefore, also
their product, are both open and closed, it follows from (2) that
Q. is both open and closed.
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Finally, (if Q. is not null) we have from (2) and the definition
of the numbers ¢(p, €

QS K(g,, ¢(g,, ) K (qs, %)

and so (from the definition of the sets K(p, 7))

8(Qn) <e.

The sets Q.(z=1, 2, . . .) are thus defined by induction, and,
as is easily seen, they satisfy all the conditions of our lemma. The
lemma is, therefore, proved.

The set P itself is obviously both open and closed (in the set P);
we can apply, therefore, the above lemma, putting Q=P and e=1.
We thus obtain a division

3) P=P+P+Ps+ .. .,
where P,(n=1, 2, .. .) are mutually exclusive sets, both open and
closed, and for which 8(P,) <1, for n=1, 2, . ..

Since each of the sets P,(z=1, 2, ...) is both open and closed,
we can apply to it the above lemma, putting e=%, which gives (for
every integer #) a division
€] P,=P, 1+P, o+Pp 3+ ...,
where P, ; (E=1, 2, ... ) are mutually exclusive sets, both open
and closed, and where 8(P,, ) <3, for k=1, 2, . ...

Let now £ be an integer > 1, and suppose that we have defined
already all sets P, ,, ... »,_, both open and closed, where 7, 7.,

. ,M,_; is any combination of ¥ —1 integers. Let ny, #, ..., 7,3
be any combination of £ —1 integers. Since the set P, ,, .., u,_, iS
both open and closed, we may apply to it our lemma, putting

€ =—}1—. which gives the division

Pm,m,..,n - =-Pm, Mo, ooy Mp ,1+Pm, N2y ooy N ,2+Pm,n:, e Mp ,3+ -
k—1 k—1 k-1 1
where P, . ugp_ynp (e =1,2,3,.. .) are mutually exclusive sets,
both open and closed, and where

1
(5) 6(Pm, N2y eoos Np—y, "k) < ‘E“a

for m, =1,2,3, ...

]
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The sets P, p,..... ny» Where 71, 73,..., m, denote any com-
bination of % integers, are thus defined by induction.

Let now $ be any element of the set P. Since the terms of the
sum (3) are mutually exclusive sets and p € P, there exists a definite
index 7, such that p e P,. Similarly, we conclude from (4) the
existence of a definite index #n, such that p € P,, ,,. Repeating this
argument indefinitely, we arrive at an infinite sequence of indices

(6 N1, Moy Mgy - - -
completely defined (by the element p), and such that
(7) Per.m...,nk: fOI’k=1,2, 37---
Put
1 1 1
(8) fp) = -3

m+ m+ mgt+

this will be a certain irrational number defined by the element p.
It is easily seen that not only does (7) imply (8), but conversely
(8) implies (7) (since for every element p of P there exists a unique
infinite sequence (6) of indices, for which (7) holds).
It is also easily seen that, if p and $’ be two different elements of

P, then f(p)#=f(2"). In fact, if f(p) =f(p"), the numbers f(p) and

f(@") would have the identical developments as continued fractions,
and so from (8) and (7)

P er.nz ..... np and P’ e-Pm,m ..... nk,rfor k =i,i2, P
hence, from (5)
p(p, ") <—]i—, for 2=1,2, ...,

which is impossible, since p=p’.
The function f(p) establishes, therefore, a (1, 1) correspondence
between the elements of the sets P and f(P).
It will be shown that Pk f(P).
Let p; be a given element of P, and
nlor 7120, 7230, s ..
a sequence of indices corresponding to that element, 7.e. such that

(9) PoePnln'n,o nz% fork=1,2, 3, ..

.....
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Hence,

(10) fpp=—a_ 11

-+ m0 4 'n3°—|—. o
Let e be an arbitrary positive number. It follows from the
well-known properties of continued fractions that there exists a

positive integer %k such that for every infinite sequence (6) of
integers, for which

nm=n01=1,2,...,k,
the inequality

ap |GL L L) (G L)
m+ m+ nat mo+ nd+ md+

is satisfied.

<e

Since the set P,po up,... n,0 iS open, it follows from (9) that
there exists a positive number ¢ such that K(pe,0) C P,
Hence, if p be an element of P such that

(12) P(PO: P) <o,
then

nad, ..., npte

pePy, nl. ., np0r
and so, certainly,
P é'P‘nx°,‘ﬂz°,---y7ii°7 for 1‘=—'1, 2, “ e ey k.

The first £ terms of the sequence (6) associated with the element

b, are, therefore, 7,°, #n?, ..., nkﬁ, which fact, as has been proved,
implies the inequality (11), and so from (8) and (10), the inequality
(13) | () —f(bo) | <e.

We have thus proved that, for every element p, of P, and for
every positive number ¢, there exists a positive number ¢ such that
the inequality (12) implies the inequality (13) for the elements of
P. The function f(p) is, therefore, continuous in P.

As previously shown, f(p)#f(p"), for p e P, p’ e P, and p=p’.
The function f(p) is, therefore, biuniform in P; let g(x) denote the
inverse function of f. Hence, g will be a function defined in the
set f(P) of real numbers. To prove that P &, f(P) it will be sufficient
to show that the function g(x) is continuous in the set f(P).
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Hence, let x, denote a given element of f(P) and let
1 1 1
nl+ nt+ n'+
be a development of x; as a continued fraction. Put po=g(xo);

from (14) we get (10), which, as we know, implies the relations (9).
Let e be an arbitrary positive number. Choose a positive

(14) Xo

integer % such that 71 <e. Thereexists, by the well-known property

of continued fractions, a positive number ¢ such that every irra-
tional number x which satisfies the inequality

(15) ]x—xo ’ <o,
may be written as a continued fraction in the form
. 1 1 1
16 x= e,
(16) nm+ ne+ ns+
where
an n;=n0 fori=1,2,..., k.

Hence, if x is a number of the set f(P) satisfying the inequality
(15), then, putting p =g(x), we shall have f(p) =x and, therefore,
from (16) and (17) (and the fact that relation (8) implies (7))

(18) p € Pm", 7% ..., npo

From (18), (9), and (5), and since—l-lc; <e,we find that p(p, ) <e,
1.e.
(19) p(g(x), g(x)) <e.

We have thus proved that for every number x, of the set f(P),
and for every positive number ¢, there exists a positive number ¢
such that the inequality (15) results in the inequality (19) for the
numbers x of the set f(P). This proves that the function g(x) is
continuous in the set f(P).

We have thus proved that the function f establishes a homeo-
morphic mapping of the set P on the set of real numbers f(P).
Theorem 56 is, therefore, proved.
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Every countable set of real numbers is, as is well known,
homeomorphic with a certain set of rational numbers;® hence
Theorem 56 leads to the following

COROLLARY. Euvery countable metric space is homeomorphic
with a certain set of rational numbers.

Every countable set of real numbers which is dense-in-itself
is, as we know, homeomorphic with the set of all rational numbers;
it follows, therefore, from Theorem 56, that every countable metric
space which is dense-in-itself is homeomorphic with the set of all
rational numbers.

Thus e.g. the set of all rational points of the Hilbert space (§ 49)
(which is everywhere dense in that space) is homeomorphic with
the set of all rational numbers.

Hence, the set of all rational numbers has the greatest dimen-
sional type (§ 12) of all metric spaces.

If a countable metric space P contains a subset dense-in-
itself (not null), then this subset is homeomorphic with the set
W of all rational numbers, which results in the fact (by the corollary
deduced above) that P and W have the same dimensional type.

It follows from the above that if a countable metric space P
has a dimensional type different from that of W (hence a smaller
one), then it does not contain a non-null subset dense-in-itself,
and so it must be scattered.

54. The Hilbert space is a natural generalization of the m-
dimensional space for m =, (owing to the definition of distance),
but it possesses a somewhat artificial limitation on the coordinates,
namely the condition of convergency for the sum of the squares
(a condition which is necessary to assure that the distance between
two elements is always finite). Fréchet raised the following
question: Let E be a set whose elements are the infinite sequences
of real numbers

X1, X2y X3y - « -

10]n fact, let X denote a countable set of real numbers, and 1} the set of all
rational numbers. The set X + W is, therefore, countable, and so (see appendix,
§ 9) similar to the set 1.  But, as is easily seen, the similar mapping of the set
X+ W on the set TV is at the same time homeomorphic.
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Is it possible to establish a metric in E so that, in the metric
space thus obtained, the necessary and sufficient condition for the

element
(1) P(xly X2, X3y - « - )

to be the limit of the infinite sequence of elements p,(z=1,2,...),
where p, is an infinite sequence of real numbers,

(2) Pn(i’h(u), xz("), xa(”), e ),
is that the relations
(3) lim x;,™ =x;
npQ
hold for

1=1,2,8,...7

Fréchet has proved that the answer is in the affirmative, al-
though the definition of distance which he adopted for the set E
is somewhat artificial. He chose, namely, the distance between
two elements

P(xly X2, X35 « - - ) and q(ylr Y2y V35 - - -)

to be the number

[=e]

4 b, )= B —— LTl
) 29 =1 n!(14|xs—ya|)

It will be necessary to show first of all, that the function (4)
possesses the three required properties of distance. It is evident
that it possesses the first two; it will be sufficient, therefore, to
prove the triangle property.

Let ¢ and b be any two real numbers. We have, as is well
known,

la+b]<la| +[o],

and so
le+d| _,_ 1 . 1 _ |a]
1+]a+b] 1+[a+b] I+[al[+[o] 1+|al+]0]
L Lol < _lel o _lol |
1+|al+[6] — 1+[e] " 14]B]"

hence, for a=x,— yu, b =y, —2n,
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5 ’ Ixn""an < lxn_yn[ + Iyn—znl .
®) 1+]xn—z,,| 1—I—lxn—y,,| 1+lyn—znl

Hence, if 7 be the sequence (21, 2, 2, - . . ), then (4) gives at once
(on account of (5)) the inequality

P(P: T)SP(P’ Q) +P(g: 7’).

The set of all infinite sequences of real numbers, in which the
distance function is given by (4), becomes a metric space which
is denoted according to Fréchet by E,.

Let now p.(n=1, 2, .) be an infinite sequence of elements
of the space E, such that lim p.=p, where p, and p are the
-)

sequences (2) and (1) respectively. Since lim p,=32p we have

n-p
nP
But evidently from (4)
1 | 2;—a™ | < 1 | x; —a, |
Gl 14— T S a1 g —x® =o(®: £2),
for :=1,2,..., and so from (6)
e (1)

fim = =m? ] =0, fori=1,2,...;

100 1+ \ X; —-—xi(") I
1.€.

lim (1—— —1——> = 0;

n-yc0 1+] X; ——x,-(") I
hence,

. 1

lim ——————— =1,

n—y 0 1+ | X —xi(”)
and so

lim (14| x—x"|) =1,

n-py
and, finally,

lim |x;,—%™| =0,fori=1,2,...;

n—y
this gives (3).
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On the other hand, let p,(n=1, 2, ...) be a sequence of
elements of E,, for which (3) holds. Let e be any positive number.
Choose a number m sufficiently large so that

L1

€
7 - < =
@ z'=7zn:+1 12! 2
21
(which is possible, since the series e—1=3 ol is convergent).
1 H
Since —M <1 for every real a, we have certainly
1+]a]
co ()
() § L _lmo="l e
=1 4l 14+ | —x™| T 2

as a result of (7).

In virtue of (3), there exists an index p such that

]x,-—x,-(”)] < —e—, forn >up,2=1,2,...,m,
2m
and so, since
— {al S[al,fori=l,2,...
it (1+]al)
we have
m
| 2;—2, | € €
< m. =—,f >
Ex i (14| o —x, ) " 2m g 1o nTH

hence, from (8) and the definition of distance, we see that

p(P, P.) <e, for n > p,

from which it follows that lim p,=2.
5 ol

Hence, in order that an element p be the limit of an infinite
sequence of elements of the space E,, it is necessary and sufficient
that the *® coordinates of the terms of the sequence approach the
#*" coordinate of the element p, for every index i.

Let the infinite sequences of rational numbers, with all but a
finite number of terms in each sequence equal to zero, be called the
rational elements of E,. It follows from the property deduced
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above that the set of all rational elements of the space E, is every-

where dense in that space. In fact, let (xi, x2, . . . ) denote any
infinite sequence of real numbers. There exist, as is well known,
infinite sequences of rational numbers ;" (z=1, 2, . . . ) for which
(8) holds. Denote by ¢, the sequence g.(&, £™,...), where

£ =x," for i<n, and £ =0for i >n. Asis easily seen, we shall
have from (3)
lim g™ =x;, fori=1,2, ...
n-y»o

and so l_i)m gn =p, where go(n=1, 2, . ..) are rational elements of E,.
70

E_ has, therefore, a countable subset, everywhere dense.

Let now .S denote any metric space which possesses a countable
subset everywhere dense. We shall prove that S is homeomorphic
with a certain subset of E,. '

Let

€) D1 D2, b3 - - -

be an infinite sequence which consists of all the different elements
of the countable, everywhere dense subset P of S. We shall denote
by p(p, ¢) the distance between any two elements in .S. Let
every element p of S be correlated with an element ¢=¢(p) of E,_,
in such a manner that the coordinates of ¢ are the numbers

Pl(?lv p)a pl(sz P)i Pl(?37 P)v <.

(i.e #(p) is an infinite sequence of real numbers x1, %2, a3, . . .,
where x; =p:(p;, p), fori=1,2,3,...).

It will be shown that S %, ¢(S). We shall prove first that the
function ¢ establishes a (1, 1) correspondence between the elements
of the sets S and ¢(S). To do so, it will obviously be sufficient
to show that the function ¢ is biuniform in S, i.e that if pe S,
P’ €S, and p=p’, then ¢(p)=o(p').

Hence, suppose that p and p’ are two different elements of S;
we have, therefore, p1(p, p')>0, and so from the property of the
sequence (9), there exists a term p; of that sequence such that

p(p, pr) < 3 m(p, P),

from which we have

201(p, pr) <pr(p, p")= (P, Pr)+o1(Dr, D7),
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and so

p1(®, ) <p1 (D', D)

this proves that the elements ¢(p) and ¢(p’) differ in their Eh
coordinates; hence, ¢(p) = (p').
Assume now that we have lim ") =p in space S. Let 7 be

2 g
a given index. Since the distance pi(p, g) is a continuous function

in S, the relation lim p»®™ = implies the relation lim pi(p;, ™)
n-y-c0 n-yco
=p(p; P)- Hence, the " coordinate of the element ¢(p"™)

approaches the *® coordinate of the element ¢(p), fori =1,2, . ,
and so (from the property of the space E,) lim ¢>(p(")) =¢(p).
NP0

The function ¢(p) is, therefore, continuous in S.

Suppose now that for a certain sequence p,(z=1, 2, ...) of ele-
ments of a set S, and a certain element p of that set, we have
lim ¢(»™) =¢(p). From the property of the space E, and the
#-p-C0

definition of the function ¢, we have, therefore,
(10) Lm0, 27) =pa(pir ), fori=1,2, . ...
But

pi(p, pP)S b, 1) + pr(bi 275
hence, from (10) we have

(11) im pu(p, p™) < 2m(ps, p), fori=1,2, ...
7y

In virtue of the property of the sequence (9), the number 2p,(p;, p)
can be made arbitrarily small for a suitable 7; the inequality (11)
gives, therefore,
hm p(p, p™) =0, i.e. lim p™ =p.
nPy-0

We have thus proved that the inverse of the function ¢ is
continuous in the set ¢(S). The relation S %, #(S) is, therefore,
proved. This gives

Theorem 67. Every metric space which possesses a countable
subset, everywhere dense, is homeomorphic with a certain subset of E,,.
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As previously shown (§ 47) the axiom of countability (vz) for
a metric space is equivalent to the existence of a countable subset,
everywhere dense. Hence, connecting Theorem 57 with the
corollary to Theorem 51 (§49) and considering that the Hilbert
space and the space E, both possess countable subsets everywhere
dense, we conclude that the Hilbert space is homeomorphic with
a certain subset of E,, and conversely. From the definition of
dimensional types (§ 12) and the above, we obtain, therefore, the
following

COROLLARY. The Hilbert space and the space E,, of Fréchet have
the same dimensional type.

However, the question whether the Hilbert space is homeo-
morphic with Fréchet's space E, is not as yet settled.

Denote by E the set of all elements of E,, whose coordinates
are all numerically <1.

It follows that E is a closed, compact set. In fact, let
P2, 2, 2, . .) be a given infinite sequence of different ele-
ments of E,wheren=1,2,... Thesequencex;®(rz=1,2,...)isa
bounded sequence of real numbers (since l 2, [S 1,forn=1,2,...);
there exists, therefore, an increasing sequence 7, >1 (=1,2,...)
of indices such that the sequence x,("® (=1, 2,...) is convergent,
with limit x; say (where, obviously, lxll < 1). Similarly, since
the sequence x;("®) (=1, 2, ... ) is bounded, there exists an infinite
increasing sequence of indices £, >1 (=1, 2, . . .) such that the
sequence x5 7 (=1, 2, . ..) is convergent, with limit x; say. Simi-
larly, we conclude in general the existence of an infinite, increasing
sequence of indices [,,>1 (m=1, 2, . . .) such that the sequence

np, . . ..
x3 b (m=1, 2,...) is convergent, with limit x; say, and so on.
It is easily seen that the infinite sequence pi, Dny, Purrs Pnkl R

contains only different terms from the sequence p, (n=1,2,...),
and that it tends as limit to p(x1, x2, 3, . . . ), which is an element
of E. Hence, E is closed and compact.

Furthermore, it will be shown that E_ is homeomorphic with a
certain subset of the set E, namely with the set E; consisting of all
the elements of E_, whose coordinates are numerically <1.
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To prove the above we note first of all that the set of all real
numbers is homeomorphic with the set of all numbers which are in
the interval (—1, 1); such a homeomorphic mapping may be estab-

lished by the function ¢(x) = 1—+—T——l say | here the inverse function
x

of y=¢(x) is y(») = 1—_3"—;'
of E_ be correlated with the element f(p) =g(¢(x1), ¢(x2),...) of Ej,
then, as is easily seen, E,_ ks E;.

Since E is compact, the set E; C E is compact. Hence:

The space E,, is homeomorphic with a certain compact subset of
itself. Hence, it follows also from Theorem 58 that every metric
space, which posesses a countable subset everywhere dense, is
homeomorphic with a certain compact subset of E,. '

Denote now (Fréchet) by H,, the set of all elements of E_, whose
coordinates are irrational. We shall prove that H, is homeomorphic
with the set H; of all irrational numbers.

The set H; is, as we know, homeomorphic with the set T of all
irrational numbers in the interval (0, 1). It follows readily from
this (in the same way as the relation E, k; E; previously obtained)
that the set H, is homeomorphic with the set 7T of all elements of
E, with coordinates irrational numbers in the interval (0, 1). It
will be sufficient, therefore, to show that 7% 7.

If now every element p(xy, %2, . . .)

Let p(x3, %3, . . . ) be a given element of the set 7. The numbers
X1, X3, . . . . are, therefore, irrational and in the interval (0, 1); let
1 1 1
x;

B ”1(i)+ ’ﬂz(i)-i' ns'? + o

be a development of the number x; as a continued fraction.
Employ the diagonal method to rearrange the double sequence

ny, n', mg, ...

1 77 17
nyo, M2, M3, ...

224 e "

ny ", N T, Mg T, ...

into the single sequence

7 124 ’ rer " ’ 4,
My, Ny, Moy, My 7, Mo ,7’13,”1(),
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Put _
1 1 1 1
m'+ m '+ m'+ w

It is easily seen that T h;T:. It is sufficient here to base the
proof on the property of sequences convergent in E_ and on the
following two properties of continued fractions: 1. For every
irrational number x; and every positive integer k there exists a
positive number e such that every irrational number x, which
satisfies the inequality ] x—xol < €, possesses a development as a
continued fraction which is identical in the first 2 convergents
with that of the number x, itself. 2. For every irrational number
xp and every positive number ¢, there exists a positive integer %
such that every irrational number x, whose development as a
continued fraction has the first 2 convergents identical with the
corresponding convergents in the development of x,, satisfies the
inequality lx—xol < e

fp) =

The relation H, & H, may, therefore, be considered as proved.
TRANSLATIONS OF THE SPACE E,. Let

ai, a2, A3y . - -

denote a given infinite sequence of real numbers. Correlate with
each element p(x;, x2, . . . ) of E, the element

(12) ¢ (p) =q(xr+ay, xa4tas, xstas, . . .).

It is easily seen that E k,¢(E,). The transformation ¢ is called
a translation of the space E, (by analogy with the m-dimensional
space). As is easily seen (from (4)), a translation of E, is an iso-
metric transformation of E_ into itself. Since by a suitable trans-
lation any element of E_ can be transformed into any other, we
may say that E_ is not only topologically but also metrically
homogenous.

Let now NN be any set of elements of E, with potency less than
that of the continuum.

It will be shown that there exists a translation of E, which
transforms the set IV into a certain subset of the set H,. In order
to prove this, we shall first establish the following
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LemMA. If Q be a set of real numbers of potency less than that of
the continuum, there exists a real number a such that for every number

x of Q the number x-+a is irrational.

Proof. Let m denote the potency of Q; hence M <L. Denote
by S the set of all real numbers of the form » —x, where 7 is rational
and xe(Q. Hence SN, and so S<C (since m<r). There
exists, therefore, a real number @, which does not belong to S.
Obviously, for x e Q, the number x-+a will be irrational. (For
in case x+-a =7, where 7 is rational, we would have ¢ =7—x, and
so a € S, contrary to the definition of ¢.) The lemma is, therefore,
proved. -

If now NCE,, and N<t, then the set N; of all *® coordinates
of the elements of N has potency < £, and, therefore, by the
above lemma, there exists a real number ¢; such that for every
x; € N;, the number x;+4q; is irrational. Furthermore, it is obvious
that the translation (12) transforms the set IV into a certain subset
of H,. :

From Theorem 57 and the relation H, » Hj, the following theorem
results:

Every metric space of potency less than that of the continuum,
which possesses a countable subset, everywhere dense, is homeomorphic
with a certain set of real numbers.

In case €=, the above theorem is obviously identical with
Theorem 56.

54a. Baire calls the set of all infinite sequences of integers,
where the sequence C(ai, a3, @3, . . . ) is considered to be the limit
of the sequence of sequences C™ (a;"?, a,™, a5, . ..) (n=1, 2,
.. .), a 0-dimensional space, when and only when there exists for
every integer £ a number u such that

a; " =aq;, fori=1,2,..,k, n>p.

Baire’s space may be slightly generalized. Let P denote any
countable set consisting of (different elements) pi, s, $3,.... In-
stead of sequences of integers, consider sequences of terms which
are elements of the set P, and define the limit as Baire does. We
shall show that every space 11 thus obtained is homeomorphic with
the set H; of all irrational numbers.
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The set H; is, as we know, homeomorphic with the set T3 of
allirrational numbers in the interval (0, 1) ; hence, it will be sufficient
to show that Ty 2 II. For this purpose, correlate the irrational
number

oL 11
m+ mb met
with the sequence

f(x) =(P111) Pnzy Pns, . ).

To prove that T; &, I1, it will be sufficient to base the argument
on a property of continued fractions, the definition of limit in the
space 11, and the fact that the equality ,, = p» is equivalent to
the equality . =# (since the elements of the set P are all different).

Hence, in particular,

The 0-dimensional space of Baire ts homeomorphic with the set of
all irrational numbers.

It follows from the above that a metric can be established in
the Baire 'space. Fréchet establishes it directly, considering the

1 . .
number — as the distance between two different sequences (ai, as,
7

as, ...)and (b, by, by, . .. ), where 7 is the smallest index % such
that a;#0b,. (The proof, that the distance so defined satisfies the
required properties of distance, and that it leads to a definition of
limit equivalent to that adopted by Baire, is left to the reader.)

We remark, finally, that if P consists of two (or a finite number
of) different elements, then the space II thus obtained is homeo-
morphic with a perfect point-set obtained from real numbers, as
can be easily seen. Hence, in particular, a subset of the Baire
space, consisting of all the infinite sequences formed with 0 and 1,
has the same dimensional type as the whole Baire space.



CHAPTER VII

METRIC SPACES IN WHICH BOUNDED SETS ARE
COMPACT

55. We shall consider in this chapter metric spaces which
satisfy the following condition

(W): Every bounded set is compact.

The converse, as is easily seen, is true for all metric spaces,
i.e. every compact set 1s bounded. In fact, if a compact set E is
supposed to be unbounded, and if $, be a given element of E, then
for every positive integer # there exists an element p, of E such
that p(po, P»)> n. It is easily seen that E,, a subset of E, consisting
of the different terms of the sequence pi, ps, £, . . ., is an infinite
set without a limit element, from which it follows that E is not
compact. In metric spaces satisfying (W) the conditions of
being compact and bounded are equivalent.

A metric space M which satisfies condition (W) is obviously
semi-compact (but the converse is not necessarily true). In fact,
let p, be a given element of the space M; we shall then have

M=K(po, 1)+K(po, 2)+K(p0, 3)+ . . . ;

M is, therefore, the sum of a countable aggregate of bounded
sets, which are also compact by condition (W); hence, M is semi-
compact. As already mentioned in §47, every semi-compact
metric space satisfies axiom (v2), and all the theorems of chapters
I-V are valid. Moreover, it contains a countable subset every-
where dense (i.e. it is the enclosure of some countable set): it is
therefore separable.

From condition (W) and the definition of a compact set (§ 16),
we obtain at once

Theorem 58 (Bolzano-Weierstrass). Every infinite bounded set
has at least one limit element.
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On the other hand, a metric space for which Theorem 58 is
true evidently satisfies condition (W). Hence, condition (W) and

the Bolzano-Weierstrass theorem are equivalent.

Theorem 59 (Cauchy). In order that an infinite sequence of

elements pi, Po, Ps, . . . has a limit, 18 is necessary and sufficient that
to every positive number e there exists an index u such that
€)) P(Dugrs On) <€, for n>p, k=1,2, ...

Proof. Assume that the infinite sequence pi, P2, Pz, . . . of

elements of the metric space considered has a limit a (§ 31), and let ¢
€

5 ) (which

contains a) there exists an index u such that for n>u we have
€

pneK a,—;—> and so also p, ;e K a,-é-); hence, p(a, pn) < é ,

denote a-given positive number. For the open set K (a,

and p(a, Puir) <% , from which (by the triangle law) inequality

(1) follows at once. The condition of the theorem is, therefore,
necessary.

Suppose now that a given infinite sequence pi, ps, ps, . . - satisfies
the condition of Theorem 59. We shall consider next two cases.

1. Only a finite number of terms of the sequence p,(n=1,
2, ...) are different. In such case a certain term of the sequence,
a say, will occur an infinite number of times. Let e denote a
given positive number. Since the condition of Theorem 59 is
assumed to be satisfied, there exists an index u for which (1) is
true. Let z be any index >pu. Since a occurs an infinite number
of times in the sequence, there exists an integer k (corresponding
to the index #) such that p,,; =a, and so from (1)

@ pla, pa) <e.

Thus for every number >0 there exists an index ux such that
the inequality = > u implies the inequality (2). This proves that
lim p(a, p) =0,

. 200
and so, by Theorem 50, we get

lim p,=a.
719
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2. There is an infinite number of different terms among the
terms of the sequence p.(n=1,2,...). The set E consisting of
all the different terms of the given sequence is, therefore, infinite
and since, by condition (1), it is bounded, it is compact by con-
dition (W) and so has at least one limit element, @ say. Let E,
denote the set of all the different terms of the sequence p,.;,
Pusar - - . ; then E.=E' (§15), and so ¢ is a limit element of E,.
Let ¢ denote a positive number; by the condition of Theorem 59,
there exists an index u for which (1) is true. Let # be an index> u.
Since a € E,, there exists at least one element of the set E, in the
open set K(a, €); hence, there exists by the definition of the set
E, an integer k such that p,.; € K(a, €), whence p(a, p,1) <e, and
from (1) (and the triangle law) we have

@3) p(a, prn) <2e.

We have thus proved that to every positive number e there
exists an index u such that the inequality (3) holds for every n> u.
This proves that lim p(e, $.) =0 and, hence, by Theorem 50, that

nyo

lim p,=a. The condition of Theorem 59 is, therefore, sufficient.
27y CO
I-I>ence, Theorem 59 is proved.

Fréchet calls a space complete when a metric can be established
for it such that Cauchy’s Theorem is true. It therefore follows
from Theorem 59 that a metric space which satisfies condition (W)
is complete. But the converse is not necessarily true; for if a
set N be infinite and the distance between any two different
elements of IV be always taken to be the number 1, then the metric
space thus obtained will obviously be complete, but will not satisfy
condition (W).

56. The following corollary follows immediately from con-
dition (W), Theorem 41, and the fact that every compact set is
bounded (§ 55):

A continuous transfornt of a closed and bounded set is closed and
bounded.

Furthermore, we obtain easily the following:
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Theorem 60. A continuous transform of a set F, is a set F,.!

Proof. Let E denote the given set F,. From the definition of
sets F, (§50), we have E=FE,+E;,+E;+ . . ., where the sets
E.(n=1, 2, ...) are closed. Let p, denote a given element,
k a given positive integer, and P, the set of elements p of the space
considered which satisfy the inequality p(pe, p)=<E; the set P, is,
as is easily seen, closed (from Theorem 39 and the continuity of
the function p) and bounded, and so the sets E,.P; are closed and
bounded (for all integers # and k). But obviously

[ee] (=]
E= 2 2 E,.P k3
n=1 k=1
thus every set F, is the sum of a countable aggregate of closed and
bounded sets. From this and the fact that a continuous transform
of a closed and bounded set is closed, Theorem 60 follows at once.

57. Letf(#p) be a function defined in a given set E and continuous
in that set. Denote by T the set of all elements of E for which the
oscillation of f in E is zero. By the corollary to Theorem 53, the
set T will then be a set G;, and EC T by Theorem 54. Let p, be
an element of the set T—E; since T C E, p, is a limit element of E,
and so, by Theorem 39, there exists an infinite sequence p,(z =1,
2, ...) of elements of E such that lim p,=p,. It follows that

n [ee)
the sequence f(p») (n=1,2,...) ha:a limit. For, let ¢ be a
given positive number; since w(po) =0, (poe 1) and from the
definition of oscillation (§ 51), there exists a number >0 such
that for every two elements p and g of the set E.K (po, ) the
inequality
p(f(p), f(q)) <e
is satisfied.

But, since lim p, =p,, and from the definition of a limit (§ 31),
7=y
there exists an index u such that p, e K(pq, #), for n>u. We have,
therefore,

p(f(lbn-{—k)v f(P")) <g, for 72>I—h k=1, 2, ..

1Analogous theorems for closed or open sets cannot be obtained without
additional hypotheses on the space considered.
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Hence, by Theorem 59, the sequence f($.) (=1, 2, ...) has
a limit; denote it by b.
The element b depends solely on the element p; and not on
the choice of the sequence p, of elements of E for which 1_i)m Pn=
n (e}

In fact, let g, denote any sequence of elements of E such that

lim g.=p,. The sequence f(g.) (m=1, 2, ...) will have a

712-)-CO

limit, as proved above; let it be denoted by ¢. But, since lim p,
70

=po, and lim g, =p,, the sequence pi, q1, P2, G, . . . will also have

790

for its limit po (§ 31), and so the sequence f($1), f(q1), f(£2), f(gs), - - .
will have a limit, which we may denote by g. But, from property 3
of a limit (§ 31), it follows that the sequences f(p1), f(#2), ... and
f(gy), f(g2), - . . being subsequences of a sequence whose limit is g,
must also have the limit g¢¢ We have, therefore, =g, c=g, and
so b=c.

‘We have thus proved that to every element p, of the set T —E
corresponds a completely defined element b=¢(po) such that, if
PueE, for n=1,2, ... and l_1)m Pn =20, then 11m f(pn) ¢ (Po).

The function ¢(p) is, therefore, defined in the set T E. Next
put ¢(p) =f(p), for p € E; the function ¢(p) is then defined in the
whole set 7. It will be shown next that the function ¢(p) is con-
tinuous in the set 7.

For, let po denote a given element of the set T and e an arbitrary
given positive number. Denote by w(po, € the upper bound of
the set G of all the numbers

o (f(2), £(2),

where p and g are any two elements of the set E.K(py, ¢), and by
wi(po, € the upper bound of the set H of all the numbers

P<¢(P): ¢(g)) ’

where p and ¢ are any two elements of the set T.K(p, €).
Let 7 be a number of the set /; there exist two elements p and
q of the set T.K (pq, €) such that

) h=p(6(p), $(a)).

Since p e TC E, there exists an infinite sequence p, (n=1,2,...)
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of elements of E such that lim p,=p, and since p € K(p, €), then
7P

also pn € K(po, €), for n>p. Similarly, since g e T.K(po, €), there

exists an infinite sequence ¢, (=1, 2,...) of elements of E

such thatlim ¢, =g, and g, € K(pq, €), for n>». Hence, for n> u-+v,
n-y o
the numbers

p(f(n), fgm)

belong to the set G, and so, from the definition of w(py, €), we shall
have

(5) p(f(Pn), f(qn)) = w(po, €), for n>u+».

But, since p. ¢ E, ¢» € E, and lim p,=p, lim ¢, =g, we have
nyo 7y

(6) 1_i>n.}° f(pn) =¢(p), and 1_i>rg flgw) =¢(q).

(In case either p or ge T'—E, the above follows from the definition
of the function ¢ in the set T—E, and if either p or ¢ € E, the result
follows from the continuity of the function f in the set E (Theorem
40) and the fact that ¢ (p) =f(p), for p e £.) From (5), (6), and the
continuity of the function p (§ 45), we find

p(¢(p), ¢(Q)<w(p, €,

i.e. from (4), h<w(py, €). Since & is any number of the set H, it
follows that the upper bound of that set, given by the number
w1(Po, €), does not exceed w(po, €). Hence

)] wi(po) =lim wi(po, €) < lim w(po, €) =w(po),
>0 >0

where (§ 51, (17)) w(po) denotes the oscillation of the function f
in the set E at the element po, and wi(p) (from the definition of
the numbers w1(po, €)) the oscillation of the function ¢ in the set T°
at the element p,. But from the definition of the set T, and since
poe T, we have w(po) =0; hence, from (7), wi(po) =0, and so, by
Theorem 54, the function ¢ is continuous in the set T at the point p.

Since py, is any element of T, we have thus proved that ¢ is
continuous in the whole set 7.

We have, therefore, proved the following:
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Theorem 61. If f(p) be a function defined in a set E and con-
tinuous in that set, there exists a function ¢(Pp) defined in a certain set
T, which is a G, containing E and contained in E, and this function
is continuous in the set T and equals f(p) for each element p of E.

This theorem is expressed by stating that a function continuous
in a given set E may be extended, the continuity being preserved,
over a certain set G; containing E. Such a set could be chosen to
be the set T of all the elements of E for which the oscillation of
the given function in E is zero. It can be easily shown that, if a
function f(p) defined and continuous in a set £ can be extended
with the retention of continuity over a certain set .S such that
ECSCE, then SCT. Itis also easily seen that a given function
(continuous in E) can be extended, continuity being preserved,
over every set SC 7T in one and only one way.

58. Let now E and F be two homeomorphic sets. Then there
exists a function f defined and continuous in E such that E & F,
and a function g, the inverse of f, continuous in F such that Fk, E.

By Theorem 61, there exists a function ¢(p) defined and con-
tinuous in a certain set G;, T say, such that EC TCE, and ¢(p)
=f(p), for p ¢ E. Similarly, by the same theorem, there exists a
function ¢¥(¢) defined and continuous in a certain set G;, H say,
such that FCHC F, and ¢(q) =g(g), for g ¢ F.

Let M denote the set of all elements p of T for which ¢(p) € H,
and denote by N the set of all elements g of H for which ¥(q) € T.
Then M Ay N. For, since M C T, and the function ¢ is continuous
in T, it is certainly continuous in M. Similarly, the function ¢ is
continuous in the set NCH. To prove the relation Mk, N, it
will be sufficient to show that the function ¢ (considered in the
set IN) is inverse to the function ¢ (in the set M), or, in other
words, that the relation

®) peM, é(p)=¢
is equivalent to the relation
9 geN, ¥(q) =p;

on account of the symmetry of these relations it will obviously be
sufficient to show that (8) implies (9).



VII. ToPoLOGICAL INVARIANTS 125

Hence, suppose that (for a given p) relations (8) are satisfied.
Since p ¢ M, we have ¢(p) e H by the definition of M, and so
geHby (8).

Since pe MCTCE, there exists an infinite sequence px
(n=1,2,...) such that p, e E, for n=1,2,...,and p.—>p, and
so, since p ¢ T, EC T, and the function ¢ is continuous in 7, it
follows that ¢(p.)—>¢(p). But, since p. e E (=1, 2, .. .), and
from the property of the function ¢, we get ¢(pa) =f(pn), for n=1,
2,...;since Eh; F, and since the function g is the inverse of the
function f in E, we shall get, on putting f(p») =g, forn=1,2,. ..,
gn e FC H, and p,=g(gn), for =1, 2, . . ., and so, from the
property of the function ¢, we obtain p,=v¥(¢.), for n=1, 2, . . ..
This, on account of p,—>p, gives ¥(g.)—>p. But, since g. ¢ H,
forn=1,2,..., and ¢ e H, and the function ¢ is continuous in H,
we have ¥(g.)—>¥(q), and this, on account of the relation ¥ (g.)—>2,
formerly obtained, gives y(q) =#; since ¢ ¢ H, and p ¢ T, it follows
from the definition of the set NV that g e N. Hence, relations (9)
are established.

We have, therefore, proved that M h, V.

From Eh; F, ECT, FC H, $(p) =f(p), for p € E, and from the
definition of the set M, we have EC M. Similarly, from F i, E,
¥(q) =g(g), for g ¢ F, and from the definition of the set N, we get
Fc N. It will be shown that M and N are sets G;. Owing to
the symmetry of the relations, it will be sufficient to prove that
one of them, M say, is a set G;. To that end, we shall first prove
the following:

LeMMA. If a funciion ¢(p) be continuous in a set T, which is a
set Gs, and if V be an open set, then the set S of all elements p of T for
which ¢(p) ¢ V, 1s a G;.

Proof. Let p be an element of the set S. Since ¢ is continuous
in T and V is open, and since ¢(p) ¢ 17, there exists an open set

U(p) such that p ¢ U(p), and
¢(q) € V whenever ge T.U(p).

Denote by U the sum of all the sets U(p), where p ranges over
all the elements of S. Obviously, S=7.U, where U is open.
But, since T is a G;, the set S=T.U is a G;.
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COROLLARY. If a function ¢(p) is continuous in a set T, which
is a Gs, and if the set H is a Gj, then the set M of all elements of T for
which ¢(p) € H, is a G;.

Proof. Since the set H is a G;, we may write H=1,.V.V5 .. .,
where Vy(n=1, 2, .. .) is an open set. Denote by .S, the set of
all elements p of T, for which ¢(p) e Va; the set S, is a G; by the
above lemma. But, obviously M =.51.5.5; . . . (For, if ¢ M, then
¢(p) e HC V,, which gives p e .S, for =1, 2, ... ; and if pe.S,,
forn=1,2,..., then ¢(p) e Vy, for n=1,2,. .., and so ¢(p) e H
and p e M.) Since each set Sx(n=1, 2,...) is a G;, the set M is
also a G;j.

Collecting the results obtained in this article we may state the
following:

Theorem 62 (Lavrentieff).? If E ki F, then there exist sets M and
N, each of which is a G;, such that M hy N, where EC McCE,FCN
CF, and ¢(p) =f(p), for p ¢ E.

In other words, the homeomorphism between two sets can always
be extended to two seis Gs, which contain the corresponding sets and are
contained in their enclosures.

Furthermore, it can be shown that the extension of the homeo-
morphism between the sets E and F to apply to the sets M and N,
obtained above, is the best possible.?

59. Let E denote a given set G;; hence E=E,. E;.E; ..., where
E.(n=1,2,...)is an open set. Let 7T be a set homeomorphic with
the set E. Consider the sets M/ and N which satisfy the conditions
of Theorem 62. Put Q,=M.E, (n=1,2,...). Since E, is open,
the set M —E,=M.CE, is closed with respect to M, and so, by
Corollary 1 to Theorem 22 (§ 12), is transformed by the homeo-
morphism between M and XV into a set closed with respect to IV;
it may, therefore, be written in the form N.F,, where F, is closed.
But, since from Mk, N, we have (M —E,) hy N.F,, it follows that
M.E, by (N—Fy), or, in other words, Q, %, N.U,, where U, =CF, is
open. But, from EC A/, E=FE.E-.E;...and Q,=M.E,, we have

2Fund. Math., vol. VI, p. 149.
3See Sierpinski, Comptes Rendus, vol. CLXXVIII, p. 545.
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E=ME=Q..Q:..Qs ..., while the relation Q,%, N.U, gives (on
account of M ky N, and Q. C M, for n=1, 2,...) Qu.Q2.Qs .. . hy
N.U],.Uz. Us oo oy 1.e. ¢(E) =N.U1. Ug.Ua es oy and so T=N.U1.U2‘U3
... (since p(E)=T). Since the set Nis a G; and the sets U, (n=1,
2,...) are open, it follows that T is a set G;. 'We have thus proved

Theorem 634 A homeomorphic transform of a set G; is a G;.

A family F of sets will be spoken of as a fopological invariant
if every set homeomorphic with a set of the family F also belongs
to F.

Theorem 64. If a family F of sets is a topological invariant,
then the family of sets, which are sums of a countable aggregate of
sets belonging to F, is a topological invariant.

For, let E=E,4+E;,+E;+ ..., where E,e F, forn=1,2, ...,
and suppose that E%;T. From E,CE, we get E, h; Tn, where T
is a certain subset of T (=1, 2,...), and so also (E:+E>+ ...)
hy (Tv4+To+...), or Ehs(Th+T2+ ...) (since EiT). But,
from E, ¢ F and E,h;T», we get T, e F (since F is a topological
invariant). Theorem 64 is, therefore, proved.

Theorem 65. If a family F of sets is a topological invariant, and
if the product of a set belonging to F and a set G5 belongs to F, then the
family of all products of countable aggregates of sets belonging to F
15 a topological tnvariant.

Proof. Suppose that E=E;EsE;..., where E,eF, and
assume that Ek;T. There exist, by Theorem 62, two sets 1/ and
N, each a G;, and for which M, N, EC M, T C N, and ¢(p) =£(p),
for p e E. It follows from the property of the family F that the
sets M.E,(n=1, 2, ...) belong to F and so also do the sets T, =
¢(M.E,), since they are homeomorphic with the sets 1/.E,. But,
from E=M.E,.M.E, . . ., and the fact that ¢ is biuniform in A/
(§9), we have T=¢(E) =¢(IM.E,).¢(AM.Es) . .., s.e. T is a product
of a countable aggregate of sets belonging to F, as required.

1This theorem was first proved by Mazurkiewicz in 1916 (Bzuletyn Ak. Um.,
1916, pp. 490-496). Another proof was given by the author in Fund. Math.,
vol. VIII, p. 135.
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Theorem 66. If a family F is a topological tnvariant, and if the
product of a set belonging to F and a set G;, and the sum of a set
belonging to F and a set F, always belong to F, then the family of all
complements of sets belonging to F 1s a topological invariant.

Proof. Suppose that E=CX, where X ¢ F, and assume that
Eh:T. There exist, by Theorem 62, two sets M and N, each a G;,
and such that Mh,N, EC M, TCN, and ¢(p) =f(p), for p ¢ E.
From X ¢ F and the property of the family F, it follows that
M.X eF, and Q=¢(M.X) e F. But from E=CX C M, we have
E=M-X, and so T=¢E)=¢(M—M.X)=¢(M)—¢(M.X)=
N —Q (since ¢ is biuniform in M). Hence CT=Q+CN, and so,
since Q ¢ F and CN is a set F,, it follows from the property of F
that CT ¢ F. Theorem 66 is, therefore, proved.

Theorem 67. Ifa family F of sets is a topological invariant, and
if the product of a set belonging to F and a G5 again belongs to F, then
the famaly of all differences of two sets belonging to F is a topological
invariant.

Proof. Suppose that Eie F, Ese F, E=E,—Es, ERT. There
exist, by Theorem 62, two sets M and N, each a G;, and a function
¢ defined in M such that EC M, TCN, MhyN,EhyT. From
E=E,—~E,, and EC M, we have E=M.E,—M.E,, where M.E,
and M.E, belong to F, owing to the property of F, and so the sets
T, and T, which are such that M.E; b, Ty and M.Esh, T, belong to
F. But the last two sets give (M.E,— M.Es) hy (T1 —7T>) (since ¢
is biuniform in M), and so (since E=M.E, — M.E;) ¢(E) =T, —1T%;
but (from E &4 T) ¢(E) =T, therefore, T =7, —7T,, where T, € F and
T2 ¢ F. Theorem 67 is, therefore, proved.

60. Following Hausdorff’s® notation, denote all open sets by
P, all closed sets by Q! and employ transfinite induction to define
the sets P* and Q" for 1 <a<Q as sums and products respectively
of a countable aggregate of sets E;, E,, Es, . . ., where E, is a set
Q™ and a set P respectively, and where £, < a, for n=1,2,.. ..

Hence, sets P? are sums of a countable aggregate of sets Q!, and
so sets P? are sets F, (and conversely). Sets Q? are products of a
countable aggregate of sets P!; hence, sets Q% are sets G; (and con-

SMath. Zeitschrift, vol. V (1919), p. 307.
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versely). Sets P3 are sums of a countable aggregate of sets Q2
z.e. of sets G;; hence, sets P3? are so-called sets G;, (and conversely).
Sets Q® are products of a countable aggregate of sets F,, z.e. they are
so-called sets F,;.

We shall now deduce several properties of the sets P® and Q°.

PROPERTY 1. Every set P® is at the same time a set P? for 8> «;
every set Q% is at the same time a set Q° for 8 > a.

Proof. For a>1 property 1 follows directly from the definition
of the sets P* and Q* For a=1 it will be sufficient to show that
every set P! is a P? and every set Q' is a Q2. The first follows from
Theorem 52a, since sets P! are open and sets P? are F,; the second
part follows from Theorem 52, since sets Q! are closed and sets Q2
are sets G;. Property 1 may, therefore, be considered to be proved.

PROPERTY 2. The sum of a finite or countable aggregate of sets
P* is a set P*. The product of a finite or countable aggregate of sets Q*
is a set Q°.

Proof. For a=1 the above property follows from axiom (727)
(§ 1) and Theorem 3, and for a>1 it follows directly from the
definition of the sets P* and Q"°.

PROPERTY 3. The complement of a set P* is a set Q; the com-
plement of a set Q% is a set P*.

Proof. From the definition of the sets P! and @', it follows that
property 3 is true for a=1. Let now B be an ordinal number
such that 1<8<Q, and suppose that property 3 is true for all
ordinal numbers a<B. Let E be a set P°. By the definition of
the sets P*, we may write E=F,+E,+E;+ ..., where E, is a
set 0", and g, <@, for n=1, 2, .... Since property 3 is assumed
to hold for a<8, it follows that CE, is a set P**, and since from
E=FE,+E;+ ... we have CE=CE,.CE, . . . and since &, <8, for

n=1,2, ... CE is, therefore, a set (®.

On the other hand, let E denote a set Q%. It follows from the
definition of the sets Q% that E=FE.Es>.E; . . ., where E, is a set
P¥ and §,<B, for n=1, 2, . . . Since property 3 is supposed to

hold for a <8, it follows that CE, is a set 0*", and since E =E,.E:.E;
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.,we have CE=CE,+CE>+ ..., where §, <8, forn=1, 2, .. ..f,/
and so CE is a set P?,
Property 3 is thus established by transfinite induction.

PROPERTY 4. The product of a finite number of sets P is a set
P, The sum of a finite number of sets Q* is a set Q°.

Proof. It is obviously sufficient to prove property 4 for two
factors and two terms respectively; the rest then follows by ordinary
induction. '

Hence, let o be an ordinal number <Q, E and T two sets P°.
We may suppose that a>1, since for a=1 property 4 is true (by
Theorem 26). It follows from the definition of P* that E =FE;+E,
4+ ..., T=T+To+ ..., where E, is a set 0**, and where T is
a set O™, with §,<a and 1, <a, for =1, 2, . . . ; hence,

o] [ee]
ET=3Y X E,Tx.
m=1 n=1
Denote by &, , the greater of the numbers &, and 7, (or their
common value if they are equal); from £, <a, form=1, 2, ... and
1, <a, for n=1, 2,..., we have evidently &, ,<a, for all integers
m and n. The set E,, is a set 0", and so by property 1, E,, is also
a set Q™" since £,=<4%,. , by the definition of the number £, ,,.
Similarly, T» isa Q*™ ", since 9, <&, .- Theset E,,.T is a product
of two sets 0¥ *, and so a set Q""" by property 2.

© ©

It follows, therefore, from E.T= X X E,.T,, since £, ,<a,

m=1 n=1

form=1,2,...,n=1,2,..., that E.T is a set P".

The first part of property 4 is, therefore, proved. Let now
E and T be two sets Q. The sets CE and CT are sets P*, and so
from the first part of property 4, the set C(E+7)=CE.CT is a
P*;hence, E+Tisa Q% by property 3. The second part of property
4 is, therefore, established.

PROPERTY 5. [Every set P® is a set Q°t*. Every set QF is a set
Pt

Proof. 1f E be a set P it is sufficient to write E in the form
E=E.E.E ..., and recalling the definition of sets Q°!, it is seen
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at once that E is a set Q°"'. Similarly, if E be a set Q° it is
sufficient to write it in the form E=E+E-+E-+ ..., and referring
to the definition of sets P**!, it is seen that E is a set P°T1.
From properties 5 and 2, we get at once
PROPERTY 6. The sum of a countable aggregate of sets P* is a
set Q°t1. The product of a countable aggregate of sets Q° is a set P*T.
From properties 3, 5, 1, and 2 and the relation E, —E, =FE,;.CE,,
we obtain at once

PrOPERTY 7. The difference of two sets P%, or of fwo sets Q% is
both a set P**! and a set Q°F1.

We shall deduce one more property found by Lusin, which will
be made use of later:

PROPERTY 8. If a=3, then every set P* is the sum of a countable
aggregate of mutually exclusive sets Ey, Ea, Es, . . ., where E, is a set
O™, and £,<a, forn=1,2, ...

Proof. Let E be a set P%, where a= 3. It follows from the
definition of sets P* and property 1 that we may write E=T11+7>-+4
Ts+ ..., where Ty is aset Q",and 2 =< 9,<a, for =1,2,....
Put S, =T1+72+ ... +7T%, and denote by &, the greatest of the
numbers 71, 72, . . - , 7, ; since 2< 9, <a, we have obviously 2= £, <a,
for n=1, 2, ..., and from properties 1 and 4 it follows that S, is
a set O, for n=1,2,...

Put further, R;=S;and R, ;=S,4+1—Ss, for n=1,2,...; we
shall have R, ;=S5,41.CSs, for n=1, 2, . . . But (S, is, by
property 3, a set P¥; we may, therefore, write CS, =T, 1 +7, 2 +.. .,
where T, .is a set 0%, and £, <&, fork=1,2,....5 Denote
by ¢, r the greatest of the numbers £, 1, &, 2, . . ., &, ;5 hence,
Cok <& for k=1, 2,..., and so from properties 1 and 4 the set
Sy ke =Ty 14T ot . oo +T,, 1 is a set Ok, for k=1,2,....
Put R, 1=3S,1, and R, =S, r—S, -1, for £=2,3, ...
from the definition of the numbers ¢, &, it followsthat ¢, 1Sy, 8
for k=2, 3, . . . ; hence, from property 7, R, ; is a set Q= ¥*! for
k=1.2, ...,and so, since {, <&, and &, ,+1<E,, is a set Q.

8This could not be ascertained if we had not £, = 2. e note that fora=2
property 8 is not true.
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Since the set S, is a set Qf»+! and £,<§,,4, it follows form

properties 1 and 2 that S,i1. Ry & is a set Qf+1, for k=1, 2,.
But, as is easily seen, E is the sum of mutually exclusive sets

(o] @©
E=Sl+ 2 E Sn-i—l'Rn,ky

n=1 k=1
where S; is a set 0 and S, ;.R, » aset Qf+1, forn=1,2,...,
k=1,2,...,and where {,<a, for n=1, 2, ... Hence, this proves

property 8.

61. From the fact that a set G; is a set Q% and from properties
5, 1, and 4, it follows that the product of a set P* and a set G; is a
set P, for « = 3. Similarly, from the fact that a set F, is a set P?
and from properties 1 and 2, it follows that the sum of a set P* and
a set F, is a set P%, for a = 2.

Theorem 68. The sets P* and Q° of Hausdorff are a topological
invariant for a=2.

Proof. Theorem 68 follows at once from Theorem 60 for sets
Pz, g.e. for sets F, and from Theorem 63 for sets Q?, i.e. for sets G;.

Let now B denote an ordinal number such that 3<g<Q, and
suppose Theorem 68 to be true for every ordinal number a such
that 2<a<B. Let E be a given set P?; we may, therefore, write
E=FE,+E;+E;+ ..., where E,is aset 0**, and £, <8, for n=1, 2,

., and where, since =3, we may suppose from property 1 that
£,22, forn=1,2,... Let T be asetsuch that E/;7. Hence,
E, b Ty, where T, C T, and where T=T,+T,+ ... But, since
E, is a set Q'*, where 2<¢, <8, and from the supposition that
Theorem 68 is true for numbers a, such that 2< a <, we conclude
from E. h; T, that T, is a set Q**. Thus from T'=T,+T2+ ..., it
follows that T is a set P*.

Hence, the family of sets P? is a topological invariant. But,
since 8= 3 and from the remark made at the beginning of this
article, it follows that the product of a set P? and a set G; and the
sum of a set P? and a set F, are sets P?’. The family of sets P?
satisfies, therefore, the conditions of Theorem 66 ; hence, the family
of the complements of the sets P?, 7.e. the family of sets # (by
property 3) is a topological invariant.
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Theorem 68 is, therefore, proved by transfinite induction.
Theorem 68 is not true in case of sets P! and Q' unless special
assumptions are made with respect to the space considered.

From Theorem 68 we get at once

CoROLLARY 1. A family of sets, each of which is both a set P* and
a set Q% is a topological invariant.

Sets P**!, which are not sets P**! for any £ <a, are Lebesgue’s
sets O of class a; similarly, sets Q*T!, which are not Q**! for any
t<a, are Lebesgue’s sets F of class a. (Lebesgue’s definition of
sets O and F of class a is different but yet equivalent to the above.)
From Theorem 68, we get immediately

COROLLARY 2. Lebesgue's sets O and F of class a (1<a<Q) are
topological invariants.

62. Denote by B the family of all sets P* and Q%, for 1<a<Q.
Sets which belong to that family are called sets measurable in the
Borel sense or simply sets B. It follows from the properties of the
sets P* and Q% deduced in § 60, that the family B satisfies the
following conditions:

1) Every closed set belongs to B; .

2) The sum of a countable aggregate of sets belonging to B, belongs
to B;

3) The product of a countable aggregate of sets belonging to B,
belongs to B.

Condition 1) follows from the definition of the sets Q' and the
family B.

Let now E=E,+Es+Es;+ ...,where E, (n=1, 2,...) belongs
to B. We may always suppose, by property 5 (§ 60), that E, is
a set 0", where &, is some ordinal number <Q. It is known that,

to an infinite sequence of ordinal numbers £,(n=1, 2, . ..) which
are less than Q, there exists an ordinal number o<, such that
£, <a, for n=1,2, ... The expression E=E;+E,+ ... proves,

therefore, that E is a P* and so belongs to B. Hence, the family B
satisfies condition 2). Similarly (referring to property 5 and the
definition of sets Q%), it may be proved that the family B satisfies
condition 3).
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We shall now show that the family of all sets P* and Q (1=<q
< Q) is the smallest family B, which satisfies conditions 1), 2),
and 3). In other words, we shall show that if a certain family B
satisfies conditions 1), 2), and 3) then every set P® and every
set Q" belong to B, for 1<a<Q.

Hence, let B denote any family of sets (contained in the metric
space considered) which satisfies conditions 1), 2), and 3).
The sets Q! belong to B by condition 1). It follows at once from
conditions 1) and 2) that the sets F,, 7.e. the sets P? belong to B;
from this and property 1 (§ 60), it follows that the sets P! belong
to B.

Let now a denote a given ordinal number such that 1<a<Q,
and suppose that all sets P* and Qf belong to B, where 1<{<a.
Let E be a given set P*;since a> 1, we may write E=FE;+F,+ ...,
where E, is a set 0", and £, <a; hence, by hypothesis, the sets
En.(n=1,2,...) belong to B, and so, by condition 2), the set E
belongs to B. Similarly, if £ be a set Q%, we may write E=FE,.E,;.F;
...,where E,isaset P¥ and £, <a; by hypothesis, the sets E,(n =1,
2, .. .) belong to B, and so, by condition 3), the set E belongs to B.

We have proved, therefore, by transfinite induction, that all
sets P® and Q" belong to B, where 1=4<Q. We have thus proved
that .

The famaly of all Borel sets is the smallest family B which satisfies
conditions 1), 2), and 3).

Borel sets may, therefore, be defined without the aid of ordinal
numbers (and transfinite induction) as sets belonging to the
smallest (or, if we like, every) family B of sets satisfying conditions
1), 2), and 3).

It follows from properties 3 and 7 (§ 60) that the family B of
all Borel sets satisfies also the following conditions:

4) The complement of a set belonging to B, belongs to B;

5) The difference of two sets belonging to B, belongs to B.

The definition of Borel sets and Theorem 68 lead at once to

Theorem 69. A set, which is homeomorphic with a Borel set, is a
Borel set.”

TW. Sierpinski, Comptes Rendus, vol. CLXXI (1920), p. 24.
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We shall also prove the following property of Borel sets:

If a family F of sets satisfies the following three conditions:

1] Ewvery open set belongs to Fy

2] The sum of a countable aggregate of mutually exclusive seis
belonging to F, belongs to F;

3] The product of a countable aggregate of sets belonging to F,
belongs to F;

then every Borel set belongs to F.

Proof. It follows from conditions 1] and 3] that every set G;,
i.e. every set Q? belongs to F; hence, by properties 1 and 5 of sets
P* and Q* (§ 60), the sets Q' and P! belong to F; from condition 2]
and property 8 (§ 60), it follows that sets P3 belong to F, and so
by property 1, the sets P? belong to F.

Let now a denote a given ordinal number such that 3=a<Q,
and suppose that all sets P* and Qf belong to F, where ¢<a. It will
follow from condition 2] and property 8, that every set P* belongs
to F and from property 3] and the definition of sets Q°, that every
set Q° belongs to F. We have thus proved by transfinite induc-
tion that all sets P* and Q%, 1=a< Q, 7.e. all Borel sets, belong to F.

We note further that as a result of the property proved above,
we find immediately that the family of all Borel sets is the smallest
family F which satisfies conditions 1], 2], and 3].

63. We shall consider now a generalization of Borel sets. To
arrive at this generalization in a natural way, we consider sets F,;,
i.e. products of a countable aggregate of sets F,. Let E be a given
set F_;. Since every set F, is the sum of a countable aggregate of
closed and bounded sets (§ 56), we may write the set E in the form

< fee] feo]
(10) E=H<E’f+E§+E’§+...>=kH1 X E;,
k=1 = n=1
where Ef (k=1,2,...;n=1,2,...) are closed and bounded sets.
(10) gives evidently
(11) E= 3 E\.E,LE, ...,
(n;, n2,.... )

where the summation ranges over all infinite sequences of positive
integers ni, #a, M3, . . .

10
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Put (for every finite combination of indices 71, #2, . . ., 1)
(12) E}Zx‘ ~E3¢2- .- E};k =Em, P22yeene » nk;

these sets will obviously be closed and bounded (or may be null).
On account of (12), (11) may be written in the form
(13) E = 2 Eﬂl' Em. 72 * Enx, 23, N3 * *

(n1, ma,....)

Every set E of the form (13), where E, ,, .. is closed and
bounded is called an analytical set, briefly a set (4), or the nucleus
of the system S[E,, ., ]. The system S[E,, _,,]is known if, corres-
ponding to every finite combination of indices #y, .. ., #z, an asso-
ciated set E,, . ,, is known.

We have, therefore, proved in this article that every set F,; is
a set (4).

64. Suppose now that to every finite combination of indices
N1, M, . .., My, there is assigned a certain set E,, ,,. .. whose ele-
ments may be any objects (not necessarily elements of some
metric space). We then say that a system S[E,, nmnimy) OF sets is

given, and the set
E= Z En; -Em. 2 'Em. ne, Mz vt 3
(121, ma,....)

where the summation ranges over all infinite sequences of the
positive integers #;, #2, #3, . . . is said to be the nucleus of the
system S.

If all the sets E,, ,, ., belong toa certain family F of sets,
then the nucleus of the system S[E,, ,, . ,,k] is called the result

of the operation A performed on the sets of the family F.

LusiN's SIEVE. Denote by W the set of all rational numbers between 0 and
1. If to every number w of the set W there be assigned a certain set Eq (of any
elements) we then obtain a sieve [E,]. A set sifted through a sieve [Eq] is a set of
all elements p for which there exists a certain (dependent on p) infinite decreasing
sequence of numbers of the set 17, 7.c.

W SwWe S>wWy > .. .,

such that
DeEwn, form=1,2, ...
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We shall show that a set sifted through a sieve [E,] may be considered to be
the result of the operation 4 performed on the sets constituting the sieve.
Hence, denote by

(R) 71, T2, Fay oo . .
the infinite sequence consisting of all (different) numbers of the set 4"

Put E,=E,, , forn=1,2,...

Let now % be a given integer and suppose that we have already defined all
sets Eyy, n, ..., npr where #,, #s, . . ., #g isany combinaton of % integers and where
the sets Eyy, no, ..., ny, belong to the sieve [E,].  Let #y, 72, .. ., ng, np4y denotea
combination of 2-4-1 integers. Hence, by hypothesis E,,, nty...,np =Frg, wheres
is a certain positive integer. Put E,,, o, ... M g1 =E, @ whete rg is the
ng+1th term of the sequence (R) satisfying the inequality 7, <rs (such a term
exists on account of the property of the set W).

The sets Epy, ns,. ., np, are thus defined by induction. We shall show that the
set P sifted through the sieve [E,] is the nucleus Q of the system S[Ep;, s, .. ., nz)-

Suppose that p € P. Hence, there exists an infinite sequence of indices
My, Mo, M3, . . . such that

M Ty > Tma > mz > -+« s

and .

(" pPE€E,, fori=1,2,...
1

Put #;=m,; from the definition of the sets E, (for # an integer) we get
Ey,, =En. From 7,,,<7m, and the definition of the sets E,, »,, we have Er,,.=
Epy, nay for a certain integer #s. Furthermore, since 7,;,,<<7m,., there exists an
integer 73 such that E, m;=——E,,1, ns,ma- Continuing this argument, we obtain, on
account of (ff), an infinite sequence of integers i, 7, 73, ...such that
D€Em, ny, ... .np for k=1,2,.. ., andso peQ.

On the other hand, suppose that p € Q. There exists, therefore, an infinite
sequence of integers 7y, 722, 73, . . ., such that p € En; n, ..., mp for k=1, 2, ... It
follows easily from the definition of the sets Ey s, ..., np, that there exists an

infinite sequence (1) of numbers of the set W such that E,, 5., ..., "k=E”mk. for

k=1, 2,...,and so, from (it) and the definition of the set P, it follows that
p € P. We have, therefore, P =0, and this proves our theorem.

We note that conversely, it may be proved that the result of the operation 4
on sets of a family F may be considered as a set sifted through a sieve [E..], where
E (for we W) is a set of the family F#8 The investigation of Lusin’s sieve is,
therefore, equivalent to the investigation of the operation A.

Theorem 70. If every one of the sets E™™" s is the result of the
operation A performed on the sets of a family F, then the nucleus of

8See Fund. Math., vol. XI, p. 16.
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the system SIE™™"s] is also the result of the operation A performed
on the sets of the family F.

Proof. All different pairs (p, g) of integers may be arranged,
as is well known, as an infinite sequence

(14) (?17 Ql), (p2! g2)r (P:i’ gs)f <.

Put

(k) =pp, W(B)=q, for 2=1,2, ...

Every pair (p, ¢) of integers occurs, and that once only, in the
sequence (14); hence, to each pair corresponds a definite index &
such that p=p, and ¢=g;; put k=»(p, q).

We have, therefore, as is easily seen,

(15) v(p(k), ¢(B))=F, for k=1,2,...,
and
(16) ¢(»(p, ) =p, ¥((2, @) =¢, for p=1,2,...; ¢=1,2, ...

By hypothesis, every set E™ "™ "s is the result of the operation
A performed on the sets of the family F. Hence, corresponding
to every combination 71, 7s, . . ., 7, of indices, there exists a system
STt Taeee?s [E:,’;,’,'::,’,rf,k] of sets of the family F, whose nucleus is the
set E™"™"s For every finite combination of indices #1, #s, ..., 7,
put

_ poim), é(n2),....d(ny(r)) 3
an 2T, ’E\*("»u, YR ¥(M(2, 0B se oy Yl (p(R), w(R)))’

the sets so defined will, therefore, belong to the family F.

It will be shown that the nucleus of the system .S[E™"™"s]
is the nucleus of the system S[E,,,,,,hw,,k].

In fact, let x be a given element of the nucleus of the system

S[E,, n,...n,)- Hence, there exists an infinite sequence of indices
71, My, Mg, - . . such that

(18) % eE,, y..my for k=1,2,...
Put
(19) 7s=¢(n,), for s=1,2, ...,

and let s be a given integer. Put

(20) jh =\b(n,,(h' 5))’ for h=11 27 .« ..
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From (17), (19), and (20), we obtain
Ey m,... =Ej o forh=1,2, ...

Hy(h, s) ‘J1, J2
(since from (16) ¥(v(%, s)) =s, and ¢(¥(k, s)) =#k) and so, on account
of (18),

xe En T2 s forh=1, 2,...,

10 J2yeeeer T ?

i.e. x belongs to the nucleus E™"*"s of the system S™™"s, We
have, therefore,
(21) x e B "s fors=1,2,...,
from which it follows that x belongs to the nucleus of the system
S[En ) £ TR rs ]

Suppose now that x belongs to the nucleus of the system
S[En. 72yeeei?s ]

Hence, there exists an infinite sequence of integers 71, 72, 73, . - -

such that (21) is true. But E™"™ s is the nucleus of the system

S[E, ww1; corresponding to every integer s there exists,

therefore, an infinite set of indices #,*?, m.*, ms®, . . . such that
L ST o TR 7S

(22) erm(S)l ma(S), ....,m’(:)’ for k=1,2,... ;S=1, 2,...

Put
(23) wy, =v (7}, m;‘f}(l’)‘))), for h=1,2, ...

From (23) and (16) we obtain
o(ny) =r,, () =m(‘?§")‘)), forh=1, 2,
and so for Z=v(z, ¥(k)) we have
V(M gy ) =mP®  fori=1,2,.. 5k=1,2, ...,

since, on account of (16), ¢ (v(z, ¥(k))) =1, and ¥ (v(z, ¥(&))) =¢(k);
hence, it follows from (17) and (23) that

F1, 72, rw( ) _
-Enl,'nz..‘... k—Eml(\#(k)), mg(lﬁ(k)) ..... mg‘?g;))! fOI' k—l, 2: e ey

and so from (22)

X € Em,ne,.... for k= 1, 2, ..

this proves that x belongs to the nucleus of the system S[E,, ., . .-

mp?
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We have thus proved that the systems
S[E™7"s] and S[Ey, p,....n]
have the same nucleus.

But the sets E,, ,,, ., belong to the family F by (17) ; Theorem
70 is, therefore, established.

COROLLARY. The sum and product respectively of a countable
aggregate of sets which belong to a family F are results of the operation
A performed on the sets of F.

Proof. HE=T1+T24+7Ts+ ...,whereT, e F,forn=1,2,...,
then for every finite combination of indices 71, #,, . . . , 7z, put

Em.nz,.....nk = T”l'
It is easily seen that E is the nucleus of the system S[E,

If E=T172.T; ..., then put

1.nz,.....nk] .

......

for every finite combination of indices 7, 72, . . . , 7.

Itfollows again that E is the nucleus of the system S[E,,,,,m"_,,,k].

Let F be a given family of sets and let A (F) denote the family of
all sets which are results of the operation 4 performed on the sets
of F. Theorem 70 may clearly be expressed by the relation

(24) A(AF)=A(F)
(for every family F of sets).

If now we denote by S(F) and P(F) the families of all sets which
are sums and products respectively of a countable aggregate of
sets which belong to F, then the corollary to Theorem 70 can be
expressed, as is easily seen, in the form
(25) S(F)c A(F) and P(F)cC A(F).

Relations (24) and (25) hold for every family F of sets.

From these relations we get immediately
(26) FC A(F)
for every family F of sets.

We shall next prove the following property of the operation
A(F).
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If a family F is a topological invariant and if the product of every
set belonging to F and a G; belongs to F, then the family A(F) is a
topological invariant.

Let E denote a set belonging to the family 4(F).
Hence
(26a) E=3XE,.E, ,,-E

N1, B, Mg T Y
where the sets E,, ,, g belong to F and the summation ranges
over all infinite sequences of the indices #,, 7z, 73, . . .

Further, let T be a set such that EkAT. By the theorem of
Lavrentieff, there exist two sets P and Q, each of which is a set
G;, and a function f defined in P such that EC P, TC Q, P k;Q, and
f(E)=T.

Put P.E, 4....n =Y. m,...ny; these setswill belong to F (since

they are products of a G; and sets which belong to F), and from
(26a) and EC P, we get

E =Z Ynx Ynx, na Ynx. n2, M3 * T~ *
and so, since f is biuniform in EC P,

T=f(E) =2f( Ym) f( Ym. nz)-f( Ym. n2, m)' ..
this proves that T belongs to the family A(F), since the sets
f(¥Yo.. ne.....n) belong to F (F being a topological invariant). The
theorem is, therefore, proved.

65. Let now C denote the family of all closed and bounded sets
(in the metric space under consideration); it follows from the
definitions of analytical sets (§ 63) and the operation 4A(F) (§ 64),
that 4(C) is the family of all analytical sets. From (24) we obtain

A(A(C) =4(O);
hence, we have

Theorem T71. The result of the operation A performed on
analytical sets is an analytical set.

From (25) and (24) we get
S(A(C) cA(4A(C))=A4(C), and P(A(C))c A(C),
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and so the sum and the product of a countable aggregate of analytical
sets are themselves analytical sets.
Finally, from (26)
cc4(0),

i.e. every closed and bounded set is an analytical set.

The family A of all analytical sets is, therefore, one of the
families B which satisfy the conditions 1), 2), 3) of § 62, and since
every one of the families B contains the family of Borel sets (§ 62),
we have

Theorem 7la. [Every Borel set is an analytical set.

66. A system S[E,, ,,. .}, where E, ,, is a closed set

....... np
satisfying the conditions:
1
(27) é (Em,nz..m.nk) < _k— H
(28) Em, N2yeeeer Nt < En1,112......11k’
(29) Enr. MN2yeeeny nE ;"'0
for every finite combination of the indices 7, %, ..., 751, will be

called regular. We shall prove

Theorem 72. Every analytical set, which is not null, is the
nucleus of a certain regular system.

Let E be a given analytical set, not null. It follows from the
definition of analytical sets (§ 63) that E is the nucleus of a certain
system S[F,, ., ... n,), Where F,, .. . ., are closed and bounded sets.

It was shown in § 47 that every compact set can be divided into
a finite number of sets of arbitrarily small diameters. Hence, if ®
be a closed and bounded set and so by condition (W) (§ 55) also
compact, then corresponding to every e >0, we can write &=, +
®+...+9,, where 6(&;) <e,fori=1,2,...,m;butdisclosed and,
therefore,® =&;+&:+ .. . +&,,, where §(P;) <e, since 5(P) < (§ 47).
Hence, every closed and bounded set is the sum of a finite number
of closed sets of arbitrarily small diameters and so certainly the
sum of an infinite series of such sets (since the missing terms may
be replaced by null sets). We may, therefore, write (for every
combination of indices n, 7y, . . ., n)
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(30) Fossnvry =T oy T o F o
where F,, . are closed sets, and where
1
31 s§(F® <
(31) (F ) YL

for all integers 7, s, . . ., 1, and 4.

The metric space M under consideration is, as we know (§ 55)
the sum of a countable aggregate of bounded sets. If we consider
their enclosures, it follows at once that M is the sum of a countable
aggregate of closed and bounded sets and so (from the property of
the latter), M is the sum of a countable aggregate of closed sets of
arbitrarily small diameters. We may, therefore, write

(32) M=E,+E,+E;+ . ..
where E,(n=1, 2, .. .) are closed sets, and where
(33) §(E,)< %, forn=1,2,...
Put for all positive integers #; and 7-
(34) By r=En
and for £> 1 and every combination of positive integers #i, #2, . . . , o
(35) Enpmsecs ey =Eimseimg = FED

From (33), (84), (35), and (31) it follows that condition (27)

will be satisfied (for every finite combination of indices #y, #s,. .., 7).
It will be shown that the set E is the nucleus of the system
S[Em. M2ennny "k] .

In fact, suppose that x ¢ E. Since E is the nucleus of the system
S[F,,. ,,2_._,__%], there exists for every element x a certain infinite

sequence of indices my, #2a, M3, . . . such that
(36) %€ Fppy psy..omyr fOT B=1,2, . ..

It follows from (30) and (36) that there exists for every integer
k an index 7, such that

37) xe PO fork=1,2,...
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Finally, from (32) (and the fact that x is an element of the
space M), we conclude the existence of an index 7, such that
(38) X € E,’u .

Denote by 71, 72, ns, . . . the successive terms of the infinite
sequence
1:01 My, 11, Ma, 22, M3, 13, - . -

we shall have from (38), (33), (34), (837), and (35), as is easily seen,
(39) X €Ey ny.mp for k=1,2,...,

and so x belongs to the nucleusof the system S[E,, ,, .. .,]. Sup-

pose, on the other hand, that x is an element of the nucleus of the
system S[E,, ., ..»,]. Hence, there exists an infinite sequence

of indices 74, 79, 73, . . . , for which (39) holds. We have, therefore,
from' (39), (35), and (30)
xeF,, ., ,for k=2,3, ...,
2, My enas Mol —g

from which it follows that x belongs to the nucleus of the system
S[Fo, ns,...n] and so to the set E.

We have thus proved that the set E is the nucleus of the system
S[En,, ms,...nz]- We have, therefore, shown thus far that every

analytical set E is the nucleus of a certain system S[E,, ., .. x,)
where E,, ,, .. .x, are closed sets which satisfy condition (27).
If now we put for every finite combination of indices #,, 7o, . .., 7

Xm,m ...... nk=Eﬂ1-Em.ne SR Em,m ...... np

then the sets X, ,, ..., Will be closed,

1
(40) 5(Xm, 2T "k) < ';"
(from (27)), and
(41) X?’u, N2,.... 1 Mhs nk+1CXn1, M2y.ees "k;

the set E will then obviously be the nucleus of the system
Sx

If now E is not a null set, there exists an element x, of E.
Corresponding to a given finite combination of indices 71,7, . . ., 7s,
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put
TP ¥e 'd ~
(42) X S = 2 An, T2y Ty ML" ‘Xn. LTINS S T n,-Xr

1, 72, ... rs, ML M, My

where the summation ranges over all infinite sequences of integers
ny, Mgy, Mgy « «

If for a given set of indices 7y, 7, ..., 7,, the set (42) is not null,
then denote one of its elements by Xy, rs,....rg» ON account of (41)
and (42) this will be an element of E.

We shall define now for every finite combination of indices
T, T2y ..., tssets VL, as follows:

If Xmro-7s520 then Y, ,, . .

If x™77s=0 and X"=0, then Y, ,, ., =(xo) (where (xo)
is the set consisting of the single element x;).

If X r="s =0and X" =0, and if p+1 is the smallest index such
that X" "2 "s+1 =0 (hence 0 <p <s, and X" "23£0), then put
Yn,rz, s ) = (xh,fz ..... "s) .

It follows from (42), (41), and (40) that the sets Y, ,, , all
satisfy the conditions

1
6 ( Ym. kTR ﬂk) < ‘E‘v
Yﬁx, N2ree sy Nt ] c Ynx. B2ees np?
and
Ym, L2 T ﬂk #O
for every finite combination #i, #, . .., #;, 7py,. Furthermore, it

follows easily from the definition of the sets ¥, ,, ., from (42),

(41), and from the fact that E is the nucleus of the system

S[X ., no.....np)s that E is the nucleus of the system S[Y,, ., gl
Theorem 72 may, therefore, be considered as proved.

67. Theorem 73. In order that a non-null set E be an analytical
set, it is mecessary and sufficient that E be the set of values of a certain
function f(x) of a real variable, defined and continuous in the set of all
irrational numbers.

Proof. Let E be a given analytical set not null. Hence, by
Theorem 72, E is the nucleus of a certain regular system



146 GENERAL TOPOLOGY

S[E,.. ns. ..z}, where Ep ., are closed sets, which satisfy con-
ditions (27), (28), and (29).

Let x be a given irrational number, [x] the greatest integer <x,

and
1 1 1
(43) x=[x]+ T

the development of x as an (infinite) continued fraction. Put
(44) F(x> =En, . Em, 712'E7‘l)., na, nz * * *

1t follows from (27), (28), and (29) that the set (44) is a product
of an infinite decreasing sequence of closed and bounded (and,
therefore, by condition (W), § 55, also compact) sets which are
not null. Hence, by Theorem 27, the set (44) is not a null set. On
the other hand, (44) gives F(x) CE,, ., . .ny» for k=1,2,..... s

and, therefore, from (27) §(F(x)) < %—, for k=1,2,..., and so

3(F(x)) =0; this proves that F(x) consists of one element only
(since F(x)#0). Denote this element by f(x). The function f(x)
will thus be defined for every irrational x and, as follows immedi-
ately from the definition of the function f(x) (and the set E), its
values will be elements of the set E. On the other hand, it is easily
seen that every element of £ is one of the values of the function
f(x) for an irrational x. For if p be an element of E, there exists
an infinite sequence of indices 71, 712, 73, . . . such that p € E,, .. ..u
for k=1,2,..... , and so, if x be a real number defined by (43),
we conclude (on account of (44)) that p € F(x); but from the defi-
nition of f(x), since F(x) consists of one element only, it follows
that p =f(x).

We have, therefore, proved that E is the set of all values of a
function f(x) for an irrational x.

We shall now show that f(x) is continuous in the set of the
irrational numbers.

Let

(45) wo=lw 4+ L 1

n°+ nl+ nf+
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denote a given irrational number, and ¢ a given positive number.
Let & be an integer such that

(46) ]le <e

It follows, as is well known, from the properties of continued
fractions that, corresponding to the numbers x, and %, there exists
a positive number 7 such that every irrational number x which
satisfies the inequality
47) | & —x0 (<7

may be expressed as the continued fraction (43) such that

n;=n9, fori1=1,2,...,k,
and, therefore,

(48) By, nneees = B, s, .o mp
But, from the definition of f(x) and from (43) and (45), we have
J (&) € Eoypimpyy F(%0) € B, nos,. my3
hence, from (48), (27), and (46), we obtain
(49) p(f(x), f(x0)) <e.

We have thus shown that, corresponding to every irrational
number x; and every positive number e, there exists a .positive
number 7 such that the inequality (47) implies the inequality (49);
this proves that the function f(x) is continuous in the set of all
irrational numbers.

The condition of Theorem 73 is, therefore, proved to be neces-
sary.

Let now f(x) be a function of a real variable defined and con-
tinuous in the set of all irrational numbers with its values the
elements of a metric space satisfying condition (W) (§ 55). We
shall show that the set of all values of f (x) for x irrational (a set
which is obviously not a null set) is an analytical set.

Since, as was shown in § 65, the sum of a countable aggregate
of analytical sets is an analytical set, it will be sufficient to show
that the set I of all values of the function f(x) is an analytical set
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for all irrational values of x in the interval (k, 2+1), or in the
interval (0, 1) say.

Let my, 7s, . . . , n denote any finite sequence of positive integers.
Denote by X, n, ..., the set of all irrational numbers x in the

interval (0, 1) whose developments as continued fractions have

11 11

m+- net+ 1+ 7

for their 2** convergent, and put

(50) Em,m. el zf(an. ne, ""'”k) ;
these will be closed sets (not necessarily bounded). It follows that
E is the nucleus of the system S[E,, ... .. »,].

In fact, let p e E; then by the definition of the set E there
exists an irrational x in the interval (0, 1) such that f(x) =p; let

1 1 1
x= —_ -
i+ e+ mz+4

be the development of x as a continued fraction. It follows, from
the definition of the sets X, ,, that

xEXm.nz,.....nk! for k=1; 2, ...

and so, from (50), certainly
F@) € Epp s, .mps fOr B=1,2, ...

hence, the element p=f(x) belongs to the nucleus of the system
S[E’nh N2y eeny n;;]' ’
On the other hand, let p denote an element of the nucleus of

the system S[E,, ,,.., 1)

There exists, therefore, an infinite sequence of indices 7%, ns0
n3% . . . such that

(51) PeEyo g  uy fork=1,2,...
Put
(52) xp= 1 1 1 ;

m+ 0t mg04
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this will be an irrational number of the interval (0, 1). Let e
denote a given positive number. Since the function f(x) is con-
tinuous in the set of irrational numbers, there exists a positive
number 7, depending on x; and e, such that the inequality

(53) } x—xo| <7
implies the inequality
(54) p(f(x), f(xe)) < e,

for an irrational x of the interval (0, 1).

Moreover, it follows from the properties of continued fractions
that, corresponding to every x, and 7, there exists an integer & such
that every irrational ¥ whose E'® convergent is the same as the
E® convergent of (52), i.e. every number of the set X, ",
satisfies the inequality (53) and, therefore. also the inequality (54).
Hence

6(.f (Xm°. 2720,...., nk")) = €,
and, therefore, from (50) also

(55) (Bt ) < €

But from (52) and the definition of the sets (50), we have
evidently
f(xo) € Emo. 730, ..., g0

and so, from (51) and (55),
p(?, f(x0)) <e,

and, since € is an arbitrary number, this gives p=j(x); hence,
peE. We have, therefore, proved that E is the nucleus of the
system S[E,, ,,2__.“,,,)2], where E,, ., .. », are closed sets. Hence, E
is a result of the operation 4 performed on closed sets and so, by
Theorems 72 and 71, is an analytical set.

The condition of Theorem 73 is thus seen to be sufficient.

68. Theorem 74. A continuous transform of an analytical set
is an analytical set.

Proof. Let E be an analytical set, and T its continuous trans-
form. Hence, there exists a function f(») defined and continuous
in E such that 7 =f(E). But, by Theorem 73, there exists a function
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#(x), defined and continuous in the set of all irrational numbers
N such that E=¢(N). For an irrational x put ¥(x)=f(¢(x));
by Theorem 19, ¢¥(x) is continuous in N, and obviously T =y¢(N).
Hence, by Theorem 73, T is an analytical set.

Theorems 72 and 74 lead immediately to

COROLLARY 1. A continuous itransform of a Borel set is an

analytical set.
From Theorem 74 we get further

COROLLARY 2. The property of being analytical of a set is a
topological invariant.

Let now A denote the family of all analytical sets (contained in
the metric space under consideration). The sets F, and G;, being
Borel sets, belong to the family A (by Theorem 71a). Further-
more, since the sum and product respectively of two analytical sets
are themselves analytical sets (§ 65), and on account of Corollary 2,
the family A satisfies the conditions of Theorem 66. It follows,
therefore, from Theorem 66, that the family of all complements of
the sets which belong to A is a topological invariant. We have thus

Theorem 75.° A sei which is homeomorphic with the complement
of an analytical set is itself the complement of an analytical set.

We note, however, that a continuous transform (even when
biuniform)!? of the complement of an analytical set may not itself
be the complement of an analytical set.

69. Theorem 76. If f(x) be a funciion of a real variable x, the
values of which arve elements of a metric space, then the set of all values
of x for whick the function is continuous on one side only, is countable
at most.!t

Proof. Let x; denote a real number for which f(x) is continuous
only on the left. Since the function f(x) is not continuous on the
right for the value xo, then it is not true that, corresponding to
each positive ¢, there exists a positive number 5 such that

p(f(x), f(x0)) <e, for xy <x <xg—n.

°P. Alexandroff, Fund. Math., vol. \', p. 164; M. Lavrentieff, Fund. Muth.,
vol. VI, p. 154.

YMazurkiewicz, Fund. Math., vol. X, p. 172.

USierpinski, Functions representable analytically (in Polish), Lwow, 1925,
p- 13 (Th. 8).
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It follows, then, that there exists a positive rational number u
such that the inequality

(56) o(f(x), f(x0)) <2, for xg<x <xo47

is not satisfied for any positive 1.
On the other hand, since f(x) is continuous on the left at xo.
there exists a rational number v <x, such that

(57) p(f(x), f(xo)) <u, for v <x <.

The numbers % and v may be taken to be the first terms of a
certain infinite sequence of all rational numbers such that = does
not satisfy (56) for any positive », and v (after » has been selected)
satisfies (57). In this manner, to every element of the set E of
all real numbers for which the function f(x) is continuous only on
the left, there will be assigned a certain pair of rational numbers
(u, v). It will be shown that to different elements of E there will
always be assigned different pairs.

To prove this, suppose that the same pair is assigned to the
number x,> xo and x,. We then have (57) and

(58) p(f(x), flx1)) <m, for v <x<xy,

where v <x;. Since ¥ <x,<x:, we may assume x=x; in (58) which
gives p(f(x0), f(x1)) <#, and so, from (58),

p (f(x), f(x0)) = p (f(x), f(x1)) +p(f (x1), f(x0)) <22,

for v <x<xi, and certainly for x,<x <x;. If we put n=x;—x,, we
would have a positive  and (56) satisfied, contrary to the definition
of the number #. Hence to different elements of E correspond
different pairs (#, v) of rational numbers, and (since the set of all
pairs of rational numbers is countable) the set E is countable at
most. Similarly, it could be proved that the set of all values of x
at which a function f is continuous on the right only, is countable
at most. Theorem 76 may, therefore, be considered as proved.

Theorem 76 will obviously remain true if the function f(x) be
defined in a subset of the set of all real numbers.

Theorem 77. In order that a non-null set E be an analytical set,
it is necessary and sufficient that E be the set of values of a function of

11
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a real vartable, which is continuous on the left in the whole set of real
numbers.?

Proof. Let E denote a given analytical set not null. Hence,
by Theorem 72, E is the nucleus of a certain regular system
S[E., s ....nz)s where E,. ., . are closed sets satisfying conditions
27, (28), and (29).

Let x be a given real number. Corresponding to every real
number x there exists, as is well known, a definite infinite sequence
7y, Mg, M3, - . . Of positive integers such that

1

(59) [x] + + 2111—-}-710 + 2m+m+na RAERERE
Put
F(x) =En1 - Em, nz Em, n2, Ny, ¢ * o

As in Theorem 73, we show that F(x) consists of one element
only, and if this element be denoted by f(x), then E is the set of
all values of the function f(x) for x real.

We shall now prove that the function f(x) is continuous on the
left in the set of all real numbers.

Let
(60) wo=lod b — 4L 41

2n1° 2n1°+m° 2n1“+m°+ ng®

denote a given real number, and ¢ an arbitrary positive number.
Denote by % a positive integer such that

1
(61 = <eg
) 7 <
and put
1 1
(62) [.’)Co]"‘l" 2111" + 2m°+n70 ..o+ 2"‘0+"”0+""+”k° ;

obviously, on account of (60), x; <x,.

2Cf. N. Lusin, Fund. Math., vol. X, pp. 12-15; W. Sierpinski, Fund. Math.,
vol. X, pp. 169-171.
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Let now x be a real number such that
(63) 21 <x <%y,

and let (59) be the development of x (as a binary fraction, actually
infinite).

It follows easily from (59), (60), (62), and (63) that

n;=n0 fori=1,2,...,k,
whence

(64) Enl, ne

But from the definition of the function f(x) and from (59) and
(60), we have

and so, from (64), (27), and (61),
(65) p(f (x), f(x0)) <e.

We have thus proved that, corresponding to every real number
xo9 and every positive number ¢, there exists a number x; <xy such
that the inequality (63) implies the inequality (65), and this
proves that the function f(x) is continuous on the left in the set of
all real numbers.

The condition of Theorem 77 is, therefore, necessary.

Let now f(x) denote a function of a real variable, continuous
on the left for every real value of x, and such that its values are
elements of a metric space satisfying condition (W) (§55). Denote
by E the set of all values of the function f(x) for x real; we shall
show that E is an analytical set.

Let A be the set of all values of « for which f is continuous (on
both sides), and N the set of all remaining values of x, hence of
those, for which f is continuous on the left only. The set NV is
countable at most by Theorem 76; it is, therefore, in any case, a set
F,, and so M is a set G; and, therefore, a Borel set. The function
f is obviously continuous in Af; hence, f(A{) is a continuous trans-
form of a Borel set, and so, by Corollary 1 to Theorem 74, an
analytical set. The set f(IV) is countable at most (since N is
countable at most); it is, therefore, in any case, a set F, and so
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an analytical set. The set E=f(M+N)=f(M)-+f(N) is, therefore,
the sum of two analytical sets and hence an analytical set (§ 65).
The condition of Theorem 77 is, therefore, sufficient. This

proves Theorem 77.

70. LEMMA. If E be o given set, and K an open sphere such that
the set E.K is not countable, then there exist open spheres Ky and K,
of arbitrarily small radii and such that KcC K, K;C K, KoK, =0,
and the sets E.Kq, E.K; are not countable.

Proof. The set E.K, not being countable, contains, by the
corollary to Theorem 29 (§22), a non-countable aggregate of
elements of condensation; let p, and p; be two of them. Since
e K and p; e K, and since K is open, we shall have for 7, and 7,
sufficiently small (§ 44) Ko=K(po, 70) © K, and K1 =K (p;, 1) C K,
where it may be supposed that 7+ <p(po, 1), which results in
K.EK,=0. Finally, since K, and K; are open sets, and pq e K,
#1 € K, we conclude from the fact that p, and p; are elements of
condensation of the set E.K, that the sets E.K, and E.K; are non-
countable. The lemma is, therefore, proved.

Let now E be a given non-countable, analytical set, 7.e. the
nucleus of a regular system S[E,, ,, ...

For every finite combination of indices 7y, 72, . . . , 7,, put

(66) -Eh' Toenls =2En . Er), 72 "Eh, T2l © En, LS Ty Tgr 717 En,rz, ¥ gy My, M2 0
where the summation ranges over all infinite sequences of positive
integers #ny, %2, #3, . . .

It follows at once from (66) that

(67) E=FE'4+E2+E3+ ...,
and for every finite combination of indices 7y, s, . . . , 7, we get
(68) Er:, r2nts =Er|,rz,.....rs, 1 + b2 2 + Erx.re, B Y +

With every finite combination ai, as, ..., as consisting of the

numbers 0 and 1, let there be correlated a sphere K., ., .., and

an integer #a,a, ..+, in such a manner that the following con-

ditions are satisfied:
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1
(69) B(K‘lx. @2, iy u'k) < -k* ’

(70) Kax az,....,@p CK!:, aa, ..
(71) = K“l. A2y vinny
(72) the set E™er May, oy May, as,... --Ka1,a.z ...... o

13
g1

is non-countable.

We shall show that such a correlation is possible.

Since E is non-countable, it contains an element of condensation
p. Put K=K(p, 1); the set E.K will be obviously non-countable;
we may, therefore, apply to it our lemma. Hence, there exist
spheres Ky and K; such that K,.K; =0, §(K,) <1, §(K1) <1, and the
sets E.K, and E.K; are non-countable. But from (67)

E.Ko =E1.K0+E2.K0+E3.Ko+ ...y

“and, since E.K, is non-countable, there exists an index =1, such that

E™ . K, is non-countable. Similarly, we deduce the existence of
n1; such that the set E™.K, is non-countable.

Let now k be a given positive integer, and suppose that we have
already defined all spheres K., .. ., and all integers #24 a, .
(where a1, as, ..., @ is any combination of 2 numbers, every one of
which is either 0 or 1) so as to have conditions (69), (70), (71),
and (72) satisfied. Let ai, as, . . . , a; be any combination of %
numbers consisting of 0's and 1's. It follows from (72) and our
lemma, that there exist two spheres K, o, .. 0,0 and Ko o, ap1
such that

K‘!x. a,....%p, 0 c K"'l. Qg inBp? Kﬂx. az

...... ﬂk)
Ral.ﬂ ....... ap O’Kax as ap 1—"0,
§(K y< ——, 8(K ) <._1_
ay, a,....,%5, 0 k+1 ay, @s,. ..,ap, 1. k+1:

and the sets
.Em""' May, agee- Ma,, ay,...., ak~Ka,,a2 _____ ap. 0
and
E"lal. ”luh 12.-“.,7"&" ﬂz"""ak. Kax a

ap, 1

BFor k=1, condition (70) does not come under consideration.
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are non-countable. From this last property and from (68), we
deduce easily the existence of indices #q, a, _az0 20d Mo, 0, . ap 1
such that the sets

Emalp May, agreeen Ma,, A2yener, @Ry 0 3 K ag,a9 . 0
S N

and

EMay May, agpe Mayag,....,05, 1 Kn.,, a,..mip, 1
are non-countable.

The spheres K., o,...q, and the integers m,, _a,, which satisfy

conditions (69), (70), (71), and (72) are thus defined by induction
for every finite combination of indices ay, as, . . . , a; consisting of
the numbers 0 and 1.

Denote now by .S, for every integer &, the set

(73) Sk —_ 2 Ema,,» mﬂz. Qg -eee» Moy a, LS N R‘uh P

k’
(a1, @3, ..., ap)

where the summation ranges over all combinations of 2 numbers
ai, az, . - . , az, each of which is 0 or 1.  (Hence, the sum (73)
consists of 2% terms.) The sets .S, are obviously closed and bounded
(since they are sums of a finite number of closed and bounded sets),
and from (68) and (70) it follows easily that

(74:) Sk+1CSk, for k=1, 2, PR
whereas from (72)
(75) Sp5=0, for k=1, 2, ...

The sequence S, Sz, Ss, . . . is, therefore, a decreasing sequence
of bounded, closed, and non-null sets; hence, by Theorem 27 (and
condition (W) of § 55), the set

(76) S=S1.52.53 e e .
is not null and is closed by Theorem 3.

Let p denote a given element of the set S. From (76) peS:
and from (73)

S =E"™. Ky-+E™ K,
where Ko.K;=0 by (71). Since p ¢.S;, we have either p e E™.K,
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or pe E™.K,; in the first case put f,=0, in the second B;=1.
Hence,

(77) peE™Kg.
Furthermore, ¢ .S: from (76), and from (73) we have
52 = Fmo mo,n"—Izo’ U+Emo. ™o, KO, 1+Emh mx.o.'Kh D+Em1. M1 .El’ 1

where, on account of (71) and (70), the terms of the sum .S; are
mutually exclusive. The element p €S, and so belongs to only
one of the four terms, and, by means of (77) and (70), it may be
easily deduced that this term has the form E™8. ™6.8. K, g,, where
B is one of the two numbers 0 and 1.

Again from (76) we have p ¢ Ss, whence, arguing as before, we
deduce from (73), (71), and (70) that, for a certain @; which is
either 0 or 1, we have p ¢ E™8: "pu.br ™61.616: Kp g, g,.

Continuing in this manner we obtain an infinite sequence

Bly B2v Bay ...
the terms of which are the numbers 0 or 1, and which is such that

(78) be BB ™8y, Baren mﬂhﬁ?r"-’ﬁk.Eﬂh Brrer Byt for & =1, 2,...

Let now € denote an arbitrary positive number. Denote by s
an integer such that

(79) 1.
RY

and put ,6;_,_1 =1—p,41; this will be one of the numbers 0 or 1, and
ﬁ_,,.‘_l 75354_1, and SO, from (71),

(80) K162 8y41 - Kb, 8oy 8751 =0
Put
(81) B, =B, for i<s, B/ =0, for 1 = s4-2.

From (68), (69), (70), and Theorem 27 we conclude that the
product ‘

©
(82) P= H EMBL MBS, Byt M1, Bal,.... 8z . Kﬁ‘,' B!
k=1

is not null and from (69) that §(P) < ;;, for k=1, 2,..., and so
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5(P) =0; this proves that the product P consists of one element
only, which we shall denote by g¢. From (82) and (73) we find

qeSy fork=1,2,... (since ge P), and so ¢ ¢ S from (76).
From (78), (80), (81), (82),and the fact that 5§+1 #Bsy1, we find
that p=gq.

Finally, on account of (78), (81), and (82) (since g € P) we have
peKep. g, .6, and ¢ € Kp, g, .5,

and so, from (69) and (79) (since 8(Q) =3(Q) for every set Q),

P(p: Q) <e.

We have thus proved that, corresponding to every element
of the set S and every positive number ¢, there exists an element
g of S, different from p and such that p(p, ¢) <e. Hence, p is a
limit element of the set S (§43). Every element of the set S is,
therefore, a limit element of .S; the set S is, therefore, dense-in-itself
and being closed, it is perfect.

Clearly, from (77), (73), (68), and (67), the set SCE. The
set S is, therefore, a perfect, compact, and non-null subset of E.
We have thus proved

Theorem T78. Euvery analytical, non-countable set contains a
perfect- (and compact) subset, which is not null.**

From Theorems 78 and 71a we get at once

Theorem 79. Every non-countable Borel set contains a perfect
subset, which s not null.l®

From Theorems 78 and 45 and the fact that the metric space
under consideration has potency equal to or less than that of the
continuum (Corollary 3 to axiom (v2), § 21) we get at once

CoOROLLARY 1. FEvery non-countable analytical set has poiency L.
From Theorem 72 we get

1This theorem was obtained by Souslin in 1916; see N. Lusin, Comptes
Rendus, note from Jan. 8th, 1917 and Fund. Math., vol. X, p. 25.

15F, Hausdorff, Math. Annalen, vol. LXXVII, p.430. Seealso Fund. Math.,
vol. V, p. 166.
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COROLLARY 2. Every non-countable Borel set has potency £.1¢

71. Two sets P and Q are said to be exclusive B, if there exist
two Borel sets A/ and XNV such that

€Y} PcC I, @ N, and JI.N=0.

Lemma. If
@ P=P+Po+Ps+ ..., Q0=0:+Q+Qs+ . . .,

and if P and Q are not exclusive B, there exist indices p and q such that
the sets P, and Qg are not exclusive B.

Proof. Suppose, contrary to the lemma, that the sets P, and Q,
are exclusive B for all integers $ and g. Hence, for every pair of
integers p and g there exist two Borel sets M, , and N, , such that

(3) P,C M, , QCN, ,and M, ,.N, ,=0.
Put .
4) M= Il 1, ,N=3 II N,,
p=1g=1 g=1 p=1

It follows from the properties of Borel sets (§ 62) that 4 and N
are Borel sets, and from (2), (3), and (4) we conclude readily that
(1) is satisfied, contrary to the hypothesis of the lemma that P and
Q are not exclusive B. The lemma is, therefore, proved.

Theorem 80. Two nutually exclusive analytical sets are
always exclusive B.

Proof1" Let E and T be two analytical sets and S[E,, ,....x
and ST, n,....n,] the corresponding regular systems generating
these sets. Let the sets E™”"s be defined by (66) (§ 70) for
every finite combination of indices ry, s, ..., ryand thesets 7707 7s
in an analogous manner (i.e by the set obtained from (66) on
substituting T for E). We shall have (67) and (68) and analogous
relations for the sets T and T "s.

Suppose that E and T are mutually exclusive but not exclusive
B. Hence, it follows from (67), from the analogous relation for T,

1P, Alexandroff, Com ptes Rendus, vol. CLXII, note of Feb. 22nd. 1916.
"This proof is due to Lusin.
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and from our lemma, that there exist indices p; and g; such that
the sets E?* and T% are not exclusive B.
From (68) and the analogous relation for T ™ "s  we have

E"‘=E""1—|—E‘°"2+E""3+ .
T41=TQ1,1+T<1x‘2+Tq1.3+ e,

from which, since E®* and T% are not exclusive B, we conclude,
from our lemma, the existence of indices p. and g, such that E?* #:
and T% % are not exclusive B.

Proceeding thus indefinitely we obtain two infinite sequences
of indices
p1, Pg, p3, [N and dis G2, 43y « « -
such that the sets

Efv?nnPl gnd T %% (B=1,2,...)
are not exclusive B.
But from (66)

- ) FPuPn P = Em_,,,_‘....;ak
and analogously
(6) T2 e qu-tz:,-m-qk '

If the sets on the right of (5) and (6) were mutually exclusive,
then, since they are closed and so Borel sets, it would follow that
the sets on the left of (5) and (8) are exclusive B, contrary to the
conclusion we have arrived at above.

Hence
(7 Pr=Ep potr Lar,arngy =0, for k=1,2,. ..

But the systems S[E,, s, ..., and S[T,, ., ..] are regular,
and, therefore, we have (§ 66, (28))

kaEm.Pz... and Ttlhq-.-,.....qu T

~~~~~~ ciPp D41 @ Q2 Qpfo1?

for 2=1,2,..., and so P, D P, from (7); moreover, the sets P,
are closed and bounded on account of (7); hence, they are compact
by condition (W) of § 55.
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By Theorem 27, the set P,.P;.Ps . . . is not null. Hence there
exists an element x ¢ Py, for k=1, 2, .. ., i.e. from (7)
x e Epl.tz......tk and X € qu. @raeeany ap? fOl’ k = 1: 2: LI

and so x belongs to the nucleus of the system S[E,,h,,z__"_,,,k] and

to the nucleus of the system S[T,, ,. ,‘k] ; it is, therefore, a common

element of the sets E and T, contrary to the supposition that
E.T=0.

The assumption that Theorem 80 is not true leads to a con-
tradiction. Theorem 80 is, therefore, proved.

Suppose now that E is an analytical set and that the comple-
ment of E, i.e. the set T=CE, is also an analytical set. Since,
obviously, E.T'=0, we may apply Theorem 80 to the sets E and 7.
According to this theorem, there exist two Borel sets M and N
such that EC M, TC N, and M.N =0, and so certainly M.T =0,
t.e. MC CT=E;but EC M and M C E give E= M, and this proves
that E is a Borel set. We have thus proved that, if the comple-
ment of an analytical set E is an analytical set, then E is a Borel
set. On the other hand, if E be a Borel set, then, by property 4
(§ 62) of Borel sets, the complement of E is also a Borel set, and
s0, by Theorem 72, the sets E and CE are analytical sets.

We have thus proved

Theorem 81 (Souslin). Iz order that a set E be a Borel set, it 1s
necessary and sufficient that the set E and its complement be analvtical
sets.

From Theorem 81 we get the immediate

COROLLARY. In order that an analytical set be a Borel set, it is
necessary and sufficient that its complement be an analytical set.
We note that Theorem 80 may be easily generalized as follows:

Theorem 80a. If Pi, P., P ... be an infinile sequence of
mutually exclusive analytical sets, there exist Borel sets My, Ms, Ms, . . .
such that
(8) P.C M, fork=1,2,...,
and
€ M,.M,=0, for ps%q.
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Proof. Let p and ¢ be two different positive integers. Since
the analytical sets P, and P, are mutually exclusive, there exist,
by Theorem 80, Borel sets A, , and A, , such that

(10) P,C M, .0 P,CM,,
and
(1D My, .. M, ,=0.

But (10) and (11) hold for every pair of different integers p and q.
Put (for every integer k)
(12) My, =11 31, .,

n<k

where the product I ranges over all positive integers » different
from k. It follows from the properties of Borel sets (§ 62) that the
sets (12) are Borel sets.

From (10) and (12) we easily obtain (8), and from (11) and (12)
we get (9) (since from (12) for pz¢¢ we have M, M, , and
M, C M,y ,).

Theorem 80a is, therefore, proved.

72. We have shown in § 67 that a continuous transform of the
set of all irrational numbers is always an analytical set. We shall
prove now

Theorem 82. A biuniform and continuous transform of the set of
all irrational numbers is a Borel set.

Proof. Since the set of all irrational numbers is homeomorphic
with the set E of all irrational numbers in the interval (0, 1), it
will be sufficient to show that, if f be a function defined in E, taking
different values for different elements of E (these values being
elements of a metric space satisfying condition (W) of § 55), and
continuous in E, then T =f(E) is a Borel set.

For every finite combination #;, #s, . .., #, of positive integers
denote by E,,, ... p the set of all irrational numbers in the interval
(0, 1) whose %*® convergent is
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Each of the sets E,,, n,....n, 18, as can be easily seen, homeo-
morphic with the set of all irrational numbers; hence, by Theorem
73, the sets
(13) Tonn.... ng =f(E, ns,... "k)

are analytical.
Let £ denote a given integer. It follows readily from the
definition of the sets E,,, ,, .., that,if p1, p2,.. ., prand g1, g2, . - ., g,

are two different sets of & integers, then

(14) Em. P2y PR "

and so from (13), since f is biuniform in T,

(15) T oo T =0.

[ Z IR0 PR * Q1. Q.00

Furthermore,
(16) E = 2 E?lx,ng,m..nkv

Gy, 12y, 122)

where the summation ranges over all combinations of % integers.
Finally, for every finite combination #;, #1s, . . . , #,y; of positive
integers we have

Enx. N2yeeespy nk+1 c Em.m ..... ’”k;
hence, from (13)
(17) T?Il, 71'_!‘....,7Ikp 7lk+1 c Tnl. 12, ey ”k -
With every finite combination #,, 7., . . . , #; of integers, let there

be correlated a certain Borel set A, ,,
conditions are satisfied:

......

x, Such that the following

(18) Ty ieoig @ Moy eroing © Loty s

(19) Moy, gy © Moy ey

(20) My, poy s vi- Mo grre 0 =0

for different combinations pi, s, . . ., prand qi, ga, - - ., g of 2 integers

(k=1,2,...).

8For k=1, condition (19) does not come under consideration.



164 GeNERAL TororoGY

We shall show that such a correlation is possible. )

The sets T3, T2, T3, . .. are mutually exclusive by (15), and
since they are analytical, there exists, by Theorem 80a, a Borel set
A, for every integer 7 such that

T.C My, forn=1,2,...,
and
' M,.M,=0, for p=gq,
where it may be supposed that
M, C Ty,

for otherwise it would be sufficient to replace M, by the set M, . T,
which is also a Borel set.

Relations (18) and (20) are, therefore, true for 2=1.

Let now & be a given integer, and suppose that all sets M, ,, ..,
(where %, ng, . .., %, is any combination of 2 positive integers) are
already defined and so that conditions (18), (19), and (20) are
satisfied.

Since the aggregate of all sets of 241 integers is countable,
from (15), and from the fact that the sets (13) are analytical,
we conclude, by Theorem 80a, the existence of a Borel set

No, ns, ..., my, npyy 10T €very combination of k41 integers such that
(21) Tm. N2y ey Ny ] o= Nm, N2y ey MRy ]

and

(22) Nﬁl. D2yeey PRyl qu, Q2500 GR4-1 =0

for different combinations 1, 2, ..., Ppy1 and qi, G2y« - ., Graq Of

k+1 integers. Put
(23) Mm. M2y venny 1zk+1 = -A[nx. M2 eeee My Tm, nz.....,nk+1 . N‘m, N2y ceiey Nk ”k+1 ;

these will be Borel sets (being products of three Borel sets), and
from .(17), (18), (21), and (23), we find

Tm. N, C M‘n:.. 72,... C —Tnx, N2y e,

ey Bl s MRt t

Moreover, (23) gives immediately

M C My, ...

By M2y Rpp ] wnp?
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finally, from (23) and (22), we get

jl[ﬁhi’:. ‘7‘[111. 22, O’

b1t AL Qs Zr4+1 =

for two different combinations pi, ps, . .., ppr1 and @1, gz, - - ., gryy Of
k<41 integers.

Hence (18), (19), and (20) remain true if we replace in them
k by k+1. The Borel sets M, ,,. ., Which satisfy (18), (19),

and (20), are thus defined by induction (for every finite combination
My, Mg, . . . , By Of positive integers).

Put
(24) Se= X Mnx.m.....,nk ’
(n1, %2, ng)
where the summation ranges over all combinations 7y, #s, . . ., 7,

of % positive integers. The sets (24) are obviously Borel sets, for
k=1, 2, ... (since they are sums of a countable aggregate of
Borel sets, § 62), and so the set

(25) S=51.Sz.53 « ..
is a Borel set. It will be shown that T =f(E)=.S.

From (16), (13), (18), and (24) we get easily f(E)C S, for
k=1, 2, ... and so, from (25), f(E)cS. It will, therefore, be
sufficient to show that SCf(E).

Hence, let v denote an element of the set .S. From (25) veS;
and so, from (24), v is an element of the sum A i+AL+. . ., i.e
y € M,,, for some integer ;.

Similarly, y €S: from (25), whence we conclude by means of
(24) thaty € M, ., for certain indices " and m2.  But, A,/ ,», C
A, from (19); hence, ve 1M, and, since y e i/,,, we conclude
from (20) that m," =m,.

Similarly, starting with y € Ss, we might conclude the existence
of an index m; such that vy e A, . ms- Proceeding thus in-
definitely we obtain an infinite sequence of indices m;, ms, ms, - . .
such that

(26) Y e ]lfmx,mg ,,,,,, mp for k=1! 2,...
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Put
1 1 1

x= c.
my+ e+ mz+

27

this will be a number of the set E.

Let € be an arbitrarily given positive number. Since the func-
tion f is continuous in E, there exists, corresponding to ¢, a number

1> 0 such that the inequality

(28) I x—x { <7
implies the inequality
(29) p(f(x), fla')) <e,

for all numbers x’ of E.
From (27) and the properties of continued fractions, it follows

that, corresponding to the number 7, there exists an index % such
that every number x’ of E whose 2" convergent is the same as
the £*® convergent of the number (27), i.e. every number of the
inequality (29).

On account of (13) we may say that every number £ of the set
satisfies the inequality

p(flx), &) <e,
and so every number ¢ of the set T, ... my Satisfies the inequality
(30) p(f(x), ) =<e.
But, from (26) and (18), we have v ¢ ‘T,,,,,,,,zw,_,,,,k ; we may, there-
fore, put t=1y in (30), which gives
p(f(x), ¥)=e.
Since € is an arbitrary number it follows that p( f(x), y) =0,
t.e. y=f(x). We have, therefore, proved that S Cf(E).

Theorem 82 is, therefore, proved. We shall deduce some im-
portant results from this theorem in one of the following articles.

me,m:,.--‘,mk

73. Theorem 83. Ewvery closed and compact set not null (con-
sisting of elements of a metric space) 7s a continuous transform of
a certain closed and bounded set of real numbers.
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Proof. Let T be a given closed and compact set. Hence, T is,
by Theorem 48 (§ 47), the sum of a finite number of sets of arbi-
trarily small diameters; we may, therefore, write T =M;+M,+

s+ M, where §(M;) =1, fori=1, 2, ..., s, and where M; may
be supposed to be not null. Put T;=21f;; T; is closed and compact
(being a subset of the compact set 7°), fort=1,2, ..., s, and, as
is easily seen,
(1) T=T1+T2+ . -+Tsu
(2) T,'#O, fOr’l:=1, 2,. ..y Sy,
(3) T;)=<1,forz=1,2,..., s.

Similarly, each of the sets T;(z=1, 2, . . ., s1) may be represented

as the sum of a finite number of closed and compact sets

T;=T;\+T; 4+ . . .+T,-,:2,1.,
where
T; ,;#0, for j=1,2,...,5,;,
and
6(1-;._7)5 %, fOrj=1, 2, cs s, Sode

Denote by sa the greatest of the numbers s3,1, 52,2, .+ -, Sa 3
letting T ; =T, 4, for s,,; < j<ss we shall have, for 2=1,2,..., s,

T;=T; %7+ - - AT

T, 50, for j=1,2, . . ., s,
and
(T, ;)< %, forj=1,2,..., 5.

Carrying on this argument indefinitely we obtain an infinite
sequence si, Sa, S3, - - - of positive integers (where s> 1, for 2> 1),
and for every finite combination 7, #s, . . . , 7, of indices such that
(4) n;<s;, fori=1,2,..., %

we have a closed and compact set

12
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(5) Tm.ﬂz,.‘.‘,nk #O!
where
. 1
(6) 0 (Tm, 72,y ”k) = ’;
and
(7) Tm, M2yenns ng = Tm. N2y gy 1 +Tm. 2y Bpy 2 + A +Tm. N2y My SpAY *
We shall define now for every finite combination 7y, #,, . .. , n,

of indices satisfying condition (4), an interval E, ,, .
Divide the interval (0, 1) into 2s; equal closed intervals. Denote
successively by Ey, E, . .., B every second of these intervals. In

general, having obtained the interval E,, ,, ., Where sy, ns, ..., n,

g 8 follows:

is a combination of indices satisfying (4), divide it into 2s;,; equal
closed intervals and denote successively every second of these
intervals by

Em,nz.‘....,nk. 1y E‘m, N2y 29 0 0 0 Em.nz. ..... Npy Spq »
Put
(8) Sk = 2 Em, N2,y MR
(n1, 72,00 Np)
fork=1,2,...,where the summation ranges over all combinations
ny, Mg, ..., 1, of indices which satisfy (4). The sets (8) will be

closed and compact (being sums of a finite number of closed and
compact sets) and obviouslynot null; also S,y ; © S, for k=1,2,.. .,
since, from the definition of the intervals E,, ,, ., we obtain at

once
(9> En), N2y hy R CEm. N2yeeey NR? fOI’ n =1, 27 ..y Sk-}—l .

Hence, by Theorem 27, the set
(10) E=S1.52.Ss - e

is closed, compact, and not null. (From the fact that s,> 1 for > 1,
it can be easily deduced that E is a perfect, nowhere dense!? set of
numbers of the interval (0, 1).)

A set E is said to be nowhere dense if there exists no open set in which it
is everywhere dense.
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Let now x be a given element of the set E. Hence x € .S, by (10),
and so x e E;+Es+ . .. +E, by (8). It follows, however, from

the definition of the sets E,(n=1, 2, . . ., s;) that the terms of the
above sum are mutually exclusive; there exists, therefore, a perfectly
definite index #;<s,such that x ¢ E,,. On account of the exclusive-

ness of the terms of the sum (8) and on account of (9), we conclude
from the above the existence of a definite index #,=< s» such that
X € Em. na

Proceeding in this manner, we obtain for the number x of the
set E an infinite sequence of indices 7, 7s, 73, . . . completely deter-
mined (by the number x) such that

(11) n;<s; fori=1,2,...

and

(12) X € By . ny for k=12, ...
Put

(13) Flx) =T, . Ty ps Tososisms - - - 3

this will be a subset of T, determined completely by the number x
of the set E.

The set (13) is, by (5) and (7), the product of a decreasing sequence
of closed, compact, non-null sets; hence, F(x) is not null by Theorem

27. But, from (13) and (6), we have 3(F(x)) < 71,f<>r;e=1,:»... ,

and so 8(F(x)) =0; the set F(x) consists, therefore, of one element
only, which we shall denote by f(x). From (13) and (1) we get
flx) e F(x) © T,,C T; hence f(x) is an element of 7.

We have thus correlated with every number x of E a definite
element f(x) of 7.

It will be shown that f(E)=7. From the definition of the
function f, we get at once f(E) C 7T'; it will, therefore, be sufficient to
show that T Cf(E).

Let, therefore, v denote a given element of 7. There exists, by
(1), at least one index n;<s, such that ye7,,. Similarly, by (7)
(for £=1), there exists at least one index #:< s» such that yeT,, ,..
Proceeding in this manner indefinitely, we obtain an infinite
sequence of indices #y, #2, u3, . . ., satisfying (11) and such that
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(14) Ve npmps for k=1,2,....
Put
(15) (V) =E, .- Epu 5 - Eny o, AR
It follows at once from the definition of the sets E,, ,,, .. that

the set (15) is the product of an infinite decreasing sequence of
closed, compact, non-null sets, where

Hence, by Theorem 27, the set (15) consists of one element
only, i.e. of x=¢(y). From (10)and (8) we get x ¢ E, and, moreover,
from (14), (13), and the definition of the function f(x), we find im-
mediately that y =f(x) and so (from x e¢E), yef(X). We have thus
proved that T Cf(E).

To complete the proof of Theorem 83 it will be sufficient to
show that the function f(x) is continuous in the whole set E.

Let x denote a given element of E, and ¢ a given positive number.

e 1 .
Choose a positive integer p such that —;5 <e. There exists, as we

know, for the number x ¢ £ a completely determined infinite sequence
7y, e, N3, . . . Of indices satisfying conditions (11) and (12).

Put
(16) 1=5(Eos )

this will be a definite positive number.
Let now x’ be a number of the set E such that

17 | —2x"| <n.

It follows readily from the definition of the intervals E,, ,,,
on account of (16), (17), (10), and (8), that

L Y
’
X € E‘ru, N24ueney 'npf

and so, from the definition of the function f, we find easily

(18) FY € Tors ey
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also from (6) and the fact that % < ¢ we get

(19) 8(T ) <e.

1, N2y.unny nP
But also f(x) € T, ... n,: hence, (18) and (19) give

(20) p(f(x), f(x)) <e

We have thus proved that, corresponding to every number x
of the set E, and every number ¢ > 0, there exists a number n > 0
such that the inequality (17) implies the inequality (20) for all
numbers x’ of the set E, which proves that the function f is con-
tinuous in E.

Theorem 83 may, therefore, be considered as proved.

Let now E denote a closed and bounded (and, therefore, com-
pact) set of real numbers and f (x) a function defined and continuous
in E, whose values are elements of a certain metric space. Let y
be an element of the set T'=f(E); there will be, as is easily seen,
among the numbers x of E for which f(x) =y, a greatest. In fact,
let ¢(y) denote the upper bound of the set P(y) of all numbers x
belonging to E for which f(x) =y. Since the set (y) (i.e. consisting
of the single element y) is closed, it follows from the corollary to
Theorem 20 (§ 10) that the set P(y) is closed, and so it contains
its upper bound ¢(y) (which is a finite number, since P(v) CE,
and E is bounded). From ¢(v) € P(y), we have f(¢(v)) =2, and so,
from the definition of the number ¢(y), it follows that it is the
greatest number x of the set E for which f(x) = .

Denote by X the set of all numbers ¢(v) for which yeT;
obviously, X C E, f(X)=17, and the function f is continuous and
biuniform in the set X. The set T is, therefore, a continuous and
biuniform transform of the set X.

It will be shown that the set X is a G;. Since E is closed, it
will obviously be sufficient to show that the set £—X is an F,.

It follows readily from the definition of the set X that X is the
set of all numbers x of E for which f(x)#f(x") for all numbers &’
belonging to E and greater than x. Consequently, if x is a number
of the set E—X, there exists a number x’>x, which belongs to E
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and such that f(x) =f(x’). Denote by F, the set of all numbers x

' ’ 1
of E for which there exists a number x” of E such that x"= x4 =
n

and f(x) =f(x"); clearly, E—X=F,+F:+Fs+.... To prove that
the set E—X is an F,, it will be sufficient to show that the sets
F, (n=1, 2, ...) are closed.

"Let n denote a given integer and x, a limit element of the set
F,. There exists, therefore, an infinite sequence x; (=1, 2,...)

of numbers of the set F,, such that lim ux, =x,. On account of
B>

xp € F,, for k=1, 2, ..., and the definition of F,, there exists for

1
every integer k a number x,’ of the set E such that x," Zx, 4+ —, and
n

flxp) =f(x,/). The infinite sequence of the numbers x;,"(£=1,2,...)

is bounded (since the terms of the sequence belong to E, which is

bounded); comsequently, it contains a convergent subsequence

% (7=1,2,...). Put lim Xy =03 sincex;jeE, for j=1,2,...,
j>o

and since E is closed, x,’ is an element of £. But, from x,’ 2 x,+

L f(x,) =f(xy"), and the continuity of the function f in E, we shall

n

have xy = xo+—=, and f(xo) =f(x) (since lim x =xo and
n >0

lim x;j=xu’); hence, xq ¢ F,. The set F, is, therefore, closed.
>0

” We have thus proved that, if E be a closed and bounded set
of real numbers, and f(x) a function continuous in E, then the set
T =f(E) is a continuous and biuniform transform of a certain set
G; contained in E. In connection with Theorem 83, this leads
immediately to

Theorem 84. Euvery closed and compact set (of elements of a
metric space) is a continuous and biuniform transform of a certain
set G; of real numbers.

Let G denote an open and compact set contained in a given
metric space. Put E=G; this will be a closed and compact set
(for, as shown at the close of §47, the enclosure of a compact set
is compact). Hence, there exists, by Theorem 84, a set I' of real
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numbers, which set is a G;, and a function f continuous and biuni-
form in T and for which f(I') =E. Denote by I'; the set of all
numbers x of T' for which f(x) ¢ G; since GC G =E, we shall evi-
dently have f(I';) =G, and since I'; C T, the function f will be con-
tinuous and biuniform in the set I';. But the set ' is a G;; we may,
therefore, apply to it the lemma of § 58, from which it follows that
the set I'; is a G;. We have thus proved

Theorem 84a. Every open and compact set (of elements of a
metric space) s a continuous and biuniform transform of a certain set
G; of real numbers.

74. Theorem 85 (Mazurkiewicz). Every set G; of real numbers
s the sum of two sets, one of which is a null set or a set homeomorphic
with the set of all irrational numbers, and the other is a set countable
at most.

We shall first prove the following

LemMa. If U be an open set of real numbers containing a non-
countable set N, and n be a positive number, then there exisis an
infinite sequence of non-abutting open intervals D., Ds, D;, . . ., each
D, of length<<w, each D.C U, and each N.D, non-countable, and
where the set N—(D,+D-~+ . . .) is countable at most.

Proof. Let U be an open set of real numbers containing a
non-countable set N, and let 5 be a given positive number. The
set NV, since non-countable, contains an element of condensation x,
and since NC U, we have x ¢ U. Since U is open, there exists a

e . 1 1) .
positive integer k such that the interval P, = (x— - x+ F) is
contained in U, end-points included, where it may also be assumed
that —2—<77. It is easily seen that the interval P, differs from the

k
1 1
1 ; ;= | x4+——, & - R, =
sum of all the open intervals Q, (x+n+1 x - n) and

x———l—, X — ! by a countable aggregate of points, where the
n n—+1

summation ranges over all positive integers # = s. Again, the inter-
val P, contains a non-countable aggregate of elements of IV, since it
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contains x, an element of condensation of NV, as an interior point.
Hence, we conclude that, for every integer s, there exists an integer
n=s such that at least one of the intervals Q, and R, contains a
non-countable aggregate of elements of NN. Consequently, an
infinity of open intervals Q. and R,, for #=%, contains a non-
countable aggregate of elements of N; let these be the intervals
.Hl, Hz, Hs, ... The set N'—P_k —(HL+.H2+ “ v ) is clearly countable

at most. Furthermore, since H,C P, for n=1,2,..., and the
interval P;, end-points included, is contained in U, and the length
of the interval Py is <7, it follows that H,C U, for n=1,2, ...,
also that the length of the interval f, is <7, for n=1,2,..., and

finally that the sets H,,.IV are, by the definition of the intervals H,,
non-countable, forn=1,2,. ...

The set U— P, is open, and so may be divided into a countable
aggregate of open intervals of length <7 on removing a countable
aggregate of points; let (¢, b) denote one of the intervals thus
obtained. Let ai, a2, a3, . . . be an infinite decreasing sequence of
numbers < %(a+b) and approaching a, and let by, b2, . . . be an
infinite increasing sequence of numbers > %(a—5) and approach-
ing 5. The interval (a, b) differs, as is easily seen, from the sum
of the intervals (a1, b1), (@y41, @n), and (bx, b,yq), for =1, 2,...,
by a countable aggregate of points; these intervals, end-points
included, are contained in the open interval (a, ) and so also in
U. 1t follows easily from this that, except for a countable set of
points, the set /— P, can be divided into a countable aggregate
of open intervals of length <%, which, end-points included, are
contained in U. Those of the intervals thus obtained, which
contain a non-countable aggregate of points of IV (if such intervals
exist) will be denoted by X1, K, . . . (This sequence may not exist,
but existing, may be finite or infinite.) The set N.(U—7P,) —
(K1+Ko+ .. .) is clearly countable at most. The aggregate of

all intervals H;, H», Hs, ... and K, K, Kj;, ... 1is obviously
countable; it may, therefore, be ordered as an infinite sequence
Dy, D2, Ds, . ... It is easily seen that the intervals D,(n =1, 2,

... ) satisfy all the conditions of our lemma, which may, there-
fore, be considered as proved.

Let now E be a set G; of real numbers. Then there exists an
infinite sequence of open sets G,(n=1, 2,...) such that E=
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G1.Go.Gs . .. Suppose that E is not countable. Since ECG,
and G, is open, we may apply our lemma on putting U=G,, V=E,
n=1. We thus obtain an infinite sequence of non-abutting open
intervals D, D, D;, ..., each D, of length < 1, each D, CG; and
each E.D, non-countable, and where the set E—(D;+D-+...)
is countable at most.

Let n, denote a positive integer. On account of the sets G, and
D,, being open, the set G..D,, is open, and since EC G» and E.D,,
is non-countable, the set E.G..D,, is non-countable. We may,
therefore, apply the lemma on putting U=G..D,, N=E.D,,
n=31. We thus obtain an infinite sequence of non-abutting open
intervals D, 1, D, »,..., each D, , of length <3, each
D, ,<G..D,, and each E.D,, , non-countable, and where the
set E.D,,—(D,, 1+D,, 2+ . ..) is countable at most.

Let, further, #, and #, be two positive integers. Since the sets
Gs; and D,, ,, are open and the set E.Gs.D,, ,, is non-countable,
we may apply our lemma to U=G3.D,, ,,, N=E.D,, n,,n1=%.

Repeating this argument, we obtain for every finite combina-
tion #4, #e, - .., g of positive integers an open interval D,, ,.
such that

AN

) . 1
1, the length of the interval D, . .. is < 2

21 Dﬂl, N2yey Np—1? P 'Dm. N2y Np -1 ¢ = 0' fOl’ P#g’

...... yMp_1?

4, theset E.D,, ,,, is non-countable,

..... np

-‘-). the set E-Dn;, My p—1 (Dn;, Navs np—1.1 + Dm. R Mg 1 2. )

is countable at most.
Let now XV denote the set of all irrational numbers in the interval
(0, 1) and x a given number of N, and let

_ 1 1 1
ni 4+ me+ mz+

(21) x

be the development of x as a continued fraction. Put
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(22) F(x) =me 'Bnn. ma - me, M, My >t e e

The set (22) is, from 3 and 4, the product of a decreasing
sequence of closed, non-null intervals and is, therefore, non-null
itself; but, from 1, F(x) is contained in an interval of length

< }%, for k=1, 2, ... ; hence F(x) consists of one element only,
which we shall denote by f(x). From f(x)e F(x), (22), and
3 we have f(x) e G, for k=1,2....,andsof(x) e E. Hence, every

number x of the set IV is correlated with a number f(x) of the set
E. The set T of all the numbers f(x) for x ¢ IV, is, therefore, a
subset of the set E. It will be seen that the set £— T is countable
at most.

To prove this, denote by R the set

(23) R=(-E_S> + Z (E-Dm,m......wk "‘Sn;, Nayennn, 'nk)y

(n1, nz,...omp)

where the summation ranges over all finite combinations 7, 7.,
..., n, of positive integers, and where S=D;+D,+4 . . ., while

(24’) Sm, N2yeein = Dm.n:.“...nk. 1 +‘D111.712-..“.71k. 2 + ...

It is evident, from (24) and 5, that the terms of the sum (23)
are sets countable at most; consequently, the set R is countable at
most.

Let now y denote a number of the set E—R. Hence yeE,
and y<¢ R, and so, from (23), ye (E—S); but y ¢ E; therefore, y ¢ .S,
and so, from S=D,;+4D,+ . .., there exists an index m, such that
yeD,,. FromyeéRand (23), we find further that yé (E.D,, —S,..);
but since y € E.D,,,, we have y ¢€.S,,,, and so, from 24, there exists
an index ms, such that y e D, .-

Continuing this argument, we obtain an infinite sequence of
indices m,, ma, ms, . . . such that

y € Dm:. 200y mkv tor kzlr 21 LI

which, on account of (22), gives ye F(x), where x is a number
defined by (21); but, according to the definition of the set T, this
proves that y e 7. We have thus proved that E—RC T, which
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gives E—~T C R, and, since R is countable at most, the set E—T is
countable at most.

To prove Theorem 85 it will, therefore, be sufficient to show
that N A, T.

It follows from the definition of the set T that f(N)=7. Let
now x and x’ be two different numbers of the set N. Suppose that
the developments of the numbers x and x’ as continued fractions
differ first in the #*" terms, and that the denominator of this term
for x” is m,’#m,. From (22) we have F(x) C Do, ma... myyp and
so, from 3, F(x)CDml,mz ...... mr; Similarly’ F(x,) CDml.ms......M,_p myl
and so, from m,s%m,” and 2, F(x).F(x)=0, and this proves
that f(x)==f(x’), since f(x) ¢ F(x) and f(x’) e F(x’). Hence f is a
biuniform function in M.

We shall now show that the function f is continuous in V. Let
x be a given element of the set IV and » an arbitrary positive

.. . 1
number. Select a positive integer k such that i < 5. Corres-

ponding to the numbers x and %k there exists, as is well known, a
positive number & such that every number x’ of N satisfying the
inequality

(24a) [x—a'| <8

can be developed as a continued fraction with its first 2 terms the
same as the first k& terms of the corresponding development of x.
On account of (21) and (22), we conclude that F(x) C D, m.,....om,

and F(x')C D, mo... mgp and this, on account of f(x)e F(x),
f(x") e F(x), % <=, and 1, gives
(25) LF(0) —fxn | <o

Hence, corresponding to every number x of NV and every
positive number 7, there exists a number & >0 such that the in-
equality (24a) implies the inequality (25), for numbers x" ¢ N. This,
however, establishes the continuity of the function f in the whole
set N. Hence, to prove that N7, T, it will be sufficient to show
that the inverse of the function f is continuous in the set T
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Let ¢(y) denote a function defined in T and inverse to the
function f, and let y be a given number of T". There exists, there-
fore, a number x of N, completely determined, such that f(x) =y.
If now (21) be the development of x as a continued fraction, then,
from f(x) € F(x), (22), and 3, we have

(26) Y €D s,y fOr =2, 3,4, ...

Let 6 denote a positive number. Corresponding to the numbers
x and &, there exists, as is well known, an integer 2> 1 such that
every number x’, which has the same first & terms in its develop-
ment as a continued fraction as x has, satisfies the inequality

@7 | x—x'| < 5.
Let now 3’ denote a number of the set 7" within the interval
Dml- Mgy MY and let

.1 1 1
m+ me' -+ my+

X

be the development of the number x’ as a continued fraction.
Suppose that the developments of the numbers x and x’ differ
first in their #** terms. We have, therefore, m,” =m;, for i=1, 2,
.., r—1,andm, s#m,. From (22)and 3, we haveyeD,,, ...
and vy eD
2 that y'& D,,, m, ..., m,, and so certainly, from 3, 3" € D, m,, .

...... My 1,y
s, msreern my—y, myts ANA SO, since m,s%£m,’, it follows from
wmp for
i=7; but, by hypothesis, V' € D, . my; hence, we must have
r>Fk, i.e. the number x’ has the same first k£ terms in its develop-
ment as a continued fraction as x has. Owing to the definition of
the number & we obtain, therefore, the inequality (27). We have
thus proved that, corresponding to every number vy of 7', there exists
an open interval D=D,, .. ., containing y (from (26)) and
such that every number 3’ of the set 7.D satisfies the inequality
(27), where x=¢(y), ¥’ =¢(y’); this establishes the continuity of
the function ¢ in the set 7. The relation N ks T is, therefore,
proved.

But the set N is homeomorphic with the set of all irrational
numbers; hence, Theorem 85 is proved.
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It follows readily from Theorem 85 that two non-countable
linear sets G, are homeomorphic, except for a countable aggregate of
their elements.

From Theorems 84a and 85 we get immediately the following

COROLLARY. Euwery open and compact set (consisting of elements
of a metric space) s the sum of two sets, one of which is a null set
or a continuous and biuniform transform of the set of all irrational
numbers and the other is countable at most.

75. Denote by L the family of all sets E (contained in a metric
space for which condition (W) of § 55 applies) satisfying the follow-
ing condition:

The set E is the sum of two sets, one of which is a null set or a
continuous and biuniform transform of the set of all irrational
numbers, and the other is countable at most.

We shall show that the sum of a countable aggregate of mutually
exclusive sets belonging to L, itself belongs to L.

Let E be a set which is the sum E=E;+E>+ . .. of mutually
exclusive sets, where E, e L, for n=1, 2,.... We can, therefore,
write Ey,=P,+Qn, where P, is a null set or a continuous and
biuniform transform of the set of all irrational numbers, and Qx is
a set countable at most.

But the set of all irrational numbers is, as is well known, homeo-
morphic with the set N, of all irrational numbers of the interval
(n, n+1). Hence P, is a null set or a continuous and biuniform
transform of the set N,. Denote by S the sum of all sets IV,
extending over the indices #, for which P, is not null. The set S
will obviously be a null set, or homeomorphic with the set of all
irrational numbers, and the set P =P, 4+ P,+P;+ ... will be a con-
tinuous and biuniform transform of the set S. Moreover, since
E=P+Q, where Q=Q:+Q:+ . . . is a set countable at most, we
have Ee L.

We shall next show that the product of a countable aggregate
of sets belonging to L, itself belongs to L.

Let E be a set such that E=E, Es.E; . . ., where E, ¢ L, for
n=1,2, .... We may, therefore, write E,=P,+Q,, where the
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sets P, and Q, have the same meaning as above. If the set P,
were null for some #, then the set E, and so also the set £ would
be countable at most and so would belong to the family L.

We may, therefore, put P, =f.(IV) for every integer #, where
fx is a continuous and biuniform function in the set IV of all irra-
tional numbers in the interval (0, 1).

From E=E,.Ey.E;..., E,=P,+Qs, and from the fact that
the sets Qu(n =1, 2, . . . ) are countable at most, it follows that we
may write E=P+R, where P=P,.P,.P; . . ., and R is countable
at most, since it is contained in the set Q;+Q2+4. ... Hence, to
prove that E ¢ L, it will be sufficient to show that Pe L.

Let z denote a given positive integer, ¢ a given irrational number
of the interval (0, 1), and

1 1 1
28 t= ~— ..
28) kit ket kst
its development as a continued fraction. Put
1 1 1 1
(29) ¢.(8) = e ——— .
k21z—1+ k3.2n—1+ k5.2n-1+ k(zm—1)2”—1+

It follows from the properties of continued fractions that the

functions ¢,() are continuous in the set N (=1, 2, . . .), and

that ¢.(V) =N. Put F.(2) =f.(¢x()), for £e N; hence, the functions
F,(%) are continuous in the set N, and P, =F,(N), for n=1, 2, ...
It will be shown that P = Fi(T"), where T is the set of all numbers
t of N for which
(30) F,(0)=F.()), n=1,2,...
Assume that x e P. Hence, for every integer n, x ¢ P, =f,(N),

and so, for every integer 7, there exists a number f, such that
Fa(tn) =2x. Let

(31) ty = 1 ! ! e
k71,1+ kn,2+ kn,3+

-

be the development of the number ¢, as a continued fraction.

Every positive integer p may be, as is well known, expressed in
the form
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(32) p=02m,—1).2%1

and that in one way only, where m, and n, are positive integers.
The numbers m, and #, are, therefore, defined completely by the
number p. Put

(33) kp=knp, 2 p—1s for p=1,2,...,

and let ¢ be a number defined by (28).

In order to show that x e Fi(T), it will be sufficient to show,
owing to the definition of T, that x e F,(¢), for n=1, 2, . ..

From (32) and (33) we have for all integers 7 and »n

k(Zm—1)2"'_1 =kn, 2m—1 1
and so, from (29) and (31),
én(t) =tn, for n=1,2, ...,

whence F,(t) =fu(¢pn(t)) =fa(ts) =%, for n=1,2, ...

We have, therefore, proved that the relation x ¢ P implies the
relation x € Fi(T); consequently, PC Fi(T).

Let now x denote an element of Fi(T). It follows from the
definition of the set T that there exists a number ¢ of the set N
such that

x=F,(),forn=1,2,...

But P, =F,(N); hence, x ¢ P,, for n=1,2, ..., and so xe P.
We have thus proved that F,(7) © P, and since we have seen that
PC F\(T), we have P=F(T).

Since T'C N and the function Fi(f) is continuous in N, Fi(f) is
also continuous in 7. It will be shown that F,(¢) is biuniform in T.

In fact, let ¢ and ¢ be two different numbers of T. Let

, 1 11

R R R

be the development of ¢’ as a continued fraction. Since ¢7t’, the
developments (28) and (34) must first differ in some term, the pih
say. Hence k,>k,’. Thus, from (32) and (29), q&,,p(t);écp,,;’(t’),
and so, since f5 is biuniform in XV, we obtain f"p (q&np(t)) ;éf,,p(da,,p(t’)),
i.e. Fn, (t);éF,,p(t’); on account of (30) (since ¢t ¢ T and ¢ e T), this
gives Fi(t) #= Fi(¢'), as required.

(34)
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We have, therefore, proved that the set P is a continuous and
biuniform transform of the set 7. We shall next show that T is a
G;. Since N is a Gy and T C N, it will be sufficient to show that T
is closed in the set V.

Let ¢, be an element of the set 7/.N; we must show that ¢, ¢ T.
Since %, ¢ T, there exists an infinite sequence #;, of elements of T
such that lim £, =#. From f, ¢ T and the definition of the set T,

we have F:(tk) =F,(t), for n=1,2,... and k=1,2,..., and
so, since Fy(t) is continuous in N, and ¢, ¢ IV, and lim {, =¢,, we
have koo

Fn(to) =F1(to>, for 7l=1, 2, e ey

this proves (owing to the definition of the set T) that {oe 7.

We have thus proved that the set T isa G;. We may, therefore,
by Theorem 85, write T'=X+4Y, where X is a null set or a set
homeomorphic with the set of all irrational numbers, and Y is
countable at most. Hence, from P=F(T), we get P=F,(X)+
F1(Y), where Fi(Y) is evidently countable at most. If now X be
a null set, then P is countable at most, and so Pe L. If X0,
we may write X =y(N), where ¢ is a continuous and biuniform
function in the set IV, and since P = Fy(X), and Fj, as we have seen,
is continuous and biuniform in 7" and so certainly in X © T, there-
fore, P=F(¢(N)) =®(N), where ®(¢) = Fi,(¢(¢)) is a function con-
tinuous and biuniform in the set N. This leads at once to the
conclusion that P e L.

We have, therefore, proved that the family F=L satisfies
conditions 2] and 3] of § 62.

It follows from the corollary at the end of § 74 that every open
and compact set belongs to the family L. Let E be a compact
set G;; we may, therefore, write E=G,.G,.G;s . . ., where the sets
Gu(n=1,2,...) are open. Since E is compact, and, therefore,
bounded, there exists a sphere K containing E. By condition (W)
of § 55, spheres are compact sets; the open sets T',=G,.K will,
therefore, also be compact; since EC K and E=G.1.Gs . .., we have
obviously E=T1.T,.Ts . ... Each set I'y(n=1, 2,...), being
open and compact, belongs to L; hence, from property 3], the
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product of all these sets also belongs to L. Hence, every compact
set G; belongs to L.

Let now U be an open set (not necessarily compact). Let p
denote an element of the metric space I/ under consideration,
and put H;=K (p, 1) and H,=K(p, n) —~K(p, n—1), for n=2, 3,

. ; we have obviously M=H,+H,+H;+ .. ., where the sets
H,(n=1, 2, . ..) are compact and mutually exclusive sets G;.
We have, therefore, U=U.H,+U.Hy+ . . . , where the terms of
the sum are compact and mutually exclusive sets G;. As proved
above, compact sets G; belong to L; consequently, by property 2]
of the family L, the set U belongs to L.

We have thus proved that every open set belongs to L, i.e. the
family F=L satisfies condition 1] of § 62. The family L satisfies
the conditions 1], 2], and 3] of § 62, and, therefore, every Borel
set belongs to the family L.

On the other hand, it follows, from Theorem 82 and the defi-
nition of the family L, that every set belonging to the family L is a
Borel set. The family L is, therefore, identical with the family of
all Borel sets. We may, therefore, state

Theorem 86. In order that o set E be a Borel set, it is necessary
and sufficient that it be the sum of two sets, one of which is a null set
or a continuous and biuniform transform of the set of all irrational
numbers and the other is countable at most.

We note that Theorem 86 leads immediately to the result that
every non-countable Borel set has the potency of the continuum
(a result obtained along different lines towards the close of § 70;
Corollary 2, Theorem 79).

Let now E denote a given Borel set, and f a function continuous
and biuniform in E. If E is countable at most, then so also is
T =f(E), which is, therefore, a Borel set. If E is non-countable,
then, by Theorem 86, we may write E=¢(N)+P, where ¢ is a
continuous and biuniform function in the set N of all irrational
numbers, and P is countable at most. We shall then have 7T =f(E)
=f(¢(N)) +f(P). Put F(t) =f(s(t)), for te N; it follows at once
from the properties of the functions f and ¢ that the function F
is continuous and biuniform in V. Hence, the relation 7"= F(N)+
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f(P) proves that T is a Borel set by Theorem 86 (and since f(P) is
countable at most). We thus get

Theorem 87 (Lusin).? A continuous and biuniform transform of
a Borel set is a Borel set.
This theorem may be considered as a generalization of Theorem

69.

76. Let E denote a non-countable Borel set. By Theorem 86,
we have ED ¢(IV), where ¢ is a continuous and biuniform function
in the set N of all irrational numbers. But, by Theorem 79, the set
N contains a perfect subset D0, and it may be supposed that D
is compact (for it would be sufficient to apply Theorem 79 to the
set of all irrational numbers in the interval (0, 1) which is contained
in N). From DC N and ED ¢(N), we have ED ¢(D). But, by
Theorem 42, the set ¢(D) will not only be a continuous and biuni-
form transform of the (closed and compact) set D but its homeo-
morphic transform. Hence

Every non-countable Borel set contains a subset Q which is homeo-
morphic with a certain perfect and compact set D540 of real numbers.
But, by Theorem 85 (since the set D, being perfect, is a set G;),
we may write D =E-+P, where E 2 N and P is countable at most.
Since Q& D, there corresponds to the subset P of D a subset R of Q
(countable at most), where (Q—R) % E and so, since Ek N, we have
(0—R)h N. But, from Q% D, since D is closed and compact, it
follows by Theorem 41 that Q is closed, and since R, being coun-
table, is an F,, the set H=Q—R=Q.CR is a G;. Hence

Every non-countable Borel set contains a subset which is a Gy
and which is homeomorphic with the set of all irrational numbers.
The metric space under consideration (which satisfies condition
(W) of § 55), being a closed set, is obviously a Borel set. We have,
therefore,

Theorem 88. In every metric space, in which bounded sets are
compact, there exist sets G; which are homeomorphic with the set of

all irraitonal numbers.

20See Fund. Math., vol. X, p. 60.
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It follows from the above theorem that there exist in metric
spaces in which bounded sets are compact, all topological types
which exist in the set of all irrational numbers. In particular, we
may deduce the existence in such spaces of Lebesgue’s sets O
and F of any class a <2 (§ 61) and the existence of analytical sets,
which are not Borel sets; for it is sufficient to refer to the existence
of such sets in a linear space.?!

We shall next deduce an important corollary from Theorem 88.
There exists by this theorem, in the metric space corsidered, a set
H which is a G; and homeomorphic with the set IV of all irrational
numbers. But, every analytical set is, by Theorem 73, a con-
tinuous transform of the set V. Consequently, every analytical
set of the space considered is a continuous transform of the set
H, and so of a certain set G; of this space. On the other hand, by
Corollary 1 of § 68, every continuous transform of a G; is an
analytical set. Hence, we have

Theorem 89. Amnalytical sets (in a metric space in which
bounded sets are compact) are continuous iransforms of sets G
(contained in that space), and conversely.

Furthermore, it may be easily deduced from Theorem 86 that
Borel sets are continuous and biuniform iransforms of sets Gs, and
conversely.

77. Let E denote an analytical set which is the nucleus of the
system S[E,, n..., ,,k], consisting of Borel sets but not necessarily
regular.

For every finite combination of indices #ny, #2. . . ., 1z, put
0 —

(1\) Em.nz ...... np —'Enx,na.‘..., np

and further, for every ordinal number <2,
[eo)

N a1 _ pa a

(2) Em. (2T nk"‘Em, N2ys N " Z Em, (2 N, 1

n=1

21See my book: Functions representable analytically (in Polish), Lwow, 1925,
pp. 66 and 89.
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and finally, for every ordinal number a < of the second kind,

(3) Ela;l. M2y Np = II Efﬂ, N2yeeenr
£{<a

np?

where the product I1 ranges over all the ordinal numbers £<a.
The sets Ej, ... a, defined above by transfinite induction, are
obviously Borel sets (§ 62) for every finite combination of indices
#y, Nay - . ., N, and every ordinal number a < Q.

From (2) and (3) it follows readily by transfinite induction
that

(4) E;u 712,..».,nkCE51,n2,.‘.., ng? fOI‘ U'ZB
Put
[so]
®) s'= 3 5
and
(6) T" = 2 (E:ll. M2y.nny np _E‘::l,—}tz,...., nk):
(m1, n2,...0 nE)

where the sum (6) ranges over all the finite combinations #,,
#s, . . ., ng of positive integers.

The sets (5) and (6) and their difference S*—7"" are evidently
Borel sets (§ 62) for a<Q.

We shall show that

(7 E=3X(S*—T%= 1I 5°

al a <O
where the summation and the multiplication range over all ordinal
numbers a < Q.

Let a be a given ordinal number <Q and x an element of the
set S*—T7" Hence,

(8) x e S%,
and
9 xeT*®

From (8) and (5), we deduce the existence of a positive integer
my such that x ¢ E;,,. Moreover, from (9) and (6), it follows that
x & (Ep, —Ent') (since the set Ej, —Eit! is one of the terms of
the sum (B)); since x ¢ E;,,, we have x ¢ E5F!.  But, from (2),
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(o)
at1
Em-!_ ='E;ll . 2 E:ﬂl, i
n=1
and so, since x € E;'!, there exists an index masuch thatx e E%, ..
Furthermore, on account of (9) and (6), we have x¢ (E:

my, ms

1 . a
E;FL.), and so, since x € ES, ., We get x € E5TY But, from (2),

my, ma
©
at1 a
Eml, ma C E -me. ma, %Y
n=1

and so, since x e Egtl, , there exists an index m; such that
x€Ey, . m- Continuing the argument in this manner, we obtain
an infinite sequence of indices m;, ., 73, . . . such that

my, for k=1,2, ...
This implies, on account of (1) and (4) (for 3=0), that
x Eme.mz,....,mk’ for k=1, 2, e e ey

and so (from the definition of the set E) x ¢ E.
We have thus proved that (S*—7°)CE for every ordinal
number a <Q; it follows that
(10) > (S*—TYCE.
alQ

Let now x denote an element of the set £. Hence there exists
an infinite set of indices m,, m2, ms, . . . such that

(1D X €LBoyy ps.omyy fOr B=1,2, ...
It will be shown that

(12) xeE. o . fork=1,2,...

mps

for every ordinal number a<Q. For a =0, (12) is true on account
of (11) and (1). Let now S denote an ordinal number <Q, and
suppose that (12) is true for every ordinal number a<g. If 8is
a number of the second kind, it follows from (3) that (12) is true
for the number 8. If B is a number of the first kind, we may put
8=a+1, where a <8, and from (2) we then have (for every positive
integer k)
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c©
” =E, 2 E, “
Elm. M, mp, —E»u, M2, mp - me. M2yeenns mp, n = Enn, M2yeess Mp

n=1
a
Em1. M25eeees Mps Mp117

and so xeE% ... my» since from (12), x e Ej, ... m,, and
...... M Mpg1® Relation (12) is, therefore, proved by trans-

finite induction for every ordinal number a <Q.

a
xeEy, m

In particular, it follows from (12) that x e E,,,, for a<Q, and
so from (5) xeS% for a<@. We have, therefore, proved that
EC.S% for a<9, whence

(13) Ec IT s
alQ
Furthermore,
(14) II 7==o0.
aQ

For suppose that (14) is not true. Consequently, there exists
an element x such that

(15) x el for a <Q.

It follows from (15) and (6) that corresponding to every ordinal
number a < there exists at least one set of indices #i, 7, . .
(dependent on a) such that

-y Ry

a a1
x € (Em. Nyeeens Ny — B, Ny nk)'
But the set of all finite combinations of indices #i, #ns, . . . , #n,

is countable, whereas the set of all ordinal numbers a < is non-
countable. From this we deduce the existence of a set of indices
p1, P2 . . ., P, and also of two ordinal numbers £<Q and n<¢
such that

(16) X € (Efn Dhrees p,_Egtlpg ...... p,)y

(17) X € (EZL. D2
It follows from (16) and (17) that
xeES .., and xe E}LY,

contrary to (4), since (from 7 <g) we have n+1=<¢.
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Hence, (14) is proved.

Let now x be an element of the set E. On account of (14), there
exists an ordinal number a<Q such that x¢ 7. But, from (13)
and the fact that x ¢ E, we have x ¢ S®. Hence, x ¢ S*—T° We
have thus shown that, if x ¢ E, there exists an ordinal number a <Q
such that x e (§*—T°%). This establishes the fact that
(18) EcC X (S*=T".

alQ

Relations (10) and (18) give the first part of (7). Let now x
denote an element of the set
(19) P=1Is"

alQ

From (14), there exists an ordinal number o <Q such thatx & T°.
But, since x ¢ P, we have x ¢ S* from (19) ; consequently, x e S*— 1%,
and so, by (10), x e E. We have, therefore, P C E, and since from
(13) and (19) EC P, we have E=P; this, on account of (19) and
the first part of (7), gives the second part of (7).

Relation (7) is, therefore, proved completely.

It follows from (7) that every analytical set is both the sum and
the product of N, Borel sets. From this it follows at once (on
passing to complements) that the complemeni of an analytical set
is both the product and the sum of N, Borel sets.

From (7) we get immediately
(20) CE= 3 CS°.

a L

If none of the terms of the sum (20) is non-countable, then
(since the sum (20) contains N, terms) the set CE has potency R,
at least; if, however, there exists among the terms of (20) a non-
countable set, then, being a Borel set, it must contain, by Theorem
79, a perfect subset not null, which on account of (20) is a subset
of the set CE. Hence, we obtain

Theorem 90. The complement of an analytical set not containing
a perfect non-null subset has potency N at most.

This theorem would be trivial if the potency of the continuum
were equal to W;. Asitis, we do not know (without the hypothesis
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that 2&°=§{1) whether there exist analytical sets whose comple-
ments have potency ;.

Furthermore, we are not able to establish (even with the

hypothesis that 2N°=§{1) whether or not every non-countable
complement of an analytical set contains a perfect, non-null subset.

It follows easily from Theorem 90 that the complement of an
analytical set cannot have a potency intermediate between N,
and the potency of the continuum.

Let now E denote an analytical set and f a function continuous in the set
T =CE, and put Q=f(T); this will be a continuous transform of the complement
of an analytical set. \We shall then have from (20)

(21) Q=f(T)=f(CE) = Eﬂf(CS“)-

The sets CS* are Borel sets; their continuous transforms f(CS*) are, there-
fore, analytical sets (Corollary 1 to Theorem 74) and so, as shown above, sums
of N1 Borel sets. Hence, it follows from (21) (since §1- N1 =N1) that the set Q
is the sum of ] Borel sets. Ve have thus proved that a continuous transform
of the complement of an analytical set is the sum of {1 Borel sets.?? Asbefore,
from the above we may deduce for complements of analytical sets

Theorem 90a. A continuous transform of the complement of an amalytical
set, not containing a perfect, non-null subset, has potency W1 at most.

We do not know, however, whether an analogous theorem is true for com-
plements of continuous transforms of complements of analytical sets.

T8. Projective sets of a given metric space are said to be sets
obtained from Borel sets on successive application of the following
two operations: continuous mapping and taking the complement
of a set in hand. Strictly speaking, the family P of all projective
sets (of the metric space considered) is the smallest family F of
sets to satisfy the following three conditions:

1. Every Borel set belongs to F.
2. A continuous transform of a set belonging to F belongs to F.
3. The complement of a set belonging to F belongs to F.

All projective sets may be divided into a countable aggregate
of classes (not necessarily mutually exclusive) in the following

22[t is not known, however, whether or not every continuous transform of the
complement of an analytical set is also the product of {1 Borel sets.
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way. Denote by K, the class consisting of all Borel sets (of the
metric space considered). Let now 7 be a positive integer, and
suppose the class K,_; to be already defined. If n be odd, the
class K, will be understood to be the class of all continuous trans-
forms of sets belonging to the class K, _;, and if # be even, then
K, will be the class of all complements of sets belonging to K
Evidently, the family

n—1-
F=K0+K1+K2+. ..

is the smallest family of sets, which satisfies conditions 1, 2, and 3;
hence, F=P.

It follows immediately from Theorem 89 that K is the class of
all analytical sets; hence, K. is the class of all complements of
analytical sets, and K; the class of all continuous transforms of
complements of analytical sets. As a consequence of Theorem 90,
we find that non-countable sets belonging to the class K3 have
either potency N; or that of the continuum. Nothing is known,
however, about the potency of the class Ks. It can be shown
that the family P contains a continuum of different sets. The
properties of projective sets have been studied very little hitherto.?

Another generalization of analytical sets is represented by
the smallest family F of sets to satisfy, in addition to conditions
1, 2, and 3, also condition

4. The sum of a countable aggregate of sets belonging to F,
belongs to F.

It could be shown that such a family F of sets contains the
family P, but not conversely.

79. A set E is said to be dense on a set T, if

) TC(T.E).

33[n addition to the 5 papers by Lusin in Com ptes Rendus, 1925 (of May 4, 25,
June 15, July 13, Aug. 17), the following articles treat projective sets: W.
Sierpinski, Fund. Math., vol. V11, pp. 237-243, vol. XI, pp. 122, 126, vol. XII,
pp. 1-3; Comptes Rendus, vol. CLXXXNV', p. 833; N. Lusin, Fund. Math., vol. X
pp. 89-94; Comptes Rendus, vol. CLXXXY, p. 835.
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As is easily seen, in order that a set E be dense on a set T, it is
necessary and sufficient that every open set containing an element of
the set T should contain an element of the set T.E.

In fact, suppose that (1) is satisfied, and let U be an open set
containing an element p of the set 7. From (1), p ¢ [T.E+(T.E)'].
Hence, if p& T.E then p e (7.E)’, and since p e U and U.is open,
there exists an element ¢ of the set T.E such that ¢e U. Hence,
in any case, U.7.E=0, and this proves that the condition is
necessary.

Suppose, on the other hand, that (1) is not true. There exists,
therefore, an element $ of the set T such that p& (T .E), and so
pe U, where U=C(T.E) is an open set. But, from the definition
of U, we have U.(T.E)=0, and so certainly U.T.E=0. In this
case the open set U would contain an element $ of T but would
not contain any element of T.E, and so our condition would not
be satisfied. This proves that the condition is sufficient.

A set E is said to be nowhere dense on a set T, if
(2) Tc(T—(T.E)).

In order that a set E be nowhere dense on the set T, it is necessary
and sufficient that every open set containing an element of T, should
contain an open subset which contains an element of the set T but does
not contain any element of the set T.E.

In fact, suppose that (2) is satisfied, and let U be an open set
containing an element p of 7. Put V=U.C(T.E); this will be
an open set. From (2), pe (I'—(T.E)), and so, since p e U, and
U is open, there exists an element ¢ such that ge U and
g€ (T—(T.E)); hence, from the definition of V,ge V, and so "s£0.
But, from the definition of V, we have V.7T.E=0; the above condi-
tion is, therefore, necessary. Again, suppose that (2) does not hold,
and put U=C(T—(T.E)); this will be an open set. Since (2) is
not true, there exists an element p of 7" such that pe U. Let now
V be any open set contained in U and containing an element of
the set T, g say. From 7VC U and the definition of the set U, we
find that V.(T—T7.E)) =0; since ¢ ¢ I".T, we must have qeVAT.E),
and so, since 17 is open, there exists an element 7 such that
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re V.T.E. The open set U contains, therefore, an element p
of the set T, and every open set 1" containing an element of T
contains also an element of the set 7T.E; the condition is, therefore,
not satisfied. We have thus proved that the condition is necessary.

It follows immediately from the above that the sum of two
(and, therefore, of any finite number of) sets nowhere dense on
the set T is nowhere dense on the set T.

Obviously, a subset of a set nowhere dense on T is a set nowhere
dense on T.

A set which is the sum of a countable aggregate of sets nowhere
dense on T is said to be of the first caiegory (Baire) on the set T. A
set which is not of the first category on the set T is said to be of
the second category on the set 7. Obviously, a subset of a set of the
first category on T is a set of the first category on 7. It is easily
seen that the sum of a finite or countable aggregate of sets of the
first category on T is a set of the first category on T.

Theorem 91. A closed non-null set cannot be of the first category
on 1itself.

Proof. Let T be a closed set not null, and E a set of the first
category on T; it will be sufficient to show that T —E#0.

Since the set E is of the first category on T, we may write
E=E,+FE;+E3+ ...,wherethesets E,(n=1,2,...) are nowhere
dense on 7.

Since 70, there exists an element p of 7. Put U=K(p, 1);
since E, is nowhere dense on T, there exists an open set 1"C U such
that 1.70 but ".T.E, =0. Since 1.T>0, there exists an element
p, of the set 1.7T. Since p; ¢ 1"and 1 is open, there exists a positive
number 7, <1 such that Uy=K(p, n) ST 1. Since pre U.T
and U, is open, and E» is nowhere dense on T, there exists an open
set 1, C U, such that 17.750 and 1,.7.E.=0. Since 17..70.
there exists an element g, of the set 17.7. Since pse 17 and 17
is open, there exists a positive number 7, <% such that U.=K(pe.
7)) C T C 1. Proceeding thus indefinitely we obtain an infinite
sequence p;, ps, b3, - - . of elements of T, and an infinite sequence
U, [%, Ui, ... of open sets such that UxD U,y1, Pne Un, and
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2 .
U, T.E,=0; also B(Un)=27n<-;, for n=1, 2, ... This leads
immediately to the conclusion that p(p, 4z Pn) < %, forn=1,2,...,

and k=1, 2, ..., and so, by Theorem 59, the sequence

b1, P2, . . . has a limit p= lim p,, which, on account of T being
7y~ _

closed, is an element of 7. But from p,y ;€ U,r1 S Uyss, for

n=_{, 2, ... and thejact that _(7,,+1 is closed, we conclude that

p € Uyy1, and since U,y € U, and U,.T.E,=0, we find that

péT.Ey for n=1, 2, . . .; but, since E=E,+FX,+ ..., we have

pé T.E, and since pe T, this gives pe (I'—E), and so T —E==0.

A set E (contained in a metric space) is said to be of the first
category at an element p if there exists an (open) sphere K containing
the element $ and such that the set K.E is of the first category.

Theorem 92 (Banach).2* A set (contained in any metric space)
which 1s of the first category at every ome of its elements is iiself of the
first category.

Proof. Let E be a set of elements of a metric space M, and
suppose that E is of the first category at every one of its elements.
There exists, then, by the theorem of Zermelo,?® a transfinite sequence

(3) K], Kﬁ,. . ‘vava-l—Iv"-‘Ka.--' (a<d>)

consisting of all open spheres K of the space 3 such that the set
K.E is of the first category.

Put
4) Q:=K..E,and Q,=K,.E— T K, for 0<a<é.

£<a

It follows from the definition of the sets (3) that each of the sets
K..E is of the first category; hence, by reason of (4), the sets Q,
(e <¢) possess the same property. \We may, therefore, write for
a<o

2 Fund. Math., vol. XVI, p. 395; see also S. Banach, Théorie des opérations
linéaires, Warsaw, 1932, p. 13.

2%5This theorem states that every set muay be well-ordered. Cf. Sierpir{ski,
Legons sur les nombres transfinis, Paris, 1928, p. 231.
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(5) Qu=0Qi+Q3+Q3+ .. .,
where each set Qi (=1, 2, ...) is nowhere dense. Put
(6) En=2Qz,fOrn=1, 2,...

a<e

It is easily seen that
(7) E=E1+E2+E3+ « .

In fact, let p denote an element of the set E. It follows from
the properties of the set E that there exists an open sphere K con-
taining p and such that the set K.E is of the first category. There
exists, therefore, a set of the sequence (3) containing the element
p; let K, be the first term of the sequence (3) which is a set con-
taining p. Since p € E, we conclude from (4) that $ € Q., and so,
from (5) and (6) we deduce at once that p € E;+Es+E;+. ... We
have, therefore,

ECE+E+E;+...;
on the other hand, it follows from (5) and (4) that
QrCQ.CE,forn=1,2,...; a<o,
whence, on account of (6), E,C E, for n=1, 2,..., and this gives

E+E+Es+ ... CE.

Relation (7) is, therefore, proved.
We shall next show that each of the sets (6) is nowhere dense.

Suppose that, for some integer 7, the set E, is not nowhere
dense. There exists, then, an open sphere K such that KCE,.
Hence, on account of (6), (3), and (4), there exist ordinal numbers
a <¢ such that K.K,0; let 8 be the smallest of such numbers a.

The set K.Kj is, therefore, non-null and open (being the product
of two spheres) ; hence, there exists a sphere K* such that K* C K. Kjp.

It follows from the definition of the numbers a that

K.Ky=0, for £<8,

and so, since K¥*C K, and Q;C K; by (4), and Qf ©Q; by (53), we
obtain
(8) K*.Qf =0, for £<B.
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Again, from (4), we have Q; Kg=0, for <<, and so, since
K*C Kg, and Qf CQ, we get

(9) K*.Qf =0, for B<E<o.

From relations (6), (8), and (9) we obtain at once
K* E,=K*.Qs,

and so

(10) K*E,=K*.Q3 CQf.

Moreover, since K¥C K CE, and K* is open, we find im-
mediately that

(11) K*C K*.Ey.
Relations (10) and (11) give
K*c @3,

which is impossible, since @g being nowhere dense (since it is the
enclosure of a nowhere dense set) cannot contain the open sphere
K*.

Thus the supposition that for some integer # the set E, is not
nowhere dense leads to a contradiction; the sets E,(z=1, 2, ...)
are, therefore, all nowhere dense, and so, from (7), the set E is
of the first category. Theorem 92 is, therefore, proved.

COROLLARY 1. For every set E of the meiric space M, the set E,
of all elements of E at which the set E is of the first category, is itself
of the first category.

For, since E,C E, if E is of the first category at an element p,
then certainly so is E; also. The set E; is, therefore, of the first
category at every one of its elements, and so, by Theorem 92, is
itself of the first category.

CorOLLARY 2. If @ set E (contained in the metric space 1)
is of the second category, there exists an open sphere K such thal, at
every one of 1he elentenis of K, the set E is of the second caiegory (I.e. not
of the first category).

For, let E; denote the set of all elements of £ at which E is of
the first category. The set E, is of the first category by Corollary 1,
and the set £ —E, is of the second category (since £ is of the second
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category). Hence, the set E—E; is not nowhere dense, and so
(by the necessary and sufficient condition for a nowhere dense set
given above) there exists an open sphere K contained in the en-
closure of the set E—E;. It is easily seen that the set E is of the
second category at every element of the sphere K. In fact, let
g be an element of the sphere K, and let K* be any sphere con-
taining ¢. Since K CE—E;, and g € K, there exists an element p
of the set E—E; in the sphere K*; hence, the set K*.E cannot be
of the first category (since then the set E would be of the first
category at the element p, which is impossible since p ¢ E—E,
and so pé E;). The set E is, therefore, of the second category at
every element ¢ of the sphere K. This proves Corollary 2.

A set E (contained in a metric space M) is said to be of the first
category with respect to a set T (contained in M) ai an element p,
if there exists an (open) sphere K containing p, and such that the
set K.E is of the first category with respect to the set 7.

The theorem of Banach may be, as is easily seen, expressed in
its relativistic form (i.e., relatively to any subset of the space
considered) as follows: '

A set E (contained in any metric space) which is of the first
category with respect to a set T (contained in the space considered)
at every one of its elements, is ltkewise of the first category with respect
to the set T.

In order to prove this, it will be sufficient to apply Banach’s
theorem to the set E.T, taking the set 7" to be the metric space
under consideration.

The two corollaries to Banach's theorem may be similarly
expressed at once in their relativistic form.

A set E (contained in a metric space M) is said to satisfy the
Baire condition, if every (non-null) perfect set P (contained in 1J)
contains (at least one) element p such that one or other or both of
the sets P.E or P—E is of the first category at such an element p
with respect to the set P.

It follows immediately from this definition that if a set E
satisfies the Baire condition, then so also does the set CE(=M —E)
(since P.CE=P—E and P—CE=P.E).
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Furthermore, it can be easily proved that every closed set in a
metric space satisfies the Baire condition and also with the aid of
Banach’s theorem that, if eack set E, (n=1, 2, . . .) satisfies the
Baire condition, then the same is true of the set E=E,+Es+E;+. . ..

It follows at once from these last three properties that ¢z a
metric space every Borel set (with respect to this space) satisfies the
Baire condition.?

At one time (1905) Lebesgue assumed the converse of this
theorem (in linear space) to be true. This assumption was, how-
ever, not justified, as has been shown by Lusin;?" a linear set may
satisfy the Baire condition without being a Borel set.

80. A relative neighbourhood (with respect to a set E) of an
element p of E is every set T C E such that pe T and p& (E—T)".

As may be easily seen, in order that a set T be a relative neigh-
bourhood of an element p of a set E, it is necessary and sufficient
that there exists an open set U such that pe U and U.ECT. In
fact, if pe TCE and pé (E—T)', then putting U=C(E—T), we
shall have an open set U such that U E=E.C(E—T)CE.C(E-T)
=E.T=T, and so U. ECT. On the other hand, if pe E, TCE,
and if there exists an open set ' such that p ¢ Uand U.EC T, then
peT, and E—TCCU, and so, since U is open and, therefore,
CU closed, we find that (E—T)' C(CU) € CU; but pe U and,
therefore, pe (E—T1)'.

It follows immediately, from the condition proved above and
axiom (v) of § 15, that the product of two relative neighbourhoods
of an element p of a set E is a relative neighbourhood of that
element.

Furthermore, it follows immediately from the definition of a
relative neighbourhood that in the homeomorphic mapping of a
set E on the set f(E) every relative neighbourhood (with respect

%6This theorem may be even extended to apply to analytical sets with respect
to the given metric space; see k. Szpilrajn, “Omierzalnoéci i warunku Baire’a’’,
Comptes-Rendus du I congrés des puys slaves, Warsaw, 1929, p. 301.

27In 1914 with the aid of the hypothesis of the continuumin Com ptes Rendus,
vol. CLVIII, p. 1259, and in 1917 without the aid of this hypothesis in /7und.
Math., vol. I1, p. 155.
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to E) of an element p of E is mapped into a relative neighbourhood
(with respect to f(E)) of the transform f().

A set E is said to be locally closed for an element p if there exists
a relative neighbourhood of the element p which is a closed set.

In order that a set E be locally closed for an element p, it is
obviously necessary and sufficient that there exist a closed set 7°
and an open set U such that pe UEC T CE.

We may clearly suppose that the set 7" is bounded. It follows
then readily that, in a homeomorphic mapping of a set £ on the
set f(E), an element p for which the set E is locally closed is trans-
formed into the element f(p) for which f(E) is locally closed.

A set E which is locally closed for every one of its elements
is said to be locally closed. A homeomorphic transform of a locally
closed set is obviously a locally closed set.

Theorem 93. In order that a set E be locally closed, it is necessary
and sufficient that the set E' —E be closed.

Proof. Suppose that E is locally closed, and let p be a limit
element of the set E' —E. We have, therefore, p e (E'—E) C E"”
C E’; to prove that p ¢ (E’—E) it will be sufficient to show that
p&E. Suppose, on the contrary, that p ¢ £. Since E is locally
closed, there exist a closed set 7" and an open set U such that
pe UECTCE. Since pe (E'—E) and pe U EC U, where U
is open, there exists an element ¢ such that ¢ ¢ (E'—E) and g e U.

Since g e E' —EC E’, there exists an infinite sequence of ele-
ments ¢, such that lim ¢, =g¢, and since g e U, which is open, we

ny 0

have ¢, e U for n>pu. Hence ¢, e U.E for n>pu, and so, since

UECT and T is closed, ¢ = lim ¢, e T C E, contrary to the fact
NPy O

that ¢e E'—E. The condition of our theorem is, therefore,

necessary.

Suppose now that the set ' —FE is closed, and let p be an
element of E. We have, then, p¢ (E'—E), t.e. pe U=C(E —E),
where U is an open set. By axiom (vi1) (§ 38) there exists an
open set Vosuch that pe Vand VC U. Put T'=V.E; from the
definition of U we have U.(E' —E) =0, which gives at once T=V.E

14
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=V.(E+E'")=V.E (since E4+-E'=E+(E' —E)), and so T is closed.
But Vis open and p e V.EC V.E=TCE; the set E is, therefore,
locally closed for the element p. Since p is any element of E, it
follows that E is locally closed. The condition of our theorem is,
therefore, sufficient.

Theorem 93 is thus proved.

COROLLARY. In order that a set be locally closed, it is necessary
and sufficient that it should be the difference of two closed sets.

In fact, if E is locally closed then, by Theorem 93, the set F=E’
—E=(E+E)—~E=F —E is closed and so E=E — F, which proves
that E is the difference of two closed sets.

On the other hand, if E= F,—F,, where F; and F; are closed,
then, since EC Fyand Fiis closed, we have E'’ C F;and so E' =E’. Fy,
and E'—E=E'.F,—(F,— F;)=E’.F,.Fy; this proves that the set
E'—E is closed (being the product of three closed sets), and so,
by Theorem 93, the set E is locally closed.

We shall next prove a lemma which will be made use of in the
next article.

LEMMA. Every non-null set which is both an F, and a G, contains
an element for which it <s locally closed.

Proof. Let E be a non-null set which is both an F, and a G,.
Put T=E. Thesets Eand 7’'—E=FE.CE are F,’s, and so we may
write E=F,+F;+F:+ . ..and T—E=H,+H,+H;+ ..., where
Fyand H,(n=1, 2, ...) are closed sets. From T=E+(T —E)=
Fi+H,+Fo+Hs+ . .. and Theorem 91, we conclude that the sets
Fy, H,, Fs, Hs, . . . cannot all be nowhere dense on the set 7. Hence,
there exists an # such that F, or H, is not nowhere dense on 7.
Suppose that the set H, is not nowhere dense on 7. It follows,
therefore, from the sufficient condition for a set to be nowhere
dense on T°(§ 79) that there exists an open set U such that [7.7° 0,
and also that every open set 17 such that VC U and V.70
contains an element of the set 7.77,. We conclude immediately
from this that every open set G containing an element ¢ of the
set U.T contains at least one element of the set II, (since it would
be sufficient to take G = U.17). Since I7, is closed, ¢ ¢ II,,. \We have,
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therefore, U.T C H,, and so, since H,C T —E, UE=U.T.E=0(.
But U.T#0 and T =E; hence, since U is open, U.E>0, contrary
to the above.

The set H, is, therefore, nowhere dense on 7. Consequently,
the set F, is not nowhere dense on 7, and so, as above, we deduce
the existence of an open set U such that U.T50, and U.TC F,.
Since U.T #0, there exists an element p of U.T. We have, there-
fore, pe U.TC F,C T, and, since F, is closed and U is open, it
follows that T is locally closed for p. The lemma is, therefore,
proved. :

81. The set
(D RYE) =E.(E'—E)'

is said to be the first reszdue of the set E.

The set E—RYE)=E — (E’'—E)’ is the set of all those elements of
E for which E 1is locally closed.

To prove this we note that E.(E'—E) =0 and, therefore, (1)
gives

(2) R\(E) =E. (E'—E).

Put V=C(E' —E); this will be an open set. Suppose that
p e (E—R/(E)); then, from (2) p ¢ V and by axiom (viz) (§ 38), there
exists an open set U such that pe U and UC V, and so T=(U.E)
CU.EC V.E. It follows, however, from the definition of the set
V, that V.(E'—E)=0; therefore, V.E‘'CV.E and V.EC V.E.
Hence, pe UECTCE, where T is closed and U is open. This
proves that E is locally closed for the element p (§ 80).

Suppose now that p is an element of the set E for which E is
locally closed. Hence, there exist a closed set 7" and an open set
U such that pe UEC T CE. Suppose that pe (E'—E)’. Since
pe U and U is open, there exists an element ¢ge (E'—E).U. We
have, therefore, ¢ e E’. U and so, since U is open, there is a sequence
gu(m=1,2,...) such that ¢, e E.U for n=1,2, . . . and for which

lim g,=g. Since E.UCT and T is closed, we conclude that geT,
0y 0
from which, since T'C E, we deduce that ¢ ¢ E, which is impossible
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since ge E' —E. We must, therefore, have p& (E'—E)’ and so,
from (1), p ¢ E—R'Y(E).
We shall next prove the relation
3) E—RYE)=E—(E'—E).
We have obviously E=E-+4(E’—E), from which we get at once
E—(E'—E)=|E+(E'—E)|—(E'—E)=E—(E'—E)=E—
E.(E'—E),

which on account of (2) gives (3).

It follows from (3) that the set E—R!(E) is the difference of
two closed sets and so, by the corollary to Theorem 93, a locally
closed set.

From the properties of the set £— R'(Z) deduced above and the
fact that in a homeomorphic mapping an element for which a set
E is locally closed is transformed into an element for which the
transform of E is locally closed, it may be concluded at once that
in the homeomorphic mapping of the set E on the set f(E), the
set E—R'(E) is transformed into the set f(E) —RYf(E)) and so
the set R}(E) is transformed into the set RI(f(X)). Hence

In a homeomorphic mapping the first vesidue of a set is trans-
formed into the first residue of the transform of the set. The property
of belonging to the first residue of a given set is, therefore, an
invariant under all homeomorphic transformations of that set.

The following immediate corollaries may be deduced at once
from the properties of the set E—R!(E):

COROLLARY 1. In order that E be locally closed for an element
p € E, it is necessary and sufficient that pe (E'—E)'.

COROLLARY 2. In order that E be locally closed, it is necessary
and sufficient that its first residue be a null set (i.e. that E.(E' —F
=0).

Let now a denote an ordinal number > 1, and suppose that we
have already defined all sets RY(E), where ¢<a (and where E is
a given set). If a is a number of the first kind, z.e. e =8-+1, then
put R*(E)=RYRP(E)). If, however, a is a number of the second
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kind, then put R*(E) = II R¥(E). The sets R*(E) are thus defined
t<a

by transfinite induction for every ordinal number a. The set
R*(E) is said to be the residue of order a of the set E. By RYE)
we mean the set E itself.

It follows at once from (1) that the set R (E) is closed in the
set E. The set R*TI(E) is, therefore, closed in the set R*(E) for
every ordinal number «. Furthermore, it follows from the defi-
nition of the sets R*(E) that R!(E)D R(E), for £<7 and so, by
the corollary to Theorem 37 (§ 26), there exists an ordinal number
a< @ such that
4) RE(E) =R*(E), for a <£<Q.

We may also suppose that a is the smallest ordinal number for
which (4) holds, so that

(5) RY(E)#R*(E), for £<a.

The set R*(E) =R%E) is called the last residue of the set E. It
will be shown that the set E—R%(E) is always both an F, and a G;.

Let £ be a given ordinal number = 0. From (8) and the fact
that RfP1(E) =R (RE(E)), we have

(6) RY(E) —R¥Y(E) =RYE) — {[RE(E)] —R¥(BE) }.
Put
(7 PYE)=R}E), Q%(E)=RYE) . {[RE(E)'—R¥E)};

we shall then have from (6)
(®) RY(E) —R®V(E) = P(E) —Q¥(E)
where, on account of (7), and since from (4)

RYYE)=RYE) . {[R*(E)) —R¥E)}, we shall have

(9) PYE)D QYE)D PHH(E),
whereas, from (7) and the fact that R¥(E) D R"(E) for £<n, we get
(10) PYE)D P'(E), for £<n.

Let now p be an element of the set E. If p e RE(E) for 0<£<Q,
then p e R*(E). Hence, if p ¢ (E—~R%(E)), there exists an ordinal
number A <@ such that p& R*(E), where it may be supposed that
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A is the smallest of such numbers, i.e. that p e RE(E), for §<\.

If A were a number of the second kind, we would have from the

definition, RM(E)= IT R¥(E) and so peRME), contrary to the
E3 N

definition of A\. 1\ is, therefore, a number of the first kind, and so
we may write A=£-1.

Thus, corresponding to every element p of the set E —R%(E),
there exists an ordinal number £ = 0, such that pe[R(E)—
R¥Y(E)]; if now a be an ordinal number which satisfies (4), then
it must be that £<a (since for £=a we have, from (4), R¢(E) —
R¥1(E)=0). This and the fact that for 0< £<a we have
RYE)cCE and R*(E)CRY(E) (and so RY(E)—-R{TY(E)c
E—R*(E)=E ~R%*E)) lead to the relation

E—R%*E) =0$E [RYE) —R*H(B)];

E<a
hence, on account of (8)

(11 E—R%(E) = SE2<‘1[P5(E) —Q B

The terms of the sum (11) are sets F,, since they are differences
of two closed sets; and since (11) contains at most a countable
aggregate of terms (since o <Q), E—R%(E) is a set F,.

Again, (11) gives
(12) C(E—R*E)) = II [Q%E)+CP*E)].

0<t<a

But (9) and (10) give for n< ¢
QYE)c PHE)c P"(E), and so QYE).C(P(E))=0, for n<¢;
(12) gives, therefore, at once
(13) C(E—R%(E)) = II Q"(E)+C(P(E))+ X C(PY(E)) IT1 @'(E).

0=9<a 0<i<a 0sSn<t

The products IT Q"(E) and TI Q"(E) are closed sets, since the

0<n<a 0Sy<E

sets Q" are closed, and since the sets (7) are closed, we conclude that
the sets C(PY(E)) are F,'s (for 0<£<a). The terms of the sum
(13) are, therefore, sets F,, and so (13) isan F,. Theset E—R%(E)
is, therefore, a G;.



VII. ANALYTICAL SETS 205

We have thus proved that the difference of a given set and its
last residue is both an F, and a G;.

The set E for which R%(E) =0 is said to be reducible (Hausdorff).
From the theorem deduced above, it follows that a reducible set
is both an F, and a G;.

Let now E denote a set which is both an F, and a G;. Since
the set T=E—R%ZE) is both an F, and a G;, therefore the set
X=R%E)=E.CT is both an F, and a G;. Furthermore, if X is
not a null set, then, by the lemma proved toward the close of § 80,
it contains an element p for which it is locally closed, and so it
follows from the property of the set X —R(X) that p e [X —R¥(X)]
and thus X —RY(X)>0, z.e. X=R(X). But, as we know, there
exists an o for which (4) is satisfied; hence, X =R%*(E) =R*(E) =
R*FY(E)=RYR*(E)) =R!(X), which is a contradiction. Hence
X =R%E) =0, and, therefore, E is reducible. We have thus proved

Theorem 94. In order that a set E be reducible, it is necessary
and sufficient that it be both an F, and a G;.

Concerning the residues of a set, we note further that it follows
immediately from their definition and the properties of the first
residue that in a homeomorphic mapping of a set, its residue of
order A is transformed into the residue of order \ of the transform
(for every ordinal number A< Q). In particular, the last residue
of a set is transformed in a homeomorphic mapping into the last
residue of the transform. Hence, a homeomorphic transform of
a reducible set is a reducible set, which follows otherwise from
Theorem 94 and other known properties of the sets F, and G;

(§ 61).

82. The set E is said to be 0-dimensional (Menger) if, corres-
ponding to every element p of E and every open set U containing
P, there exists an open set 1™ contained in U and such that its
frontier does not contain any elements of E.

We shall prove that the property of being 0-dimensional is a
topological invariant. In order to do so, we shall adopt a different
definition of a 0O-dimensional set, which is, however, equivalent
to the definition of Menger.
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The set E.E,.(E—E,;) is said to be the relaiive fromtier with
respect to E of the set E,C E; hence, it is closed in E.

The relative frontier of a set EiC E with respect to the set E is
transformed in o homeomorphic mapping into the relative frontier
of the transform of E, with respect to the transform of E. In order
to prove this, it is sufficient to refer to Theorem 22, and the fact
that if E kT and E; CE, then f(E—E;) =f(E) —f(E.).

We shall now prove that the Menger definition of a 0-dimen-
sional set is equivalent to the following:

A set E is said to be 0-dimensional if, corresponding to every
element p of E and every relative neighbourhood T of that element
(with respect to E), there exists a relative neighbourhood S of the
element p which is contained in 7 and whose relative frontier
(with respect to E) is null.

Suppose that the set E is 0-dimensional according to the
Menger definition, and let 7" denote a relative neighbourhood of a
given element p of E. There exists, therefore, an open set U
(§ 80) such that pe U and U.ECT. Furthermore, since E is
0-dimensional in the Menger sense and from the definition of the
frontier of a set (§ 5), it follows that there exists an open set 1
such that pe VG U and E.V.CV=0. Put E;=E.V;then E,CE,
E,CV, E—-E.=E—EV=E—V=ECVCCV; hence, E—FE,
CCV, and so E,.E.(E—E;)CEV.CV=0. On the other hand,
peE.V=E,. The set E; is, therefore, a relative neighbourhood
of the element p (with respect to E) whose relative frontier is
null, and since VC U, and U ECT,we have E,=E.VC U.ECT.
The set E is, therefore, 0-dimensional according to our definition.

Suppose now that the set E is 0-dimensional according to our
definition, and let U be an open set containing an element p of E.
Put T'=U.E; the set T is a relative neighbourhood of p (with
respect to E), and so since E is 0-dimensional according to our
definition, there exists a relative neighbourhood S of p which is
contained in 7" and such that E.S.(E—=.S)=0. Since SCE, it
follows that SC E.S, and so S.(£—=S)CE.S5.(E—S) =0. Further-
more, we evidently have (E—S).SCE.(E—5).5=0. The sets .S
and E—.S are, therefore, mutually exclusive, and neither of them
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contains limit elements of the other; hence, there exist (§§ 39, 46)
open sets P and Q such that SCP, E—-Sc(Q, P.Q=0. Put
V=P.U; this is an open set, contained in U and containing
(since pe U and pe SCP). We have further V=P.UC P, and
so ¥ C P; but P.Q=0; therefore, P < CQ, and so, since Q is open
(and, therefore, CQ closed), we have that P CQ. Hence, V< COQ.
Since V is open, we have CV=CV"; hence, E.CV=E.CV=E—-P.U
=E—P.U.E, and so, since SCP, and SC T"=U.E, it follows that
ECVCE-S. Hence, EV.CVC (E—S).CQ, and so EV.CV=0
since E—SC Q. The set 1" is, therefore, open; it contains $ and
is contained in U, and the frontier of V does not contain any
elements of the set E. The set E is, therefore, 0-dimensional in
the Menger sense.

The two definitions of 0-dimensional sets are thus shown to
be equivalent.

It follows immediately from our definition of 0-dimensional
sets and from the properties of relative neighbourhoods (§ 80)
and relative frontiers in homeomorphic mapping that e %omeo-
morphic transform of a 0-dimensional set 1s a 0-dimensional set.

We note further that changing slightly the proof of Theorem
56 given in § 53, we can prove the following more general theorem:
Every 0-dimensional metric space (in the Menger sense) which con-
tains a countable subset everywhere demse is homeomorphic with a
certain set of irrational numbers.

The set of all irrational numbers is itself, as is easily seen, a
0-dimensional metric space which contains an everywhere dense
countable subset. Hence, the set of all irrational numbers has the
greatest dimensional type of all the Q-dimensional sets which have a
countable subset everywhere dense.

As regards n-dimensional sets (n# a positive integer), they may
be defined by induction as follows:

A set E is said to be n-dimensional at most, if corresponding to
every element p of E and every relutive neighbourhood T of that element
(with respect to E), there exisis a relative meighbourhood S of p
contained in T whose relative frontier (with respect to E) is a (n-1)-
dimensional set at most.

A set E is said to be n-dimensional if n is the smallest positive
integer such that, corresponding to every element p of E and every
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relative neighbourhood T of p (with respect to E), there exists a relative
neighbourhood S of p contained in T, whose relative frontier (with
respect to E) is a (n-1)-dimensional set at most.

(This definition also holds for z=1 if a (—1)-dimensional set
is taken to mean a null set.)

It follows easily by induction from this definition of x#-dimen-
sional sets and from the properties of relative neighbourhoods
and frontiers that a homeomorphic transform of a n-dimenstonal
set is a n-dimensional set. The (Menger) dimension of a set is,
therefore, a topological invariant.?®

Menger calls a 1-dimensional continuum a curve.  Since
continua (§ 34) and 1-dimensional sets are topological invariants,
it follows that a homeomorphic transform of a curve is a curve.

A homeomorphic transform of the closed interval 0=x=<1 is
called @ simple arc (Janiszewski). It follows at once from this
definition that a homeomorphic transform of a simple arc is a simple
arc and that a simple arc is a curve in the Menger sense.

A continuous transform of the closed interval 0=<x=<1 is called
a Jordan curve. It follows at once from this definition that a
conttnuous transform of a Jordan curve is a Jordan curve and that
a simple arc is a Jordan curve. A Jordan curve need not, however,
be a Menger curve, nor is it necessary for a Menger curve to be a
Jordan curve.

SAn exposition of the Menger Dimension Theory may be found in a paper
by W. Hurewicz, ‘“Grundriss der Mengerschen Dimensionstheorie”, fut/h.
dnnalen, vol. XCVTII (1927), pp. 64-88.



APPENDIX

1. Itisassumed that we know what is meant by a set of objects,
e.g., the set of books in a certain library, a set of chairs in
a hall, a set of ideas, or even a set of sets. The objects constituting
a set are said to be its elements, and the notation p e E, pe E is
used to denote that p is or is not an element of E.

A set E is defined when of every element p it can be said whether
peEor pek.

A set 4 is a subset of a set B,17.e. A C B or BD A, if, whenever
ped, then peB. If ACB and BCA, 4 and B are identical,
i.e. A=B. If ACB and 47 B, A is said to be a proper subset
of B.

If two sets 4 and B are such that a (1, 1) correspondence can
be established between their elements, then 4 and B are said to
have the same potency. For example, the set of all odd integers
less than 100 and the set of all even integers not greater than 100
have the same potency, for to every odd number may be correlated
an even number greater by unity. The idea of potency may be
extended to sets which are not finite; e.g., the set of all natural
numbers

1,2,3,...,n,...
and the set of all even integers
2,4,6,...,2n,...

have the same potency.

Two finte sets have the same potency if and only if the number of
elements in each set 1s the same. In the last example the given set
and its subset have the same potency. A finite set cannot have
the same potency as any of its subsets. A sel which has the same
potency as one of ils proper subsets is said to be infinite in the Dedekind
sense.
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2. A set which has the same potency as the set of all natural
numbers is said to be countable. The elements of a countable set
can, therefore, be enumerated as a sequence

Uiy Uy UZy « -

with increasing indices. Conversely, the set of all terms of an
infinite sequence is countable.

A subset of a countable set, if not finite, is obviously countable
(since any subset of a sequence may be arranged as a sequence
with increasing indices). Thus the sets of all odd numbers, all
prime numbers, all squares are each countable.

The sum of two sets 4 and B, 7.e. A-+B, consists of elements
# such that either ped, or p eB; the product A.B consists of
elements p such that p e 4 and p ¢ B.

The sum of a finite set and a countable set is a couniable set.
For the sum of the set

ULy Uy « o oy Uy,
and the set
U1y, Vo, « « «

may be written as the infinite sequence
Uty Usy o o oy Uy, V1, Vo, sy o e s

The sum of two countable sets is a countable set. In fact, the
sum of the countable set
Uy, Uy UGy « . .
and the countable set
V1, Vgy U3y « = «

may be written down as the infinite sequence
ULy U1, Uy Vpy U3y U3y - -

The definition of a sum of two sets may be easily extended to a
sum of a finite or infinite sequence of sets. Given an infinite
sequence of sets Ei, Fs, E3, . . . , the sum

S=E;+E2+E3+ -

is a set consisting of all elements p such that pe E; for at least
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one value of 2. The sum of a countable aggregate of countable sets
is countable. For, if E;, E,, . . . be an infinite sequence of countable

sets, the elements of
S=E1+E2+E3+ e

may be written down as a double sequence

a1y 12y A13y -« .« -
Qa1 Qo2y A23y « «
Qs31, A3, @33y - . -

where a,, az, . . . are the elements of E,. Arranging the
elements of the double sequence into groups such that the nth
group consists of all @, 2+ =n-1, we obtain the infinite sequence

Qa11, Qa1, Q12, A31, A22, A13, Q41, A32y « . -

containing all terms of S.

The set of all rational numbers is countable. For let S be the
set of all positive rational numbers. Denote by E, the set of all
positive rational numbers in lowest terms with # in the denominator;
then

S=E,+E+E+ ...,

where E,, is countable. Hence S is countable. Similarly, the set
T of all negative rational numbers is countable and, therefore,
also the set of all rational numbers. '

The set E of all finite sequences of natural numbers is coun-
table. For a finite sequence (71, #s, . ., #,) may be correlated in
a unique way with the number

N=gm—1_pomtm—1_ = 4ot Anp—1

The set of all polynomials with rational coeffictents is countable,
since a (1, 1) correspondence may be established between a poly-
nomial and the finite sequence consisting of the coefficients. All such
polynomials may, therefore, be represented as an infinite sequence

PI} P2y -P3y ...
A polynomial, as is well known, has at most a finite number of roots;
writing down all the roots of P,, then those of P, and so on, we

obtain an infinite sequence
Xy, Xg, X3, « .« .
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consisting of the roots of all polynomials with rational coefficients,
i.e. of all algebraic numbers. Hence, the set of all algebraic numbers
is countable.

3. A set which is neither finite nor countable is said to be non-
countable.

The set E of all infinite sequences of natural numbers is non-
countable. For, if it were countable, it could be written as a double
sequence

711y, 712y 13y « »
(1) Ho1, Moz, Nogy + - -
731, M3z, 133y « . .

But the infinite sequence
2 nu+1, nee+1, ngs41, . .., mp+1, . ..

differs from each of the sequences (1) and so ¢ E, which is contrary
to the hypothesis that E consists of all infinite sequences of natural
numbers. Similarly, it can be shown that for every infinite sequence
of real numbers there exists a real number which is not a number
of the sequence. Let

X1y X2y « o

be a sequence of real numbers. Every real number can be ex-
pressed in one, sometimes two, ways as an infinite decimal. Writing
down these developments (one or both if there are two) of the
successive terms of the sequence, we obtain an infinite sequence
of infinite decimals

C1, C11€12C13 - . .

C2, €21€22C23 « . .

C3, C31C32€33 « .« -

We now construct the decimal
0.aya003 . ..,

where a7 ¢, @37 o, . . . generally @7 ¢, (we may choose, e.g.,
ap =cp+11f ¢, <9 and a;, =0 if ¢, =9).
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The real number thus constructed is obviously different from
every term of the given sequence. It follows, therefore, that e
set of all real numbers is non-countable.

There exists, as is well known, a (1, 1) correspondence between
the set of real numbers and the points on a straight line; hence, the
set of points on a straight line is non-countable.

If a finite or countable set be removed from a non-countable
set, the remaining set is non-countable. For, let P be a non-
countable set, Q finite or countable, and R the remainder. Hence,
P=Q-+R; if R were finite or countable then P would be finite or
countable, contrary to the assumption that it is non-countable.
The set R is, therefore, neither finite nor countable and so must be
non-countable. After removing from the non-countable set of
real numbers the countable set of algebraic numbers, there remains
a non-countable set of real numbers which are known as the
transcendental numbers. '

CARDINAL NUMBERS

4. Let all sets be divided into classes, two sets belonging to the
same class if and only if they have the same potency; then all sets
of a given class have a common characteristic. The symbols used
to designate classes of sets of equal potency are called cardinal
numbers. The cardinal number corresponding to the class of all
countable sets is denoted by 8y and the one corresponding to the
class of all sets of the same potency as the set of all real numbers
by €. It follows from the definition that to every set corresponds
a cardinal number (namely that number which serves to designate
the class containing the given set). The cardinal number corre-
sponding to a set E is frequently denoted by E and is called tke
potency of the set E. Sets with cardinal € are said to have the potency
of the continuum.

Cardinal numbers different from the natural numbers are
called transfinite numbers. There exist different transfinite num-
bers, e.g. N and L.

The sum M+N of two cardinal numbers is the cardinal number
of the set M+ N, where M and N are mutually exclusive! sets and

"Fwo sets A and B are said to be mutually exclusive if A.B=0.
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E=m and N=n. It is easily seen that the addition of cardinal
numbers is commutative and associative.
It follows from § 2 that

n n+Ne =N,
(2 Ro+No =N,
Ro"}'s\:o“l“ P =\ao (&o terms).

Consider the set E of all real numbers, and let IV be the set of
all rational numbers and M the remainder. Then

E= J:l?—l— }—\?;
but:]:: =L, ;J\—T=§Ro, and let :Jl/?=m; then

(3) £=m+N0)
C+No=MHNe) +No =m0+ (R +Np) =M +N, =¢;

hence

(4) c+Ny=EL.

For »n a natural number

©) e+1=(c+No) +n =0+ No+1) = +No=c.

establishes a (1, 1) correspondence

The relation y=
1+ |x

between the set of all real numbers x and the set of all real numbers
y in the interval (—1, 1). The cardinal of the latter set is, there-
fore, t. Let ¢ and b>a be two given real numbers. The relation
2 2

tween the set of all real numbers y which satisfy the inequality
—1 <y <1 and the set of all real numbers z satisfying the inequality
a <z<bj;hence, the two sets have the same potency, 7.e. the potency
t. This potency will not change if we add one element to the set.
Hence, for every ¢ and b>a, the set of all real numbers in the
interval (a, b) has potency € (the end-points being included or
excluded).

In particular, the set 3/ of all real numbers x satisfying the
inequality 0=x<1, the set N of all real numbers ¥ such that

z = establishes clearly a (1, 1) correspondence be-
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1=x<2, and the set S of all real numbers x such that 0=x <2 have
all potency €. B_ut M an_g N are mutually exclusive sets:and M4+N
=.S; therefore, ﬂ7+]7=§: and so
(6) c+e=c.

The definition of a sum of cardinal numbers may be extended
to an infinite sequence of cardinal numbers. If

m,, ny, m;, ...
is an infinite sequence of cardinal numbers, and M, (k=1, 2,...)

are mutually exclusive sets such that M, » =M, then the sum of the
infinite series
my+me+m+4- . ..

is the cardinal number of the set
M+ Mo+ M+ . ..
Thus, it may be easily seen that
No=14+141+14 ...
(it is sufficient here to take M, to consist of one number £). Also
No=1+243+4+ ...

(here, M; may be taken to consist of 2 natural numbers # satisfying
the inequality 3(k— 1)k <n=3k(k+1), for k=1, 2, ...
Similarly,

N Ry =N+R+N+ . . .,
and
(®) c=c4c+c+ ...,

for it would be sufficient to consider in the first case the (countable)
set M), consisting of the natural numbers

2k —1, 22k —1), 2°(2k —1), 232k —1), . ..

and in the second case the set M, of all real numbers x satisfying
the inequality b—1<x<k (k=1, 2, .. .), noting that the set
of all real positive numbers has cardinal €.

15
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The product M. of the cardinal numbers M and N is the cardinal
number of the set P consisting of all pairs (¥, y) where x ¢ M, y ¢ NN,

and where M =m, N=n. Itis easily seen that the multiplication
of cardinal numbers is commutative and associative. It follows

readily that
&0-&0 = &o.

For let M and N be each the set of natural members. The product
P will then be the set of all pairs (m, 1) of natural numbers, z.e. the
set of all elements of the double sequence

1,1, 1,2),d,s),...
2,1, (2,2), 2,3), ...
B, 1),3,2),3,3),...

which may be ordered as a single infinite seciuence by the diagonal
method. Hence ?=§§o, and since A7§=; we have No.No =No.
If M be a finite cardinal and 1t any cardinal number, we have
9) mn=n4n-+4 ... +Nn (m terms);
for, let A be the set of natural numbers 1, 2, . . ., m, N a set such
that ﬁ:n, and P the set of all pairs (m, n), where m e M ‘and
neN. Hence 1:;=m.n. Denoting for a given %k the set of all
pairs (k, n) by P, we get obviously ?: =N, for k=1,2,...,m, and
P=Pi+P;+ ... +P,, where the sets P, are mutually exclusive.
Since }7—=m.n, (9) follows at once.
In particular, for W=, (9) and (2) give
mNR, =N, m=1,2,...).
Similarly, for t=¢, (9) and (6) give
me=c (Mm=1,2,...). ‘

Changing =lightly the proof of (9), it can be easily shown that, for
every cardinal number 1,
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(10) Norm=n+n4n+ ...
and so for =t
No.L=t4+c+c+ ... =t, by (8).

To obtain the product £.C, let M and NV be each the set of all
positive real numbers not excceding 1. The set P will, therefore,
be the set of all pairs (x, y), where x and y are real numbers
satisfying the inequalities 0 <x=1 and 0<y=1. It can be shown
that the set P has the same potency as the set E of all real num-
bers z satisfying the inequality 0<z=1.

In fact, let (x, ¥) be-an element of P. Develop x and y as
infinite decimal fractions, e.g.

x=0-4300709500083...,
y=0-0560030001402....
Divide the digits to the right of the decimal point into groups by
means of a stroke after each significant figure; we thus get an
infinite sequence of groups:
413j007/09|5/0008(3]...
05/6j003j00001[4]02]...

_Place the groups of the second sequence between the successive

groups of the first, we thus get a new sequence of groups:

4/05[3/6/007]/003[09]0001|5]4/0008[02]3]...

and omitting the strokes we get an infinite sequence of digits,
which is the decimal part of a certain number

z2=0.-40536007003090001540008023...,
which we correlate with the pair (x, v).

It is easily scen that such a correlation establishes a (1,
correspondence betwecn the elements oi l]lL sct £ and those of 2.
But E=t; hence, P E=t, and since P=M.N=t.t we have

(11) C.L=C.

It follows from the above that the sct of all pairs (x, v) of real
numbers a, v has the same potency as the set of all real numbers.



218 GENERAL ToroLOGY

Geometrically, this means that the set of all points in the plane has
the same potency as the set of all points in a straight line and,
therefore, also as the set of all points in a finite segment.

The definition of a product of two cardinal numbers may be
extended to an infinite sequence. It follows readily that
if my, 1y, ..., M, are given cardinal numbers and M, M, ..., M,

sets such that M, =my, for k=1,2,...,n, then the cardinal number
m,.m, ... m, is the potency of the set of all combinations
(m1, ms, . . ., m,), where my ¢ M, for k=1,2,..., n Similarly, the
infinite product

n.ne. ;...

of cardinal numbers is the potency of the set P of all the infinite
sequences ,
My, Mg, M3y « .« oy

where m, € My, for k=1,2, . . . and JTJ:k=mk (k=1,2,...).

In particular, let M}, be the set consisting of the numbers 0 and
1. The set P will, therefore, be the set of all infinite sequences

(12) a1, az, as, . . .

consisting of the numbers 0 and 1. Denote by Q the set of the
sequences belonging to P in which there is an infinite number of
ones, and by R the remainder of P. R consists, therefore, of all
those sequences in which, from a certain stage onwards, there are
only zeros and so has the same potency as the set of all finite
sequences consisting of 0 and 1, which is a countable set. The
set Q, however, has the same potency as the set X of all positive
real numbers=1 and so potency £. The (1, 1) correspondence
between the elements of Q and those of X may be easily established
if we correlate the sequence (12) with the number

ai Qg as
5 + > -+ 5 + ...
(which obviously belongs to X).

Hence Z?=l:, and so
(13) £=222....
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Similarly, it can be shown that
(14) £=“0.N0.No PP

for, it is sufficient to take as M, (=1, 2, ... ) the set of all
natural numbers, and so P will be the set of all infinite sequences

(15) My, Moy, W3y - o

of natural numbers, which has the same potency as the set X of
all positive real numbers=1. To establish a (1, 1) correspondence
between the elements of P and X it is sufficient to correlate the
number

1 1 1
—2-;1—1 + ?ﬁ-—n‘; 2m+m+ns

+...

of the set X with the sequence (15).

Furthermore,
(16) L=t ...
To prove this let M, =X, for k=1, 2, ... ; we show that the set

P of all infinite sequences consisting of elements of X has the same
potency as the set X. To establish a (1, 1) correspondence be-
tween the elements of P and X, correlate the sequence

(17) X1, Xgy X3y « & &
which belongs to P with a number x in the form

(1) g'g'g g e e glg” . ..,

where g,’g,”’g,’"” . . . designates x,, and the sequence (17) is desig-
nated by the double sequence
’ 144 7
HOROIN

!

g31g311g3// L
from which (18) is obtained by the diagonal method.
5. Let P and Q be two given sets. If with every element of P

there is correlated an element of Q, where the same element of Q
may be correlated with several clements of P, we obtain a mapping
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of the set P on the set Q. Let now m and 1 be two cardinal num-

bers and M, N two sets such that M—m N—n then the power
m" is defined to be the potency of the set of all mappings of the set
N on the set M. It can be easily shown that for any three cardinal
numbers M, N, P we have
' m? =mtm?
(mn)® =mP.n®
(mMP =m",
If # be a natural number, we have obviously
mt=mm. .. m (n factors).

It follows also readily from the definitions of a power and of
an infinite product of cardinal numbers (§ 4), that

@ , mNo =,

In particular, for M =2 we obtain from (13)

) N .
From (1), (14), and (16) we obtain
xos\tﬂ =[NU =C.

Let NV be a set of potency 1; then 2" will be the cardinal number
of the set E of all subsets of IV, the null set and the set NV being

included. Thus ZNO or L is the cardinal number of all subsets of
the set of natural numbers, and 2° is the cardinal of the set of
subsets of the set of all real numbers and so the cardinal of the set
of all functions of a real variable.

6. Given two cardinal numbers It and 1, we say that It < 1 if
the set M of potency It has equal potency with a subset of the set NV
whose potency is 1, and if there is no subset of 37 of equal potency
with . We cannot, however, as yet state that every two cardinal
numbers N and N are related to cach other by one of the three
signs >, =, <.
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It follows at once from the definition of inequality of cardinal
numbers, that
n<NRy, forn=1,2,3, ...,
and
N, <.

For, if M be the set of all natural numbers and N the set of all

real numbers, then M =¥, N=t, where M has the same potency
as a certain subset of IV but not conversely (since N is non-coun-
table).

It is, however, still unknown whether there are cardinal numbers
M satisfying the inequality Wo <M <t. The assumption that there
are no such cardinal numbers is known as the Hypothesis of the
continuum. The assumption that there is no cardinal number
between Mt and 2™, whatever be the transfinite number 1, is known
as the Cantor aleph-hypothesis. 1t can be shown that every cardinal
number M satisfies the inequality

1) oM 1m;

in other words, the set of all subsets of a given aggregate has potency
greater than that of the aggregate. I'rom (1) we get at once the
infinite sequence of inequalities

2N°

\§0<22 < ...,

s Q

\\:0 < 2“0 <22

which shows that there is an infinite number of transfinite cardinal
numbers.

7. The following is the so-called multiplicative axiom stated
by Zermelo in 1804 and tacitly implied in several of the preceding
results:

For every uggregute M consisting of sets £, non-null and muctually
exclusive, there exists (at least one) aggregate N cont1ining one, and
one only, element of each set E.

The meaning of this axiom may be explained by the following
cexamples:

Divide all real numbers into sets assigning two numbers to
the same set if and only if their difference is rational.  We thus
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get an aggregate M of mutually exclusive, non-null sets. By the
multiplicative axiom, there exists a set IV containing one and only
one number of each set E. No one, however, has been able so
far to construct the set NN, for it is impossible in this case to put
down a law of selection which would pick out a certain element
of the set E. This has lead some mathematicians to doubt even
the probability of the truth of the axiom. Consider another
example. Divide all countable sets of points en a straight line
which are not symmetrical with respect to the point 0 into classes,
assigning to the same class those sets which are symmetrical images
of each other with respect to the point 0. There will obviously
be two sets in each class. By the multiplicative axiom there
exists a set NV containing one set only of each pair, but we cannot
devise any rule which would enable us to select this set. The
existence of the set IV is, therefore, deduced only on the basis of the
multiplicative axiom.

If, however, all points of a straight line be divided into classes,
assigning to the same class two sets if and only if they are mutually
exclusive and their sum gives the whole line, then the set NV may
be actually constructed; for it is sufficient to assign to N that set
of each class which contains the point 0.

We shall next consider some of the applications of the axiom.
Let M be an aggregate of potency M consisting of mutually ex-
clusive non-null sets. By the multiplicative axiom there exists a
set N containing one and only one - element of each set belonging

to M. We shall evidently have N= M hence N=mut. On the
other hand, IV being obviously a subset of the sum .S of all sets
constituting M, we have

EE_IV, and so S=m.

We thus arrive at the following result: If any aggregate be divided
into mutually exclusive sets, the set of these sets has potency = the
polency of the original aggregale.

It follows readily from the above that the potency of any set
of points in the plane is not less than the potency of the set of its
projections.  For the given set may be divided into subsets con-
sisting of all points which project into the same point.
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Furthermore, if a set of potency t be divided into two parts,
one of them at least has potency L. For let P be the set of all
points in the plane and so of potency L. It will be sufficient to
show that there is no division P=A4-+B, where both 4 and B
have potency <t. Suppose, on the contrary, that such a division
exists. The projection of the set A on the x-axis has by the above
potency = the potency of A4, hence <. There exists, there-
fore, an abscissa x; such that the straight line x =x;, does not con-
tain points of 4. We conclude, similarly, that there exists an
ordinate v, such that'the straight line y=2y, does not contain
points of B. Hence the point (xy, ;) belongs neither to 4 nor
to B, contrary to the fact that P =4 +B. The above statement
is, therefore, proved.

There are other more general forms of the multiplicative
axiom, e.g., the following (Hilbert):

There exists a correspondence which correlates to each property W
possessed by at Least one object a certain element (W) possessing the
property W.

This axiom leads to the so-called general principle of selection
(Zermelo). E being any set, denote by Wg the property of be-
longing to the set E. If E is not a null set there exists obviously
at least one object which has the property Wg, whereas (Wg)
will be an element of E. Hence, there exists a correlation which
assigus to every non-null set an element of that set.

There exists, therefore, for every given set a correlation which
assigns to every non-null subset of the given set a certain element
belonging to that subset.

It can be shown, proceeding from the above, that every non-
null set which is not finite contains a countable subset. In fact, let E
be a given non-null set, which is not finite. Then to each non-null
subscet C of E corresponds a certain element a(C) of C. Put p =
a(F), and let £ be the set obtained on removing py from £, If
E, were a null set or finite, then the set £ would be finite. Hence
IZ, is neither null nor finite. Let further p,=a(E;), and let E.
be the set obtained from E; after removing $». As above, E, is
neither null nor finite.  Let now p3=a(E:), and so on.

We thus obtain an infinite seqquence of different elements of the
set fy

s
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1) ' : 1, D2y D3y e o e

which forms a countable subset of the set E.

A set which contains a countable subset has the same potency
as certain of its subsets (z.e. it is infinite in the Dedekind sense).
For, retaining the above notation, we can establish a (1, 1) corres-
pondence between the sets E and E; as follows: correlate every
element of E which is not in (1) with itself and i.every element
which belongs to (1) with its successor in (1).

Let now W be a cardinal number which is not finite and U a
set of potency W. The set U is, therefore, neither null nor finite
and so must contain a subset of potency Ny. Hence,

u=\,

for every cardinal number @ which is not finite. For a finite
cardinal number I we have obviously the inequality W <,; hence,
every cardinal number is 2 Ro.

If a set E is such that E<<,, then E is a’l‘ﬁnite set. If E=No,
then E is countable; and if finally E> N, thenfE is non-countable.

Let E be a set which is neither null nor finite. Hence E con-
tains a countable subset P. Remove from E the elements belong-
ing to P, and denote the remainder by R; hence, E=P+R, and
(since P and R are mutually exclusive)

@) E=P+R.

Add to the set E any countable set Q distinct from E; therefore,
3) P+Q=8=P,
and putting E+Q=.5, we shall get from (2) and (3)

S=E4+Q=P+R+Q=P+R=E.

Hence, the potency of a set which is neither null nor finite does wnot
change if we add to it a countable set of elements.

Let now E denote a non-countable set, P its countable subset,
R a set defined as above. Hence R is neither a null set nor finite
(since then E=P-+4R would be countable), and so it will not
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change its potency if we add to it the countable set P, which gives

E=R. We have thus proved that the potency of a non-countable
set does not change if we remove from it a countable set of elements.

ORDERED SETS

8. A set E is said to be ordered if there exists a convention
according to which it can be said of any two distinct elements of
the set that one element precedes the other in the set. This is
expressed in writing by @ < b, i.e. @ comes before b or a> b, 7.e. a
comes after . Whatever this convention may be the following two
conditions must be satisfied:

1. Relation a <b excludes the relation b <a (easymmetry).

2. If a <b and b <}c¢ then ¢ < ¢ (transitivity). ’

An element of E, which is not preceded by any other, is said to
be the first element; and one which is not followed by any other is
called the last element of the set E. -

The set of natural numbers apart from its usual order may be
also ordered according to the following convention. Of two
numbers the one with the least number of different prime factors
will come first, and in case of an equal number of different prime
factors the one of smaller value. It is easily seen that this agree-
ment orders the set of natural numbers (z.e. conditions 1 and 2
are satisfied). Hence we get

1<2<3<4=5~7<6=<34<35<30=< ...

Two ordered sets G and T are said to be similar, 1.e. G=T, if
there exists a (1, 1) correspondence between their elements which
leaves the order relations between corresponding pairs of elements
invariant. Thus if a, b are any two elements of G and «, 8 their
corresponding elements in T, then the relation

a=b
implies the relation
a<p
and conversely.
It is easily seen that an ordered set is similar to itself and two
sets similar to a third are similar to each other.  (The relation of
similarity is, therefore, symmetrical and transitive.)
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Divide all ordered sets into classes assigning two sets to the
same class if and only if they are similar. Then sets belonging
to the same class are said to be of the same ordinal type. Ordinal
types thus serve as symbols to designate the various classes.

Two ordered sets of the same type have obviously the same
potency, but the converse is not necessarily true. The set of all
natural numbers and the set of all rational numbers have the same
‘potency (both countable), but when ordered according to their
magnitude, are evidently of different types.

The ordinal type of a set E is denoted according to Cantor by
E. If # be a natural number, then all ordered sets consisting of
n elements are easily seen to be similar to the set of the first »
natural numbers. We are, therefore, led to assume » for the symbol
of the corresponding ordinal type.

The ordinal type of the class which contains the set of all
natural numbers in their successive order is denoted by w, again
following Cantor. The set of all negative integers . . . —4~ —3 =<
—2.< —1 ordered according to their algebraic magnitude belongs
to a different type ordered in the opposite direction to that of w
and is denoted by w*.

Generally, if a be a given type, then the type reversed in order
to that one is denoted by «* It may happen that o* =a; this is
the case for every finite type, also for the type 1 of the set of all
rational numbers ordered according to their magnitude, as well
as for the type X of the set of all real numbers ordered according
to their magnitude.

9. A set E is said to be dense if between every two of its ele-
ments there is at least one element of £ and, therefore, an infinite
number of them. Thus the set of all rational numbers, and the
set of all real numbers, each ordered according to magnitude, are
both dense.

It can be proved that two countadble, dense, and ordered sets, which
have neither a first nor a last element, are similar, and are, therefore,
of type n. Similarly, it can be easily proved that every countable
ordered set is similar to a certain set of rational numbers which are
ordered according fo their magnitude.
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A cut of an ordered set E is a division of all the elements of
the set into two non-null classes 4 and B such that every element
of the class A precedes every element of the class B. Such a
division is denoted by [4, B].

If in a given cut [4, B] the class 4 has a last element and the
class B a first element, then this cut is said to give rise to a jump.
Thus in the set of natural numbers each cut supplies a jump.
Obviously, in order that an ordered set be dense it is necessary
and sufficient that none of its cuts gives rise to a jump.

If in a cut [4, B] the class 4 has no last term and the class B
no first term, the cut is said to produce a gap. Thus in the set
of all rational numbers different from zero the cut into the class
of negative rational numbers and the class of positive rational
numbers produces a gap.

A set which has neither jumps nor gaps is said to be continuous.

If a given ordered set E has gaps, these may be removed by the
addition of new elements in the following way. To each cut[4, B]
which produces a gap, we assign a new element not contained in
E which is considered as following all the elements of 4 and pre-
ceding all those of B. Of two elements assigned to different cuts
[4, B], [41, Bi] we consider the first as preceding the second when
A is a proper subset of 4; and as following the second when B is
a proper subset of Bi.

It can be easily shown that adding such new elements to E
we obtain a new ordered set F which has no gaps.

10. Let ¢ and ¢; be two ordinal types, O; and O, two mutually
exclusive ordered sets such that O;=¢; and O;=¢o. Put 0=0,+0;
and order O as follows: two elements of O which belong both to O,
or both to 0, are to retain the ordinal relation which they had in
their respective sets. Of two elements of O, one belonging to O,
and one to O, the one belonging to O, will precede the other.

The set O is thus easily seen to be ordered and its type ¢ =0
will depend solely on the types ¢1, ¢ and not on the sets 0,, O,
which correspond to these types. We call ¢ the sum of ¢, and ¢,
and write

¢ =1+ o.
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It follows from the definition of the types w and »* that
w*+w
is the ordinal type of the set of all integers ordered according to
their algebraic magnitude, z.e.
L2 —1k01=R2= ...,
while the sum

w+tw*

is the ordinal type of the class containing the set of the reciprocals
of all the integers (zero excluded) ordered according to their alge-
braic magnitudes, <.e.

1 1 . 1 1 1 1

S S I B S e S
1 = 2 = 3 = 3 2 = 1
The ordinal types w*+w and w-+w* are different, for the first
one does not contain a first nor last element whereas the second
has both. The first type has no gaps, the second has a gap.
Hence
¥t o otow*,

and so addition of ordinal types is not necessarily commutative.
Similarly, it may be shown that

14ws#w+t+1,
but if we put {=w-+o* we find that
1+E=£+1

(since each sum is equal to £).
Furthermore, it is easily seen that

n+n=mn, NHA=EN,
and the relation

(a+B)*=B*+a*

is true for every type a and 8.

The definition of a sum of ordinal types may be extended im-
mediately to any finite number of types, and such a sum is casily
seen to satisfy the associative law. Thus

(wr—f—l) Fto=w+1+w) =wtw.
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Similarly,
n+14n=9, A+14+A=\
The sum of ordinal numbers may be further extended to infinite

sequences. Let
(1) ai, g, A3, « . -

be an infinite sequence of ordinal types and
(2) Oly 021 031 ]

be mutually exclusive ordered sets such that _O—,, =a,, for n=1, 2,
3,... Put
(3) O=O1+02+03+ PR

and let O be ordered as follow: if two elements of O belong to the
same set O,, then they retain in O the ordinal relation which they
had in O,, but if two elements of O belong to different sets, that
element will come first which belongs to the earlier set in the
sequence. It is easily seen that the set O will be ordered by the
above procedure and its type will depend solely on the sequence
(1) of types and not on the sets of sequence (2) corresponding to
those types.

We may, therefore, say that every infinite series of ordinal types
has a definite (well-defined) sum. E.g., '

w=141+4+1+4. ..

but also
0=242424 ... =14+24+3+44 ... =24224-2+4 . ..
We also note that
n=n+n+tn+ ..., A=N+IENFLHNFTHNF L L

Let now ¢ an__d ¥ be_two ordinal types, U and V two ordered

sets such that U=¢, V=¢. Denote by P the set of all pairs
(a2, v), where u ¢ U and v ¢ V, and order P, assuming that

(u, ) < (u1, v1)

ifo Qv (in V) orif v=v,and u < u, (in U).
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It is easily seen that such an agreement will order P (i.e. con-
ditions 1 and 2 of § 8 will be satisfied) and that the type of P
will depend only on the types ¢ and ¢. The ordinal type of P is
defined to be the product of the types ¢ and ¢ and is written ¢.y.

In order to obtain-the product 2.w, consider the set U of type 2
consisting of the numbers 1 and 2 and the set of natural numbers
ordered according to increasing magnitude. The set P will consist
of all pairs (1, v) where % is 1 or 2 and v a natural number; ordering
P as above we obtain the sequence

L=< DI, ~<22)~<1,3)=<23)<(1L,4=<(2,4)<...,

which is of type w. Hence
2.0 =w.
Similarly,
n.w=w, for every natural z.

The product w.2 is the type of the set
1,D=E1)=IEH=<GD=<...x(1,2)<2,2)=%@B,2) =< ...
and is, therefore, of type w+w. Hence

w2=w'tow,
and, therefore,
.27 2.w.

Multiplication of ordinal types is thus seen to be non-commuta-
tive. We also note that n.2=n+4n=n, but 2.95n (since the type
27 contains jumps). Similarly 2.35#\.2, 7. A\

The multiplication of ordinal types is, however, associative and
distributive if the second factor is a sum. Thus

(o) .6 =20.(4.0),

¢.(y+0) =0¢.¢y+¢.0,
but
(14D w=l.w+t+low,
since the left hand side is equal to w, whereas on the right we have

w+w.



APPENDIX 231

We have obviously for every ordinal type ¢ and every natural
number 7 the product ¢.7 equal to the sum of # terms each equal
to ¢. Similarly,

pw=0¢+o+o+ ...

11. A setis said to be well-ordered if each of its non-null subsets
has a first element.

Every finite ordered set is well-ordered. Sets whose types are
w, w+1, w4ow, w.w are evidently well-ordered; but the sets whose
types are w*, 7, A are not well-ordered.

A well-ordered set cannot contain an infinite subset

a1>.—.a2>.-a35~' .« ey

i.e. one of type w*; for in such case it would contain a subset with-
out a first element, contrary to definition.

A non-null subset of a well-ordered set is obviously well-ordered.

Well-ordered sets have the following important property which
is known as the principle of transfinite induction:

If a certain theorem T
1, is true for the first element of a well-ordered set W,

2, is true for an element a of W, of it is true for every element pre-
ceding a, then T is true for every element of W.

Indeed, suppose that a certain theorem I  satisfies conditions
1 and 2 but that there exist elements of W for which it is not
true; let IV be the set of such elements. N will, therefore, be a
non-null subset of a well-ordered set and so will have a first element
a, say. It follows from the definition of IV that T must be true
for every element x of W which is such that x < a; but by condition
2, T must be true for a, which is contrary to the fact that a e V.
The principle of transfinite induction for well-ordered sets is,
therefore, proved.

A well-ordered set may be similar to a proper subset of itself,
e.g. the set of all natural numbers ordered according to their in-
creasing magnitudes is similar to its subset consisting of the even
numbers. We shall now prove that if a well-ordered set W is similar
to a proper subset S of ilself, then an element of W cannot be correlated
with an element of .S which precedes it.
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For suppose that in the correlation of W and its subset S to
the element a; of W corresponds a» of S such that ¢; < a:; let a; be
the element of S which corresponds to a; of W, hence a; < a», since
as=a; in W. Let now as be the element of S corresponding to
as in W, and, since a3~ a2, we have a4 < a;. Arguing thus repeatedly
we are led to an infinite sequence

015"(12% a3>- ..

of W, which is impossible, and so the above statement is true.

Let W be a well-ordered set and a one of its elements. The
set of all elements of W preceding « is called a section of W deter-
mined by the element ¢ and denoted by A(e). It follows from
the above theorem that a well-ordered set cannot be similar to a
section of itself nor to any subsets of such a section; for, in the similar
correlation between the set W and a set SC A(a) to an element
a of W, there would have to correspond an element a’ of the section
A (a), and so an element preceding a, contrary to the above theorem.

Given two well-ordered sets A and B it can be easily shown
that either 4 ~B or A(a,) =2 B or else 4~ B(b), z.e. two well-
ordered sets are either similar, or one of them is similar to a section
of the other.

12. Ordinal types of well-ordered sets are called ordinal nunibers.

If ¢ and ¥ be two different ordinal numbers, then, as seen
above, of two sets of these types just one is similar to a section of
the other. In one case we write ¢ <y, in the other ¢y <¢ (or ¢>y¢).
It is convenient to include the number zero in the set of ordinal
numbers, it being defined as the smallest of all ordinal numbers.

Let W be a well-ordered set of type ¢. Let, further, a be an
element of W, and ¥(a) the ordinal type of the section 4 (a), where
¢¥(a)=0 if a be the first element of W; we shall have obviously
Y(a) <¢ and y(a)) <y¢(az), for a1 = a.. Hence, to every element of
W there corresponds an ordinal number ¢ <¢, and to a later
element corresponds a larger number. Conversely, every ordinal
number ¢ <¢ corresponds to some element of W; in fact, if ¢ <4,
then the set Wi of type ¢ is similar to a certain section 4 (a) of W,
and so ¢ =y(a). Hence, a well-ordered set of type ¢ is similar to
the set of all ordinal numbers <¢ (0 included), which are ordered
according to increasing magnitudes.



APPENDIX 233

The elements of a well-ordered set may, therefore, be denoted
by the symbol a,, where the subscripts ¢ =y/(a) are ordinal numbers
(including 0 which is the subscript of the first element a,). Thus,
the n elements of a finite set may be denoted by

oy A1y v v oy Qp_1,
the elements of a set of type w by

Qg @1, Ay . . -,
the elements of a set of type w—+# (% a natural number), by

Qoy A1y - o oy Cgy Ty 1y » + 5 Qb n—1,

and so on. Generally, the elements of a well-ordered set of type ¢
may be written down as a transfinite sequence of type ¢, z.e.

oy Q1 v o vy By v o vy Gy - o - (<o)

Every set E of ordinal numbers is well-ordered. For, let ¢ be any
number of E; the set E; of all ordinal numbers <¢ is, as previously
shown, well-ordered of type ¢. If ¢ is not the smallest number of
E then the set of all numbers of E which belong to E; is not null,
and so, as a subset of a well-ordered set, will have a first element, a
say. [t is easily seen that a is the smallest element of E. Hence,
every set E of ordinal numbers has a smallest number, and this
proves the above statement.

It can be easily shown that the sum of two positive ordinal numbers
is always greater than the first number and = either of the numbers.
From this it follows at once that for every ordinal number a

a+1>a.

The number a1 is said to be the successor of a. It can be easily
shown that there is no ordinal number £ satisfying the inequalities
a<t(<a-+1. Hence, every ordinal number has a successor. But
not every ordinal number has a predecessor, +.e. a number for which
the given one is a successor. Thus, the numbers w, w+w have
no predecessors. Ordinal numbers which possess predecessors,
i.e. those of the form a1 are said to be of the first kind, and those
without a predecessor are of the second kind.
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Let E denote a well-ordered set of type a whose elements are
ordinal numbers; we may, therefore, represent these elements by
the symbols ¢;, where £ is any ordinal number <a (0 included).
In other words, the elements of the set £ may be represented by
the transfinite sequence

(1) b0, b1, D25 - - oy ¢m7 ¢m+1y ce ey ¢£) LI (E<G),

of type a.

If for £<n<a we have ¢;<¢,, the sequence is said to be increas-
ing. In such a case the smallest ordinal number N which exceeds
every term of (1) is called the limit of the sequence, and we write

E<a
Thus,
w=lim z=1m #n?*=1lim 2%;
nw nlw n<w

w+w=1lm (0+n);

n<w

every number o of the second kind may, therefore, be written as

a=Ilim §,
f<a
7.e. every number of the second kind is the limit of all ordinal
numbers less than it. .

All finite ordinal numbers (0 included) are said to be numbers
of the first class. All ordinal numbers which are ordinal types of
countable sets constitute the second class of numbers.

The set E of all numbers of the first and second classes is non-
countable. Indeed, suppose it is countable; E being a set-of. ordinal
numbers is, as shown previously, a set well-ordered according to
the magnitude of the numbers. Let Q be its type, and so, as
the type of a well-ordered countable set, it would be a number of
the second class, .. an element of E, ¢ say.

But every ordinal number is the type of the set of all ordinal
numbers less than it; hence @ =¢ would be the type of a section
of the set E determined by the element ¢ of this set. Thus, the
set E (which is of type Q) would be similar to a section of itself,
which is impossible.
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. Hence, the set of all numbers of the first and second classes is
non-countable. The potency of this set is denoted by N;.. Ob-
viously, 8o <;, and it may be easily seen that there is no cardinal
number between ¥, and N;. For, suppose 1t is a cardinal number
such that

No<m<Ny;

then there exists a subset E; of the set E such that E;=m. But
since M <N, E; must be similar to a section of E determined by
some element, ¢ say; since ¢ € E and so is a number of the first or
second class, the section of E determined by ¢ is at most countable.
We have, therefore, M=, contrary to hypothesis.

The cardinal number N; follows, therefore, immediately after
V. It is, however, still unknown whether 8; =£, or 8;£. The
assumption that N;=¢ is equivalent to the hypothesis of the con-
tinuum.

All ordinal numbers which are types of well-ordered sets of
potency N, constitute the numbers of the third class. The smallest
of them is easily seen to be Q.

It can be shown that the set of all the numbers of the third
class has potency > ;; its potency is denoted by Ws. The potency
of a well-ordered set is generally called aleph (denoted by ), and
it can be shown that if a _cardinal number is an aleph, then

NAR=N.R=N.
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