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PREFACE

Functional analysis is the study of certain topological-algebraic structures
and of the methods by which knowledge of these structures can be applied
to analytic problems.

A good introductory text on this subject should include a presentation
of its axiomatics (1.e., of the general theory of topological vector spaces), it
should treat at least a few topics in some depth, and it should contain some
interesting applications to other branches of mathematics. I hope that the
present book meets these criteria.

The subject 1s huge and is growing rapidly. (The bibliography in
volume I of [4] contains 96 pages and goes only to 1957.) In order to write
a book of moderate size, it was therefore necessary to select certain areas
and to ignore others. I fully realize that almost any expert who looks at the
table of contents will find that some of his or her (and my) favorite topics
are missing, but this seems unavoidable. It was not my intention to write an
encyclopedic treatise. I wanted to write a book that would open the way to
further exploration.

This 1s the reason for omitting many of the more esoteric topics that
might have been included in the presentation of the general theory of topo-
logical vector spaces. For instance, there 1s no discussion of uniform spaces,
of Moore-Smith convergence, of nets, or of filters. The notion of complete-
ness occurs only in the context of metric spaces. Bornological spaces are
not mentioned, nor are barreled ones. Duality is of course presented, but
not in its utmost generality. Integration of vector-valued functions is treated
strictly as a tool; attention is confined to continuous integrands, with values
in a Fréchet space.

Nevertheless, the material of Part I is fully adequate for almost all
applications to concrete problems. And this is what ought to be stressed in
such a course: The close interplay between the abstract and the concrete is
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XiV PREFACE

not only the most useful aspect of the whole subject but also the most
fascinating one.

Here are some further features of the selected material. A fairly large
part of the general theory is presented without the assumption of local con-
vexity. The basic properties of compact operators are derived from the
duality theory in Banach spaces. The Krein-Milman theorem on the exis-
tence of extreme points is used in several ways in Chapter 5. The theory of
distributions and Fourier transforms is worked out in fair detail and is
applied (in two very brief chapters) to two problems in partial differential
equations, as well as to Wiener’s tauberian theorem and two of its applica-
tions. The spectral theorem is derived from the theory of Banach algebras
(specifically, from the Gelfand-Naimark characterization of commutative
B*-algebras); this is perhaps not the shortest way, but it is an easy one. The
symbolic calculus in Banach algebras 1s discussed in considerable detail; so
are involutions and positive functionals.

I assume familiarity with the theory of measure and Lebesgue integra-
tion (including such facts as the completeness of the I?-spaces), with some
basic properties of holomorphic functions (such as the general form of
Cauchy’s theorem, and Runge’s theorem), and with the elementary topo-
logical background that goes with these two analytic topics. Some other
topological facts are briefly presented in Appendix A. Almost no algebraic
background is needed, beyond the knowledge of what a homomorphism is.

Historical references are gathered in Appendix B. Some of these refer
to the original sources, and some to more recent books, papers, or exposi-
tory articles in which further references can be found. There are, of course,
many items that are not documented at all. In no case does the absence of a
specific reference imply any claim to originality on my part.

Most of the applications are in Chapters 5, 8, and 9. Some are in
Chapter 11 and in the more than 250 exercises; many of these are supplied
with hints. The interdependence of the chapters is indicated in the diagram
on the following page.

Most of the applications contained 1n Chapter 5 can be taken up well
before the first four chapters are completed. It has therefore been suggested
that it might be good pedagogy to insert them into the text earlier, as soon
as the required theoretical background is established. However, in order
not to interrupt the presentation of the theory in this way, I have instead
started Chapter S with a short indication of the background that is needed
for each item. This should make it easy to study the applications as early as
possible, if so desired.

In the first edition, a fairly large part of Chapter 10 dealt with differ-
entiation in Banach algebras. Twenty years ago this (then recent) material
looked interesting and promising, but it does not seem to have led any-
where, and I have deleted it. On the other hand, I have added a few items
which were easy to fit into the existing text: the mean ergodic theorem of
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von Neumann, the Hille-Yosida theorem on semigroups of operators, a
couple of fixed point theorems, Bonsall’s surprising application of the
closed range theorem, and Lomonosov’s spectacular invariant subspace
theorem. I have also rewritten a few sections in order to clarify certain
details, and I have shortened and simplified some proofs.

Most of these changes have been made in response to much-
appreciated suggestions by numerous friends and colleagues. 1 especially
want to mention Justin Peters and Ralph Raimi, who wrote detailed
critiques of the first edition, and the Russian translator of the first edition
who added quite a few relevant footnotes to the text. My thanks to all of
them!

Walter Rudin
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TOPOLOGICAL
VECTOR
SPACES

Introduction

1.1 Many problems that analysts study are not primarily concerned with
a single object such as a function, a measure, or an operator, but they deal
instead with large classes of such objects. Most of the interesting classes
that occur in this way turn out to be vector spaces, either with real scalars
or with complex ones. Since limit processes play a role in every analytic
problem (explicitly or implicitly), it should be no surprise that these vector
spaces are supplied with metrics, or at least with topologies, that bear some
natural relation to the objects of which the spaces are made up. The sim-
plest and most important way of doing this 1s to introduce a norm. The
resulting structure (defined below) is called a normed vector space, or a
normed linear space, or simply a normed space.

Throughout this book, the term vector space will refer to a vector
space over the complex field € or over the real field R. For the sake of
completeness, detailed definitions are given in Section 1.4.

1.2 Normed spaces A vector space X is said to be a normed space if to
every x € X there is associated a nonnegative real number |x||, called the
norm of x, in such a way that
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(@) llx+ yll <lix| + [ly[ for all x and y in X,
(b) x|l = |ee| ||x]| If x € X and a 1s a scalar,
() |xl >0if x #0.

The word “norm” 1s also used to denote the function that maps x
to || x||.

Every normed space may be regarded as a metric space, in which the
distance d(x, y) between x and y is ||x — y|. The relevant properties of d are

(1) 0<d(x, y) < oo for all x and y,
(ii) d(x,y)=01fand only if x =y,
(iii) d(x, y) = d(y, x) for all x and y,
(iv) d(x,z) <d(x,y) + d(y, z) for all x, y, z.

In any metric space, the open ball with center at x and radius r is
the set

B,(x) = {y:d(x, y) < 1}.
In particular, if X is a normed space, the sets
B,(0) = {x: ||x|]| < 1} and B,(0) = {x: |x|| <1}

are the open unit ball and the closed unit ball of X, respectively.

By declaring a subset of a metric space to be open if and only if it i1s a
(possibly empty) union of open balls, a topology i1s obtained. (See Section
1.5.) It 1s quite easy to verify that the vector space operations (addition and
scalar multiplication) are continuous in this topology, if the metric is
derived from a norm, as above.

A Banach space i1s a normed space which 1s complete in the metric
defined by its norm; this means that every Cauchy sequence is required to
converge.

1.3 Many of the best-known function spaces are Banach spaces. Let us
mention just a few types: spaces of continuous functions on compact
spaces; the familiar [?-spaces that occur in integration theory; Hilbert
spaces — the closest relatives of euclidean spaces; certain spaces of differen-
tiable functions; spaces of continuous linear mappings from one Banach
space into another; Banach algebras. All of these will occur later on in the
text.

But there are also many important spaces that do not fit into this
framework. Here are some examples:

(@) C(Q), the space of all continuous complex functions on some open set
Q 1n a euclidean space R".
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(b) H(Q), the space of all holomorphic functions in some open set Q in the
complex plane.

(c) Cg, the space of all infinitely differentiable complex functions on R"
that vanish outside some fixed compact set K with nonempty interior.

(d) The test function spaces used in the theory of distributions, and the
distributions themselves.

These spaces carry natural topologies that cannot be induced by
norms, as we shall see later. They, as well as the normed spaces, are exam-
ples of topological vector spaces, a concept that pervades all of functional
analysis.

After this brief attempt at motivation, here are the detailed definitions,
followed (in Section 1.9) by a preview of some of the results of Chapter 1.

1.4 Vector spaces The letters R and ¢ will always denote the field of
real numbers and the field of complex numbers, respectively. For the
moment, let ® stand for either R or . A scalar is a member of the scalar
field ®. A vector space over ®@ 1s a set X, whose elements are called vectors,
and in which two operations, addition and scalar multiplication, are defined,
with the following familiar algebraic properties:

(@ To every pair of vectors x and y corresponds a vector x + y, in such a
way that

xX+y=y+x and x+(y+2)=(x+y + z

X contains a unique vector O (the zero vector or origin of X) such that
x + 0= x for every x € X; and to each x € X corresponds a unique
vector — x such that x + (—x) = 0.

(b) To every pair (o, x) with & € ® and x € X corresponds a vector ax, in
such a way that

Ix=x,  alfx)=(p)x,

and such that the two distributive laws
a(x +y) = ax +ay,  (x+ B)x = ax + fx
hold.

The symbol 0 will of course also be used for the zero element of the
scalar field.

A real vector space 1s one for which ® = R; a complex vector space is
one for which ® = ¢. Any statement about vector spaces in which the
scalar field is not explicitly mentioned is to be understood to apply to both
of these cases.
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If X 1s a vector space, A c X, B< X, x € X, and 4 € ®, the following
notations will be used:

x+A={x+a:ae A},

x—A={x—aae A},

A+B={a+b:acA,be B}
LA = {Aa:ae A}.

In particular (taking A = —1), — 4 denotes the set of all additive inverses of
members of A.

A word of warning: With these conventions, it may happen that 24 #
A + A (Exercise 1).

A set Y < X 1s called a subspace of X 1f Y 1s itself a vector space (with
respect to the same operations, of course). One checks easily that this
happens if and only if 0 € Y and

aY + fY < Y

for all scalars o« and f.
A set C < X 1s said to be convex if

tC+(1—-t)Cc=C O0<t< .

In other words, it 1s required that C should contain tx + (1 — t)y if x € C,
yeC,and0<t< 1.

A set B < X 1s said to be balanced if aB < B for every a € ® with
o] < 1.

A vector space X has dimension n (dim X =n) if X has a basis
{u,, ..., u,}. This means that every x € X has a unique representation of the
form

Xx=ou +- - +o,u, (a; € D).

If dim X = n for some n, X is said to have finite dimension. If X = {0}, then
dim X = 0.

Example. If X = ¢ (a one-dimensional vector space over the scalar
field €), the balanced sets are €, the empty set ¢, and every circular
disc (open or closed) centered at 0. If X = R?* (a two-dimensional
vector space over the scalar field R), there are many more balanced
sets; any line segment with midpoint at (0, 0) will do. The point 1s
that, in spite of the well-known and obvious identification of € with
R?, these two are entirely different as far as their vector space struc-
ture 1s concerned.

1.5 Topological spaces A topological space is a set S in which a collec-
tion 7 of subsets (called open sets) has been specified, with the following
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properties: S is open, (J is open, the intersection of any two open sets is
open, and the union of every collection of open sets is open. Such a collec-
tion 7 is called a topology on S. When clarity seems to demand it, the topo-
logical space corresponding to the topology 7 will be written (S, 7) rather
than S.

Here is some of the standard vocabulary that will be used, if S and 7
are as above.

A set E < S 1s closed if and only if its complement is open. The closure
E of E is the intersection of all closed sets that contain E. The interior E° of
E is the union of all open sets that are subsets of E. A neighborhood of a
point p € S is any open set that contains p. (S, 7) is a Hausdorff space, and t
is a Hausdorff topology, if distinct points of S have disjoint neighborhoods.
A set K — S i1s compact if every open cover of K has a finite subcover. A
collection 7" = 7 is a base for 7 if every member of 7 (that is, every open set)
is a union of members of 7. A collection y of neighborhoods of a point
p € Sis a local base at p if every neighborhood of p contains a member of y.

If Ec S and if ¢ is the collection of all intersections E n V, with
V € 1, then o is a topology on E, as is easily verified ; we call this the topol-
ogy that E inherits from S.

If a topology 7 is induced by a metric d (see Section 1.2) we say that d
and t are compatible with each other.

A sequence {x,} in a Hausdorff space X converges to a point x € X
(or Iim,_, , x, = x) if every neighborhood of x contains all but finitely many
of the points x, .

1.6 Topological vector spaces Suppose 7 is a topology on a vector
space X such that

(@) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to 1.

Under these conditions, 7 is said to be a vector topology on X, and X
is a topological vector space.

Here is a more precise way of stating (a): For every x € X, the set {x}
which has x as its only member is a closed set.

In many texts, (@) is omitted from the definition of a topological
vector space. Since (a) is satisfied in almost every application, and since
most theorems of interest require (a) in their hypotheses, it seems best to
include it in the axioms. [Theorem 1.12 will show that (a) and (b) together
imply that 7 is a Hausdorff topology.]

To say that addition is continuous means, by definition, that the
mapping

(X% y)—=>x+y
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of the cartesian product X x X into X is continuous: If x; € X for i =1, 2,
and if V is a neighborhood of x, + x,, there should exist neighborhoods V,
of x; such that

Vi+V, V.

Similarly, the assumption that scalar multiplication 1s continuous means
that the mapping

(e, X) = ox

of ® x X into X is continuous: If x € X, o is a scalar, and V is a neighbor-
hood of ax, then for some r > 0 and some neighborhood W of x we have
BW < V whenever | —a| <.

A subset E of a topological vector space is said to be bounded if to
every neighborhood V of 0 in X corresponds a number s > 0 such that
E < tV foreveryt > s.

1.7 Invariance Let X be a topological vector space. Associate to each
a € X and to each scalar A # O the translation operator T, and the multipli-
cation operator M, by the formulas

T(x) =a + x, M,;(x) = Ax (x € X).

The following simple proposition is very important:

Proposition. T, and M; are homeomorphisms of X onto X.

PROOF. The vector space axioms alone imply that 7, and M, are
one-to-one, that they map X onto X, and that their inverses are T_,
and M,,;, respectively. The assumed continuity of the vector space
operations implies that these four mappings are continuous. Hence
each of them is a homeomorphism (a continuous mapping whose
inverse 1s also continuous). 1]/

One consequence of this proposition is that every vector topology 7 is
translation-invariant (or simply invariant, for brevity): A set E = X is open if
and only if each of its translates a + E is open. Thus 7 is completely deter-
mined by any local base.

In the vector space context, the term local base will always mean a
local base at 0. A local base of a topological vector space X is thus a
collection # of neighborhoods of 0 such that every neighborhood of 0 con-

tains a member of 4. The open sets of X are then precisely those that are
unions of translates of members of 4.
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A metric d on a vector space X will be called invariant if
dx+ 2z, y+2z)=d(x, )

for all x, y, zin X.

1.8 Types of topological vector spaces In the following definitions, X
always denotes a topological vector space, with topology z.

(@ X 1s locally convex if there is a local base # whose members are
convex.

(b) X is locally bounded if 0 has a bounded neighborhood.
(c) X is locally compact if O has a neighborhood whose closure is compact.
(d) X is metrizable if T is compatible with some metric d.

() X i1s an F-space if its topology 7 is induced by a complete invariant
metric d. (Compare Section 1.25.)

(f) X is a Frechet space if X is a locally convex F-space.

(99 X is normable if a norm exists on X such that the metric induced by
the norm is compatible with 7.

(h) Normed spaces and Banach spaces have already been defined (Section
1.2).

(i) X has the Heine-Borel property if every closed and bounded subset of
X is compact.

The terminology of (e) and (f) is not universally agreed upon: In
some texts, local convexity i1s omitted from the definition of a Fréchet space,
whereas others use F-space to describe what we have called Fréchet space.

1.9 Here is a list of some relations between these properties of a topologi-
cal vector space X.

(@) If X is locally bounded, then X has a countable local base [part (c) of
Theorem 1.15].

(b) X is metrizable if and only if X has a countable local base (Theorem
1.24).

() X is normable if and only if X is locally convex and locally bounded
(Theorem 1.39).

(@) X has finite dimension if and only if X is locally compact (Theorems
1.21, 1.22).

(¢) 1If a locally bounded space X has the Heine-Borel property, then X has
finite dimension (Theorem 1.23).
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The spaces H(Q2) and Cg mentioned in Section 1.3 are infinite-
dimensional Frechet spaces with the Heine-Borel property (Sections 1.45,
1.46). They are therefore not locally bounded, hence not normable; they
also show that the converse of (a) is false.

On the other hand, there exist locally bounded F-spaces that are not
locally convex (Section 1.47).

Separation Properties

1.10 Theorem Suppose K and C are subsets of a topological vector space
X, K is compact, C is closed, and K n C = . Then 0 has a neighborhood V
such that

K+V)n(C+V)=(.

Note that K + V is a union of translates x + V of V (x € K). Thus
K + V is an open set that contains K. The theorem thus implies the exis-
tence of disjoint open sets that contain K and C, respectively.

PROOF. We begin with the following proposition, which will be useful
in other contexts as well:

If W is a neighborhood of 0 in X, then there is a neighborhood U
of 0 which is symmetric (in the sense that U = — U) and which satisfies
U+ UcW.

To see this, note that 0 + 0 = O, that addition is continuous, and
that O therefore has neighborhoods V,, V, such that V, + V, « W. If

U=V,nV,n(=W)n (=1,

then U has the required properties.
The proposition can now be applied to U in place of W and
yields a new symmetric neighborhood U of 0 such that

U+ U+ U+UcCcW.

It is clear how this can be continued.

If K=, then K + V = (J, and the conclusion of the theorem
is obvious. We therefore assume that K # (¥, and consider a point
x € K. Since C is closed, since x is not in C, and since the topology of
X is invariant under translations, the preceding proposition shows
that 0 has a symmetric neighborhood V, such that x + V, + V, + V,
does not intersect C; the symmetry of V, shows then that

(1) x+Vi+V)n(C+ V)=
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Since K is compact, there are finitely many points x,, ..., x, in K such
that

Kcx, +V,)u u(x,+ V)
PutV=V,n - nV, . Then

K+Ve JE+Va+V)e UG+ Ve + Vo)
i=1

i=1

and no term in this last union intersects C + V, by (1). This completes
the proof. //1/

Since C + V is open, it is even true that the closure of K + V does not
intersect C + V; in particular, the closure of K + V does not intersect C.
The following special case of this, obtained by taking K = {0}, is of con-
siderable interest.

1.11 Theorem If # is a local base for a topological vector space X, then
every member of & contains the closure of some member of &.

So far we have not used the assumption that every point of X is a
closed set. We now use it and apply Theorem 1.10 to a pair of distinct
points in place of K and C. The conclusion is that these points have disjoint
neighborhoods. In other words, the Hausdorff separation axiom holds:

1.12 Theorem Every topological vector space is a Hausdorff space.

We now derive some simple properties of closures and interiors in a
topological vector space. See Section 1.5 for the notations E and E°.

Observe that a point p belongs to E if and only if every neighborhood of p
intersects E.

1.13 Theorem Letr X be a topological vector space.

@ IfAc X thenA = () (A + V), where V runs through all neighborhoods
of 0.

(b) IfAcXand Bc X,thenA + Bc A + B.
(©) IfY is a subspace of X, sois Y.
d) IfCis a convex subset of X, so are C and C°.

(€) If Bis a balanced subset of X, so is B; if also O € B° then B° is balanced.
(f) If E is a bounded subset of X, so is E,
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PROOF. (a) x € A if and only if (x + V) n 4 # & for every neighbor-
hood V of 0, and this happens if and only if x € A — V for every such
V. Since — V is a neighborhood of O if and only if V is one, the proof
1s complete.

(b) Take a e A, b € B;let W be a neighborhood of a + b. There
are neighborhoods W, and W, of a and b such that W, + W, < W.
Thereexist xe A N W, and ye B n W,,since a € A and b € B. Then
x + ylies in (A + B) n W, so that this intersection is not empty. Con-
sequently,a + be A + B.

(c) Suppose o and f are scalars. By the proposition in Section
1.7, aY=aY if o #0; if & =0, these two sets are obviously equal.
Hence it follows from (b) that

aY+ pY=aY + Y caY+pY Y,

the assumption that Y is a subspace was used in the last inclusion.

The proofs that convex sets have convex closures and that bal-
anced sets have balanced closures are so similar to this proof of (c}
that we shall omit them from (d) and (e).

(d) Since C° < C and C is convex, we have
tC° +(1 —t)C° <= C

if 0 <t < 1. The two sets on the left are open; hence so is their sum.
Since every open subset of C is a subset of C°, it follows that C° is
convex.

(e) If 0 <|a| <1, then aB° = (2B)°, since x — ax 1s a homeo-
morphism. Hence aB° < aB < B, since B is balanced. But aB° is open.
So aB° < B°. If B° contains the origin, then « B° < B° even for o« = 0.

(f) Let V be a neighborhood of 0. By Theorem 1.11, W< V for
some neighborhood W of 0. Since E is bounded, E < tW for all suffi-
ciently large t. For these t, we have E =« tW < tV. ///

1.14 Theorem In a topological vector space X,

(@) every neighborhood of 0 contains a balanced neighborhood of 0, and

(b)

every convex neighborhood of 0 contains a balanced convex neighbor-
hood of 0.

PROOF. (a) Suppose U is a neighborhood of 0 in X, Since scalar multi-
plication is continuous, there is a 4 > 0 and there is a neighborhood
V of 0 in X such that aV < U whenever |a| < 3. Let W be the union
of all these sets al. Then W is a neighborhood of 0, W is balanced,
and W < U.
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(b) Suppose U is a convex neighborhood of 0 in X. Let
A= ﬂ aU, where o ranges over the scalars of absolute value 1.
Choose W as 1n part (a). Since W is balanced, a™'W = W when
|| = 1; hence W < aU. Thus W < A, which implies that the interior
A° of A 1s a neighborhood of 0. Clearly A° = U. Being an intersection
of convex sets, A is convex; hence so is A°. To prove that 4° is a
neighborhood with the desired properties, we have to show that 4° is
balanced; for this it suffices to prove that A4 is balanced. Choose r and
fsothat 0 <r <1,|B|=1.Then

rBA = () rfaU = () raU.

la| =1 la] =1

Since aU is a convex set that contains O, we have raU < aU. Thus
rBA < A, which completes the proof. 1]/

Theorem 1.14 can be restated in terms of local bases. Let us say that a
local base # 1s balanced if its members are balanced sets, and let us call #
convex If its members are convex sets.

Corcllary

(@ Every topological vector space has a balanced local base.
(b) Every locally convex space has a balanced convex local base.

Recall also that Theorem 1.11 holds for each of these local bases.

1.15 Theorem Suppose V is a neighborhood of 0 in a topological vector
space X.

@ IfO<r,<r,<:'-andr,— o0 asn— oo, then

X= rV.

n=1
(b)  Every compact subset K of X is bounded.

€ Ifé,>6,> - and 0,0 as n— oo, and if V is bounded, then the
collection

{6,V:in=1,2,3,...}

is a local base for X.

PROOF. (@) Fix x € X. Since a — ax is a continuous mapping of the
scalar field into X, the set of all & with ax € V is open, contains O,

hence contains 1/r, for all large n. Thus (1/r,)x e V, or x e r, V, for
large n.
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(b) Let W be a balanced neighborhood of 0 such that W < V.
By (a),

Since K is compact, there are integers n; < *** < n, such that
KcnWu:-runW=nW.
The equality holds because W is balanced. If ¢t > n,, it follows that

KctWctV.

(¢) Let U be a neighborhood of 0 in X. If V is bounded, there
exists s > O such that V < tU for all ¢t > s. If n is so large that 56, < 1,
it follows that V < (1/,)U. Hence U actually contains all but finitely
many of the sets 9, V. //]/

Linear Mappings
1.16 Definitions When X and Y are sets, the symbol

i X->Y

will mean that fi1s a mapping of X into Y. If A < X and B < Y, the image
f(A) of A and the inverse image or preimage f ~ '(B) of B are defined by

f(A)={f(x):xe 4}, [7'(B)={x:f(x)eB}.

Suppose now that X and Y are vector spaces over the same scalar

field. A mapping A: X — Y is said to be linear if

Alex + By) = aAx + Ay

for all x and y in X and all scalars « and . Note that one often writes Ax,
rather than A(x), when A is linear.

Linear mappings of X into its scalar field are called linear functionals.
For example, the multiplication operators M, of Section 1.7 are linear,

but the translation operators T, are not, except when a = 0.

Here are some properties of linear mappings A: X —» Y whose proofs

are so easy that we omit them; it is assumed that A « X and B< Y:

(a)
(b)

()

A0 = 0.

If A 1s a subspace (or a convex set, or a balanced set) the same is true
of A(A).

If B is a subspace (or a convex set, or a balanced set) the same is tru€
of A™!(B).
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(d) In particular, the set
AT'{0}) = {x € X: Ax =0} = A(A)

is a subspace of X, called the null space of A.

We now turn to continuity properties of linear mappings.

1.17 Theorem Let X and Y be topological vector spaces. If A: X - Y is
linear and continuous at O, then A is continuous. In fact, A is uniformly contin-
uous, in the following sense: To each neighborhood W of 0 in Y corresponds a

neighborhood V of 0 in X such that
y — x € V implies Ay — Ax € W.

PROOF. Once W is chosen, the continuity of A at 0 shows that
AV < W for some neighborhood V of 0. If now y — x € V, the linear-
ity of A shows that Ay — Ax = A(y — x) e W. Thus A maps the
neighborhood x + V of x into the preassigned neighborhood Ax + W
of Ax, which says that A is continuous at x. //]/

1.18 Theorem Let A be a linear functional on a topological vector space
X. Assume Ax # 0 for some x € X. Then each of the following four properties
implies the other three:

(@) A is continuous.

(b) The null space A"(A) is closed.

(c) . #(A) is not dense in X.

(d) A is bounded in some neighborhood V of 0.

PROOF. Since A7(A) = A~ '({0}) and {0} is a closed subset of the scalar
field @, (a) implies (b). By hypothesis, 4" (A) # X. Hence (b) implies (c).

Assume (c) holds; i.e.,, assume that the complement of .#°(A) has
nonempty interior. By Theorem 1.14,

(1) x+V)n VA=

for some x € X and some balanced neighborhood V of 0. Then AV is
a balanced subset of the field ®. Thus either AV is bounded, in which
case (d) holds, or AV = ®. In the latter case, there exists y € V such
that Ay = —Ax, and so x + y € A47(A), in contradiction to (1). Thus
(c) implies (d).

Finally, if (d) holds then | Ax| < M for all x in V and for some
M< o . Ifr>0and if W = (r/M)V, then | Ax| < r for every x in W.
Hence A is continuous at the origin. By Theorem 1.17, this implies (a).

/111
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Finite-Dimensional Spaces

1.19 Among the simplest Banach spaces are R" and ", the standarc
n-dimensional vector spaces over R and (, respectively, normed by mean
of the usual euclidean metric: If, for example,

Z=(215 445 Z,) (zi € C)
is a vector in ", then
Izl =z * + - + 12, 1H) V%
Other norms can be defined on ¢". For example,
Iz| = |z 4+ -+ + | 2z,] or 'z| =max (|z]|:1<i<n)

These norms correspond, of course, to different metrics on " (when n > 1)
but one can see very easily that they all induce the same topology on "
Actually, more is true.

If X is a topological vector space over €, and dim X = n, then every
basis of X induces an isomorphism of X onto ¢". Theorem 1.21 will prove
that this isomorphism must be a homeomorphism. In other words, this says
that the topology of C" is the only vector topology that an n-dimensional
complex topological vector space can have.

We shall also see that finite-dimensional subspaces are always closed
and that no infinite-dimensional topological vector space is locally
compact.

Everything in the preceding discussion remains true with real scalars
in place of complex ones.

120 Lemma If X is a complex topological vector space and f: C" — X is
linear, then f is continuous.

PROOF. Let {e;, ..., e,} be the standard basis of €": The kth coordi-
nate of ¢, is 1, the others are 0. Put u, = f(¢), for Kk =1, ..., n. Then
f(z)=zu; +--+ + z,u, for every z =(z, ..., z,) in €". Every z, is a

continuous function of z. The continuity of f is therefore an immediate
consequence of the fact that addition and scalar multiplication are
continuous in X. /1]

1.21 Theorem If n is a positive integer and Y is an n-dimensional sub-
space of a complex topological vector space X, then

(a) every isomorphism of C" onto Y is a homeomorphism, and
(b) Y isclosed.
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PROOF. Let S be the sphere which bounds the open unit ball B of
¢". Thus ze€ S if and only if £|z;|°=1, and z € B if and only if
Xz;)* < 1.

Suppose f: €"-» Y is an isomorphism. This means that f is
linear, one-to-one, and f(€") = Y. Put K = f(S). Since f is continuous
(Lemma 1.20), K is compact. Since f(0) = 0 and fis one-to-one, 0 ¢ K,
and therefore there is a balanced neighborhood V of 0 in X which
does not intersect K. The set

E=f"'V)=f"(VnY)

is therefore disjoint from S. Since f'is linear, E is balanced, and hence
connected. Thus E = B, because 0 € E, and this implies that the linear
map f ~ ' takes V n Y into B. Since f ! is an n-tuple of linear func-
tionals on Y, the implication (d) -» (a) in Theorem 1.18 shows that f ~ '
is continuous. Thus fis a homeomorphism.

To prove (b), choose p € Y, and let f and V be as above. For
somet > 0, p € tV, so that p lies in the closure of

Y n (tV)<f(B) < f(tB).

Being compact, f(tB) is closed in X. Hence p € f(tB) = Y, and this
proves that Y=Y, ////

1.22 Theorem Every locally compact topological vector space X has
finite dimension.

PROOF. The origin of X has a neighborhood V whose closure is
compact. By Theorem 1.15, V is bounded, and the sets 2 "V (n = 1, 2,
3,...) form a local base for X.

The compactness of V shows that there exist x,, ..., x,, in X
such that

Vel(x, +iV)u - U (x, + V).

Let Y be the vector space spanned by x,, ..., x,,. Then dim Y <m.
By Theorem 1.21, Y is a closed subspace of X.

Since V < Y + 3V and since AY = Y for every scalar A # 0, it
follows that

VoY +4iv
so that
VeY+3VecY+Y+iV=Y+1V.
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If we continue in this way, we see that
Ve ()Y +27").
n=1

Since {27 "V} is a local base, it now follows from (a) of Theorem 1.13
that V < Y. But Y= Y. Thus V < Y, which implies that kV < Y for
k=1,2,3,.... Hence Y = X, by (a) of Theorem 1.15, and consequent-
ly dim X < m. ////

123 Theorem If X is a locally bounded topological vector space with the
Heine-Borel property, then X has finite dimension.

PROOF. By assumption, the origin of X has a bounded neighborhood
V. Statement (f) of Theorem 1.13 shows that Vis also bounded. Thus
Vis compact, by the Heine-Borel property. This says that X is locally
compact, hence finite-dimensional, by Theorem 1.22.

Metrization

We recall that a topology 7 on a set X is said to be metrizable if there is a
metric d on X which is compatible with 7. In that case, the balls with radius
1/n centered at x form a local base at x. This gives a necessary condition
for metrizability which, for topological vector spaces, turns out to be also
sufficient.

1.24 Theorem If X is a topological vector space with a countable local
base, then there is a metric d on X such that

(@) dis compatible with the topology of X,
(b) the open balls centered at 0 are balanced, and
(c) disinvariant: d(x + z,y + z) = d(x, y)for x, y, z € X.

If, in addition, X is locally convex, then d can be chosen so as to satisfy
(a), (b), (¢), and also

(d) all open balls are convex.

PROOF. By Theorem 1.14, X has a balanced local base {V,} such that
(1) Viei t VetV Vo eV, n+1.2,3,...);

when X is locally convex, this local base can be chosen so that each ¥,
is also convex.
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Let D be the set of all rational numbers r of the form

o0

@) r= Y 2"
n=1
where each of the “digits” c(r) is O or 1 and only finitely many are 1.
Thus each r € D satisfies the inequalities 0 < r < 1.
Put A(r) = X if r > 1; for any r € D, define

(3) A(r) = ¢,(nV; + cx(nVz + (Vs + -0
Note that each of these sums is actually finite. Define
(4) f(x) =inf {r: x € A(r)} (x € X)
and

(5) dix, ) =fx—y) (xeX, yeX)

The proof that this d has the desired properties depends on the
inclusions

(6) Alr) + A(s) = A(r + s) (reD, s e D).

Before proving (6), let us see how the theorem follows from it.
Since every A(s) contains 0, (6) imples

(7) Alr) c A(r) + A(t — r) < A(t) if r<t.
Thus { A(r)} is totally ordered by set inclusion. We claim that
(8) fx+y)<fx)+fy) (xeX,yeX)

In the proof of (8) we may, of course, assume that the right side is < 1.
Fix ¢ > 0. There exist r and s in D such that

f(x) <r, f(y) <s, r+s<f(x)+f(y)+e

Thus x € A(r), y € A(s), and (6) implies x + y € A(r + s). Now (8)
follows, because

fx+y)<r+s<f(x)+f(y) + e

and ¢ was arbitrary.

Since each A(r) 1s balanced, f(x) = f(—x). It is obvious that
fO)=0. If x#0, then x¢V, =A2 ") for some n and so
f(x)=2"">0.

These properties of fshow that (5) defines a translation-invariant
metric d on X. The open balls centered at 0 are the open sets
9) Bs0) = {x: f(x) < 8} = ) A(r).

r<é
If 6 < 27" then Bs(0) = V,. Hence {B,(0)} is a local base for the topol-
ogy of X. This proves (a). Since each A(r) is balanced, so is each By(0).
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If each V, 1s convex, so is each A(r), and (9) implies that the same is
true of each B,(0), hence also of each translate of B,(0).

We turn to the proof of (6). If r + s > 1, then A(r + s) = X and
(6) 1s obvious. We may therefore assume that r + s < 1, and we will
use the following simple proposition about addition in the binary
system of notation:

If r, s, and r + s are in D and c(r) + c,(s) # c,(r + s) for some n,
then at the smallest n where this happens we have c,(r) = c,(s) =0,
cl(r +s5)= 1.

Put a, = c,(r), B, =cus) Yo =cir +5). If a, + f, =7, for all n
then (3) shows that A(r) + A(s) = A(r + s). In the other case, let N be
the smallest integer for which ay + By # v5. Then, as mentioned
above, ay = iy = 0,yy = 1. Hence

Ar)c oV, + - +ay- Vno1 + Wvsr + Vysa + 00
coVi+ +oay Vyor+ Vner + Vasro
Likewise
Ay B, Vi + -+ B Vn=1 + Vnsr + Vnsr
Since a, + f, = y, for all n < N, (1) now leads to
Ar)+ AS)cy Vi ++yn Vaoy + Vv Alr + )
because yy = 1. 1]/

1.25 Cauchy sequences (a) Suppose d is a metric on a set X. A
sequence {x,} in X is a Cauchy sequence if to every ¢ > 0 there corresponds
an integer N such that d(x,,, x,) < ¢ whenever m > N and n > N. If every
Cauchy sequence in X converges to a point of X, then d 1s said to be a
complete metric on X.

(b) Let 7 be the topology of a topological vector space X. The notion
of Cauchy sequence can be defined 1n this setting without reference to any
metric: Fix a local base & for 7. A sequence {x,} in X is then said to be a
Cauchy sequence if to every V € # corresponds an N such that x, — x, e V
if n >N and m > N.

It is clear that different local bases for the same 7 give rise to the same
class of Cauchy sequences.

(c) Suppose now that X is a topological vector space whose topology
T is compatible with an invariant metric d. Let us temporarily use the terms
d-Cauchy sequence and t-Cauchy sequence for the concepts defined in (@)
and (b), respectively. Since

d(x,, x,) =d(x, — X, 0),
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and since the d-balls centered at the origin form a local base for 7, we
conclude:

A sequence {x,} in X is a d-Cauchy sequence if and only if it is a
1-Cauchy sequence.

Consequently, any two invariant metrics on X that are compatible
with 7 have the same Cauchy sequences. They clearly also have the same
convergent sequences (namely, the t-convergent ones). These remarks prove
the following fact:

If d, and d, are invariant metrics on a vector space X which induce the
same topology on X, then

(@) d, and d, have the same Cauchy sequences, and
(b) d, is complete if and only if d, is complete.

Invariance is needed in the hypothesis (Exercise 12).
The following “ dilation principle” will be used several times.

1.26 Theorem Suppose that (X, d,) and (Y, d,) are metric spaces, and
(X, d,) is complete. If E is a closed set in X, f: E-> Y is continuous, and

dZ(f(x,)’ f(X")) 2 dl(x’? x")
for all X', x" € E, then f(E) is closed.

PROOF. Pick y € f(E). There exist points x, € E so that y =lim f(x,).
Thus {f(x,)} is Cauchy in Y. Our hypothesis implies therefore that
{x,} is Cauchy in X. Being a closed subset of a complete metric space,
E is complete; hence there exists x = lim x, in E. Since f is contin-
uous,

f(x) =lim f(x,) = y.
Thus y € f(E). /1]

1.27 Theorem Suppose Y is a subspace of a topological vector space X,
and Y is an F-space (in the topology inherited from X). Then Y is a closed
subspace of X.

PROOF. Choose an invariant metric d on Y, compatible with its topol-
ogy. Let

1
B, = {y € Y:d(y, 0) < ;}
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let U, be a neighborhood of 0 in X such that Y n U, = B,,,, and

choose symmetric neighborhoods V, of 0 in X such that V, + V, c U _
and V,,, < V,.

n

Suppose x € Y, and define
E.=Yn(x+V) n=1,23,...).
If y, e E,and y, € E,, then y, — y, liesin Y and also in V, + V, <

I/

U,, hence in B,, . The diameters of the sets E, therefore tend to O,
Since each E, is nonempty and since Y is complete, it follows that the

Y-closures of the sets E, have exactly one point y, in common.
Let W be a neighborhood of 0 in X, and define

F,=Yn(x+WnlV)

The preceding argument shows that the Y-closures of the sets F, have
one common point y, . But F, c E,. Hence yy = yo. Since F, =
x + W, it follows that y, lies in the X-closure of x + W, for every W™
This implies y, = x. Thus x € Y. This proves that Y=Y, /1 /

The following simple facts are sometimes useful.

1.28 Theorem

(@) If dis a translation-invariant metric on a vector space X then
d(nx, 0) < nd(x, 0)

forevery xe X and forn=1,2,3,....

(b) If {x,} is a sequence in a metrizable topological vector space X and if
x, — 0 as n — o0, then there are positive scalars vy, such that y, - oo and
yn xn - O'

PROOF. Statement (a) follows from
d(nx, 0) < Y d(kx, (k — 1)x) = nd(x, 0).
k=1

To prove (b), let d be a metric as in (@), compatible with the

topology of X. Since d(x,, 0) — 0O, there is an increasing sequence of
positive integers n, such that d(x,,0) <k~ 2 if n>n,. Put y,=1 if
n<n,; puty,=kifn, <n<ng,, Forsuchn,

d(y,x,, 0) = d(kx,, 0) < kd(x,, 0) <k 1.

Hence y, x, — 0 as n — oo. /11/
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Boundedness and Continuity

.29 Bounded sets The notion of a bounded subset of a topological
sector space X was defined in Section 1.6 and has been encountered several
rimes since then. When X is metrizable, there is a possibility of misunder-
standing, since another very familiar notion of boundedness exists in metric
spaces.

If d 1s a metric on a set X, a set E — X is said to be d-bounded if there
's g number M < co such that d(z, y) < M for all x and y in E.

If X 15 a topological vector space with a compatible metric d, the
bounded sets and the d-bounded ones need not be the same, even if d is
invariant. For instance, if d is a metric such as the one constructed in
Theorem 1.24, then X itself is d-bounded (with M = 1) but, as we shall see
presently, X cannot be bounded, unless X = {0}. If X is a normed space
and d 15 the metric induced by the norm, then the two notions of
bpoundedness coincide; but if d is replaced by d, = d/(1 + d) (an invariant
metric which induces the same topology) they do not.

Whenever bounded subsets of a topological vector space are dis-
cussed, it will be understood that the definition is as in Section 1.6: A set E is
bounded if, for every neighborhood V of 0, we have E < tV for all suffi-
ciently large .

We already saw (Theorem 1.15) that compact sets are bounded. To see
another type of example, let us prove that Cauchy sequences are bounded
(hence convergent sequences are bounded): If {x,} is a Cauchy sequence in X,
and V and W are balanced neighborhoods of 0 with V + V < W, then
[part (b) of Section 1.25] there exists N such that x, € x, + V for all n > N.
Take s > 1 so that x5 € sV. Then

X, €sV +VcsV+sVcsW (n > N).

Hence x, = tW for all n > 1, if t is sufficiently large.

Also, closures of bounded sets are bounded (Theorem 1.13).

On the other hand, if x #0and E={nx: n=1, 2, 3, ...}, then E is
not bounded, because there is a neighborhood V of 0 that does not contain
x; hence nx is not in nV: it follows that no nV contains E.

Consequently, no subspace of X (other than {0}) can be bounded.

The next theorem characterizes boundedness in terms of sequences.

1.30 Theorem The following two properties of a set E in a topological
vector space are equivalent :

@ Eis bounded.

6y 1 {x,} is a sequence in E and {a,} is a sequence of scalars such that
a,— 0asn— oo, theno,x, = 0as n— oo.
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PROOF. Suppose E is bounded. Let V be a balanced neighborhood
of 0 in X. Then E < tV for some t. If x, € E and o, -» 0, there exists
N such that |a,|t <1 if n > N. Since t”'E = V and V is balanced,
o, x, € Vforalln > N. Thus «, x, - 0.

Conversely, if E is not bounded, there is a neighborhood V of 0
and a sequence r,-» oo such that no r, V contains E. Choose x, € E
such that x, ¢ r, V. Then no r, 'x, is in V, so that {r, 'x,} does not
converge to 0. ////

1.31 Bounded linear transformations Suppose X and Y are topologi-
cal vector spaces and A: X -» Y is linear. A is said to be bounded if A maps
bounded sets into bounded sets, 1.e., if A(E) i1s a bounded subset of Y for
every bounded set E < X.

This definition conflicts with the usual notlon of a bounded function
as being one whose range is a bounded set. In that sense, no linear function
(other than 0) could ever be bounded. Thus when bounded linear mappings
(or transformations) are discussed, it is to be understood that the definition
is in terms of bounded sets, as above.

1.32 Theorem Suppose X and Y are topological vector spaces and
A: X -> Y is linear. Among the following four properties of A, the implications

(@) > (b) - (c)
hold. If X is metrizable, then also

(c) - (d) - (a),
so that all four properties are equivalent.

(a) A is continuous.
(b) A is bounded.

() Ifx,-»0then {Ax,:n=1,2 3,...} is bounded.
(d) If x,-»0then Ax, - 0.

Exercise 13 contains an example in which (b) holds but (a) does not.

PROOF. Assume (a), let E be a bounded set in X, and let W be a

neighborhood of 0 in Y. Since A is continuous (and A0 = 0) there is a
neighborhood V of 0 in X such that A(V) = W. Since E is bounded,
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E < tV for all large ¢, so that
AE) = A@tV) =tAV) < tW.

This shows that A(E) is a bounded set in Y.

Thus (a) — (b). Since convergent sequences are bounded,
(b) = (¢).

Assume now that X is metrizable, that A satisfies (c), and that
x, — 0. By Theorem 1.28, there are positive scalars y, = oo such that
v, X, = 0. Hence {A(y,x,)} is a bounded set in Y, and now Theorem
1.30 implies that

Ax, =7, 'A(y,x,) >0  as n— oo,

Finally, assume that (a) fails. Then there is a neighborhood W of
0 in Y such that A™'(W) contains no neighborhood of 0 in X. If X
has a countable local base, there is therefore a sequence {x,} in X so
that x, — 0 but Ax, ¢ W. Thus (d) fails. /1]

Seminorms and Local Convexity

1.33 Definitions A seminorm on a vector space X is a real-valued func-
tion p on X such that

(@ p(x + y) < p(x) + p(y) and
) plax) = |e| p(x)

for all x and y in X and all scalars «a.

Property (a) is called subadditivity. Theorem 1.34 will show that a semi-
norm p is a norm if it satisfies

© p(x) #0if x #0.

A family 2 of seminorms on X is said to be separating if to each x # 0
corresponds at least one p € 2 with p(x) # 0.

Next, consider a convex set A = X which is absorbing, in the sense
that every x € X lies in tA for some t = t(x) > 0. [For example, (a) of
Theorem 1.15 implies that every neighborhood of 0 in a topological vector
Space is absorbing. Every absorbing set obviously contains 0.] The
Minkowski functional pu , of A is defined by

pax) =inf {t >0:t 'x € 4} (x € X).

Note that p 4(x) < oo for all x € X, since 4 is absorbing. The seminorms on
X will turn out to be precisely the Minkowski functionals of balanced
Convex absorbing sets.
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Seminorms are closely related to local convexity, in two ways: In

every locally convex space there exists a separating family of continuous
seminorms. Conversely, if 2 is a separating family of seminorms on a vector
space X, then 2 can be used to define a locally convex topology on X with
the property that every p e 2 is continuous. This is a frequently used

method of introducing a topology. The details are contained in Theorems
1.36 and 1.37.

1.34 Theorem Suppose p is a seminorm on a vector space X. Then

(@)
()
(c)
(d)
(e)

p(0) = 0.

| p(x) — p(y)| < p(x — y).

p(x) > 0.

{x: p(x) = O} is a subspace of X.

The set B = {x: p(x) < 1} is convex, balanced, absorbing, and p = ug.

PROOF. Statement (a) follows from p(ax) = || p(x), with o = 0. The
subadditivity of p shows that

p(x) =p(x —y+y) < p(x—y)+ py)

so that p(x) — p(y) < p(x — y). This also holds with x and y inter-
changed. Since p(x — y) = p(y — x), (b) follows. With y = 0, (b) implies
(c). If p(x) = p(y) = 0 and a, B are scalars, (¢) implies

0 < plax + By) < |a|p(x) +|B|p(y) = 0.

This proves (d).
As to (e), it is clear that B is balanced. If x € B, y € B, and
0<t<1,then

pitx + (1 —t)y) < tp(x) + (1 —t)p(y) < 1.

Thus B is convex. If x € X and s > p(x) then p(s™'x) = s !p(x) < 1.
This shows that B is absorbing and also that pg(x) < s. Hence ug < p.
But if 0 <t < p(x) then p(t 'x) > 1, and so t™ 'x is not in B. This
implies p(x) < pg(x) and completes the proof. ////

1.35 Theorem Suppose A is a convex absorbing set in a vector space X.
T hen

(a)
(b)

Ha(x +y) < pa(x) + paly).
Ha(tx) = tpuq(x) if t > 0.
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() t4isaseminorm if A is balanced.
d) If B={x: uux) <1} and C ={x:puyx) <1}, then B< A< C and
A= 1y = K¢«

PROOF. If t = py(x) + eand s = py(y) + ¢, for some ¢ > 0, then x/t and
y/sarein A; hence so is their convex combination

X+ y t X S y

——

s+t s+t t s+t s

This shows that p,(x + y) <s+t = pu(x) + usy) + 2¢, and (a) is
proved.

Property (b) 1s clear, and (c) follows from (a) and (b).

When we turn to (d), the inclusions B < 4 = C show that u, <
1, <py. To prove equality, fix x € X, and choose s, t so that uq(x) <
s<t Then x/s € C, us(x/s) <1, pa(x/t) <s/t <1; hence x/t € B, so
that u(x) < t. This holds for every t > u-(x). Hence ug(x) < po(x). ////

1.36 Theorem Suppose % is a convex balanced local base in a topologi-

cal vector space X. Associate to every V € A its Minkowski functional 1, .
Then

(@ V={xeX:ux) <1}, for every V € &, and
b) {uy:Ve A} is a separating family of continuous seminorms on X.

PROOF. If x € V, then x/t € V for some t < 1, because V is open;
hence 4,(x) < 1. If x ¢ V, then x/t € V implies t > 1, because V is
balanced ; hence 14(x) > 1. This proves (a).

Theorem 1.35 shows that each py 1s a seminorm. If r > 0, it
follows from (a) and Theorem 1.34 that

|ty (x) — (Y| < pp(x —y) <r

if x — ye rV. Hence 1, is continuous. If x € X and x # 0, then x ¢ V
for some V € 4. For this V, ,(x) > 1. Thus {u,} is separating. /1]

1.37 Theorem Suppose 2 is a separating family of seminorms on a vector
space X. Associate to each p € 2 and to each positive integer n the set

Vip, n) = {x: p(x) < %}

Let 2 pe the collection of all finite intersections of the sets V(p, n). Then % is
4 Convex balanced local base for a topology t on X, which turns X into a
locally convex space such that
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Seminorms are closely related to local convexity, in two ways: In

every locally convex space there exists a separating family of continuous
seminorms. Conversely, if 2 is a separating family of seminorms on a vector
space X, then 2 can be used to define a locally convex topology on X with
the property that every pe 2 i1s continuous. This 1s a frequently used
method of introducing a topology. The details are contained in Theorems
1.36 and 1.37.

1.34 Theorem Suppose p is a seminorm on a vector space X. Then

(a)
(b)
(c)
(@)
(e)

p(0) = 0.

| p(x) — p(y)| < plx — ).

p(x) > 0.

{x: p(x) = 0} is a subspace of X.

The set B = {x: p(x) < 1} is convex, balanced, absorbing, and p = ug.

PROOF. Statement (a) follows from p(ax) = |a|p(x), with a = 0. The
subadditivity of p shows that

p(x) = p(x —y +y) < p(x —y) + p(y)

so that p(x) — p(y) < p(x — y). This also holds with x and y inter-
changed. Since p(x — y) = p(y — x), (b) follows. With y = 0, (b) implies
(¢). If p(x) = p(y) = 0 and «a, B are scalars, (c) implies

0 < p(ax + By) <|a|p(x) +|BIp(y) = 0.

This proves (d).
As to (e), it is clear that B is balanced. If x € B, y € B, and
0<t<1,then

ptx + (1 —1)y) <tp(x) + (1 — 1)p(y) < 1.

Thus B is convex. If x € X and s > p(x) then p(s™ 'x) = s~ 'p(x) < 1.
This shows that B i1s absorbing and also that ug(x) < s. Hence ug < p.
But if 0 <t < p(x) then p(t " 'x) > 1, and so t™'x is not in B. This
implies p(x) < ug(x) and completes the proof. ////

1.35 Theorem Suppose A is a convex absorbing set in a vector space X.
T hen

(@) pax + y) < pua(x) + pay)
(b)  pa(tx) = tpa(x) if t > 0.
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() M4 is a seminorm if A is balanced.
d If B= {x: px)<1} and C={x:pu, x) <1}, then Bc A<= C and
Hp = Ha = Hc-

PROOF. If t = puy(x) + e and s = uy(y) + ¢, for some ¢ > O, then x/t and
y/s are in A; hence so is their convex combination

x+y__ t X S y

s+t“s+t t s+t s

This shows that u,(x + y) <s +t = uu(x) + uy) + 2¢, and (@) is
proved.

Property (b) is clear, and (c) follows from (a) and (b).

When we turn to (d), the inclusions B < A < C show that u, <
uy < ug. To prove equality, fix x € X, and choose s, t so that p (x) <
s<t. Then x/s € C, uyx/s) <1, uyux/t) <s/t <1; hence x/t € B, so
that pg(x) < t. This holds for every t > u(x). Hence ug(x) < p(x). ////

1.36 Theorem Suppose # is a convex balanced local base in a topologi-
cal vector space X. Associate to every V € & its Minkowski functional p,, .
T hen

@ V={xeX:u(x)<1l},foreveryV € B, and
b) {uy:V € &} is a separating family of continuous seminorms on X.

PROOF. If x € V, then x/t € V for some t < 1, because V i1s open;
hence uy(x) < 1. If x ¢ V, then x/t € V implies t > 1, because V is
balanced; hence yu,(x) > 1. This proves (a).

Theorem 1.35 shows that each y, is a seminorm. If r > 0, it
follows from (a@) and Theorem 1.34 that

| up(x) — wy(Y) | < pp(x —y) <r

if x — y erV. Hence y, is continuous. If x € X and x # 0, then x ¢ V
for some V € #. For this V, u,(x) > 1. Thus {u,} is separating.  ////

1.37 Theorem Suppose 2 is a separating family of seminorms on a vector
Space X. Associate to each p € 2 and to each positive integer n the set

V(p, n) = {x: p(x) < %}

Let B be the collection of all finite intersections of the sets V(p, n). Then A is
a convex balanced local base for a topology 1t on X, which turns X into a
locally convex space such that
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every p € 2 is continuous, and
a set E = X is bounded if and only if every p € 2 is bounded on E.

PROOF. Declare a set A — X to be open if and only if A4 is a (possibly
empty) union of translates of members of #. This clearly defines a
translation-invariant topology 7 on X; each member of £ is convex
and balanced, and £ is a local base for 7.

Suppose x € X, x # 0. Then p(x) > 0 for some p € 2. Since x is
not in V(p, n) if np(x) > 1, we see that 0 is not in the neighborhood
x — V(p, n) of x, so that x is not in the closure of {0}. Thus {0} is a
closed set, and since 7 i1s translation-invariant, every point of X is a
closed set.

Next we show that addition and scalar multiplication are con-
tinuous. Let U be a neighborhood of 0 in X. Then

(1) U:)V(phnl)m”.ﬁ V(pmﬂnm)
for some p,, ..., p, € Z and some positive integers n,, ..., n, . Pt
(2) V — V(pla 2”1) AN A V(pma 2nm)‘

Since every p € 2 is subadditive, V + V < U. This proves thi: addi-
tion is continuous.

Suppose now that x € X, a is a scalar, and U and V ure as
above. Then x € sV for some s > 0. Putt =s/(1 + |a|s). If ye <« -tV
and | — a| < 1/s, then

By —oax =By —x)+ (B — a)x

which lies in
1BtV +|f—a|sVcV+VccU

since ||t <1 and V is balanced. This proves that scalar mul. clica-
tion 1s continuous.

Thus X is a locally convex space. The definition of V(p, n* shows
that every p € 2 is continuous at 0. Hence p is continuous or X, by
(b) of Theorem 1.34.

Finally, suppose E < X is bounded. Fix p € 2. Since V(p ':is a
neighborhood of 0, E < kV(p, 1) for some k < oo. Hence p(x) <. % for
every x € E. It follows that every p € 2 is bounded on E.

Conversely, suppose E satisfies this condition, U is a nei;::;hor-
hood of 0, and (1) holds. There are numbers M; < oo such that p; <
M; on E (1<i<m) If n>M;n;, for 1 <i<m, it follows that
E < nU, so that E is bounded. /1]

1.38 Remarks (a) It was necessary to take finite intersections of the sets
V(p, n) in Theorem 1.37; the sets V(p, n) themselves need not form a local
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base. (They do form what is usually called a subbase for the constructed
topology.) To see an example of this, take X = R?, and let 2 consist of the
seminorms p, and p, defined by p;(x) =| x;|; here x = (x,, x,). Exercise 8
develops this comment further.

(b) Theorems 1.36 and 1.37 raise a natural problem: If 4 i1s a convex
balanced local base for the topology 7 of a locally convex space X, then #
generates a separating family 2 of continuous seminorms on X, as in
Theorem 1.36. This £ in turn induces a topology 7, on X, by the process
described in Theorem 1.37. Is 7 = 1, ?

The answer is affirmative. To see this, note that every pe £ is 1-
continuous, so that the sets V(p, n) of Theorem 1.37 are in t. Hence 7, < 7.
Conversely, if W € 4 and p = uy, then

W = {x: uy(x) <1} = V(p, 1).

Thus W € 7, for every W € #; this implies that 7 < 7,.

(c) If 2= {p;:i=1,2,3,...} is a countable separating family of semi-
norms on X, Theorem 1.37 shows that 2 induces a topology 7 with a
countable local base. By Theorem 1.24, 7 is metrizable. In the present situ-
ation, a compatible translation-invariant metric can be defined directly in
terms of {p,} by setting

¢;px — )
(1) d(x, y) = max :
i 1+ pdx—Y)
where {c;} is some fixed sequence of positive numbers which converges to 0
as i-- o0.
It is easy to verify that d is a metric on X.
We claim that the balls

(2) B, = {x:d(0, x) < r} (0<r < o)

form a convex balanced local base for 1.
Fix r. If ¢; <r (which holds for all but finitely many i, since c; — 0),

ther: ¢; p;/(1 + p;) < r. Hence B, is the intersection of finitely many sets of
the form

0 SR
C

P

namely those for which ¢; > r. These sets are open, since each p; is contin-
uous (Theorem 1.37). Thus B, is open, and, by Theorem 1.34, 1s also convex
and balanced.

Next, let W be a neighborhood of 0 in X. The definition of t shows
that W contains the intersection of appropriately chosen sets

(4) V(p;, 8;) = {x: pi(x) < §, < 1} (1 <i<k)
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If 2r < min {¢,6,,..., & J,} and x € B,, then

¢; pi(x) C; 0; .
5 <r<-— 1 <i<k),
5) ey N )

which implies p(x) < 6,. Thus B, = W.
This proves our claim and also shows that d is compatible with 7.

1.39 Theorem A topological vector space X is normable if and only if its
origin has a convex bounded neighborhood.

PROOF. If X is normable, and if || - || 1s a norm that is compatible with
the topology of X, then the open unit ball {x: ||x| < 1} is convex and
bounded.

For the converse, assume V is a convex bounded neighborhood
of 0. By Theorem 1.14, V contains a convex balanced neighborhood
U of 0; of course, U 1s also bounded. Define

(1) Ixll = p(x)  (x € X)

where u 1s the Minkowski functional of U.

By (c) of Theorem 1.15, the sets rU (r > 0) form a local base for
the topology of X. If x # 0, then x ¢ rU for some r > 0; hence
x| > r. It now follows from Theorem 1.35 that (1) defines a norm.
The definition of the Minkowski functional, together with the fact that
U is open, implies that

(2) {x:|x| <r} =rU

for every r > 0. The norm topology coincides therefore with the given

one. /1]

Quotient Spaces

1.40 Definitions Let N be a subspace of a vector space X. For every
x € X, let n(x) be the coset of N that contains x; thus

n(x) = x + N.

These cosets are the elements of a vector space X/N, called the quotient

space of X modulo N, in which addition and scalar multiplication are
defined by

(1) n(x) + n(y) = n(x + y), an(x) = m(oex).

[Note that now an(x) = N when a = 0. This differs from the usual notation,
as introduced in Section 1.4.] Since N 1s a vector space, the operations (1)
are well defined. This means that if n(x) = n(x") (that 1s, x’ — x € N) and
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n(y) = n(y’) then
(2) m(x) + n(y) = n(x) + ”(y),  an(x) = on(x).

The origin of X/N is #(0) = N. By (1), = is a linear mapping of X onto
X/N with N as its null space; = is often called the quotient map of X onto
X/N.

Suppose now that 7 is a vector topology on X and that N is a closed
subspace of X. Let ty be the collection of all sets E = X/N for which
n~ '(F) € 7. Then 1y turns out to be a topology on X/N, called the quotient
topology. Some of its properties are listed in the next theorem. Recall that
an open mapping is one that maps open sets to open sets.

1.41 Theorem Let N be a closed subspace of a topological vector space
X. Let T be the topology of X and define 1y as above.

(@) 7tx is a vector topology on X/N; the quotient map n:. X -» X/N is linear,
continuous, and open.

(b) If # is a local base for t, then the collection of all sets (V) with V € #
is a local base for 1y .

(¢) Each of the following properties of X is inherited by X/N : local convex-
ity, local boundedness, metrizability, normabilit y.

(d) If X is an F-space, or a Fréchet space, or a Banach space, so is X/N.

PROOF. Since 7 (A N B)=n"'(4) n = "!(B) and

ﬂql(U E;)= U n—I(E).)’

Ty is a topology. A set F = X/N is ty-closed if and only if z~ '(F) is
7-closed. In particular, every point of X/N is closed, since

r'(n(x) =N+ x

and N was assumed to be closed.

The continuity of n follows directly from the definition of ty.
Next, suppose V € 1. Since

T (e(V)=N+V

and N + V € 1, it follows that 7(}V) € 7y. Thus 7 is an open mapping.
If now W is a neighborhood of 0 in X/N, there is a neighbor-
hood V of 0 in X such that

V+Vca (W)

Hence n(V) + n(V) = W. Since = is open, (V) is a neighborhood of 0
in X/N. Addition is therefore continuous in X/N.
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The continuity of scalar multiplication in X/N is proved in the
same manner. This establishes (a).

It is clear that (a) implies (b). With the aid of Theorems 1.32,
1.24, and 1.39, it is just as easy to see that (b) implies (c).

Suppose next that d is an invariant metric on X, compatible
with 7. Define p by

p(r(x), m(y)) = inf {d(x — y, z): z e N}.

This may be interpreted as the distance from x — y to N. We omit the
verifications that are now needed to show that p is well defined and
that it is an invariant metric on X/N. Since

n({x: d(x, 0) < r}) = {u: plu, 0) < r},

it follows from (b) that p is compatible with 7y .
If X is normed, this definition of p specializes to yield what is
usually called the quotient norm of X /N

|m(x)|| =inf {|x —z|: z € N}.

To prove (d) we have to show that p is a complete metric when-
ever d is complete.

Suppose {u,} is a Cauchy sequence in X/N, relative to p. There
is a subsequence {u,} with p(u, , u, )< 2" One can then induc-
tively choose x; € X such that 7(x;) = u, and d(x;, x;, ,) <2 " If d is
complete, the Cauchy sequence {x;} converges to some x € X. The
continuity of m implies that u, — m(x) as i - co. But if a Cauchy
sequence has a convergent subsequence then the full sequence must
converge. Hence p is complete, and so is the proof of Theorem 1.41.

/111

Here 1s an easy application of these concepts:

Theorem Suppose N and F are subspaces of a topological vector

space X, N is closed, and F has finite dimension. Then N + F is closed.

PROOF. Let # be the quotient map of X onto X/N, and give X/N its
quotient topology. Then =(F) is a finite-dimensional subspace of X/N;
since X/N is a topological vector space, Theorem 1.21 implies that
n(F) is closed in X/N. Since N + F =z~ '(=(F)) and 7 is continuous,
we conclude that N + F is closed. (Compare Exercise 20.) /1]

1.43 Seminorms and quotient spaces Suppose p is a seminorm on a
vector space X and

N = {x: p(x) = 0}.
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Then N is a subspace of X (Theorem 1.34). Let = be the quotient map of X
onto X /N, and define

p(n(x)) = p(x).
If n(x) = n(y), then p(x — y) = 0, and since

| p(x) — p(¥)| < p(x — y)

it follows that p(n(x)) = p(n(y)). Thus p is well defined on X /N, and it is now
easy to verify that p is a norm on X/N.

Here is a familiar example of this. Fix r, 1 <r < oo, let I be the space
of all Lebesgue measurable functions on [0, 1] for which

1 1/r
() =111, = {J. | f()F dt} < 0.

This defines a seminorm on I, not a norm, since {| f |, = 0 whenever /=0
almost everywhere. Let N be the set of these “ null functions.” Then I’/N is
the Banach space that is usually called I. The norm of I is obtained by the
above passage from p to p.

Examples

1.44 The spaces C(£2) If Qis a nonempty open set in some euclidean
space, then Q is the union of countably many compact sets K, # ¢ which
can be chosen so that K, lies in the interior of K,,, (n =1, 2,3,...). C(Q) is
the vector space of all complex-valued continuous functions on Q, topol-
ogized by the separating family of seminorms

(1) P.(f) = sup {| f(x)|: x € K,},

in accordance with Theorem 1.37. Since p, < p, < - -, the sets
1

(2) V,,={feC(Q):p,,(f)<;} n=1,23,..)

form a convex local base for C(Q2). According to remark (c) of Section 1.38,
the topology of C(Q) is compatible with the metric

(3) d(f, g9) = max 2 "PlJ — 9) :
n 1+ Dpdf=9)
If {1} is a Cauchy sequence relative to this metric, then p,(f; — f;) — 0 for
every n, as i, j — oo, so that { f;} converges uniformly on K,, to a function
/€ C(Q). An easy computation then shows d(/, ;) = 0. Thus d is a complete
metric. We have now proved that C(QQ) is a Fréchet space.

By (b) of Theorem 1.37, a set E < C(£2) is bounded if and only if there
are numbers M, < oo such that p,(f) < M, for all f € E; explicitly,

(4) | f(x)| < M, iffe Eand x e K, .
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Since every V, contains an f for which p,,(f) is as large as we please, it
follows that no V, is bounded. Thus C(Q) is not locally bounded, hence is not
normable.

1.45 The spaces H(£2) Let Q now be a nonempty open subset of the
complex plane, define C(Q2) as in Section 1.44, and let H(QQ) be the subspace
of C(QQ) that consists of the holomorphic functions in Q. Since sequences of
holomorphic functions that converge uniformly on compact sets have holo-
morphic limits, H(Q) is a closed subspace of . C(Q). Hence H(Q) is a Fréchet
space.

We shall now prove that H(Q) has the Heine-Borel property. It will
then follow from Theorem 1.23 that H(Q) is not locally bounded, hence is not
normable.

Let £ be a closed and bounded subset of H(Q2). Then E satisfies
inequalities such as (4) of Section 1.44. Montel’s classical theorem about
normal families (Th. 14.6 of [23]') implies therefore that every sequence
{f;} = E has a subsequence that converges uniformly on compact subsets of
Q [hence in the topology of H(Q2)] to some f € H(Q). Since E is closed, f € E.
This proves that E is compact.

1.46 The spaces C*(L2) and Y x We begin this section by introducing
some terminology that will be used in our later work with distributions.

In any discussion of functions of n variables, the term multi-index
denotes an ordered n-tuple

(1) @ ={a;, ..., a,)

of nonnegative integers a;. With each multi-index a is associated the differ-
ential operator

(2N (2
7~ (&)

whose order is
(3) || =0, + - + a,.

If|lae| =0, DY = |
A complex function f defined in some nonempty open set Q = R" 18
said to belong to C*(Q) if D*f € C(Q) for every multi-index c.

' Numbers in brackets refer to sources listed in the bibliography.
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The support of a complex function f (on any topological space) is the
closure of {x: f(x) # 0}.

If K is a compact set in R", then %, denotes the space of all
fe C™(R") whose support lies in K. (The letter & has been used for these
spaces ever since Schwartz published his work on distributions.) If K = Q,
then &, may be identified with a subspace of C*(Q).

We now define a topology on C*{(Q) which makes C*(Q) into a Fréchet
space with the Heine-Borel property, such that 2y is a closed subspace of
C*(t)) whenever K = Q.

To do this, choose compact sets K; (i = 1, 2, 3, ...) such that K, lies in
the interior of K;, , and Q = ( ) K;. Define seminorms py on C*(Q), N = 1,
2, 3. ..., by setting

4) px(f) = max {| D (x)|: x € Ky, |a| < N}.

They define a metrizable locally convex topology on C*(Q); see Theorem
1.37 and remark (c) of Section 1.38. For each x € {2, the functional f-» f(x)
is continuous in this topology. Since % is the intersection of the null spaces
of these functionals, as x ranges over tlie complement of K, it follows that
P 1s closed in C Q).

A local base is given by the sets

(5) VNz{fe C*(Q): pN(f)<%} (N=1,2,3..)
If {f;} is a Cauchy sequence in C*(Q) (see Section 1.25) and if N is fixed,
then f; — f; € Vy if i and j are sufficiently large. Thus | Df; — D%;| < 1/N on
Ky, if |a] < N. It follows that each D*; convergss (uniformly on compact
subsets of Q) to a function g, . In particular, f;(x) — gy{(x). It is now evident
that g, € C*(Q), that g, = D?g,, and that f; -» g in the topology of C*(Q).

Thus C*(Q) is a Fréchet space. The same is true of each of its closed
subspaces 2y .

Suppose next that E = C*(Q) i1s closed and bounded. By Theorem
.37, the boundedness of E is equivalent to the existence of numbers
My < oo such that py(f) < M, for N=1, 2, 3, ... and for all fe E. The
Inequalities | D% | < My, valid on Ky when |a| < N, imply the equicon-
tinujty of {D’f:fe E} on Ky_;, If |[B| <N — 1. It now follows from
Ascoli’s theorem (proved in Appendix A) and Cantor’s diagonal process
that every sequence in E contains a subsequence {f;} for which {D?f}} con-
Verges, uniformly on compact subsets of Q, for each multi-index 5. Hence
i) converges in the topology of C*(€2). This proves that E is compact.

Hence C*(Q2) has the Heine-Borel property. It follows from Theorem
123 that C*(Q) is not locally bounded, hence not normable. The same con-
clusion holds for %, whenever K has nonempty interior (otherwise Yy =
0}), because dim 2 x = oo In that case. This last statement is a consequence
of the following proposition:
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If B, and B, are concentric closed balls in R", with B, in the interior of
B,, then there exists ¢ € C*(R") such that ¢(x) =1 for every x € B,
d(x) = 0 for every x outside B, ,and 0 < ¢ < 1 on R".

To find such a ¢, we construct g e C*{(R") such that g{x) =0 for
x <a,g(x)=1for x >b{(where 0 < @ < b < o are preassigned) and put

(6) Gxy, ooy Xp) =1 — g(x7 + -+ + X7).

The following construction of g has the advantage that suitable choices of
{9,} can lead to functions with other desired properties.

Suppose 0 < a < b < ooc. Choose positive numbers d,, 0;, 0,
with £0, = b — a; put

) uoo,

(7) m, = —— m=1,2,3...);

let f, be a continuous monotonic function such that f;(x) = 0 when x < a,
fo(x) = 1 when x > a + Jd,; and define

1 =
(8) fn(x) = 5,_ J fn—l(t) dt (n=1, 2, 3, ).
n Jx—ép

Differentiation of this integral shows, by induction, that f, has n continuous
derivatives and that | D"f,| < m,. If n > r, then

(o

) DA =+ |0, g0
n JO

so that

(10) Df,|<m. (nEr)

again by induction on n. The mean value theorem, applied to (9), shows
that

(11) ID’fn—D,fn—llgmr+15n (n2r+2)

Since X0, < o0, each {D’f,} converges, uniformly on (— o, o0), as n — .
Hence {f,} converges to a function g, with |[D'g| <m, for r =1, 2, 3, ...,
such that g(x) = O for x < aand g(x) = 1 for x > b.

1.47 The spaces L? with 0 < p <1 Consider a fixed p in this range.

The elements of I? are those Lebesgue measurable functions f on [0, 1] for
which

(1) A(f)=J | f()]P dt < oo,
0
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with the usual identification of functions that coincide almost everywhere.
Since 0 < p < 1, the inequality

(2) (a+ b <af + b?
holds when @ > 0 and b > 0. This gives

(3) A(f +9) <A(Sf) + A©Y),
so that

@ d(f, 9) = A(f - 9)

defines an invariant metric on I?. That this d is complete is proved in the
same way as in the familiar case p >> 1. The balls

B B, = {feI7: A(f) <)
form a local base for the topology of I?. Since B, = r~!/?B,, for all r > 0,
B, is bounded.

Thus I? is a locally bounded F-space.

We claim that I? contains no convex open sets, other than f and I?.

To prove this, suppose V # ¥ is open and convex in I?. Assume
0 € V, without loss of generality. Then V = B,_, for some r > 0. Pick fe I?.
Since p < 1, there is a positive integer n such that n”~! A(f) <r. By the
continuity of the indefinite integral of | f |7, there are points

O=xy<x,<"""<x,=1
such that

(6) fti | SO de=n"" A(f) (I <i<n)

i=1

Define g,(t) = nf(t) if x,_; <t < x;, g,(t) = 0 otherwise. Then g, € V, since
(6) shows

(7) Ag)=n""" Af)y<r (1<ign

and V o B,. Since V is convex and

i
(8) f=;(91+“'+9n),

it follows that f € V. Hence V = I%.

This lack of convex open sets has a curious consequence.

Suppose A: I —» Y is a continuous linear mapping of I? into some
locally convex space Y. Let # be a convex local base for Y. If W € 4, then
A"Y(W) is convex, open, not empty. Hence A~ Y(W) = I?. Consequently,
A(I?) = W for every W € #. We conclude that Af = 0 for every f € I°.

Thus O is the only continuous linear mapping of I? into any locally

Convex space Y, if 0 < p < 1. In particular, O is the only continuous linear
Junctional on these IP-spaces.

This is, of course, in violent contrast to the familiar case p > 1.
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Exercises

1.

Suppose X is a vector space. All sets mentioned below are understood to be

subsets of X. Prove the following statements from the axioms as given in

Section 1.4. (Some of these are tacitly used in the text.)

(@ Ifx € X and y € X there is a unique z € X such that x + z = y.

() Ox =0=a01if x € X and « is a scalar.

(c) 2A = A + A;it may happen that 24 # A + A.

(d) A is convex if and only if (s + t)4 = sA + tA for all positive scalars s and ¢.

(¢) Ewery union (and intersection) of balanced sets is balanced.

{ f) Every intersection of convex sets is convex.

(g) if I" 1s a collection of convex sets that is totally ordered by set inclusion,
then the union of all members of I is convex.

(h) i A and B are convex, so is A + B.

(i) 1if A and B are balanced, sois A + B.

(/) Show that parts (f), (g), and (h) hold with subspaces in place of convex sets.

. The convex hull of a set A in a vector space X is the set of all convex com-

binations of members of A, that is, the set of all sums
txy + - +t,x,

in which x; € 4, ¢, >0, > t;,=1; nis arbitrary. Prove that the convex hull of A4
is convex and that it is the intersection of all convex sets that contain A.

. Let X be a topological vector space. All sets mentioned below are understood to

be the subsets of X. Prove the following statements.

(@) The convex hull of every open set is open.

() If X 1s locally convex then the convex hull of every bounded set is bounded.
(This 1s false without local convexity ; see Section 1.47.)

(c) If A and B are bounded, so 1s A + B.

(d) If A and B are compact, so is 4 + B.

(e) If A is compact and B is closed, then A + B is closed.

{(f) The sum of two closed sets may fail to be closed. [The inclusion in (b) of
Theorem 1.13 may therefore be strict. ]

Let B = {(z, 2,) € €*:|z,| < |z,|}. Show that B is balanced but that its inte-

rior is not. [Compare with (¢) of Theorem 1.13.]

. Consider the definition of “bounded set” given in Section 1.6. Would the

content of this definition be altered if it were required merely that to every
neighborhood V of 0 corresponds some ¢t > 0 such that E < tV?

. Prove that a set E in a topological vector space is bounded if and only if every

countable subset of E is bounded.

Let X be the vector space of all complex functions on the unit interval [0, 1],
topologized by the family of seminorms

pLNH=1fx)]  O<x<1)

This topology is called the topology of pointwise convergence. Justify this ter-
minology.

Show that there is a sequence { f,} in X such that (a) { f,} converges to 0
as n — oo, but (b) if {y,} is any sequence of scalars such that y, - oo then {7, £}
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does not converge to 0. (Use the fact that the collection of all complex sequences
converging to 0 has the same cardinality as [0, 1].)
This shows that metrizability cannot be omitted in (b) of Theorem 1.28.

8. (@) Suppose 2 is a separating family of seminorms on a vector space X. Let 2
be the smallest family of seminorms on X that contains £ and is closed
under max. [This means: If p, € 9, p, € 4, and p = max (p,, p,), then
p € 2.1 If the construction of Theorem 1.37 is applied to £ and to 2, show
that the two resulting topologies coincide. The main difference is that 2
leads directly to a base, rather than to a subbase. | See Remark (a) of Section
1.38.]

(b) Suppose 2 1s as in part (a) and A is a linear functional on X. Show that A is
continuous if and only if there exists a p € 4 such that | Ax| < Mp(x) for all
x € X and some constant M < oo.

9. Suppose

(@ X and Y are topological vector spaces,

(b) A: X — Y is linear,

(c) N is a closed subspace of X,

(d) m=: X - X/N is the quotient map, and

() Ax =0forevery x € N.

Prove that there is a unique f: X/N — Y which satisfies A =f « 7z, that 1s,

Ax = f(n(x)) for all x € X. Prove that this fis linear and that A is continuous if

and only if fis continuous. Also, A is open if and only if fis open.

10. Suppose X and Y are topological vector spaces, dimY < oo, A: X > Y is
linear, and A(X) = Y.

(a) Prove that A is an open mapping.
(b) Assume, in addition, that the null space of A is closed. and prove that A is
then continuous.

11. If N i1s a subspace of a vector space X, the codimension of N in X is, by defini-
tion, the dimension of the quotient space X/N.

Suppose 0 < p < 1 and prove that every subspace of finite codimension is
dense in I?. (See Section 1.47.)

12. Suppose d,(x, y) =[x — y|, d,(x, y) = |$(x) — $(y)i. where ¢(x) =x/(1 +[x]).
Prove that d, and d, are metrics on R which induce the same topology,
although d, is complete and 4, is not.

13. Let C be the vector space of all complex continuous functions on [0, 1]. Define

‘ o flx) — g(x)]
d =
(/. o) J; T3 1700 —80)] dx

Let (C, o) be C with the topology induced by this metric. Let (C, 1) be the
topological vector space defined by the seminorms

px()=1/(x)  (O0<x<1),

in accordance with Theorem 1.37.

(@) Prove that every t-bounded set in C is also o-bounded and that the identity
map id: (C, 1) — (C, o) therefore carries bounded sets into bounded sets.

(b) Prove that id: (C, 1) - (C, o) is nevertheless not continuous, although it is
sequentially continuous (by Lebesgue’s dominated convergence theorem).
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15.
16.

17.

18.

19.

20.
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Hence (C, 1) is not metrizable. (See Appendix A6, or Theorem 1.32.) Show
also directly that (C, 7) has no countable local base.
(c) Prove that every continuous linear functional on (C, 1) is of the form

n

f— Z c; f(x)

=1

for some choice of x,, ..., x,in [0, 1] and some ¢; € (.
(d) Prove that (C, o) contains no convex open sets other than &5 and C.
(e) Prove that id: (C, o) = (C, ) is not continuous.
Put K = [0, 1] and define 9, as in Section 1.46. Show that the following three
families of seminorms (where n = 0, 1, 2, ...) define the same topology on %y, if
D =d/dx:
(@) [ID |l =sup {|D(x)|: —c0 <x < 0}.

1
&) 1D, = J | D"f(x)| dx.

)
1 1/2
©) 1D, = U | D" (x)|? dx} :
0

Prove that the spaces C(QQ) (Section 1.44) do not have the Heine-Borel property.

Prove that the topology of C(QQ) does not depend on the particular choice of

{K,}, as long as this sequence satisfies the conditions specified in Section 1.44.

Do the same for C*(Q) (Section 1.46).

In the setting of Section 1.46, prove that f— D* is a continuous mapping of

C*(Q) into C*(Q) and also of 9, into Y, for every multi-index «.

Prove the proposition concerning addition in the binary system which was used

at the end of the proof of Theorem 1.24.

Suppose M is a dense subspace of a topological vector space X, Y is an F-space,

and A: M — Y is continuous (relative to the topology that M inherits from X)

and linear. Prove that A has a continuous linear extension A: X — Y.
Suggestion: Let V, be balanced neighborhoods of 0 in X such that

V.+ V,< V,_, and such that d(0, Ax) <2™"ifxeM N V,.lf xe X and x, €

(x + V)) n M, show that {Ax,} is a Cauchy sequence in Y, and define Ax to be

its limit. Show that A is well defined, that Ax = Ax if x € M, and that A is linear

and continuous.

For each real number ¢t and each integer n, define ¢,(t) = ¢, and define

fn:e""n_i_neﬂ (nzl, 2, 3,...).

Regard these functions as members of [*(—=, n). Let X, be the smallest closed
subspace of I? that contains ¢,, €,, €,, ..., and let X, be the smallest closed
subspace of I? that contains f,, f,, f3, .... Show that X, + X, is dense in [* but
not closed. For instance, the vector

is in I” but not in X, + X,. (Compare with Theorem 1.42.)
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Let V be a neighborhood of 0 in a topological vector space X. Prove that there
is a real continuous function f on X such that f(0) = 0 and f(x) = 1 outside V.
(Thus X is a completely regular topological space.) Suggestion: Let V. be bal-
anced neighborhoods of O such that V, + V, <V and V,,, + V,., = V,. Con-
struct f as in the proof of Theorem 1.24. Show that f is continuous at 0 and that

| S =S <f(x = ).

If fis a complex function defined on the compact interval I = [0, 1] = R, define

- ws(f) =sup {| f(x) =fW): |x —y|<d,xel ye I}
If 0 < a <1, the corresponding Lipschitz space Lip « consists of all f for which
IS =1/0)] + sup {0 “w,(f): 5 > 0}
is finnie. Pefine

lip @ = {fe Lip a: lim d *w,(f) = 0}.
5-+0

Prove that Lip « is a Banach space and that Jip « is a closed subspace of Lip «.
Let X be the vector space of all continuous functions on the open segment (0, 1).
For fe X and r > 0, let V(/, r) consist of all g € X such that |g(x) — f{x)| <r
for all x € (O, 1). Let T be the topology on X that these sets V(f, r) generate.
Show that addition is t-continuous but scalar multiplication is not.
Show that the set W that occurs in the proof of Theorem 1.14 need not be
convex, and that A need not be balanced unless U is convex.



CHAPTER

COMPLETENESS

The validity of many important theorems of analysis depends on the com-
pleteness of the systems with which they deal. This accounts for the inade-
quacy of the rational number system and of the Riemann integral (to
mention just the two best-known examples) and for the success encountered
by their replacements, the real numbers and the Lebesgue integral. Baire’s
theorem about complete metric spaces (often called the category theorem) is
the basic tool in this area. In order to emphasize the role played by the
concept of category, some theorems of this chapter (for instance, Theorems
2.7 and 2.11) are stated in a little more generality than is usually needed.
When this is done, simpler versions (more easily remembered but sufficient
for most applications) are also given.

Baire Category

2.1 Definition Let S be a topological space. A set E < S is said to be
nowhere dense if its closure E has an empty interior. The sets of the first
category in S are those that are countable unions of nowhere dense sets. Any
subset of S that is not of the first category is said to be of the second
category in S.

This terminology (due to Baire) is admittedly rather bland and unsug-
gestive. Meager and nonmeager have been used instead in some texts. But
“ category arguments ” are so entrenched in the mathematical literature and
are so well known that it seems pointless to insist on a change.

Here are some obvious properties of category that will be freely used
in the sequel:

42
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If A = B and B is of the first category in S, so is A.

Any countable union of sets of the first category is of the first category.
Any closed set E = S whose interior 1s empty is of the first category
in S.

If h is a homeomorphism of § onto S and if E = S, then E and h(E)
have the same category in S.

Baire’s theorem If S is either

a complete metric space, or
a locally compact Hausdor/f space,

then the intersection of every countable collection of dense open subsets of S is
dense in S.

This 1s often called the category theorem, for the following reason.
If {E;} is a countable collection of nowhere dense subsets of S, and if

V. is the complement of E;, then each V; is dense, and the conclusion of
Baire’s theorem is that (1) V; # . Hence S # | | E;.

Therefore, complete metric spaces, as well as locally compact Haus-

dorff spaces, are of the second category in themselves.

PROOF. Suppose Vi, V,, V5, ... are dense open subsets of S. Let B, be
an arbitrary nonempty open set in S. If n > 1 and an open B,_, # J

has been chosen, then (because ¥V, is dense) there exists an open
B, # & with

B,cV.nB,_,.

In case {a), B, may be taken to be a ball of radius < 1/n; in case (b) the
choice can be made so that B, is compact. Put

In case (a), the centers of the nested balls B, form a Cauchy sequence
which converges to some point of K, and so K # . In case (b),
K # & by compactness. Our construction shows that K = B, and
K < V, for each n. Hence B, intersects ﬂ V,. 1]/

The Banach-Steinhaus Theorem

2.3 Equicontinuity Suppose X and Y are topological vector spaces and
I' is a collection of linear mappings from X into Y. We say that I' is

equicontinuous if to every neighborhood W of 0 in Y there corresponds a
neighborhood V of 0 in X such that A(V) = W forall A eT.
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If I' contains only one A, equicontinuity is. of course, the same as
continuity {(Theorem 1.17). We already saw (Theorem 1.32) that continuous
linear mappings are bounded. Equicontinuous collections have this
boundedness property in a uniform manner (Theorem 2.4). It is for this
reason that the Banach-Steinhaus theorem (2.5) is often referred to as the
uniform boundedness principle.

2.4 Theorem Suppose X and Y are topological vector spaces, I' is an
equicontinuous collection of linear mappings from X into Y, and E is a
bounded subset of X. Then Y has a bounded subset F such that A(E) <= F for
every A eI

PROOF. Let F be the union of the sets A(E), for AeI'. Let W be a
neighborhood of 0 in Y. Since I' is equicontinuous, there is a neigh-
borhood V of 0 in X such that A(V) = W for all AeTI. Since E is
bounded, E < tV for all sufficiently large t. For these t,

AE) = AtV) =tAV) < tW,
so that F = tW. Hence F is bounded. /l//

2.5 Theorem (Banach-Steinhaus) Suppose X and Y are topological
vector spaces, I' is a collection of continuous linear mappings from X into Y,
and B is the set of all x € X whose orbits

I'(x) = {Ax: A e T}

are bounded in Y.
If B is of the second category in X, the:x B=X and I is equi-
continuous.

PROOF. Pick balanced neighborhoods W anc U of 0 in Y such that
U+ Uc W. Put

E= () A}

Ael

If x € B, then I'(x) = nU for some n, so that x € nE. Consequently,

Bc () nE.
n=1
At least one nE is of the second category in X, since this is true of B.
Since x -» nx is a homeomorphism of X onto X, E is itself of the

second category in X. But E is closed because each A is continuous.
Therefore E has an interior point x. Then x — E contains a neighbor-
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hood V of 0in X, and
AMV)c Ax —AE)cU -UcW

for every A e I.
This proves that I' is equicontinuous. By Theorem 2.4, I" is uni-
formly bounded; in particular, each I'(x) is bounded in Y. Hence

B=X. /1]

In many applications, the hypothesis that B is of the second category
is a consequence of Baire’s theorem. For example, F-spaces are of the
second category. This gives the following corollary of the Banach-Steinhaus
theorem:

2.6 Theorem If I is a collection of continuous linear mappings from an
F-space X into a topolugical vector space Y, and if the sets

I'x)={Ax: AeTl}

are bounded in Y, for every x € X, then I is equicontinuous.

Briefly, pointwise boundedness implies uniform boundedness
(Theorem 2.4).

As a special case of Theorem 2.6, let X and Y be Banach spaces, and
suppose that

(1) sup |Ax|| < o for every x € X.
Ael

The conclusion is that tlere exists M < oo such that

(2) |Ax|| <M if x| <1and A eT.
Hence
(3) IAx|| < M|lx]| fxeXand Ael.

The following theorem establishes the continuity of limits of sequences
of continuous linear mappings :

27 Theorem Suppose X and Y are topological vector spaces, and {A,} is
a sequence of continuous linear mappings of X into Y.

(@ If C is the set of all x € X for which {A,x} is a Cauchy sequence in Y,
and if C is of the second category in X, then C = X.

(b) IfLis the set of all x € X at which

Ax = llmA, x

n— o
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exists, if L is of the second category in X, and if Y is an F-space, then
L=Xand A: X —> Y is continuous.

PROOF. (a) Since Cauchy sequences are bounded (Section 1.29), the
Banach-Steinhaus theorem asserts that {A,} is equicontinuous.

One checks easily that C is a subspace of X. Hence C is dense.
(Otherwise, C is a proper subspace of X; proper subspaces have
empty interior; thus C would be of the first category.)

Fix x € X; let W be a neighborhood of 0 in Y. Since {A,} is
equicontinuous, there i1s a neighborhood V of 0 in X such that
AV)cW for n=1, 2, 3, .... Since C is dense, there exists
x'€e Cn (x+ V) If nand m are so large that

A, X' — A, X' e W,
the identity
(An T Am)x = An(x o xl) + (An — Am)xl + Am(xl * X)

shows that A, x — A,x e W + W + W. Consequently, {A,x} is a
Cauchy sequence in Y, and x € C.

(b) The completeness of Y implies that L = C. Hence L = X, by
(a). If V and W are as above, the inclusion A, (V) = W, valid for all n,
implies now that A(V) « W. Thus A is continuous. /1]

The hypotheses of (b) of Theorem 2.7 can be modified in various ways.
Here is an easily remembered version:

2.8 Theorem If{A,} is a sequence of continuous linear mappings from an
F-space X into a topological vector space Y, and if

Ax = lim A, x

n—=oC

exists for every x € X, then A is continuous.

PROOF. Theorem 2.6 implies that {A,} is equicontinuous. Therefore if
W is a neighborhood of 0 in Y, we have A, (V) = W for all n and for
some neighborhood V of 0 in X. It follows that A(V) < W, hence

(being obviously linear) A is continuous. /1]

In the following variant of the Banach-Steinhaus theorem the cate-
gory argument is applied to a compact set, rather than to a complete metric
one. Convexity also enters here in an essential way (Exercise 8).

29 Theorem Suppose X and Y are topological vector spaces, K is a
compact convex set in X, I' is a collection of continuous linear mappings of X
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into Y, and the orbits
['(x)={Ax: A eI}

are bounded subsets of Y, for every x € K.
Then there is a bounded set B = Y such that A(K) = B for every A € I'.

PROOF. Let B be the union of all sets I'(x), for x € K. Pick balanced
neighborhoods W and U of 0 in Y such that U + U < W. Put

(1) E= ) A YD)

Ael

If x € K, then I'(x) = nU for some n, so that x € nE. Consequently,

(v o)

(2) K = ) (K n nE).

n=1

Since E is closed, Baire’s theorem shows that K n nE has nonempty
interior (relative to K) for at least one n.

We fix such an n, we fix an interior point x, of K n nE, we fix a
balanced neighborhood V of 0 in X such that

(3) K n (xqo + V) cnE,
and we fix a p > 1 such that
4) K cx,+pV.

Such a p exists since K is compact.
If now x is any point of K and

(5) z={1-p Yx,+p'x,
then z € K, since K 1s convex. Also,
(6) Z—Xo=p {(x—Xxo) €V,

by (4). Hence z € nE, by (3). Since A(nE) = nU for every A e I' and
since x = pz — (p — 1)x,, we have

Ax € pnU — (p — DnU < pn(U + U) < paW.
Thus B = pnW, which proves that B is bounded. 11/

The Open Mapping Theorem

210 Open mappings Suppose f maps S into T, where S and T are
topological spaces. We say that f is open at a point p € S if f(V) contains a
neighborhood of f(p) whenever V is a neighborhood of p. We say that f is
open if f(U) 1s open in T whenever U is open in S.
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It is clear that f is open if and only if f is open at every point of S.

Because of the invariance of vector topologies, it follows that a linear
mapping of one topological vector space into another is open if and only if
it is open at the origin.

Let us also note that a one-to-one continuous mapping f of S onto T

is a homeomorphism precisely when f'is open.

2.11

The open mapping theorem Suppose

(@) X is an F-space,

(b)

Y is a topological vector space,

(c) A:X — Y is continuous and linear, and
(d) A(X) is of the second category in Y.

T hen
(i)

(ii)

(iii)

AX) =Y,
A is an open mapping, and
Y is an F-space.

PROOF. Note that (ii) implies (i), since Y is the only open subspace of
Y. To prove (ii), let V be a neighborhood of 0 in X. We have to show
that A(V) contains a neighborhood of O in Y.

Let d be an invariant metric on X that is compatible with the
topology of X. Define

(1) V,={x:d(x,0) <27 "r} n=0,1,2,..)

where r > 0 1s so small that V, = V. We will prove that some neigh-
borhood W of 0 in Y satisfies

(2) W < A(V)) < A(V).

Since V, = V, — V,, statement (b) of Theorem 1.13 implies
3) A(Vy) = A(Vy) — A(V,) 2 A(Va) — A(V2).

The first part of (2) will therefore be proved if we can show that A(V,)
has nonempty interior. But

4 AX) = |J kA(V),

because V, is a neighborhood of 0. At least one kA(V,) is therefore of
the second category in Y. Since y — ky is a homeomorphism of Y
onto Y, A(V,) is of the second category in Y. Its closure therefore has
nonempty interior.
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To prove the second inclusion in (2), fix y, € A(V;). Assume
n> 1 and y, has been chosen in A(V,). What was just proved for V,
holds equally well for V,,,, so that A(V,, ;) contains a neighborhood

of 0. Hence

(5) (Yo = AVar1)) N A(V) # .
This says that there exists x, € V, such that

(6) Ax, € Yo — MV, 41).

Put y,,, =y, — Ax,. Then y, ., € A(V,,,), and the construction pro-
ceeds.

Since d(x,, 0) <2 "r,forn=1, 2, 3, ..., the sums x, + - + x,
form a Cauchy sequence which converges (by the completeness of X)
to some x € X, with d(x, 0) < r. Hence x € V. Since

(7)

M 3

Axn = Z (yn _‘yn+l)= Yi = Vm+1>
n=1

n=1

and since y, ,; = 0 as m — oo (by the continuity of A), we conclude
that y, = Ax € A(V). This gives the second part of (2), and (ii) is
proved.

Theorem 1.41 shows that X/N 1s an F-space, if N is the null
space of A. Hence (iii) will follow as soon as we exhibit an iso-
morphism fof X/N onto Y which is also a homeomorphism. This can
be done by defining

(8) f(x + N)= Ax (x € X).

It is trivial that this fis an isomorphism and that Ax = f(n(x)), where
7 1s the quotient map described in Section 1.40. If V' 1s open in Y, then

%) STHY) = =(ATHY))

is open, since A is continuous and = is open. Hence fis continuous. If
E 1s open 1n X/N, then

(10) f(E) = A(n " (E))
is open, since n is continuous and A is open. Consequently, f is a
homeomorphism. /1//

2.12 Corollaries

(@) If A is a continuous linear mapping of an F-space X onto an F-space Y,
then A is open.

(b) If A satisfies (a) and is one-to-one, then A~ ': Y — X is continuous.
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(¢) If X and Y are Banach spaces, and if A: X -> Y is continuous, linear,
one-to-one, and onto, then there exist positive real numbers a and b such
that

allx| < [|Ax] < blx]

for every x € X.

(d) If 1, = 1, are vector topologies on a vector space X and if both (X, 1,)
and (X, 1,) are F-spaces, then 1, = 1,.

PROOF. Statement (a) follows from Theorem 2.11 and Baire’s theorem,
since Y is now of the second category in itself. Statement (b) is an
immediate consequence of (a), and (c) follows from (b). The two
inequalities in (c) simply express the continuity of A™! and of A.
Statement (d) is obtained by applying (b) to the identity mapping of
(X, 75) onto (X, 7,). /1]

The Closed Graph Theorem

2.13 Graphs If X and Y are sets and f maps X into Y, the graph of f is
the set of all points (x, f(x)) in the cartesian product X x Y. If X and Y are
topological spaces, if X x Y is given the usual product topology (the small-
est topology that contains all sets U x V with U and V open in X and Y,
respectively), and if f: X — Y is continuous, one would expect the graph of f
to be closed in X x Y (Proposition 2.14). For linear mappings between
F-spaces this trivial necessary condition is also sufficient to assure conti-
nuity. This important fact is proved in Theorem 2.15.

2.14 Proposition If X is a topological space, Y is a Hausdorff space, and
f: X = Y is continuous, then the graph G of f is closed.

PROOF. Let Q be the complement of G in X x Y; fix (x,, y,) €
Then y, #f(x,). Thus y, and f(x,) have disjoint neighborhoods V
and W in Y. Since f is continuous, x, has a neighborhood U such that
f(U) = W. The neighborhood U x V of (x,, y,) lies therefore in Q.
This proves that Q is open. ////

Note: One cannot omit the hypothesis that Y is a Hausdorff space.
To see this, consider an arbitrary topological space X, and let f: X -» X be
the identity. Its graph is the diagonal

D={xx)xeX}cX xX.

The statement “ D is closed in X x X ” is just a rewording of the Hausdorff
separation axiom.
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2.15 The closed graph theorem Suppose

(@) X and Y are F-spaces,
(b) A: X — Y is linear,
(c) G={(x,Ax): xe X} isclosedinX x Y,

Then A is continuous.

PROOF. X X Y is a vector space if addition and scalar multiplication
are defined componentwise :

a{xy, ¥1) + B(xy, y2) ={ox; + Bx,, oy, + By,).

There are complete invariant metrics dy and dy on X and Y, respec-
tively, which induce their topologies. If

d((x1, ¥1), (X3, ¥2)) = dx(x,, x3) + dy(yy, ¥2),

then d is an invariant metric on X x Y which is compatible with its

product topology and which makes X x Y into an F-space. (The easy

but tedious verifications that are needed here are left as an exercise.)
Since A is linear, G is a subspace of X x Y. Closed subsets of

complete metric spaces are complete. Therefore G is an F-space.
Definen,: G»>Xandn,: X XY >Y by

nx, AX) =%, Ty(x )=y,

Now =, is a continuous linear one-to-one mapping of the F-space G
onto the F-space X. It follows from the open mapping theorem that
il X>G

is continuous. But A ==, o r; ! and n, is continuous. Hence A is

continuous. /1]

Remark. The crucial hypothesis (c), that G is closed, is often verified
in applications by showing that A satisfies property (c¢’) below:

() If {x,} is a sequence in X such that the limits

x = limx, and y = lim Ax,

n—*cw n— oo

exist, then y = Ax.
Let us prove that (¢') implies (c¢). Pick a limit point (x, y) of G.
Since X x Y is metrizable,

(x, y) = lim (x,, Ax,)

n-—aoo
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for some sequence {x,}. It follows from the definition of the product
topology that x,-»x and Ax,-»y. Hence y = Ax, by (¢'), and so
(x, y) € G, and G is closed.

It is just as easy to prove that (c) implies (c').

Bilinear Mappings

2.16 Definitions Suppose X, Y, Z are vector spaces and B maps
X X Y into Z. Associate to each x € X and to each y € Y the mappings

B.:Y->Z and B:X--»>Z
by defining
B(y) = B(x, y) = B’(x).

B 1s said to be bilinear if every B, and every B” are linear.

If X, Y, Z are topological vector spaces and if every B, and every B’ is
continuous, then B is said to be separately continuous. If B is continuous
(relative to the product topology of X x Y) then B is obviously separately
continuous. In certain situations, the converse can be proved with the aid of
the Banach-Steinhaus theorem.

2.17 Theorem Suppose B: X x Y -> Z is bilinear and separately contin-
uous, X is an F-space, and Y and Z are topological vector spaces. Then

(1) B(x,, y,) = B(xq, yo) in Z

whenever x, > X, in X and y, > y, in Y. If Y is metrizable, it follows that B
iS continuous.

PROOF. Let U and W be neighborhoods of 0 in Z such that
U + U = W. Define

b,(x) = B(x, y,) (xeX,n=1,23,..))
Since B is continuous as a function of y,

lim b,(x) = B(x, y,) (x € X).

R

Thus {b,(x)} is a bounded subset of Z, for each x € X. Since each b, is
a continuous linear mapping of the F-space X, the Banach-Steinhaus

theorem 2.6 implies that {b,} is equicontinuous. Hence there is a
neighborhood V of 0 in X such that

b(V)cU (n=1,23,..)
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Note that
B(xrw .Vn) — B(x09 .VO) = bn(xn — xO) + B(XO’ yn — ,VO)

If n i1s sufficiently large, then (i) x, € x, + V, so that b,(x, — x;) € U,
and (ii) B(x,, y, — yo) € U, since B is continuous in y and B(x,, 0) =
0. Hence

B(x,, y)) — B(xo, y0) €U+ U W

for all large n. This gives (1).
If Y is metrizable, so is X x Y, and the continuity of B then
follows from (1). (See Appendix A6.) 11/

Exercises

L

If X 1s an infinite-dimensional topological vector space which is the union of
countably many finite-dimensional subspaces, prove that X is of the first cate-
gory in itself. Prove that therefore no infinite-dimensional F-space has a count-
able Hamel basis.

(A set f is a Hamel basis for a vector space X if f is a maximal linearly
independent subset of X. Alternatively, f i1s a Hamel basis if every x € X has a
unique representation as a finite linear combination of elements of §.)

. Sets of first and second category are “small” and “large ” in a topological sense.

These notions are different when “small ” and “large” are understood in the
sense of measure, even when the measure is intimately related to the topology.
To see this, construct a subset of the unit interval which is of the first category
but whose Lebesgue measure 1s 1.

Put K =[—1, 1]; define 9, as in Section 1.46 (with R in place of R"). Suppose
{7} is a sequence of Lebesgue integrable functions such that

A¢ = lim J S8)p(r) dt

nh-—0

exists for every ¢ € 2. Show that A i1s a continuous linear functional on 2.
Show that there is a positive integer p and a number M < oc such that

< M[D*¢| o

J J()e(r) dt

for all n. For example, if f,(t) = n’t on [—1/n, 1/n] and O elsewhere, show that
this can be done with p = 1. Construct an example where it can be done with
p = 2 but not with p = 1.

Let I! and I? be the usual Lebesgue spaces on the unit interval. Prove that I2 is
of the first category in L}, in three ways:

(a) Show that {f: [ |/ |*> < n} is closed in L' but has empty interior.

(b) Put g, = non [0, n~ 3], and show that

Jfgn—+0

for every f € I? but not for every f € L.
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(c) Note that the inclusion map of I? into L' is continuous but not onto.
Do the same for I7 and ¢ if p < g.

. Prove results analogous to those of Exercise 4 for the spaces £7, where £7 is the

Banach space of all complex functions x on {0, 1, 2, ...} whose norm

0 1/p
[, = { . | x(n) |P}

1s finite.

. Define the Fourier coefficients f(n) of a function f € I2(T) (T is the unit circle) by

fin) = — f " f(e®e = do
2n )_,

for all n € Z (the integers). Put

Prove that {fe I[*(T): lim,_ ., A, f exists} is a dense subspace of I*(T) of the
first category.

. Let C(T) be the set of all continuous complex functions on the unit circle 7.

Suppose {y,} (n € Z) is a complex sequence that associates to each fe C(T) a
function A f € C(T) whose Fourier coefficients are

Af) M=,/  (ne2)

(The notation is as in Exercise 6.) Prove that {y,} has this multiplier property if
and only if there is a complex Borel measure x on T such that

Y = Je""‘o du®)  (ne Z).

Suggestion: With the supremum norm, C(T) is a Banach space. Apply the
closed graph theorem. Then consider the functional

[~ AN = ¥ 3. S

and apply the Riesz representation theorem ([23], Th. 6.19). (The above series
may not converge; use it only for trigonometric polynomials.)

. Define functionals A, on ¢ * (see Exercise 5) by

n*x(n) m=1,23,..)

gk

A

X =

n

m
1

Define x, € £% by x,(n) = 1/n, x,(i) =0 if i # n. Let K < ¢2 consist of 0, x,, X3,
X3, .... Prove that K is compact. Compute A,, x, . Show that {A,, x} is bounded
for each x € K but {A,, x,,} is not. Convexity can therefore not be omitted from
the hypotheses of Theorem 2.9.
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Choose ¢, > 0so that ) ¢, =1, Y nc, = co. Take x = ¢, x,. Show that
x lies in the closed convex hull of K (by definition, this is the closure of the
convex hull) and that {A,, x} is not bounded.

Show that the convex hull of K is not closed.

. Suppose X, Y, Z are Banach spaces and

B: X xY-2Z
1s bilinear and continuous. Prove that there exists M < oo such that
|B(x, y)Il < M| x|yl (xe X,ye¥Y)

Is completeness needed here?

Prove that a bilinear mapping is continuous if it is continuous at the origin
(0, 0).

Define B(x,, X,; y) = (x; ¥, X, y). Show that B is a bilinear continuous mapping
of R* x R onto R? which is not open at (1, 1; 0). Find all points where this B is
open.

Let X be the normed space of all real polynomials in one variable, with

17 =J | f()] dt.

Put B(/, g) = j(’, f(t)g(t) dt, and show that B is a bilinear functional on X x X
which is separately continuous but is not continuous.

Suppose X is a topological vector space which is of the second category in itself.
Let K be a closed, convex, absorbing subset of X. Prove that K contains a
neighborhood of 0.

Suggestion: Show first that H = K n (—K) 1s absorbing. By a category argu-
ment, H has interior. Then use

2H=H + H=H — H.

Show that the result is false without convexity of K, even if X = R%. Show that

the result is false if X is I? topologized by the I'-norm (as in Exercise 4).

(a) Suppose X and Y are topological vector spaces, {A,} is an equicontinuous
sequence of linear mappings of X into Y, and C is the set of all x at which
{A,(x)} is a Cauchy sequence in Y. Prove that C is a closed subspace of X.

(b) Assume, in addition to the hypotheses of (a), that Y is an F-space and that
{A,(x)} converges in some dense subset of X. Prove that then

A(x) = lim A, (x)

exists for every x € X and that A is continuous.
Suppose X is an F-space and Y is a subspace of X whose complement is of the
first category. Prove that Y = X. Hint: Y must intersect x + Y for every x € X.
Suppose that X and K are metric spaces, that K is compact, and that the graph
of f: X — K is a closed subset of X x K. Prove that f is continuous. (This is an

analogue of Theorem 2.15 but is much easier.) Show that compactness of K
cannot be omitted from the hypotheses, even when X is compact.
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3

CONVEXITY

This chapter deals primarily (though not exclusively) with the most impor-
tant class of topological vector spaces, namely, the locally convex ones. The
highlights, from the theoretical as well as the applied standpoints, are
(a) the Hahn-Banach theorems (assuring a supply of continuous linear func-
tionals that is adequate for a highly developed duality theory), (b) the
Banach-Alaoglu compactness theorem in dual spaces, and (c¢) the Krein-
Milman theorem about extreme points. Applications to various problems in
analysis are postponed to Chapter S.

The Hahn-Banach Theorems

The plural is used here because the term “Hahn-Banach theorem ” is cus-
tomarily applied to several closely related results. Among these are the
dominated extension theorems 3.2 and 3.3 (in which no topology is involved),
the separation theorem 3.4, and the continuous extension theorem 3.6.
Another separation theorem (which implies 3.4) is stated as Exercise 3.

3.1 Definitions The dual space of a topological vector space X is the
vector space X* whose elements are the continuous linear functionals on X.
Note that addition and scalar multiplication are defined in X* by

A+ A)x=A;x+A,x, (tA)x = o - Ax.

It is clear that these operations do indeed make X* into a vector space.

56
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It will be necessary to use the obvious fact that every complex vector
space is also a real vector space, and it will be convenient to use the follow-
ing (temporary) terminology: An additive functional A on a complex vector
space X is called real-linear (complex-linear) if A(xx) = aAx for every x € X
and for every real (complex) scalar o. Our standing rule that any statement
about vector spaces in which no scalar field is mentioned applies to both
cases 1s unaffected by this temporary terminology and is still in force.

If u 1s the real part of a complex-linear functional f on X, then u is
real-linear and

(1) f(x) = u(x) — iu(ix) (x € X)

because z = Re z — i Re (iz) for every z € .

Conversely, if u: X - R is real-linear on a complex vector space X
and if f is defined by (1), a straightforward computation shows that f is
complex-linear.

Suppose now that X is a complex topological vector space. The above
facts imply that a complex-linear functional on X is in X* if and only if its
real part is continuous, and that every continuous real-linear u: X - R is
the real part of a unique f € X*.

3.2 Theorem Suppose

(@) M is a subspace of a real vector space X,
(b) p: X — R satisfies

p(x +y) <p(x)+p(y) and  p(tx) = p(x)
fxeX,ye X,t >0,
(c) f: M — Ris linear and f(x) < p(x) on M.

T hen there exists a linear A: X — R such that
Ax = f(x) (x e M)
and

—p(—x) < Ax < p(x) (x € X).

PROOF. If M # X, choose x, € X, x;, ¢ M, and define
M,={x+tx;: xe M,teR}.
It is clear that M, is a vector space. Since

F)+f)=f(x+y)<plx+y)<plx—x;)+plx, +),
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we have

(1) fx)—px—x)<ply +x;)—f(y) (x,y e M)

Let a be the least upper bound of the left side of (1), as x ranges over
M. Then

(2) fx)—a<plx—x,) (xeM)

and

(3) W +a<ply+x) (yeM)
Define f; on M, by

(4) filx + tx)) = f(x) + ta (x e M, t € R).

Thenf, = fon M, and f, is linear on M,.

Take t > 0, replace x by ¢t~ 'x in (2), replace y by t !y in (3), and
multiply the resulting inequalities by t. In combination with (4), this
proves that f; < pon M,.

The second part of the proof can be done by whatever one’s
favorite method of transfinite induction is; one can use well-ordering,
or Zorn’s lemma, or Hausdorff’s maximality theorem.

Let 2 be the collection of all ordered pairs (M’, '), where M’ is
a subspace of X that contains M and f’ is a linear functional on M’
that extends f and satisfies f* < p on M’. Partially order 2 by declar-
ing (M, f) < (M”, f”) to mean that M’ = M” and f”" =f' on M'. By
Hausdorff’s maximality theorem there exists a maximal totally
ordered subcollection Q of 2.

Let @ be the collection of all M’ such that (M’, f') € Q. Then ® is
totally ordered by set inclusion, and the union M of all members of ®
is therefore a subspace of X. If x € M then x € M’ for some M’ € ®@;
define Ax = f'(x), where f’ is the function which occurs in the pair
(M',f") € Q.

It is now easy to check that A is well defined on M, that A is
linear, and that A < p. If M were a proper subspace of X, the first
part of the proof would give a further extension of A, and this would
contradict the maximality of Q. Thus M = X.

Finally, the inequality A < p implies that

—p(—x) < —A(—x) = Ax
for all x € X. This completes the proof. /1]

3.3 Theorem Suppose M is a subspace of a vector space X, p is a semi-
norm on X, and f'is a linear functional on M such that

| f(X)[<plx)  (x €M)
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Then f extends to a linear functional A on X that satisfies

|Ax | < p(x) (x € X).

PROOF. If the scalar field is R, this is contained in Theorem 3.2, since p
now satisfies p( —x) = p(x).

Assume that the scalar field is ¢. Put u = Re f. By Theorem 3.2
there is a real-linear U on X such that U =u on M and U < p on X.
Let A be the complex-linear functional on X whose real part is U. The
discussion in Section 3.1 implies that A = fon M.

Finally, to every x € X corresponds an a € (, || = 1, such that
aAx = | Ax|. Hence

| Ax| = Aax) = U(ax) < p(ax) = p(x). /1]
Corollary. If X is a normed space and x, € X, there exists A € X* such
that
Axg = | X and |Ax| < |x|| forall xeX.

PROOF. If x, =0, take A =0. If x, #0, apply Theorem 3.3, with
p(x) = | x|, M the one-dimensional space generated by Xx,, and

f(oxg) = af|x,| on M. //1/

3.4 Theorem Suppose A and B are disjoint, nonempty, convex sets in a
topological vector space X.
(@) If Ais open there exist A € X* and y € R such that

Re Ax <y < Re Ay

for every x € A and for every y € B.

(b) If A is compact, B is closed, and X is locally convex, then there exist
A e X* v, €R,y, €R, such that

Re Ax <y, <y, <Re Ay
for every x € A and for every y € B.

Note that this is stated without specifying the scalar field; if it is R,
then Re A = A, of course.

PROOF. It is enough to prove this for real scalars. For if the scalar field
is ¢ and the real case has been proved, then there is a continuous
real-linear A, on X that gives the required separation; if A is the
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unique complex-linear functional on X whose real part is A,, then
A € X*, (See Section 3.1.) Assume real scalars,

(@) Fix A, € A, bye B. Put x, =b, —a,; put C=A4 — B+ x,.
Then C is a convex neighborhood of 0 in X. Let p be the Minkowski
functional of C. By Theorem 1.35, p satisfies hypothesis (b) of
Theorem 3.2. Since A N B = J, x, ¢ C, and so p(x,) > 1.

Define f(tx,) =t on the subspace M of X generated by x,. If
t > 0 then

ftxo) =t < tp(x,) = p(txo);

if t <O then f(tx;) < 0 < p(tx;). Thus f < p on M. By Theorem 3.2, f
extends to a linear functional A on X that also satisfies A < p. In
particular, A <1 on C,hence A > —1 on —C, so that | A| <1 on the
neighborhood C n (—C) of 0. By Theorem 1.18, A € X*.

If now o« € A and b € B, we have

Aa—Ab+1=Aa—-b+x;)<pla—>b+x,)<1

since Ax, =1,a — b 4+ x5 € C,and C is open. Thus Aa < Ab.

It follows that A(A) and A(B) are disjoint convex subsets of R,
with A(A) to the left of A(B). Also, A(A4) is an open set since A is open
and since every nonconstant linear functional on X is an open
mapping. Let y be the right end point of A(A4) to get the conclusion of
part (a).

(b) By Theorem 1.10 there is a convex neighborhood V of 0 in
X such that (4 + V) n B = J. Part (a), with A + V in place of A4,
shows that there exists A € X* such that A(4 4+ V) and A(B) are dis-
joint convex subsets of R, with A(4 + V) open and to the left of A(B).
Since A(A) is a compact subset of A(4 + V), we obtain the conclusion

of (b). //1/

Corollary. If X is a locally convex space then X* separates points on
X.

PROOF. If x, € X, x, € X, and x, # x,, apply (b) of Theorem 3.4 with
A = {x,}, B={x,}. /111

3.5 Theorem Suppose M is a subspace of a locally convex space X, and
Xo € X. If x4 is not in the closure of M, then there exists A € X* such that
Ax, =1 but Ax = 0 for every x € M.

PROOF. By (b) of Theorem 3.4, with A = {x,} and B = M, there exists
A € X* such that Ax, and A(M) are disjoint. Thus A(M) is a proper
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subspace of the scalar field. This forces A(M) = {0} and Ax, # 0. The
desired functional is obtained by dividing A by Ax,. 111/

Remark. This theorem is the basis of a standard method of treating
certain approximation problems: In order to prove that an x, € X lies
in the closure of some subspace M of X it suffices (if X is locally
convex) to show that Ax, = 0 for every continuous linear functional
A on X that vanishes on M.

3.6 Theorem Iffis a continuous linear functional on a subspace M of a
locally convex space X, then there exists A € X* such that A = fon M.

Remark. For normed spaces this is an immediate corollary of
Theorem 3.3. The general case could also be obtained from 3.3, by
relating the continuity of linear functionals to seminorms (see Exercise
8, Chapter 1). The proof given below shows that Theorem 3.6 depends
only on the separation property of Theorem 3.5.

PROOF. Assume, without loss of generality, that f is not identically O
on M. Put

My, ={xeM: f(x) =0}

and pick x, € M such that f(x;) = 1. Since f'is continuous, X, is not in
the M-closure of M,, and since M inherits its topology from X, it
follows that x, is not in the X -closure of M, .

Theorem 3.5 therefore assures the existence of a A € X* such
that Ax,=1and A =0 on M,.

If x e M, then x — f(x)x, € M, since f(x,) = 1. Hence

Ax — f(x) = Ax — f(x)Axg = A(x — f(x)x,) = 0.
Thus A = fon M. //1/

We conclude this discussion with another useful corollary of the
separation theorem.

3.7 Theorem Suppose B is a convex, balanced, closed set in a locally
convex space X, x5, € X, but x, ¢ B. Then there exists A € X* such that
|Ax| < 1 for all x € B, but Axy, > 1.

PROOF. Since B is closed and convex, we can apply (b) of Theorem 3.4,
with 4 = {x,}, to obtain A; € X* such that A;x, = re” lies outside
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the closure K of A,(B). Since B is balanced, so is K. Hence there
exists s, 0 <s<r, so that |z| <s for all ze K. The functional
A = s e A, has the desired properties. ////

Weak Topologies

3.8 Topological preliminaries The purpose of this section is to explain
and illustrate some of the phenomena that occur when a set is topologized
in several ways.

Let 7, and 7, be two topologies on a set X, and assume 7, < 7,; that
is, every 7,-open set is also 7,-open. Then we say that 7, is weaker than 7, ,
or that 7, is stronger than 7,. [ Note that (in accordance with the meaning of
the inclusion symbol <) the terms “weaker” and “stronger” do not
exclude equality.] In this situation, the identity mapping on X is continuous
from (X, 7,) to (X, 7,) and is an open mapping from (X, 7,) to (X, 1,).

As a first illustration, let us prove that the topology of a compact
Hausdorff space has a certain rigidity, in the sense that it cannot be
weakened without losing the Hausdorff separation axiom and cannot be
strengthened without losing compactness:

(@ If 1, = 1, are topologies on a set X, if 1, is a Hausdorff topology, and if
T, is compact, thent, = 1, .

To see this, let F < X be 7,-closed. Since X is 7,-compact, so is F.
Since 17, < 1,, it follows that F is 7,-compact. (Every 7,-open cover of F is
also a 7,-open cover.) Since 7, is a Hausdorff topology, it follows that F is
7,-closed.

As another illustration, consider the quotient topology 7, of X/N, as
defined in Section 1.40, and the quotient map n: X -» X/N. By its very
definition, 7, is the strongest topology on X/N that makes n continuous,
and it is the weakest one that makes = an open mapping. Explicitly, if 7'
and 7" are topologies on X/N, and if n is continuous relative to 7" and open
relative to 7, then 7" = 1y = 7.

Suppose next that X is a set and % is a nonempty family of mappings
f: X - Y,, where each Y, is a topological space. (In many important cases,
Y, is the same for all fe #.) Let © be the collection of all unions of finite
intersections of sets f~'(V), with fe % and V open in Y,. Then 7 is a
topology on X, and it is in fact the weakest topology on X that makes every
fe # continuous: If 77 is any other topology with that property, then
1 < 7. This 7 is called the weak topology on X induced by %, or, more
succinctly, the % -topology of X.

The best-known example of this situation is undoubtedly the usual
way in which one topologizes the cartesian product X of a collection of
topological spaces X, . If n,(x) denotes the ath coordinate of a point x € X,
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then n, maps X onto X, and the product topology t of X is, by definition,
its {n,}-topology, the weakest one that makes every =, continuous. Assume
now that every X, is a compact Hausdorff space. Then 1 is a compact topol-
ogy on X (by Tychonoff’s theorem), and proposition (a) implies that t
cannot be strengthened without spoiling Tychonoff’s theorem.

In the last sentence a special case of the following proposition was
tacitly used:

(b) If # is a family of mappings f: X — Y, , where X is a set and each Y, is
a Hausdorff space, and if & separates points on X, then the & -topology
of X is a Hausdorff topology.

For if p # q are points of X, then f(p) # f(q) for some fe % ; the
points f(p) and f(g) have disjoint neighborhoods in Y, whose inverse images
under f are open (by definition) and disjoint.

Here is an application of these ideas to a metrization theorem.

(c) If X is a compact topological space and if some sequence {f,} of contin-
uous real-valued functions separates points on X, then X is metrizable.

Let 7 be the given topology of X. Suppose, without loss of generality,
that | f,| <1 for all n, and let 7, be the topology induced on X by the
metric

dip,q) = Y 27" fi(p) —f@)|.
n=1

This is indeed a metric, since {f,} separates points. Since each f, is
7-continuous and the series converges uniformly on X X X, d is a
7-continuous function on X x X. The balls

B(p)={qeX:d(p, q) <r}

are therefore t-open. Thus 7, = 7. Since 7, is induced by a metric, 7, is a
Hausdorff topology, and now (a) implies that 7 = 1.
The following lemma has applications in the study of vector topol-

ogies. In fact, the case n =1 was needed (and proved) at the end of
Theorem 3.6.

39 Lemma Suppose A,,..., A, and A are linear functionals on a vector
space X. Let

N={x:Ax=-=A,x=0}

T he following three properties are then equivalent :

(@) There are scalars a, ..., a, such that

/\=al/\l +"'+a,,/\,,.
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(b)

(c)
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There exists y < oo such that

|Ax| <y max | A; x| (x € X).

l1<i<n

Ax = 0 for every x € N.

PROOF. It is clear that (a) implies (b) and that (b) implies (c). Assume (c)
holds. Let @ be the scalar field. Define n: X —» ®" by

n(x) = (Ax, ..., A, X).

If n(x) = w(x'), then (¢) implies Ax = Ax’. Hence f(n(x)) = Ax defines a
linear functional f on n(X). Extend f to a linear functional F on ®"
This means that there exist a; € ® such that

F(ulﬁ**'ﬁ un):alul + +anun‘

Thus
Ax = F(n(x)) = F(A;x, ..., A,x) = ) o; A; X,
i=1

which is (a). 1]/

3.10 Theorem Suppose X is a vector space and X' is a separating vector
space of linear functionals on X. Then the X'-topology 1" makes X into a
locally convex space whose dual space is X'.

The assumptions on X' are, more explicitly, that X’ is closed under

addition and scalar multiplication and that Ax, # Ax, for some A € X’
whenever x; and x, are distinct points of X.

PROOF. Since R and ¢ are Hausdorff spaces, (b) of Section 3.8 shows
that 7' is a Hausdorff topology. The linearity of the members of X’

shows that 7’ is translation-invariant. If A, ..., A, € X', if r, > 0, and
if
(1) V ={x:|Ax|<r, for 1<i<n},

then V is convex, balanced, and V e t’. In fact, the collection of all V
of the form (1) is a local base for 7". Thus 7’ is a locally convex topol-
ogy on X.

If (1) holds, then 3V + 3V = V. This proves that addition is
continuous. Suppose x € X and a is a scalar. Then x € sV for some
s>0.If| f—a|<rand y — x e rV then

By —ax =(f —a)y + aly — x)
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lies in V, provided that r is so small that
ris +r)+ |a|r <l.

Hence scalar multiplication is continuous.

We have now proved that 7’ is a locally convex vector topology.
Every A € X' is 7'-continuous. Conversely, suppose A is a t'-con-
tinuous linear functional on X. Then |Ax| < 1 for all x in some set V
of the form (1). Condition (b) of Lemma 3.9 therefore holds; hence so
does (@): A =) ao;A;. Since A; € X' and X' is a vector space, A € X'.
This completes the proof. /1]

Note: The first part of this proof could have been based on Theorem
1.37 and the separating family of seminorms p,(A € X’) given by pA(x) =
|Ax].

3.11 The weak topology of a topological vector space Suppose X is
a topological vector space (with topology t) whose dual X * separates points
on X. (We know that this happens in every locally convex X. It also
happens in some others; see Exercise 5.) The X*-topology of X is called the
weak topology of X .

We shall let X, denote X topologized by this weak topology 7, .
Theorem 3.10 implies that X, is a locally convex space whose dual is
also X*.

Since every A € X* is 7-continuous and since 7, is the weakest topol-
ogy on X with that property, we have 7, = 7. In this context, the given
topology t will often be called the original topology of X.

Self-explanatory expressions such as original neighborhood, weak
neighborhood, original closure, weak closure, originally bounded, weakly
bounded, etc., will be used to make it clear with respect to which topology
these terms are to be understood.’

For instance, let {x,} be a sequence in X. To say that x, — 0 originally
means that every original neighborhood of 0 contains all x, with sufficiently
large n. To say that x, - 0 weakly means that every weak neighborhood of
0 contains all x, with sufficiently large n. Since every weak neighborhood of

' When X is a Fréchet space (hence, in particular, when X is a Banach space) the original
topology of X is usually called its sirong iopology. In that context, the terms “strong” and
“strongly” will be used in place of “original” and “originally.” For locally convex spaces in
general, the term “strong topology ” has been given a specific technical meaning. See [15], pp.
256-258; also [14], p. 169. It seems therefore advisable to use “original ” in the present general
discussion.
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0 contains a neighborhood of the form
(1) V={x:|A;x|<r, for 1<i<n},

where A; € X* and r; > 0, it is easy to see that x, - O weakly if and only if
Ax, -» 0 for every A € X*.

Hence every originally convergent sequence converges weakly. (The
converse is usually false; see Exercises 5 and 6.)

Similarly, a set E = X is weakly bounded (that is, E is a bounded
subset of X ) if and only if every V as in (1) contains tE for some
t = t(V) > 0. This happens if and only if there corresponds to each A € X*
a number P(A) < oo such that | Ax| < y(A) for every x € E. In other words,
a set E = X is weakly bounded if and only if every A € X* is a bounded
function on E.

Let V again be as in (1), and put

N={x:A;x=-=A,x=0}

Since x - (A;x, ..., A,x) maps X into ¢ with null space N, we see
that dim X <n + dim N. Since N < V, this leads to the following conclu-
sion.

If X is infinite-dimensional then every weak neighborhood of 0 contains
an infinite-dimensional subspace; hence X, is not locally bounded.

This implies in many cases that the weak topology is strictly weaker
than the original one. Of course, the two may coincide: Theorem 3.10
implies that (X ,),, = X, .

We now come to a more interesting result.

3.12 Theorem Suppose E is a convex subset of a locally convex space X.
Then the weak closure E,, of E is equal to its original closure E.

PROOF. E, is weakly closed, hence originally closed, so that E c E,,.
To obtain the opposite inclusion, choose x, € X, x, ¢ E. Part (b) of
the separation theorem 3.4 shows that there exist A € X* and y e R
such that, for every x € E,

Re Ax, <y < Re Ax.

The set {x: Re Ax <y} is therefore a weak neighborhood of x, that
does not intersect E. Thus x, is not in E, . This proves E, = E. /1]

Corollaries. For convex subsets of a locally convex space,

(@) originally closed equals weakly closed, and
(b) originally dense equals weakly dense.
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The proofs are obvious. Here is another noteworthy consequence of
Theorem 3.12.

3.13 Theorem Suppose X is a metrizable locally convex space. If {x,} is
a sequence in X that converges weakly to some x € X, then there is a
sequence {y;} in X such that

(@) each y;is a convex combination of finitely many x,, and
(b) y; — x originally.

Conclusion (a) says, more explicitly, that there exist numbers a;, > 0,
such that

Vo) Vo)
Zainzl’ Yi = Zainxn’
n=1 n=1]

and, for each i, only finitely many «;, are #0.

PROOF. Let H be the convex hull of the set of all x,; let K be the weak
closure of H. Then x € K. By Theorem 3.12, x is also in the original
closure of H. Since the original topology of X 1is assumed to be
metrizable, it follows that there is a sequence {y;} in H that converges
originally to x. /1]

To get a feeling for what is involved here, consider the following
example.

Let K be a compact Hausdorff space (the unit interval on the real line
is a sufficiently interesting one), and assume that fandf, (n =1, 2, 3,...) are
continuous complex functions on K such that f (x) — f(x) for every x € K,
as n— oo, and such that | f(x)| < 1 for all n and all x € K. Theorem 3.13
asserts that there are convex combinations of the f, that converge uniformly
to f.

To see this, let C(K) be the Banach space of all complex continuous
functions on K, normed by the supremum. Then strong convergence is the
same as uniform convergence on K. If u is any complex Borel measure
on K, Lebesgue’s dominated convergence theorem implies that | f, du —
| fdu. Hence f, —>f weakly, by the Riesz representation theorem which
identifies the dual of C(K) with the space of all regular complex Borel mea-
sures on K. Now Theorem 3.13 can be applied.

After this short detour we now return to our main line of develop-
ment.

3.14 The weak*-topology of a dual space Let X again be a topologi-
cal vector space whose dual is X*. For the definitions that follow, it is
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irrelevant whether X* separates points on X or not. The important obser-

vation to make is that every x € X induces a linear functional f, on X*,
defined by

A = Ax,

and that { f,: x € X} separates points on X*.

The linearity of each f, is obvious; if f, A =f A’ for all x € X, then
Ax = A'x for all x, and so A = A’ by the very definition of what it means
for two functions to be equal.

We are now in the situation described by Theorem 3.10, with X* in
place of X and with X in place of X"

The X-topology of X* 1is called the weak*-topology of X*
(pronunciation: weak star topology).

Theorem 3.10 implies that this is a locally convex vector topology on
X* and that every linear functional on X* that is weak*-continuous has the
form A — Ax for some x € X.

The weak*-topologies have a very important compactness property to
which we now turn our attention. Various pathological features of the
weak- and weak*-topologies are described in Exercises 9 and 10.

Compact Convex Sets

3.15 The Banach-Alaoglu theorem If V is a neighborhood of 0 in a
topological vector space X and if

K={AeX* |Ax|<1 forevery xe V}

then K is weak*-compact.

Note: K 1s sometimes called the polar of V. It is clear that K is
convex and balanced, because this is true of the unit disc in € (and of the
interval [ —1, 1] in R). There is some redundancy in the definition of K,
since every linear functional on X that is bounded on V is continuous,
hence 1s in X*.

PROOF. Since neighborhoods of 0 are absorbing, there corresponds to
each x € X a number y(x) < oo such that x € y(x)V. Hence

(1) | Ax | < y(x) (x e X, A € K).

Let D, be the set of all scalars a such that |a| < y(x). Let t be the
product topology on P, the cartesian product of all D, , one for each
x € X. Since each D, is compact, so is P, by Tychonoff’s theorem. The
elements of P are the functionsf on X (linear or not) that satisfy

(2) | fX)<yx)  (xeX)
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Thus K = X* n P. It follows that K inherits two topologies:
one from X* (its weak*-topology, to which the conclusion of the
theorem refers) and the other, 7, from P. We will see that

(@) these two topologies coincide on K, and
(b) K is a closed subset of P.

Since P is compact, (b) implies that K is 7-compact, and then (a)
implies that K is weak*-compact.
Fix some A, € K. Choose x; € X, for 1 <i < n; choose ¢ > 0.

Put
(3) Wi={AeX* |Ax; — Apgx; | <6 for 1<i<n}
and
4) W,={feP:|f(x;) — Aox;| <8 for 1<i<nj.

Let n, x;, and § range over all admissible values. The resulting sets W,
then form a local base for the weak*-topology of X* at A, and the
sets W, form a local base for the product topology 7 of P at A, . Since
K < P n X*, we have

W, n K=W, nK.

This proves (a).

Next, suppose f, is in the t-closure of K. Choose x € X, y € X,
scalars @ and f, and ¢ > 0. The set of all fe Psuch that | f~f, | < ¢
at x, at y, and at ax + By is a t-neighborhood of f,. Therefore K
contains such an f. Since this f'is linear, we have

folox + By) — afo(x) — Bfo(y)

= (fo —f)ox + By) + a(f —foXx) + B(f — o)),
so that

| foex + By) — afo(x) — Blo(W)| < (1 + |l +[B])e.

Since ¢ was arbitrary, we see that f, is linear. Finally, if x € V and
¢ > 0, the same argument shows that there is an fe K such that
| f(x) — fo(x)] < e Since | f(x)| <1, by the definition of K, it follows
that | f,(x)| < 1. We conclude that f, € K. This proves (b) and hence
the theorem. /1]

When X is separable (i.e., when there is a countable dense set in X),
then the conclusion of the Banach-Alaoglu theorem can be strengthened by
combining it with the following fact:
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3.16 Theorem If X is a separable topological vector space, if K < X*,
and if K is weak*-compact, then K is metrizable, in the weak*-topology.

Warning: 1t does not follow that X* itself is metrizable in its weak*-
topology. In fact, this is false whenever X is an infinite-dimensional Banach
space. See Exercise 135.

PROOF. Let {x,} be a countable dense set in X. Put f,(A) = Ax,, for
A € X*. Each f, is weak*-continuous, by the definition of the weak*-
topology. If f(A) = f,(A’) for all n, then Ax, = A'x, for all n, which
implies that A = A’, since both are continuous on X and coincide on
a dense set.

Thus {f,} is a countable family of continuous functions that
separates points on X*. The metrizability of K now follows from (c) of
Section 3.8. ////

317 Theorem If V is a neighborhood of 0 in a separable topological
vector space X, and if {A,} is a sequence in X* such that

A, x| <1 (xeV,n=1,2,3,..),
then there is a subsequence {A,_} and there is a A € X* such that

Ax = lim A, x (x € X).

i— oo

In other words, the polar of V is sequentially compact in the weak*-
topology.

PROOF. Combine Theorems 3.15 and 3.16. /1]

The next application of the Banach-Alaoglu theorem involves the
Hahn-Banach theorem and a category argument.

3.18 Theorem In a locally convex space X, every weakly bounded set is
originally bounded, and vice versa.

Part (d) of Exercise S shows that the local convexity of X cannot be
omitted from the hypotheses.

PROOF. Since every weak neighborhood of 0 in X is an original neigh-
borhood of O, it is obvious from the definition of “bounded” that
every originally bounded subset of X is weakly bounded. The con-
verse 1s the nontrivial part of the theorem.
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Suppose E = X is weakly bounded and U is an original neigh-
borhood of 0 in X.

Since X i1s locally convex, there is a convex, balanced, original
neighborhood V of 0 in X such that V< U. Let K = X* be the polar

of V:

(1) K={Ae X*:|Ax| <1 forall xeV}.
We claim that

2) V={xe X:|Ax| <1 forall A eK}.

It is clear that V is a subset of the right side of (2) and hence so is ¥,
since the right side of (2) is closed. Suppose x, € X but x, ¢ V
Theorem 3.7 (with Vin place of B) then shows that Ax, > 1 for some
A € K. This proves (2).

Since E is weakly bounded, there corresponds to each A € X* a
number y(A) < oo such that

(3) |Ax] <¥(A)  (x € E).

Since K is convex and weak*-compact (Theorem 3.15) and since the
functions A — Ax are weak*-continuous, we can apply Theorem 2.9
(with X* in place of X and the scalar field in place of Y) to conclude
from (3) that there 1s a constant y < oo such that

4) |Ax| <y (x € E, A € K).

Now (2) and (4) show that y " !x e V<= U for all x € E. Since V is
balanced,

(5) EctVectU (t > 7).

Thus E is originally bounded. 1]/

Corollary. If X is a normed space, if E = X, and if
(6) sup |Ax| < o0 (A € X*)

xe E

then there exists y < oo such that

(7) x|l <y (x € E).

PROOF. Normed spaces are locally convex; (6) says that E is weakly
bounded, and (7) says that E is originally bounded. //]/

We now turn to the question: What can one say about the convex
hull H of a compact set K? Even in a Hilbert space, H need not be closed,
and there are situations in which H is not compact (Exercises 20, 22). In
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Fréchet spaces the latter pathology does not occur (Theorem 3.20). The
proof of this will depend on the fact that a subset of a complete metric

space 1s compact if and only if it 1s closed and totally bounded (Appendix
A4).

3.19 Definitions (a) If X is a vector space and E < X, the convex hull
of E will be denoted by co(E). Recall that co(E) is the intersection of all
convex subsets of X which contain E. Equivalently, co(E) is the set of all
finite convex combinations of members of E.

(b) If X is a topological vector space and E < X, the closed convex
hull of E, written co(E), is the closure of co(E).

(c) A subset E of a metric space X is said to be totally bounded if E
lies in the union of finitely many open balls of radius ¢, for every ¢ > 0.

The same concept can be defined in any topological vector space,
metrizable or not:

(d) A set E in a topological vector space X is said to be totally
bounded if to every neighborhood V of 0 in X corresponds a finite set F
such that Ec F + V.

If X happens to be a metrizable topological vector space, then these
two notions of total boundedness coincide, provided we restrict ourselves to
invariant metrics that are compatible with the topology of X. (The proof of
this 1s as in Section 1.25.)

3.20 Theorem

(@) If Ay, ..., A, are compact convex sets in a topological vector space X,
then co(A, v - U A,) is compact.

(b) If X is a locally convex topological vector space and E < X is totally
bounded, then co(E) is totally bounded.

(¢) If X is a Frechet space and K < X is compact, then co(K) is compact.
(d) If K is a compact set in R", then co(K) is compact.

PROOF. (a) Let S be the simplex in R" consisting of all s = (s, ..., S»)
with §5,>0, s, +---+s,=1. Put A=A4, x--- x A,. Define
f: SxA- X by

(1) f(s,a) =510, + - + 5,4,

and put K = (S x A).
It is clear that K is compact and that K < co(4; u --- U A4,)
We will see that this inclusion is actually an equality.
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If (s, a) and (t, b)) are in S x A and if x>0, >0, a + f =1,
then

2) af (s, a) + Bf (t, b) = f(u, ¢),
where u = as + Bt € S and ¢ € A4, because

OCS,- a; + ﬁtibi
= €
as; + Pt;

(3) C; A; (1 <i<n)
This shows that K is convex. Since A; = K for each i [take 5; =1 in
(1), s; =0 for j #i], the convexity of K implies that co(4, u --- U
A,) < K. This proves (a).

(b) Let U be a neighborhood of 0 in X. Choose a convex neigh-
borhood V of 0 in X such that V + V < U. Then Ec F + V for

some finite set F < X. Hence E < co(F) 4+ V. The latter set is convex.
It follows that

(4) co(E) < co(F) + V.

But co(F) 1s compact [a special case of (a)], and therefore co(F) <
F, + V for some finite set F; = X. Thus

(5) coE)c F,+V+VcF, +U.

Since U was arbitrary, co(E) is totally bounded.

(c) Closures of totally bounded sets are totally bounded in every
metric space, and hence are compact in every complete metric space
(Appendix A4). So if K is compact in a Fréchet space, then K is obvi-
ously totally bounded; hence co(K) is totally bounded, by (b), and
therefore co(K) is compact.

(d) Let S be the simplex in R"*! consisting of all t = (¢, ...,
t,~1) With t; >0 and ) t; = 1. Let K be compact, K = R". By the
proposition that follows, x € co(K) if and only if

(6) X=0X1 + "+ 1 X+

for some t € Sand x; € K (1 <i <n + 1). In other words, co(K) is the
image of S x K"*! under the continuous mapping

(7) (L X5 ooy X)) 2 L1 X+ L1 X gy

Hence co(K) is compact. /]

Proposition. If E < R" and x € co(E), then x lies in the convex hull of
some subset of E which contains at most n + 1 points.

PROOF. It is enough to show that if k >n and x=)*"'¢,x; is a
convex combination of some k + 1 vectors x; € R", then x is actually a
convex combination of some k of these vectors.
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Assume, with no loss of generality, that t; >0 for 1 <i<k + 1.
The null space of the linear map

k+1 k+1
(8) (als”*:ak+l)_)(zl:aixi: Zl:ai):
which sends R**! into R" x R, has positive dimension, since k > n.
Hence there exists (ay, ..., a4 ), With some a; # 0, so that ) a;x; =0
and ) a,=0. Since t; > 0 for all i, there is a constant A such that
|Aa;| <t for all i and Aq; = t; for at least one j. Setting ¢, = t; — Aa;,
we conclude that x = ) ¢;x; and that at least one c; is 0; note also
that ) ¢, =) t; =1 and that ¢; > 0 for all i. /1]/

The following analogue of part (b) of the separation theorem 3.4 will
be used in the proof of the Krein-Milman theorem.

3.21 Theorem Suppose X is a topological vector space on which X*
separates points. Suppose A and B are disjoint, nonempty, compact, convex
sets in X. Then there exists A € X* such that

(1) sup Re Ax < inf Re Ay.

xe A yeB

Note that part of the hypothesis is weaker than in (b) of Theorem 3.4
(since local convexity of X implies that X* separates points on X); to make
up for this, it is now assumed that both 4 and B are compact.

PROOF. Let X, be X with its weak topology. The sets 4 and B are
evidently compact in X, . They are also closed in X, (because X, is a
Hausdorff space). Since X, is locally convex, (b) of Theorem 3.4 can
be applied to X, in place of X ; it gives us a A € (X, )* that satisfies
(1). But we saw in Section 3.11 (as a consequence of Theorem 3.10)
that (X )* = X*. ////

3.22 Extreme points Let K be a subset of a vector space X. A non-
empty set S < K is called an extreme set of K if no point of S i1s an internal
point of any line interval whose end points are in K, except when both end
points are in S. Analytically, the condition can be expressed as follows: If
xeK,yeK,0<t<1,and

(1 —t)x +tyes,

then x e Sand y € §S.

The extreme points of K are the extreme sets that consist of just one
point.

The set of all extreme points of K will be denoted by E(K).
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The following two theorems show that under certain conditions E(K)
1s quite a large set.

3.23 The Krein-Milman theorem Suppose X is a topological vector
space on which X* separates points. If K is a nonempty compact convex set in

X, then K is the closed convex hull of the set of its extreme points.
In symbols, K = co(E(K)).

PROOF. Let 2 be the collection of all compact extreme sets of K. Since
K e 2, ? # (§. We shall use the following two properties of 2:

(@) The intersection S of any nonempty subcollection of P is a member
of P, unless S = (3.

b) IfS e P, Ae X* uisthe maximum of Re A on S, and
Sa = {x e S: Re Ax = u},
then S, € 2.

The proof of (@) is immediate. To prove (b), suppose tx +
(1—-ty=zeS,,xeK,yeK,0<t<1.8Sinceze S and S € 2, we
have x e Sand y € S. Hence Re Ax <y, Re Ay < u. Since Re Az = pu
and A is linear, we conclude: Re Ax = u = Re Ay. Hence x € §, and
y € S, . This proves (b).

Choose some S € 2. Let 2’ be the collection of all members of
2 that are subsets of S. Since S € 2, 2’ is not empty. Partially order
2’ by set inclusion, let Q be a maximal totally ordered subcollection
of ', and let M be the intersection of all members of Q. Since Q is
a collection of compact sets with the finite intersection property,
M # 5. By (a), M € 2’. The maximality of Q2 implies that no proper
subset of M belongs to 2. It now follows from (b) that every A € X*
1s constant on M. Since X* separates points on X, M has only one
point. Therefore M is an extreme point of K.

We have now proved that

(1) EK)YnS#

for every S € 2. In other words, every compact extreme set of K con-
tains on extreme point of K.

Since K i1s compact and convex (the assumed convexity of K will
now be used for the first time), we have

2) co(E(K)) = K

and this shows that ¢o(E(K)) 1s compact.

Assume, to reach a contradiction, that some x, € K is not
in co(E(K)). Theorem 3.21 furnishes then a A € X* such that
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Re Ax < Re Ax, for every x € co(E(K)). If K, 1s defined as in (b), then
K, € 2. Our choice of A shows that K, 1s disjoint from co(E(K)), and
this contradicts (1). ////

Remark. The convexity of K was used only to show that co(E(K)) is
compact. If X were assumed to be locally convex, the compactness of
co(E(K)) would not be needed, since one could use (b) of Theorem 3.4
in place of Theorem 3.21. The above argument proves then that K <
co(E(K)). The following version of the Krein-Milman theorem is thus
obtained:

3.24 Theorem If K is a compact subset of a locally convex space then
K < Co(E(K)).

Equivalently, co(K) = co(E(K)).
It may happen in this situation that co(K) has extreme points which

are not in K. (See Exercise 33.) The next theorem shows that this pathology

cannot occur if co(K) is compact. Therefore it occurs in no Fréchet space,
by (c) of Theorem 3.20.

3.25 Milman’s theorem If K is a compact set in a locally convex space
X, and if co(K) is also compact, then every extreme point of co(K) lies in K.

PROOF. Assume that some extreme point p of co(K) is not in K. Then
there is a convex balanced neighborhood V of 0 in X such that

(1) (p+V)nK=0.
Choose xj, ..., x,;in K so that K = ( J] (x; + V). Each set
@) A=cKn(+V) (<i<n)

is convex and also compact, since 4; < co(K). Also, K < 4; u -+ U
A,. Part (a) of Theorem 3.20 shows therefore that

(3) co(K)cco(A, v U Ad)=co(A, U U A,

But the opposite inclusion holds also, because 4; <= co(K) for each i.
Thus

4) co(K)=co(A; v -+~ U A).

In particular, p = t,y, + - + tyyn, Where each y; lies in some
A;,each t;is positive, and )_ t; = 1. The grouping

Y2+ " +INYN
t2++tN

(3) p=t1y1 +(1 —1t,)
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exhibits p as a convex combination of two points of ¢o(K), by (4).
Since p 1s an extreme point of ¢o(K), we conclude from (5) that y, = p.
Thus, for some i,

(6) peA;cx,+ Ve K+ V,

which contradicts (1). [Note that 4, = x; + V, by (2), because V is
convex. | /1]

Vector-Valued Integration

Sometimes it is desirable to be able to integrate functions f that are defined
on some measure space Q (with a real or complex measure p) and whose
values lie in some topological vector space X. The first problem is to associ-
ate with these data a vector in X that deserves to be called

ffdu,
Q

1.e., which has at least some of the properties that integrals usually have.
For instance, the equation

Agfdu)=j(/\f)du
Q Q

ought to hold for every A € X*, because it does hold for sums, and because
integrals are (or ought to be) limits of sums in some sense or other. In fact,
our definition will be based on this single requirement.

Many other approaches to vector-valued integration have been
studied in great detail; in some of these, the integrals are defined more
directly as limits of sums (see Exercise 23).

3.26 Definition Suppose p is a measure on a measure space Q, X is a
topological vector space on which X* separates points, and f is a function
from Q into X such that the scalar functions Af are integrable with respect
to u, for every A € X*; note that Af is defined by

(1) (Af)g) = A(f(@)  (g€0)

If there exists a vector y € X such that

(2) Ay = f(/\f ) dp
0

for every A € X*, then we define

3) jfdu=y-
Q
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Remarks. It is clear that there is at most one such y, because X*
separates points on X. Thus there is no uniqueness problem.

Existence will be proved only in the rather special case (sufficient
for many applications) in which Q is compact and f is continuous. In
that case, f(Q) is compact, and the only other requirement that will be
imposed is that the closed convex hull of f(Q) should be compact. By
Theorem 3.20, this additional requirement is automatically satisfied
when X is a Fréchet space.

Recall that a Borel measure on a compact (or locally compact) Haus-
dorff space Q is a measure defined on the o-algebra of all Borel sets in Q;
this is the smallest o-algebra that contains all open subsets of Q. A probabil-
ity measure is a positive measure of total mass 1.

3.27 Theorem Suppose

(@) X is atopological vector space on which X* separates points, and
(b) wis a Borel probability measure on a compact Hausdorff space Q.

If f: Q0 — X is continuous and if co(f(Q)) is compact in X, then the
integral

(1) y=ffdu
Q

exists, in the sense of Definition 3.26.
Moreover, y € co(f(Q)).

Remark. If v is any positive Borel measure on Q, then some scalar
multiple of v is a probability measure. The theorem therefore holds
(except for its last sentence) with v in place of u. It can then be
extended to real-valued Borel measures (by the Jordan decomposition
theorem) and (if the scalar field of X is ) to complex ones.

Exercise 24 gives another generalization.

PROOF. Regard X as a real vector space. Put H = co(f(Q)). We have
to prove that there exists y € H such that

(2) Ay = L(Af ) dyt

for every A € X*.

Let L = {A,, ..., A,} be a finite subset of X*. Let E, be the set
of all y € H that satisfy (2) for every A € L. Each E; is closed (by the
continuity of A) and is therefore compact, since H is compact. If no E;



CHAPTER 3: CONVEXITY 19

is empty, the collection of all E; has the finite intersection property.
The intersection of all E, is therefore not empty, and any y in it
satisfies (2) for every A € X*. It is therefore enough to prove E, # J.

Regard L = (A,, ..., A,) as a mapping from X into R", and put
K = L(f(Q)). Define

(3) mi=f(/\,-f)du (1 <i<n)
Q

We claim that the point m = (m,, ..., m,) lies in the convex hull of K.

Ift =(t,, ..., t,) € R" is not in this hull, then [by Theorem 3.20
and (b) of Theorem 3.4 and the known form of the linear functionals
on R"] there are real numbers c,, ..., ¢, such that

(4) Z C;u; < Z Ci ti
i=1 i=1
if u=(u;,...,u, € K. Hence
() Y ahifl@< )Yt (geQ)
i=1 i=1

Since u 1s a probability measure, integration of the left side of (5) gives
Y eim; <Y c;t;. Thus t #m.

This shows that m lies in the convex hull of K. Since
K = L(f(Q)) and L is linear, it follows that m = Ly for some y in the
convex hull H of f(Q). For this y we have

(6) /\,-y=ms=f(/\,-f) dp (1 <i<n)
0

Hence y € E, . This completes the proof. /1]

3.28 Theorem Suppose

(@) X is a topological vector space on which X* separates points,
(b) Q is a compact subset of X, and

the closed convex hull H of Q is compact.

Then y € H if and only if there is a regular Borel probability measure u

on Q such that

y = J x du(x).
Q

Remarks. The integral is to be understood as in Definition 3.26, with

f(x) = x.
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Recall that a positive Borel measure on Q is said to be regular if
(2 #(E} = sup {u(K): K < E} = inf {§(G): E = G}

for every Borel set E <= Q, where K ranges over the compact subsets
of £ and G ranges over the open supersets of E.

The integral (1) represents every y € H as a “ weighted average ”
of O, or as the “center of mass” of a certain unit mass distributed
over Q.

We stress once more that (¢) follows from (b) if X is a Fréchet
space.

PROOF. Regard X again as a real vector space. Let C(Q) be the Banach
space of all real continuous functions on Q, with the supremum norm.
The Riesz representation theorem identifies the dual space C(Q)* with
the space of all real Borel measures on Q that are differences of
regular positive ones. With this identification in mind, we define a

mapping

(3) ¢: C(Q)* - X

by

(4) d(n) = f x dp(x).
Q

Let P be the set of all regular Borel probability measures on Q.

The theorem asserts that ¢(P) = H.
For each x € Q, the unit mass 4, concentrated at x belongs to P.
Since @(d,) = x, we see that Q < ¢(P). Since ¢ is linear and P 1s
convex, it follows that H < ¢(P), where H is the convex hull of Q. By
Theorem 3.27, ¢(P) = H. Therefore all that remains to be done is to
show that ¢(P) is closed in X.
This is a consequence of the following two facts:

(i) P is weak*-compact in C(Q)*.

(ii) The mapping ¢ defined by (4) is continuous if C(Q)* is given its
weak*-topology and if X is given its weak topology.

Once we have (i) and (ii), it follows that ¢(P) is weakly compact,
hence weakly closed, and since weakly closed sets are strongly closed,
we have the desired conclusion.

To prove (i), note that

() PC{y: fhdptslifilhl|<1}
Q

and that this larger set is weak*-compact, by the Banach-Alaoglu
theorem. It is therefore enough to show that P is weak*-closed.
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If h e C(Q)and h > 0, put

(6) E;§={Ju: Jhduzo}.
Q

Since p— [ hdy is continuous, by the definition of the weak*-
topology, each E, is weak*-closed. So is the set

(7) E={N:J1du=l},
Q

Since P is the intersection of E and the sets E,, P is weak*-closcd.

To prove (ii) it is enough to prove that ¢ is continuous at isie
origin, since ¢ is linear. Every weak neighborhood of 0 in X contains
a set of the form

(8) W={yeX:|Aiy|<r, for 1<i<n},
where A; € X* and r; > 0. The restrictions of the A; to Q lie in C(Q).

Hence
Q

is a weak*-neighborhood of 0 in C(Q)*. But

;
<r;, for lsisn?

) V= {# e C(Q)*:

(10) f/\i du = A,-(f X du(x)) = A; d(p),

Q Q
by Definition 3.26. It follows from (8), (9), and (10) that ¢(V) = W.
Hence ¢ is continuous. /1]

The following simple inequality sharpens the last assertion in the
statement of Theorem 3.27.

3.29 Theorem Suppose Q is a compact Hausdorff space, ¥ is a Banach
space, f : Q -» X is continuous, and u is a positive Borel measure it Q. Then

de,u“ sf|f| dy.
Q Q

PROOF. Put y = [ fdu. By the corollary to Thecrem 3.3, there is a
A € X* such that Ay = ||y|| and |Ax| < [ x| for all x € X. In particu-
lar,

IAf(S)] < LS9}
for all s € Q. By Theorem 3.27, it follows that

fa

lyl = Ay = é (Af) dp < J | 1 dp. /11
3 o

»/
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Holomorphic Functions

In the study of Banach algebras, as well as in some other contexts, it is
useful to enlarge the concept of holomorphic function from complex-valued
ones to vector-valued ones. (Of course, one can also generalize the domains,
by going from ¢ to ¢” and even beyond. But this is another story.) There
are at least two very natural definitions of “ holomorphic ” available in this
general setting, a “weak” one and a “strong” one. They turn out to define
the same class of functions if the values are assumed to lie in a Frechet
space.

3.30 Definition Let Q be an open set in ¢ and let X be a complex
topological vector space.

(@ A function f:Q-»> X is said to be weakly holomorphic in Q if Af is
holomorphic in the ordinary sense for every A € X*.

(b) A function f: Q-» X is said to be strongly holomorphic in Q if
o ) = 1)

W—2z

w—+2z

exists (in the topology of X) for every z € Q.

Note that the above quotient is the product of the scalar (w — z)~!
and the vector f(w) — f(z) in X.

The continuity of the functionals A that occur in (@) makes it obvious
that every strongly holomorphic function is weakly holomorphic. The con-
verse is true when X 1s a Fréchet space, but it is far from obvious. (Recall
that weakly convergent sequences may very well fail to converge originally.)
The Cauchy theorem will play an important role in this proof, as will
Theorem 3.18.

The index of a point z € ¢ with respect to a closed path I'" that does
not pass through z will be denoted by Indr (z). We recall that

1 d
Indr (2) = 5 LC—Cz'

All paths considered here and later are assumed to be piecewise contin-
uously differentiable, or at least rectifiable.

3.31 Theorem Let Q be open in €, let X be a complex Frechet space,
and assume that

f:Q--X

is weakly holomorphic. T he following conclusions hold :

(@) fis strongly continuous in Q.
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(b) The Cauchy theorem and the Cauchy formula hold: If I is a closed path
in Q such that Indy (w) = O for every w ¢ Q, then

(1) Jf(C) d{ =0,
r

and
1

(2) f(z)='i—.J(C—Z)”lf(C) d¢
ni e

if ze Qand Indr (z) = 1. IfI'; and I', are closed paths in Q such that
Indr1 (W) S Indr2 (W)

for every w ¢ Q, then

(3) f [ g =J f©) dL.
I'y I'2

(c) fis strongly holomorphic in Q.

The integrals in (b) are to be understood in the sense of Theorem 3.27.
Either one can regard d{ as a complex measure on the range of I' (a
compact subset of ), or one can parametrize I" and integrate with respect
to Lebesgue measure on a compact interval in R.

PROOF. (a) Assume 0 € Q. We shall prove that f is strongly contin-
uous at 0. Define

4 A ={zeC:|z|<r}

Then A,, = Q for some » > 0. Let I be the positively oriented bound-
ary of A,, .
Fix A € X*. Since Af is holomorphic,

AN — A0 1 [ (AN
(%) z - 2ni Jr ¢ —z) dt

if 0<|z|<2r. Let M(A) be the maximum of |Af| on A,,. If
0 <|z| <r,it follows that

(6) |27 ALS(2) = fO)]| <7 7' M(A).

The set of all quotients

(7) {f(z)_f(o):0<|z|s;}

A
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is therefore weakly bounded in X. By Theorem 3.18, this set is also
strongly bounded. Thus if V is any (strong) neighborhood of 0 in X,
there exists t < oo such that

(8) f(z)—f@©0) eztv O <|z| <r).

Consequently, f(z) — f(0) strongly, as z — 0. [It may be of some inter-
est to observe that the proof of (a) used only the local convexity of X.
Neither metrizability nor completeness has played a role so far.]

This was the crux of the matter. The rest is now almost auto-
matic.

(b) By (a) and Theorem 3.27, the integrals in (1) to (3) exist.
These three formulas are correct (by the theory of ordinary holo-
morphic functions) if f is replaced in them by Af, where A is any
member of X*. The formulas are therefore correct as stated, by Defi-
nition 3.26.

(c) Assume, as in the proof of (a), that A,, = Q, and choose I
as in (a). Define

1 _
©) y =5 J L2 dL.

i Jr
The Cauchy formula (2) shows, after a small computation, that

z) — (0 )
(10) Q=10 .o
Z
if 0~ 1z; - -». whero
N L

(11) g(z) = — § [2re®(2re’ — 2)]7" f(2re®) db.

4 i
A al -1

Let V be a convex balanced neighborhood of 0 in X. Put
K ={f():|¢(| =2r}. Then K is compact, so that K = tV. for some
t <oo.Ifs=tr ?and |z| <r, it follows that the integrand (11) lies in
sV for every 6. Thus g(z) € sVif |z| < r. The left side of (10) therefore
converges strongly to y, as z —» 0. /1]

The following extension of Liouville’s theorem concerning bounded

entire functions does not even depend on Theorem 3.31. It can be used in
the study of spectra in Banach algebras. (See Exercise 10, Chapter 10.)

3.32 Theorem Suppose X is a complex topological vector space on which
X* separates points. Suppose f: € —» X is weakly holomorphic and f(C) is a
weakly bounded subset of X. Then f is constant.
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PROOF. For every A € X*, Af is a bounded (complex-valued) entire
function. If z € ¢, it follows from Liouville’s theorem that

Af(2) = Af(0).

Since X* separates points on X, this implies f(z) = f(0), for every
z€(. /111

Part (d) of Exercise 5 describes a weakly bounded set which is not

originally bounded, in an F-space X on which X* separates points.
Compare with Theorem 3.18.

Exercises

1.

Call a set H < R" a hyperplane if there exist real numbers a,, ..., a,, ¢ (with
a; # 0 for at least one i) such that H consists of all points x = (x, ..., x,) that
satisfy > a;x; = c.

Suppose E is a convex set in R", with nonempty interior, and y is a
boundary point of E. Prove that there is a hyperplane H such that y € H and E
lies entirely on one side of H. (State the conclusion more precisely.) Suggestion :
Suppose 0 is an interior point of E, let M be the one-dimensional subspace that
contains y, and apply Theorem 3.2.

. Suppose I? = IZ([—1, 1]), with respect to Lebesgue measure. For each scalar «,

let E_ be the set of all continuous functions f on [—1, 1] such that f(0) = c.

Show that each E, is convex and that each is dense in I*. Thus E, and E, are

disjoint convex sets (if « # ) which cannot be separated by any continuous

linear functional A on I?. Hint: What is A(E_)?

Suppose X is a real vector space (without topology). Call a point x, € A — X an

internal point of A if A — x,1s an absorbing set.

(a) Suppose 4 and B are disjoint convex sets in X, and 4 has an internal point.
Prove that there is a nonconstant linear functional A on X such that
A(A) n A(B) contains at most one point. (The proof is similar to that of
Theorem 3.4.)

(b) Show (with X = R?, for example) that it may not be possible to have A(A4)
and A(B) disjoint, under the hypotheses of (a).

Let £ be the space of all real bounded functions x on the positive integers. Let
7 be the translation operator defined on /= by the equation

(tx)(n) = x(n + 1) m=123,...).

Prove that there exists a linear functional A on £® (called a Banach limit) such
that

(@) Atx = Ax, and

(b) lim inf x(n) < Ax < lim sup x(n)

n-—* o0 n-—+ o0

for every x € £*.
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Suggestion: Define

_X(1) + -+ x(n)
N n

A X

n

M ={xe{*: lim A ,x = Ax exists}

n-—+oC

p(x) = lim sup A, x

n-—*aoC

and apply Theorem 3.2.

For 0 < p < oo, let £? be the space of all functions x (real or complex, as the
case may be) on the positive integers, such that

s ]

Y |x(n)|P < oo.
n=1
For 1 < p < oo, define ||x||, = {}_ | x(n)|?}'/?, and define | x| ,, = sup, | x(n)].
(@ Assume 1 < p < oo, Prove that | x|, and || x|, make /” and /* into Banach
spaces. If p~! + g~ ! =1, prove that (£?)* = #9, in the following sense: There
is a one-to-one correspondence A < y between (£°)* and /4, given by

Ax =) x(n)y(n) (x € £P),

(b) Assume 1 < p < oo and prove that /? contains sequences that converge
weakly but not strongly.

() On the other hand, prove that every weakly convergent sequence in #! con-
verges strongly, in spite of the fact that the weak topology of ¢! is different
from its strong topology (which is induced by the norm).

(d) If 0 < p < 1, prove that /7, metrized by

d(x, y) =

n

| x(n) — y(n) |7,
i

i 8

is a locally bounded F-space which is not locally convex but that (£7)*
nevertheless separates points on #?. (Thus there are many convex open sets
in /P but not enough to form a base for its topology.) Show that (£?)* = £/*,
in the same sense as in (a). Show also that the set of all x with | x(n)| < 1 is
weakly bounded but not originally bounded.

(e) For 0 < p < 1, let 7, be the weak*-topology induced on /™ by £7; see (a) and
@. If 0 <p<r<1, show that 7, and 7, are different topologies (is one
weaker than the other?) but that they induce the same topology on each
norm-bounded subset of /*. Hint: The norm-closed unit ball of £* is
weak*-compact.

Put f(t)=e™ (—n <t <m); let I?=1I°(—=n, =), with respect to Lebesgue

measure. If 1 < p < oo, prove that f, -» 0 weakly in I?, but not strongly.

L*([0, 1]) has its norm topology (|| f ||, is the essential supremum of | /' |) and its

weak*-topology as the dual of I'. Show that C, the space of all continuous

functions on [0, 1], is dense in L* in one of these topologies but not in the
other. (Compare with the corollaries to Theorem 3.12.) Show the same with

“closed ” in place of “ dense.”
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Let C be the Banach space of all complex continuous functions on [0, 1], with
the supremum norm. Let B be the closed unit ball of C. Show that there exist
continuous linear functionals A on C for which A(B) is an open subset of the
complex plane; in particular, | A | attains no maximum on B.

. Let E < I?(—m=, =) be the set of all functions

Jom n(8) = €™ + me™,

where m, n are integers and 0 < m < n. Let E, be the set of all g € I? such that

some sequence in E converges weakly to g. (E; is called the weak sequential

closure of E.)

(@) Find all g € E,.

(b) Find all g in the weak closure E,, of E.

(c) Show that 0 € E,, but 0 is not in E, although O lies in the weak sequential
closure of E;.

This example shows that a weak sequential closure need not be weakly
sequentially closed. The passage from a set to its weak sequential closure is
therefore not a closure operation, in the sense in which that term is usually used
in topology. (See also Exercise 28.)

Represent £! as the space of all real functions x on S = {(m, n): m>1, n> 1},
such that

IxIly =5 | x(m, n)| < oo.

Let ¢, be the space of all real functions y on S such that y(m, n) - 0 as
m + n — oo, with norm | yll , = sup | y(m, n)|.

Let M be the subspace of #! consisting of all x € #! that satisfy the equa-
tions

Q0

mx(m, 1) = ) x(m, n) m=1,2,3,...).
n=2

(a) Prove that £ = (c,)*. (See also Exercise 24, Chapter 4.)

(b) Prove that M is a norm-closed subspace of £°.

(c) Prove that M is weak*-dense in ¢! [relative to the weak*-topology given
by (a)].

(d) Let B be the norm-closed unit ball of £'. In spite of (c), prove that the
weak*-closure of M n B contains no ball. Suggestion: If 6 > 0 and m > 2/,
then

I xi

| x(m, 1)| < — < =
m 2

if x e M n B, although x(m, 1) = 6 for some x € dB. Thus 4B is not in the
weak *-closure of M n B. Extend this to balls with other centers.

(e) Put xy(m, 1) = m™ 2, x,(m, n) = 0 when n > 2. Prove that no sequence in M is
weak*-convergent to x,, in spite of (c). Hint: Weak*-convergence of {x;} to
X, implies that x (m, n) — xy(m, n) for all m, n, as j - oo, and that {||x;|} is
bounded.

Let X be an infinite-dimensional Fréchet space. Prove that X*, with its weak*-

topology, is of the first category in itself.



88

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

PART I. GENERAL THEORY

Show that the norm-closed unit ball of ¢, is not weakly compact; recall that
(co)* = ¢! (Exercise 10).
Putfy(t) = N~ ! Y N2 | &™. Prove that fy - 0 weakly in [}(— =, n).

By Theorem 3.13, some sequence of convex combinations of the f, con-
verges to 0 in the [?-norm. Find such a sequence. Show that gy = N~ !(f; + - -
+ fy) will not do.

(@) Suppose Q is a locally compact Hausdorff space. For each compact K < Q
define a seminorm p; on C(£2), the space of all complex continuous functions

on Q, by
Px(f) =sup {| f(x)|: x € K}.

Give C(9) the topology induced by this collection of seminorms. Prove that
to every A € C(£2)* correspond a compact K < Q and a complex Borel
measure ¢ on K such that

Af = ffdu [f e C(QD].

(b) Suppose € is an open set in €. Find a countable collection I' of measures
with compact support in Q such that H(Q) (the space of all holomorphic
functions in €) consists of exactly those f'e C(Q) which satisfy | fdu =0 for
every uel.

Let X be a topological vector space on which X* separates pcints. Prove that

the weak*-topology of X* is metrizable if and only if X has a finite or countable

Hamel basis. (See Exercise 1, Chapter 2 for the definition.)

Prove that the closed unit ball of L' (relative to Lebesgue measure on the unit

interval) has no extreme points but that every point on the *“surface” of the unit

ball .n I (1 < p < o) is an extreme point of the ball.

Determine the extreme points of the closed unit ball of C, the space of all con-

tinuous functions on the unit interval, with the supremum norm. (The answer

depends on the choice of the scalar field.)

Let K be the smallest convex set in R? that contains the points (1, 0, 1), (1, O,

— 1), and (cos 6, sin 0, 0), for 0 < 6 < 2n. Show that K is compact but that the

set of all extreme points of K is not compact. Does such an example exist in R*?

Suppose K is a compact convex set in R". Prove that every x € K is a convex
combination of at most n + 1 extreme points of K. Suggestion: Use induction
on n. Draw a line from some extreme point of K through x to where it leaves K.
Use Exercise 1.

Let {u,,u,,u;,...} be a sequence of pairwise orthogonal unit vectors in a
Hilbert space. Let K consist of the vectors 0 and n~ 'u, (n > 1). Show that (a) K
is compact; (b) co(K) is bounded; (c) co(K) is not closed. Find all extreme points
of co(K).

If 0 <p<1,every fe I? (except f = 0) is the arithmetic mean of two functions
whose distance from 0O is less than that of f. (See Section 1.47.) Use this to
construct an explicit example of a countable compact set K in [? (with O as its
only limit point) which has no extreme point.

If 0 <p< 1, show that /? contains a compact set K whose convex hull is
unbounded. This happens in spite of the fact that (£?)* separates points on £7;



23.

24.

23.

26.

27.

CHAPTER 3: CONVEXITY 89

see Exercise 5. Suggestion: Define x, € £? by
x,(n) =nP~ 1, x,(m) =0 if m # n.
Let K consist of 0, x,, x5, x5, .... If
yv=N"10x + -+ xp),

show that {yy} is unbounded in £7.

Suppose u is a Borel probability measure on a compact Hausdorff space Q, X is
a Fréchet space, and f: Q — X is continuous. A partition of Q is, by definition, a
finite collection of disjoint Borel subsets of O whose union 1s Q. Prove that to
every neighborhood V of 0 in X there corresponds a partition {E;} such that the
difference

z = deu — > HE)f(s)
Q i

lies in V for every choice of s; € E;. (This exhibits the integral as a strong limit
of “Riemann sums.”) Suggestion: Take V convex and balanced. If A € X* and if
|Ax| < 1 for every x € V, then | Az| < 1, provided that the sets E; are chosen so
that f(s) — f(t) € V whenever s and ¢ lie in the same E;.

In addition to the hypotheses of Theorem 3.27, assume that T is a continuous
linear mapping of X into a topological vector space Y on which Y* separates
points, and prove that

ijdu=j(Tf) du.
Q Q

Hint: AT € X* for every A € Y*.

Let E be the set of all extreme points of a compact set K in a topological vector
space X on which X* separates points. Prove that to every y € K corresponds a
regular Borel probability measure x on Q = E such that

y = fx du(x).
Qo

Suppose Q is a region in €, X is a Fréchet space, and f: Q — X is holomorphic.

(a) State and prove a theorem concerning the power series representation of f,
that is, concerning the formulaf(z) = ) (z — a)c,, where ¢, € X.

(b) Generalize Morera’s theorem to X -valued holomorphic functions.

(¢) For a sequence of complex holomorphic functions in Q, uniform con-
vergence on compact subsets of € implies that the limit is holomorphic.
Does this generalize to X-valued holomorphic functions ?

Suppose {«;} is a bounded set of distinct complex numbers, f(z) = & c,z"is an

entire function with every ¢, # 0, and

g{z) = fla; 2).

Prove that the vector space generated by the functions g, is dense in the Fréchet
space H({) defined in Section 1.45.
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Suggestion: Assume p 1s a measure with compact support such that
[ g, du =0 for all i. Put

P(w) = f fwz) du(z) (W€ ).

Prove that ¢(w) = 0 for all w. Deduce that | z" du(z) =0forn=1,2,3,.... Use
Exercise 14.

Describe the closed subspace of H(¢') generated by the functions g, if some
of the c, are 0.

Suppose X is a Fréchet space (or, more generally, a metrizable locally convex

space). Prove the following statements:

(@) X* is the union of countably many weak*-compact sets E, .

(b) If X is separable, each E, is metrizable. The weak*-topology of X* is there-
fore separable, and some countable subset of X* separates points on X.
(Compare with Exercise 15.)

(c) If K is a weakly compact subset of X and if x, € K is a weak limit point of
some countable set E — K, then there is a sequence {x,} in E which con-
verges weakly to x,. Hint: Let Y be the smallest closed subspace of X that
contains E. Apply (b) to Y to conclude that the weak topology of K n Y is
metrizable.

Remark: The point of (c) is the eXistence of convergent subsequences
rather than subnets. Note that there exist compact Hausdorff spaces in
which no sequence of distinct points converges. For an example, see Exercise
18, Chapter 11.

Let C(K) be the Banach space of all continuous complex functions on the

compact Hausdorf space K, with the supremum norm. For p € K, define A, €

C(K)* by A, f=f(p). Show that p —» A, is a homeomorphism of K into C(K)*,

equipped with its weak*-topology. Part (c) of Exercise 28 can therefore not be

extended to weak*-compact sets.

. Suppose that p is an extreme point of some convex set K, and that p =

t,x;+ " +1t,x,, where Y t, =1, t,> 0 and x; € K for all i. Prove that x; = p
for all i.

Suppose that A,, ..., A, are convex sets in a vector space X. Prove that every
x eco(A; v -+ U A,) can be represented in the form

X=tya +- " +1t,q,,

with g; € A;and ¢, > Oforall §, ) ¢, = 1.

Let X be an infinite-dimensional Banach space and let S = {x € X : |jx|j = 1} be
the unit sphere of X. We want to cover S with finitely many closed balls, none
of which contains the origin of X. Can this be done in (a) every X, (b) some X,
(c) no X?

Let C(I) be the Banach space of all continuous complex functions on the closed
unit interval I, with the supremum norm. Let M = C(I)*, the space of all
complex Borel measures on I. Give M the weak*-topology induced by C(I).

For each t € I, let ¢, € M be the “evaluation functional ” defined by e, f =
f(¢), and define A € M by Af = [} f(s) ds.
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(a) Show that ¢ — ¢, is a continuous map from I into M and that K = {e¢,: t € I}
is a compact set in M.

(b) Show that A € co(K).

(c) Find all u € ¢o(K).

(d) Let X be the subspace of M consisting of all finite linear combinations

coA +cie, + "+ e,

with complex coefficients c;. Note that co(K) = X and that X n ¢o(K) is
the closed convex hull of K within X. Prove that A is an extreme point of
X n co(K), even though A is not in K.



CHAPTER

DUALITY IN
BANACH
SPACES

The Normed Dual of a Normed Space

Introduction If X and Y are topological vector spaces, #(X, Y) will
denote the collection of all bounded linear mappings (or operators) of X
into Y. For simplicity, 4(X, X) will be abbreviated to %(%). Each #(X, Y)
1s itself a vector space, with respect to the usual definitions of addition and
scalar multiplication of functions. (This depends only on the vector space
structure of Y, not on that of X.) In general, there are many ways in which
#(X, Y) can be made into a topological vector space.

In the present chapter, we shall deal only with normed spaces X and
Y. In that case, #(X, Y) can itself be normed in a very natural way. When
Y is specialized to be the scalar field, so that #(X, Y) is the dual space X*
of X, the above-mentioned norm on #(X, Y) defines a topology on X*
which turns out to be stronger than its weak*-topology. The relations
between a Banach space X and its normed dual X* form the main topic of
this chapter.

4.1 Theorem Suppose X and Y are normed spaces. Associate to each
A e B(X, Y) the number

(1) IA] =sup {JAx]: x e X, | x| < 1}.

92
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T his definition of |A| makes #4(X, Y) into a normed space. If Y is a Banach
space, so is B(X, Y).

PROOF. Since subsets of normed spaces are bounded if and only if they
fic i1 some multiple of the unit ball, |A| < oo for every A € (X, Y).
If « is a scalar, then (¢A)x) = « - Ax, so that

(2) le Al = Joc| | Al
The triangle inequality in Y shows t'hat
(AL + A)xll = [Ax + Ay x| < [[Ax]l + [[A, x]|
< (ALl + TA2IDIx] < A+ 1A
for every x € X with ||x| < 1. Hence
3) 1AL + Azl < IAL] + [[A]l.

If A #0, then Ax # 0 for some x € X; hence |A| > 0. Thus #4(X, Y)
is a normed space.

Assume now that Y is complete and that {A,} is a Cauchy
sequence in #(X, Y). Since

(4) 1Az X — Ay x|l < Ay — Apll I x]]

and since it is assumed that |A, — A,,|| =0 as n and m tend to oo,
{A,x} is a Cauchy sequence in Y for every x € X. Hence
(5) Ax = lim A, x

n—cC

exists. It is clear that A: X — Y is linear. If ¢ > O, the right side of (4)
does not exceed ¢||x||, provided that m and n are sufficiently large. It
follows that

(6) [AX — Ap x| < &f|x|

for all large m. Hence |Ax| < (|A,.l + ¢)llx], so that A € (X, Y),
and |A — A,,| <e Thus A,, = A in the norm of #(X, Y). This estab-

lishes the completeness of #4(X, Y). /11

4.2 Duality It will be convenient to designate elements of the dual
space X* of X by x* and to write

(1) X, x*)

in place of x*(x). This notation is well adapted to the symmetry (or duality)
that exists between the action of X* on X on the one hand and the action
of X on X* on the other. The following theorem states some basic proper-
ties of this duality.
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4.3 Theorem Suppose B is the closed unit ball of a normed space X.
Define

Ix*Il = sup {|<x, x*3: x  B)

for every x* € X*,

(a)
(b)

(c)

T his norm makes X* into a Banach space.
Let B* be the closed unit ball of X*. For every x € X,

IxIl = sup {|<x, x*>|: x* € B*),
Consequently, x* -» (x, x*) is a bounded linear functional on X*, of

norm | x||.
B* is weak*-compact.

PROOF. Since #(X, Y) = X*, when Y is the scalar field, (a) is a corol-
lary of Theorem 4.1.

Fix x € X. The corollary to Theorem 3.3 shows that there exists
y* € B* such that

(1) Cx, y*) = |Ix|l.
On the other hand,
(2) [, x*D | < x|l 1x*|| < flx|]

for every x* € B*. Part (b) follows from (1) and (2).

Since the open unit ball U of X is dense in B, the definition of
|x*| shows that x* € B* if and only if |{x, x*>| < 1 for every x € U.
Part (c¢) now follows directly from Theorem 3.15. 1]/

Remark. The weak*-topology of X* is, by definition, the weakest one
that makes all functionals

x* -3 (x, x*)

continuous. Part (b) shows therefore that the norm topology of X* 1s
stronger than its weak*-topology; in fact, it is strictly stronger, unless
dim X < oo, since the proposition stated at the end of Section 3.11
holds for the weak*-topology as well.

Unless the contrary is explicitly stated, X* will from now on
denote the normed dual of X (whenever X is normed), and all topo-
logical concepts relating to X* will refer to its norm topology. This
implies in no way that the weak*-topology will not play an important
role.

We now give an alternative description of the operator norm defined

in Theorem 4.1.
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4.4 Theorem IfX and Y are normed spaces and if A € #(X, Y), then
IAIl = sup {|<Ax, y*>1: Ixll < 1, ly*| < 1}.

PROOF. Apply (b) of Theorem 4.3 with Y in place of X. This gives
IAx] = sup {|<{Ax, y*>[: y*| < 1}

for every x € X. To complete the proof, recall that

IA] = sup {llAx]: lIx] < 1}. /11

4.5 The second dual of a Banach space The normed dual X* of a
Banach space X is itself a Banach space and hence has a normed dual of its
own, denoted by X **. Statement (b) of Theorem 4.3 shows that every x € X
defines a unique ¢x € X **, by the equation

(1) (e, x*) = (x*, dx) (x* € X*),
and that
(2) lbxll = | x| (x € X).

It follows from (1) that ¢: X — X** is linear; by (2), ¢ is an isometry. Since
X is now assumed to be complete, ¢(X) is closed in X **.

Thus ¢ is an isometric isomorphism of X onto a closed subspace of X **.

Frequently, X is identified with ¢(X); then X is regarded as a sub-
space of X**.

The members of ¢(X) are exactly those linear functionals on X* that
are continuous relative to its weak*-topology. (See Section 3.14.) Since the
norm topology of X* is stronger, it may happen that ¢(X) is a proper
subspace of X**. But there are many important spaces X (for example, all
I?-spaces with 1 < p < o0) for which ¢(X) = X **; these are called reflexive.
Some of their properties are given in Exercise 1.

It should be stressed that, in order for X to be reflexive, the existence
of some isometric isomorphism ¢ of X onto X** is not enough; it is crucial
that the identity (1) be satisfied by ¢.

4.6 Annihilators Suppose X is a Banach space, M is a subspace of X,
and N is a subspace of X*; neither M nor N is assumed to be closed. Their
annihilators M and "N are defined as follows:

M* = {x* e X*: {x, x*> =0 for all x e M},
*N ={xeX:<{x, x*>=0forall x* e N}.

Thus M* consists of all bounded linear functionals on X that vanish
on M, and N is the subset of X on which every member of N vanishes. It
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is clear that M* and *N are vector spaces. Since M is the intersection of
the null spaces of the functionals ¢x, where x rariges over M (see Section
4.5), M* is a weak*-closed subspace of X*. The proof that *N is a norm-
closed subspace of X 1s even more direct. The foliowing theorem describes
the duality between these two types of annihilators.

4.7 Theorem Under the preceding hypotheses,

(@) *~(M?") is the norm-closure of M in X, and
(b) (“N)* is the weak*-closure of N in X*,

As regards (a), recall that the norm-closure of M equals its weak
closure, by Theorem 3.12.

PROOF. If x e M, then {(x, x*> =0 for every x* e M*, so that
x € H(M%"). Since Y(M*) is norm-closed, it contains the norm-closure
M of M. On the other hand, if x ¢ M the Hahn-Banach theorem
yields an x* € M+ such that {x, x*> # 0. Thus x ¢ “(M"), and (a) is
proved.

Similarly, if x* € N, then {x, x*)> = 0 for every x € *N, so that
x* € ("N)-. This weak*-closed subspace of X* contains the weak*-
closure N of N. If x* ¢ N, the Hahn-Banach theorem (applied to the
locally convex space X* with its weak*-topology) implies the exis-
tence of an x € *N such that {x, x*)> # 0; thus x* ¢ (*N)*, which

proves (b). /11

Observe, as a corollary, that every norm-closed subspace of X is the
annihilator of its annihilator and that the same is true of every weak*-
closed subspace of X *.

4.8 Duals of subspaces and of quotient spaces If M is a closed sub-
space of a Banach space X, then X/M is also a Banach space, with respect
to the quotient norm. This was defined in the proof of (d) of Theorem 1.41.
The duals of M and of X/M can be described with the aid of the annihilator
M+ of M. Somewhat imprecisely, the result is that

M* = X*/M*+  and  (X/M)* = M*.

This is imprecise because the equalities should be replaced by isometric
isomorphisms. The following theorem describes these explicitly.
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4.9 Theorem Let M be a closed subspace of a Banach space X.

(a)

(b)

The Hahn-Banach theorem extends each m* € M* to a functional
x* € X*. Define
om* = x* + M*.

Then ¢ is an isometric isomorphism of M* onto X*/M™.

Let m: X — X/M be the quotient map. Put Y = X/M. For each y* € Y*,
define

Ty* = y*n.

Then 1 is an isometric isomorphism of Y* onto M*.

PROOF. (a) If x* and x* are extensions of m*, then x* — x¥ is in M*;
hence x* + M*+ = x¥ + M. Thus o is well defined. A trivial verifica-
tion shows that o is linear. Since the restriction of every x* € X* to M
is a member of M*, the range of ¢ is all of X*/M™*.

Fix m* e M*. If x* € X* extends m*, it i1s obvious that
|m*|| < ||x*|. The greatest lower bound of the numbers |x*| so
obtained is | x* + M|, by the definition of the quotient norm. Hence

Im*|| < [lom*|| < |Ix*]|.

But Theorem 3.3 furnishes an extension x* of m* with ||x*| = |[m¥*|.
It follows that |om*| = ||m*||. This completes (a).

(b) If x € X and y* € Y*, then nx € Y; hence x — y*nx is a con-
tinuous linear functional on X which vanishes for x € M. Thus
1y* € M*. The linearity of 7 is obvious. Fix x* € M- Let N be the
null space of x*. Since M < N, there is a linear functional A on Y
such that Anw = x*. The null space of A is n(N), a closed subspace of
Y, by the definition of the quotient topology in Y = X/M. By
Theorem 1.18, A is continuous, that 1s, A € Y*. Hence tA = An = x*.
The range of t is therefore all of M.

It remains to be shown that 7 is an isometry.

Let B be the open unit ball in X. Then =B is the open unit ball
of Y = nX. Since ty* = y*n, we have

lzy*|l = lly*=nll = sup {|<nx, y*>|: x € B}
=sup {|<y, y*>|: y € nB} = |[y¥|
for every y* € Y*. /1]

Adjoints

We shall now associate with each T € #(X, Y) its adjoint, an operator
T* € #(Y*, X*), and will see how certain properties of T are reflected in
the behavior of T*. If X and Y are finite-dimensional, every T € #(X, Y)
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can be represented by a matrix [T]; in that case, [T*] is the transpose of
[T], provided that the various vector space bases are properly chosen. No
particular attention will be paid to the finite-dimensional case in what
follows, but historically linear algebra did provide the background and
much of the motivation that went into the construction of what is now
known as operator theory.

Many of the nontrivial properties of adjoints depend on the complete-
ness of X and Y (the open mapping theorem will play an important role).
For this reason, it will be assumed throughout that X and Y are Banach
spaces, except in Theorem 4.10, which furnishes the definition of T*.

4.10 Theorem Suppose X and Y are normed spaces. To each
T € (X, Y) corresponds a unique T* € B(Y*, X*) that satisfies

(1) (Tx, y*) =<x, T*y*)
for all x € X and all y* € Y*. Moreover, T* satisfies
(2) [T*|| = [T

PROOF. If y* € Y*and T € #A(X, Y), define
(3) T*y* =y* o T.

Being the composition of two continuous linear mappings,
T*y* € X*. Also,

Cx, T*y*) = (T*y*)(x) = y¥(Tx) = (Tx, y*>,

which is (1). The fact that (1) holds for every x € X obviously deter-
mines T*y* uniquely.
If y¥ € Y* and y% € Y*, then

(x, T*(yY + y%)) =<Tx, y¥ +y%>
= (Tx, y¥) + {(Tx, y%)
= {x, T*yt> + {x, T*y%>

= (x, Tyt + T*y%)
for every x € X, so that

(4) T*(yt + y3) = T*yt + T*y3%.

Similarly, T*(ay*) = aT*y*. Thus T*: Y* - X* is linear. Finally, (b)
of Theorem 4.3 leads to

ITH = sup {|<Tx, y*>|: x| < 1, [|y*| <1}
=sup {[<x, T*y*>|: |Ix|l < 1, y*[ < 1}
=sup {[[T*y*||: [y*| <1} = | T*|. /11
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4.11 Notation If T maps X into Y, the null space and the range of T
will be denoted by A47(T') and #(T), respectively:

A(T)={xe X: Tx =0},
A(T)={ye Y: Tx =y for some x € X }.

The next theorem concerns annihilators; see Section 4.6 for the notation.
4.12 Theorem Suppose X and Y are Banach spaces, and T € A(X, Y).
T hen

N (T*) = AT  and N (T) = ‘R(T*).

PROOF. In each of the following two columns, each statement is obvi-
ously equivalent to the one that immediately follows and/or precedes

1t.

y* € A(T*). x € A(T).

T*y* = 0. Tx =0.

{x, T*y*> =0 for all x. (Tx, y*> = 0 for all y*

(Tx, y*> = 0 for all x. (x, T*y*> =0 for all y*.

y* e A(T)™ . x € “A(T*). 1]/
Corollaries

(@) A(T*) is weak*-closed in Y*.
(b) A(T)is densein Y if and only if T* is one-to-one.
(c) T is one-to-one if and only if A(T*) is weak*-dense in X*.

Recall that M* is weak*-closed in Y* for every subspace M of
Y. In particular, this is true of #(T)'. Thus (a) follows from the
theorem.

As to (b), 4(T) is dense in Y if and only if #(T)" = {0}; in that
case, A"(T*) = {0}.

Likewise, *%#(T*) = {0} if and only if £(T*) is annihilated by no
x € X other than x = 0O; this says that 2(T*) is weak*-dense in X*.

Note that the Hahn-Banach theorem 3.5 was tacitly used in the
proofs of (b) and (c).

There is a useful analogue of (b), namely, that (T) is all of Y if
and only if T* is one-to-one and its inverse {mapping #(T*) onto Y*]
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is bounded. The equivalence of (a) and (d) in the following theorem
expresses this in slightly different terms. Theorem 4.15 is closely
related. The union of the following three theorems is sometimes called
the closed range theorem.

4.13 Theorem Let U and V be the open unit balls in the Banach spaces
X and Y, respectively. If T € (X, Y) and 6 > 0, then the implications

(@) = (b) = (c) = (d)

hold among the following statements:

(@) [IT*y*| = olly*|l for every y* € Y*.

() TU) >0V,
c) TU)> 5V
d T(X)=

Moreover, if (d) holds, then (a) holds for some 6 > 0.

PROOF. Assume (a), and pick y, ¢ T(U). Since T(U) is convex, closed,
and balanced, Theorem 3.7 shows that there 1s a y* such that
1<y, y*>| <1 for every y € TU), but |{yy, y*>|>1 If xe U, it
follows that

[<x, T*y*>| = |<Tx, y*>| < 1.
Thus | T*y*|| < 1, and now (a) gives
0 <0[<Yo, Y*>1 <Ollyol I¥*I < Yol IT*y*| < llyoll-

It follows that y € T(U) if ||y|| <. Thus (a) = (b).

Next, assume (b). Take 6 = 1, without loss of generality. Then
T(U) > V. To every y € Y and every ¢ > 0 corresponds therefore an
x € X with ||x|| < |ly||and |y — Tx| <e.

Pick y, € V. Pick ¢, > 0 so that

> 8. < 1=yl
n=1

Assume n > 1 and y, is picked. There exists x, such that |x,| < [yl
and ||y, — Tx,| <eg,. Put

Yn+1 = Yn — Txn'

By induction, this process defines two sequences {x,} and {y,}. Note
that

1% s 1 Il < M yneall = llyn = Txall <.
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Hence

® © o
Xl =< x4 Ve, <yl + Ye, <l
= n=1

n=1

It follows that x = )" x, is in U (see Exercise 23) and that

N N
Tx=lim Y Tx,= lim ) (Vo= Vn+1) =V

N-xw n=1 Neww nz=l

since yy.+1 —>0as N - oo. Thus y, = Tx € T(U), which proves (c).

Note that the preceding argument is just a specialized version of
part of the proof of the open mapping theorem 2.11.

That (c) implies (d) is obvious.

Assume (d). By the open mapping theorem, there is a 6 > 0 such
that T(U) = 6V. Hence

| T*y*|| = sup {|<{x, T*y*>|: x € U}
=sup {|{(Tx, y*>|: x € U}

>sup {[<y, y*>|: y € 6V} = 6| y*|
for every y* € Y*. This is (a). /1]/

4.14 Theorem If X and Y are Banach spaces and if T € #(X, Y), then
each of the following three conditions implies the other two:

(@) A(T)is closedinY.
(b) A(T*) is weak*-closed in X *.
(¢) A(T*)is norm-closed in X*.

Remark. Theorem 3.12 implies that (a) holds if and only if #(T) is
weakly closed. However, norm-closed subspaces of X * are not always
weak*-closed (Exercise 7, Chapter 3).

PROOF. It is obvious that (b) implies (¢). We will prove that (a) implies
(b) and that (c) implies (a).

Suppose (a) holds. By Theorem 4.12 and (b) of Theorem 4.7,
A°(T) is the weak*-closure of #2(T*). To prove (b) it is therefore
enough to show that 47 (T)* = Z(T*).

Pick x* € A47(T)*. Define a linear functional A on %#(T) by

ATx = {x, x*> (x € X).

Note that A 1s well defined, for if Tx = Tx', then x — x’' € A°(T);
hence

(x —x', x*>=0.
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The open mapping theorem applies to
T: X—> AT)

since #(T') 1s assumed to be a closed subspace of the complete space Y
and is therefore complete. It follows that there exists K < oo such that
to each y € Z4(T) corresponds an x € X with Tx =y, ||x| < Kl|y|,
and

|Ay| =ATx| =[x, x*>| < K|yl |x*]I-

Thus A is continuous. By the Hahn-Banach theorem, some y* € Y*
extends A. Hence

(Tx, y*> = ATx = {x, x*) (x € X).

This implies x* = T*y*. Since x* was an arbitrary element of A" (T)*,
we have shown that 4(T)* = 2(T*). Thus (b) follows from (a).

Suppose next that (c) holds. Let Z be the closure of #(T) in Y.
Define S € A(X, Z) by setting Sx = Tx. Since Z(S) is dense in Z,
Corollary (b) to Theorem 4.12 implies that

S*: Z* - X*

is one-to-one.
If z* € Z*, the Hahn-Banach theorem furnishes an extension y*
of z*, forevery x € X, =

x, T*y*> = (Tx, y*> = <{8x, z*) = {x, S*z*).

Hence S*z* = T*y*. It follows that S* and T* have identical ranges.
Since (c) is assumed to hold, #(S*) is closed, hence complete.
Apply the open mapping theorem to

S*. Z* - A(S*).
Since S* is one-to-one, the conclusion is that there is a constant ¢ > 0
which satisfies

clz¥| < [ S*z*|

for every z* € Z*. Hence S: X —» Z is an open mapping, by Theorem
4.13. In particular, S(X) = Z. But #(T) = #4(S), by the definition of S.
Thus £(T') = Z, a closed subspace of Y.

This completes the proof that (c) implies (a). /1]

The following consequence is useful in applications.

4.15 Theorem Suppose X and Y are Banach spaces, and T € #(X, Y).
T hen
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(@) AT) =Y ifand only if
(b) T* is one-to-one and A(T*) is norm-closed.

PROOF. If (a) holds then T* is one-to-one, by Theorem 4.12. The
implication (d) — (a) of Theorem 4.13 shows that T* is (a multiple of)
a dilation; hence #(T*) is closed, by Theorem 1.26.

If (b) holds, then #(T) is dense in Y, again by Theorem 4.12, and
A(T) 1s closed by Theorem 4.14.

Compact Operators

4.16 Definition Suppose X and Y are Banach spaces and U is the open
unit ball in X. A linear map T: X — Y is said to be compact if the closure of
T(U) 1s compact in Y. It is clear that T is then bounded. Thus T € #(X, Y).

Since Y 1s a complete metric space, the subsets of Y whose closure is
compact are precisely the totally bounded ones. Thus T € A(X, Y) is
compact if and only if T(U) is totally bounded. Also, T is compact if and
only if every bounded sequence {x,} in X contains a subsequence {x, } such
that {Tx, } converges to a point of Y. |

Many of the operators that arise in the study of integral equations are
compact. This accounts for their importance from the standpoint of appli-
cations. They are in some respects as similar to linear operators on finite-
dimensional spaces as one has any right to expect from operators on
infinite-dimensional spaces. As we shall see, these similarities show up par-
ticularly strongly in their spectral properties.

4.17 Definitions (a) Suppose X is a Banach space. Then #(X) [which is
an abbreviation for #(X, Y)] 1s not merely a Banach space (see Theorem
4.1) but also an algebra: If S € #(X) and T € #(X), one defines ST € H#(X)
by

(STYx) = S(T(x)) (x € X).
The inequality
ISTI < ISI T

is trivial to verify.
In particular, powers of T € #(X) can be defined: T° = I, the identity
mapping on X, given by Ix = x,and T" = TT" ' forn=1,2,3, ....

(b) An operator T € Z(X) is said to be invertible if there exists
S € #(X) such that



104 PART 1: GENERAL THEORY

In this case, we write S = T~ !. By the open mapping theorem, this happens
if and only if A(T) = {0} and %(T) = X.
(c) The spectrum o(T) of an operator T € #(X) is the set of all scalars

4 such that T — Al is not invertible. Thus 4 € a(T) if and only if at least one
of the following two statements is true:

(i) The range of T — Al is not all of X.
(i) T — Al is not one-to-one.

If (ii) holds, A is said to be an eigenvalue of T; the corresponding
eigenspace is A/ (T — Al); each x € /(T — AI) (except x = 0) is an eigen-
vector of T ; it satisfies the equation

Tx = Ax.

Here are some very easy facts which will illustrate these concepts.

4.18 Theorem Let X and Y be Banach spaces.

(@ IfT e #(X, Y)and dim #(T) < oo, then T is compact.

b) IfTeAX,Y), T iscompact,and A(T) is closed, then dim #(T) < co.

(c) The compact operators form a closed subspace of #(X, Y) in its norm-
topology.

(d) If T € #(X), T is compact, and A # 0, thendim A (T — Al) < oo.

() Ifdim X = oo, T € #(X), and T is compact, then 0 € a(T).

(f) IfSeBX), T € AX),and T is compact, so are ST and TS.

PROOF. Statement (a) is obvious. If Z(T) is closed, then %£(T) is com-
plete (since Y is complete), so that T is an open mapping of X onto
A(T); if T is compact, it follows that #(T) is locally compact; thus (b)
is a consequence of Theorem 1.22.

Put Y = A(T — AI) in (d). The restriction of T to Y is a
compact operator whose range is Y. Thus (d) follows from (b), and so
does (e), for if O is not in o(T), then £(T) = X. The proof of (f) 1s
trivial.

If S and T are compact operators from X into Y,sois S + T,
because the sum of any two compact subsets of Y is compact. It
follows that the compact operators form a subspace X of #A(X, Y).
To complete the proof of (c), we now show that X is closed. Let T €
A(X, Y) be the closure of X, choose r > 0, and let U be the open unit
ball in X. There exists S € £ with |S — T|| < r. Since S(U) is totally
bounded, there are points x,, ..., x, in U such that S(U) is covered
by the balls of radius r with centers at the points Sx;. Since
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|ISx — Tx| < r for every x € U, it follows that T(U) is covered by the
balls of radius 3r with centers at the points Tx;. Thus T(U) is totally
bounded, which proves that T € . 1]/

The main objective of the rest of this chapter is to analyze the spec-
trum of a compact T € #(X). Theorem 4.25 contains the principal results.
Adjoints will play an important role in this investigation.

4.19 Theorem Suppose X and Y are Banach spaces and T € #(X, Y).
Then T is compact if and only if T* is compact.

PROOF. Suppose T is compact. Let {y*} be a sequence in the unit ball
of Y*. Define

L=<y (yeY)

Since | f,(y) — £, < lly = V'll, {f,} is equicontinuous. Since T(U)
has compact closure in Y (as before, U is the unit ball of X), Ascoli’s
theorem implies that {f,} has a subsequence { f,} that converges uni-
formly on T'(U). Since

| T*yx — T*yxll = sup [KTX, yo — Y|
= sup | f(Tx) — fu(TX) ],

the supremum being taken over x € U, the completeness of X*
implies that {T*y¥} converges. Hence T* is compact.

The second half can be proved by the same method, but it may
be more instructive to deduce it from the first half.

Let ¢: X - X** and y: Y - Y** be the isometric embeddings
given by the formulas

x, x*> =(x* ¢x)  and <y, y*> = Y% ¥y,
as in Section 4.5. Then
Y5 YT = (Tx, y*) = (x, T*y*)> = (T*y*, ¢px) = y*, T**¢x)
for all x € X and y* € Y*, so that
YT = T**o.
If x € U, then ¢x lies in the unit ball U** of X**. Thus
YTU) = T**(U**),

Now assume that T* is compact. The first half of the theorem
shows that T**: X** - Y** is compact. Hence T**(U**) is totally
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bounded, and so is its subset ¥ T(U). Since ¥ is an isometry, T(U) 1s
also totally bounded. Hence T is compact. /]]/

4.20 Definition Suppose M is a closed subspace of a topological vector
space X. If there exists a closed subspace N of X such that

X=M+N and M n N = {0},

then M is said to be complemented in X. In this case, X is said to be the
direct sum of M and N, and the notation

X=M®N

is sometimes used.
We shall see examples of uncomplemented subspaces in Chapter 5. At
present we need only the following simple facts.

4.21 Lemma Let M be a closed subspace of a topological vector space X.

(@) If X is locally convex and dim M < oo, then M is complemented in X.
(b) Ifdim (X/M) < oo, then M is complemented in X.

The dimension of X/M is also called the codimension of M in X.

PROOF. (a) Let {e,, ..., e,} be a basis for M. Every x € M has then a
unique representation
x =ay(x)e; + - + ay(x)e,.

Each «; 1s a continuous linear functional on M (Theorem 1.21 and
Lemma 1.20) which extends to a member of X*, by the Hahn-Banach
theorem. Let N be the intersection of the null spaces of these exten-
sions. Then X = M@ N.

(b) Let m: X = X/M be the quotient map, let {e,, ..., ¢,} be a
basis for X/M, pick x; € X so that nx; =e, (1 <i < n), and let N be
the vector space spanned by {x,,...,x,}. Then X = M @ N. 1]/

422 Lemma If M is a subspace of a normed space X, if M is not dense
in X, and if r > 1, then there exists x € X such that

x| <r but Ix —y| =1 for all y € M.

PROOF. There exists x, € X whose distance from M is 1, that is,
inf {|x, —y|: ye M} =1.
Choose y, € M such that |x; — y,|| <r,and put x = x; — y;. //1/
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4.23 Theorem If X is a Banach space, T € #(X), T is compact, and
A #0,then T — Al has closed range.

PROOF. By (d) of Theorem 4.18, dim A (T — AI) < 0. By (a) of
Lemma 4.21, X is the direct sum of A4°(T — AI) and a closed subspace
M. Define an operator S € #(M, X) by

(1) Sx = Tx — Ax.

Then S is one-to-one on M. Also, %(S) = A(T — Al). To show that
A(S) 1s closed, it suffices to show the existence of an r > 0 such that

) rlx| < [Sx|  forall x e M,

by Theorem 1.26.

If (2) fails for every r >0, there exists {x,} in M such that
Ix.ll = 1, Sx, = 0, and (after passage to a subsequence) Tx, — x, for
some x, € X. (Fhis is where compactness of T is used.) It follows that
Ax, = xo. Thus x, € M, and ‘

Sx, = lim (1Sx,) = 0.

Sinceé S is one-to-one, xo=0. But |x,| =1 for all n, and x, =
lim Ax,, and so ||x,|| =|4|> 0. This contradiction proves (2) for
some r > 0. /1]

4.24 Theorem Suppose X is a Banach space, T € #(X), T is compact,
r > 0, and E is a set of eigenvalues A of T such that | 4| > r. Then

(@) foreach A€ E, AT — Al) # X, and
(b) E is a finite set.

PROOF. We shall first show that if either (a) or (b) is false then there
exist closed subspaces M, of X and scalars 4, € E such that

(1) MicM,cM;c- -, M,#M,,,,
(2) TM,)) =M, for n > 1,

and

(3) (T -1, H)M,)=M,_, for n > 2.

The proof will be completed by showing that this contradicts the
compactness of T.
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Suppose (a) s false. Then (T — A I) = X for some A, € E. Put
S=T - 4, 1, and dcfine M, to be the null space of S$". (See Section
4.17.) Since 4, is @i eigenvalue of T, there exists x, €e M, x; #0.
Since #(S) = X, thers is a sequence {x,} in X such that Sx,,, = x,,
n=1,23,.... Then

(4) Snxn+1 = X4 £ 0 but S"“x,,H :le = ().

Hence M, is a proper closed subspace of M, , ;. It follows that (1) to
(3) hold, with A, = 4,. [Note that (2) holds because ST = TS.]

Suppose (b) is false. Then E contains a sequence {4,} of distinct
eigenvalues of T. Choose corresponding eigenvectors e,, and let M,
be the (finite-dimensional, hence closed) subspace of X spanned by
{ey, ..., e,}. Since the 4, are distinct, {e,, ..., e,} is a linearly indepen-
dent set, so that M, _, is a proper subspace of M,. This gives (1). If
x € M,, then

X =0 + "+ a,e,
which shows that Tx € M, and
(T — A, Dx =04 —4)e + -+ (Ao — Ap)en—1 € M.

Thus (2) and (3) hold.
Once we have closed subspaces M, satisfying (1) to (3), Lemma
4.22 gives us vectors y, € M, ,forn = 2,3, 4, ..., such that

(5) |Vall <2 and Iy, — x| =1 if xeM,_,.
If 2 < m < n, define

(6) z2=Ty, ~ (T = 4,1)y,.

By (2) and (3), z € M, _,. Hence (5) shows that
ITYw = TYmll = 12 yn — 2l = 1251 yn — 47 2] 2 44| > 7.

The sequence {Ty,} has therefore no convergent subsequences,
although {y,} is bounded. This is impossible if T is compact. /1]

4.25 Theorem Suppose X is a Banach space, T € #(X), and T is
compact.

(@) If A # 0, then the four numbers
a =dim A(T — Al)
p =dim X/AT — Al)
a* = dim A (T* — Al)
p* = dim X*/A(T* — Al)
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are equal and finite.
If 2 #0and A € o(T) then A is an eigenvalue of T and of T*.

o(T) is compact, at most countable, and has at most one limit point,
namely, 0.

Note: The dimension of a vector space i1s here understood to be either

a nonnegative integer or the symbol co. The letter I is used for the identity
operators on both X and X*; thus

(T — AI)* = T* — AI* = T* — A,

since the adjoint of the identity on X is the identity on X*.

The spectrum o(T) of T was defined in Section 4.17. Theorem 4.24

contains a special case of (a): f = 0 implies &« = 0. This will be used in the
proof of the inequality (4) below.

It should be noted that ¢(T) is compact even if T 1s not (Theorem

10.13). The compactness of T is needed for the other assertions in (c).

PROOF. Put § = T — AI, to simplify the writing,

We begin with an elementary observation about quotient spaces.
Suppose M, is a closed subspace of a locally convex space Y, and k is
a positive integer such that k < dim Y/M,. Then there are vectors
¥y, ---» ¥ in Y such that the vector space M; generated by M, and
y¢s .-+, y; contains M;_, as a proper subspace. By Theorem 1.42, each
M, is closed. By Theorem 3.5, there are continuous linear functionals
Ay, .... A, on Y such that A;y; =1 but A,y =0 for all ye M,_,.
These functionals are linearly independent. The following conclusion
is therefore reached: If X denotes the space of all continuous linear
functionals on Y that annihilate M, then

(1) dim Y/M, < dim X.

Apply this with Y = X, M, = Z4(S). By Theorem 4.23, Z(S) is
closed. Also, X = Z(S)" = A4°(S*), by Theorem 4.12, so that (1)
becomes

2) p < a*

Next, take Y = X* with its weak*-topology; take M, = Z(S*).
By Theorem 4.14, Z(S*) is weak*-closed. Since X now consists of all
weak*-continuous linear functionals on X* that annihilate 2(S*), X is

isomorphic to +2(S*) = A(S) (Theorem 4.12), and (1) becomes
3) p* < a.
Our next objective is to prove that

(4) a < B.
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Once we have (4), the inequality
(5) o* < p*

is also true, since T* is a compact operator (Theorem 4.19). Since
o < oo by (d) of Theorem 4.18, (a) is an obvious consequence of the
inequalities (2) to ().

Assume that (4) is false. Then o > f. Since a < co, Lemma 4.21
shows that X contains closed subspaces E and F such that dim F = §
and

6) X =AN©S)®E=2RS)®F.

Every x € X has a unique representation x = x, + x,, with x, €
A(S), x, € E. Define n: X — .47(S) by setting nx = x,. It is easy to see
(by the closed graph theorem, for instance) that = is continuous.

Since we assume that dim A7(S) > dim F, there is a linear
mapping ¢ of A47(S) onto F such that ¢x, = O for some x, # 0. Define

(7) ' Ox = Tx + ¢drx (x € X).

Then ® e #A(X). Since dim #(¢) < 00, ¢n is a compact operator;
hence so is ® (Theorem 4.18).
Observe that

(8) O — 11 =S+ ¢n.

If x € E, then nx = 0, (® — AI)x = Sx; hence

9) (© — AI)(E) = Z(S).

If x e 4(S), then nx = x,

(10) (@ — AD)x = ¢x,

and therefore

(11) (® — AI)(A(S)) = o(A(S)) = F.
It follows from (9) and (11) that

(12) R(D — Al) o AS) + F = X.

But if (10) 1s used with x = x,, we see that 4 1s an eigenvalue of
®, ahd since @ is compact, Theorem 4.24 shows that the range of
® — /I cannot be all of X. This contradicts (12); hence (4) is true and
(a) is proved.

Part (b) follows from (a), for if A is not an eigenvalue of T, then
a(7) = 0, and (a) implies that B(T) = 0, that is, that T — AI) = X.
Thus T — A1 is invertible, so that 4 ¢ o(T).

It now follows from (b) of Theorem 4.24 that O is the only pos-
sible limit point of o(T), that o(T) is at most countable, and that
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o(T) u {0} is compact. If dim X < oo, then o(T) is finite; if
dim X = oo, then 0 € o(T), by (¢) of Theorem 4.18. Thus o(T) is
compact. This gives (c) and completes the proof of the theorem. /1]

Exercises

Throughout this set of exercises, X and Y denote Banach spaces, unless the contrary
is explicitly stated.

1.

8.
9.

Let ¢ be the embedding of X into X** described in Section 4.5. Let 7 be the

weak topology of X, and let o be the weak*-topology of X**—the one induced

by X*.

(a) Prove that ¢ is a homeomorphism of (X, ) onto a dense subspace of
(X**, o).

(b) If B is the closed unit ball of X, prove that ¢(B) is o-dense in the closed unit
ball of X**. (Use the Hahn-Banach separation theorem.)

(c) Use (a), (b), and the Banach-Alaoglu theorem to prove that X is reflexive if
and only if B is weakly compact.

(d) Deduce from (c) that every norm-closed subspace of a reflexive space X is
reflexive.

(e) If X 1s reflexive and Y 1s a closed subspace of X, prove that X/Y is reflexive.

(f) Prove that X is reflexive if and only if X* is reflexive.

Suggestion: One half follows from (c); for the other half, apply (d) to the sub-

space ¢(X) of X**.

Which of the spaces c,, £, £?, £ are reflexive? Prove that every finite-

dimensional normed space is reflexive. Prove that C, the supremum-normed

space of all complex continuous functions, on the unit interval, is not reflexive.

Prove that a subset E of #(X, Y) is equicontinuous if and only if there exists

M < oo such that [|[A]| < M for every A € E.

Recall that X* = B(X, ), if € is the scalar field. Hence A* € #({, X*) for every

A € X*. Identify the range of A*.

. Prove that T € #(X, Y) is an isometry of X onto Y if and only if T* is an

isometry of Y* onto X*.

Let o and 7 be the weak*-topologies of X* and Y*, respectively, and prove that
S is a continuous linear mapping of (Y*, 1) into (X*, o) if and only if § = T* for
some T € #(X, Y).

Let L' be the usual space of integrable functions on the closed unif interval J,
relative to Lebesgue measure. Suppose T € B(L', Y), so that T* € B(Y*, [*).
Suppose 2(T*) contains every continuous function on J. What can you deduce
about T?

Prove that (ST)* = T*S*. Supply the hypotheses under which this makes sense.
Suppose S € 4(X), T € B(X).

(a) Show, by an example, that ST = I does not imply TS = I.

(b) However, assume T is compact, show that

S —T)=Iifandonlyif (I — T)S =1,

and show that either of these equalities implies that I — (I — T)~ ! is
compact.



112 PART I: GENERAL THEORY

10. Assume T € %(X) is compact, and assume either that dim X = oo or that the
scalar field is . Prove that a(T) is not empty. However, a(T) may be empty if
dim X < oo and the scalar field is R.

11. Suppose dim X < oo and show that the equality f* = of Theorem 4.25
reduces to the statement that the row rank of a square matrix is equal to its
column rank.

12. Suppose T € B(X, Y)and #(T) is closed in Y. Prove that
dim A (T) = dim X*/Z(T*),
dim A(T*) =dim Y/R(T).

This generalizes the assertions o = * and o* = 8 of Theorem 4.25.
13. (a) Suppose Te B(X, Y), T, € B(X, Y)for n=1, 2, 3, ..., each T, has finite-
dimensional range, and lim |T — T,|| = 0. Prove that T i1s compact.
(b) Assume Y is a Hilbert space, and prove the converse of (a): Every compact
T € B(X, Y) can be approximated in the operator norm by operators with
finite-dimensional ranges. Hint: In a Hilbert space there are linear projec-
tions of norm 1 onto any closed subspace. (See Theorems 5.16, 12.4.)
14. Define a shift operator S and a multiplication operator M on £ by

0 if n=20,
xn—1) ifn>1,

(Sx)n) = {

(Mx)(n) = (n + 1)” 'x(n) if n > 0.

Put T = MS. Show that T is a compact operator which has no eigenvalue and
whose spectrum consists of exactly one point. Compute | T"||,forn=1,2,3, ...,
and compute lim, o || T"|*"".

15. Suppose u 1s a finite (or o-finite) positive measure on a measure space €, pu X u
is the corresponding product measure on Q x Q, and K € I*(u x p). Define

(TS)(s) = f K(s, f(t) du(t)  [f e Z(p)].

0

(a) Prove that T € #(I*(w)) and that

| T)* < U | K(s, £)* du(s) dp(?).
(919]

(b) Suppose a;, b; are members of I*(u), for 1 < i < n, put K(s, t) = ) afs)b{?),
and define T, in terms of K, as T was defined in terms of K. Prove that
dim £(T;) < n.

(¢)- Deduce that T is a compact operator on I*(u). Hint: Use Exercise 13.

(d) Suppose 4 € €, 4 # 0. Prove: Either the equation

Tf— M=y

has a unique solution f e I*(n) for every g € I?(#) or there are infinitely
many solutions for some g and none for others. (This is known as the Fred-
holm alternative.)

(e) Describe the adjoint of T.



CHAPTER 4: DUALITY IN BANACH SPACES 113

16. Define

17.

18.

19.

20.

21.

(1 — ) f0<t<s
(1 —1)s fs<t<l

K(s, t) = {

and define T € #(I%0, 1)) by

1

(TS)(s) = J K(s, t)f(¢) dt O0O<s<.

0

(a) Show that the eigenvalues of T are (nm)”% n=1, 2, 3, ..., that the corre-
sponding eigenfunctions are sin nnx, and that each eigenspace is one-
dimensional. Hint: If 4 # 0, the equation Tf = Af implies that f is infinitely
differentiable, that Af” + f = 0, and that f(0) = f(1) = 0. The case 4 = 0 can
be treated separately.

(b) Show that the above eigenfunctions form an orthogonal basis for IZ(0, 1).

(c) Suppose g(t) = )_ c, sin nnt. Discuss the equation Tf — if = g.

(d) Show that T is also a compact operator on C, the space of all continuous
functions on [0, 1]. Hint: If {f;} is uniformly bounded, then {Tf;} is equi-
continuous.

If I2 = I7(0, o) relative to Lebesgue measure, and if

1 S
(Tf)(8)=;ff(t) dt  (0<s <o),
0

prove that T € %(I?) and that T is not compact. (The fact that |T|| <2 is a

special case of Hardy’s inequality. See p. 72 of [23]))

Prove the following statements:

(a) If {x,} is a weakly convergent sequence in X, then {||x,/l} is bounded.

b) If T e #(X, Y)and x, —» x weakly, then Tx, - Tx weakly.

c) f T e B(X, Y),if x, > x weakly, and if T 1s compact, then | Tx, — Tx]| — 0.

d) Conversely, if X is reflexive, if T € #(X, Y), and if || Tx, — Tx|] -0 when-
ever x, — x weakly, then T is compact. Hint: Use (c) of Exercise 1, and part
(c) of Exercise 28 in Chapter 3.

(e) If X is reflexive and T € #(X, ¢'), then T is compact. Hence #(T) # ¢'.
Hint: Use (c) of Exercise 5 of Chapter 3.

() If Y is reflexive and T € %(c,, Y), then T is compact.

Suppose Y is a closed subspace of X, and x§ € X*. Put

(
(
(

pw=sup {|<{x, x& 1 xe Y, x| <1},
5 =inf {fx* — x¥||: x* e Y}

In other words, i is the norm of the restriction of x§ to Y, and d is the distance
from x§ to the annihilator of Y. Prove that u = 4. Prove also that § =
Ix* — x| for at least one x* € Y.

Extend Sections 4.6 to 4.9 to locally convex spaces. (The word “isometric” must
of course be deleted from the statement of Theorem 4.9.)

Let B and B* be the closed unit balls in X and X*, respectively. The following is
a converse of the Banach-Alaoglu theorem: If E is a convex set in X* such that



114

PART I: GENERAL THEORY

E N (rB*) is weak*-compact for every r > 0, then E is weak*-closed. (Corollary:
A subspace of X* is weak*-closed if and only if its intersection with B* is
weak*-compact.)

Complete the following outline of the proof.

(i) E is norm-closed.
(if) Associated to each F — X its polar

P(F) = {x*:|{x, x*>| < 1 forall x e F}.

The intersection of all sets P(F), as F ranges over the collection of all finite
subsets of r ~ ' B, is exactly rB*.

(iii) The theorem is a consequence of the following proposition: If, in addition

to the stated hypotheses, E N B* = (J, then there exists x € X such that
Re {x, x*)> > 1 for every x* € E.

(iv) Proof of the proposition: Put F, = {0}. Assume finite sets F,, ..., F,_,

have been chosen so that iF; = B and so that

(1) PFo)n-nP(F,_y)n EnkB*=(.

Note that (1) is true for k = 1. Put
Q=PFo)n-nPF.)nEnk+1)B*

If P(F) n Q # & for every finite set F — k~'B, the weak*-compactness of
Q, together with (ii), implies that (kB*) N Q # &, which contradicts (1).
Hence there is a finite set F, — k™ ' B such that (1) holds with k + 1 in place
of k. The construction can thus proceed. It yields

(2) En (PF)=g.

Arrange the members of | ] F, in a sequence {x,}. Then |x,/| - 0. Define
T: X* - ¢, by

Tx* = {{x,, x*>}.
Then T(E) is a convex subset of ¢, . By (2),

I Tx*| =sup |{x,, x*>| =1

n

for every x* € E. Hence there is a scalar sequence {a,}, with ) |a,| < oo,
such that

Re ) onCxy, x*) < 1

n=1

for every x* € E. To complete the proof, put x = ) a, x,.

22. Suppose T € B(X), T is compact,A #0,and S =T — Al.

(a) If A°(S™) = A(S"*") for some nonnegative integer n, prove that A°(S") =

A(S"*)fork=1,2,3,....

(b) Prove that (@) must happen for some n. (Hint: Consider the proof of

Theorem 4.24.)



23.

24.

25.

27.
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(c) Let n be the smallest nonnegative integer for which (a) holds. Prove that
dim A°(S") is finite, that

X =N (S"D RAS",

and that the restriction of S to #(S") is a one-to-one mapping of Z#(S") onto
R(S™).
Suppose {x,} is a sequence in a Banach space X, and

o0

Y Ix,l =M < 0.

n=1

Prove that the series ) x, converges to some x € X. Explicitly, prove that

lim [lx —(x, + - +x,)! =0.
Prove also that /x|l < M. (These facts were used in the proof of Theorem 4.13.)
Let ¢ be the space of all complex sequences

X = {X{, X3, X3, ..}

for which x_ = lim x, exists (in €). Put lIx/l =sup |x,|. Let ¢, be the subspace
of ¢ that consists of all x with x_ = 0.

(a) Describe explicitly two isometric isomorphisms u and v, such that ¥ maps c*
onto ¢! and v maps ¢ onto ¢!

(b) Define S: ¢, — ¢ by Sf = f. Describe the operator vS*u~ ' that maps ¢' to £'.
(c) Define T: c — ¢, by setting

Vi = Xgs Vptl = Xp — X if n> 1.

Prove that T is one-to-one and that Tc =c¢,. Find |T! and |[T'|.
Describe the operator uT*p~ ! that maps £’ to ¢1.

If Te B(X,Y)and #(T*) = 4 (T)*, prove that #(T) is closed.

. Assume T € #(X, Y) and T(X) = Y. Show that there exists 6 > 0 such that

S(X)=Yforall S e (X, Y)with IIS — T| <.
Suppose T € %B(X). Prove that A € ¢(T) if and only if there is a sequence {x,} in
X, lIx,ll = 1, for which

lim || Tx, — Ax,| = 0.

n-—rco

[Thus every 4 € o(T) which is not an eigenvalue of T is an “approximate”
eigenvalue.]



CHAPTER

SOME
APPLICATIONS

This chapter contains some applications of the preceding abstract material
to more concrete problems in analysis. Most of these applications depend
only on a small part of the contents of Chapters 1 through 4. Here i1s a
partial list of the theorems, ordered more or less according to prerequisites.

Theorems Prerequisites

5.23 Vector topologies

5.27 Minkowski functionals (and Brouwer’s fixed point theorem)
5.1,5.2 Closed graph theorem

54 Hahn-Banach theorem

5.5, 57, 5.10, 5.11 Banach-Alaoglu and Krein-Milman theorems

5.18 Banach-Steinhaus theorem and vector-valued integrals
59,5.21 Closed range theorem

A Continuity Theorem

One of the very early theorems in functional analysis (Hellinger and
Toeplitz, 1910) states that if T is a linear operator on a Hilbert space H
which is symmetric in the sense that

(Tx, y) =(x, Ty)

116
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for all x e H and y € H, then T is continuous. Here (x, y) denotes the usual
Hilbert space inner product. (See Section 12.1.)

If {x,} is a sequence in H such that |x,| = 0, the symmetry of T
implies that Tx, — 0 weakly. (This depends on knowing that all continuous
linear functionals on H are given by inner products.) The Hellinger-Toeplitz
theorem is therefore a consequence of the following one.

5.1 Theorem Suppose X and Y are F-spaces, Y* separates points on Y,
T: X =Y is linear, and ATx, — O for every A € Y* whenever x,— 0. Then
T is continuous.

PROOF. Suppose x, = x and Tx,— y.If A € Y*, then
AT(x, — x)—0
so that
Ay =1lim ATx, = ATx.

Consequently, y = Tx, and the closed graph theorem can be applied.
/11

In the context of Banach spaces, Theorem 5.1 can be stated as
follows: If T: X = Y is linear, if ||x,|| = O implies that Tx,— 0 weakly, then
|x,|l = O actually implies that || Tx,| — O.

To see that completeness is important here, let X be the vector space
of all complex infinitely differentiable functions on (— oo, o0o) which vanish
outside the unit interval, put

1
(f g)=Lf§, I £l = (SN2

and define T: X - X by (Tf)x) = if'(x). Then (Tf, g) = (f, Tg), but T is
not continuous.

Closed Subspaces of LP-Spaces

The proof of the following theorem of Grothendieck also involves the
closed graph theorem.

5.2 Theorem Suppose0 < p < o0, and

(@) uis a probability measure on a measure space Q.
(b) S is a closed subspace of [P(1).
(c) S < L)

Then S is finite-dimensional.
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PROOF. Let j be the identity map that takes S into I, where S is given
the I?-topology, so that S is complete. If { f,} is a sequence in S such
that f, —fin § and f, = g in L, it is obvious that f= g a.e. Hence j
satisfies the hypotheses of the closed graph theorem, and we conclude
that there is a constant K < oo such that

(1) I/l < KILf1l,

for all fe S. As usual, | f|, means (| f|? du)'?, and | |, is the
essential supremum of | f|. If p<2then | f|, <[ f,-If 2 <p < o0,
integration of the inequality

FIP<IA15721 12
leads to || f| ., < K?”?| f|,. In either case, we have a constant M < o
such that
2) | flo <M fll,  (f€S)

In the rest of the proof we shall deal with individual functions,
not with equivalence classes modulo null sets.

Let {¢,,..., ¢,} be an orthonormal set in S, regarded as a sub-
space of I”. Let O be a countable dense subset of the euclidean unit
ball Bof ¢". If ¢ = (¢4, ..., ¢,) € B, definef, =) ¢, ;. Then || f.||, <1,
and so | f.||, < M. Since Q is countable, there is a set Q' < Q, with
u(€) = 1, such that | f.(x)| < M for every c € Q and for every x € Q.
If x is fixed, ¢ —| f(x)| is a continuous function on B. Hence
| fi(x)| < M whenever ¢ € B and x € Q'. It follows that Y |¢,(x)|*> <
M? for every x € Q'. Integration of this inequality gives n < M?. We
conclude that dim S < M?. This proves the theorem. 1]/

It is crucial in this theorem that I* occurs in the hypothesis (c). To
illustrate this we will now construct an infinite-dimensional closed subspace
of I! which lies in I*. For our probability measure we take Lebesgue
measure on the circle, divided by 27.

5.3 Theorem Let E be an infinite set of integers such that no integer has
more than one representation as a sum of two members of E. Let Pg be the
vector space of all finite sums f of the form

a0

(1) fe®)y= Y c(n)e®

n= — o

in which c(n) = 0 whenever n is not in E. Let S; be the L!-closure of Pg. Then
Sg is a closed subspace of L.
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An example of such a set is furnished by 2 k=1, 2, 3,.... Much
slower growth can also be achieved.

PROOF. If fis as in (1), then

f2(ei0) — Z C(n)Ze2in8 + Z c(n)c(m)ei("‘*'""g.

n n¥m

Our combinatorial hypothesis about E implies that

J|f|4=J|f2|2=Z [cm)[* +4 3 |c(m)|?|c(n)|?

m<n

so that

(2) Jlfl“sz(zIC(n)I")2=2(J|f|") -

Holder’s inequality, with 3 and 2 as conjugate exponents, gives

®) fioe<([e) " (Jro)"

It follows from (2) and (3) that
(4) Iflla <2V f12  and  |fl, <2Y2|f1l,

for every f € Pg. Every I'-Cauchy sequence in P, is therefore also a
Cauchy sequence in I*. Hence S, c I!. The obvious inequality

I f1Il1 < Ilfl4 then shows that S, is closed in I, /11/

An interesting result can be obtained by applying a duality argument
to the second inequality (4). Recall that the Fourier coefficients g(n) of every
g € L* satisfy ) |§(n)|*> < oo. The next theorem shows that nothing more
can be said about the restriction of g to E.

54 Theorem IfE isasin Theorem 53 and if
Y la(n))? = 4% <
then there exists g € L such that g(n) = a(n) for every n € E.

PROOF. If f € P, the preceding proof shows that

1S f(n)am)| < A | f) 12312 = Al fll, <224l f ;.

Hence f— ) f (n)a(n) is a linear functional on P, which is continuous
relative to the L'-norm. By the Hahn-Banach theorem, this functional
has a continuous linear extension to I'. Hence there exists g € [°
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(with | g| . < 2!/?24) such that

% Jonatn) = —f fe~Mge® do  (f< Py

With f(e*®) = " (n € E), this shows that §(n) = a(n). 1]/

The Range of a Vector-Valued Measure

We now give a rather striking application of the theorems of Krein-Milman
and Banach-Alaoglu.

Let M be a og-algebra. A real-valued measure 4 on M is said to be
nonatomic if every set E € ¥t with |41 |(E) > 0 contains a set A € M with
0 <|A|(A) <|A|(E). Here | 4| denotes the total variation measure of 4; the
terminology 1s as in [23].

5.5 Theorem Suppose u,, ..., pu, are real-valued nonatomic measures on
a g-algebra M. Define

WE) = (y(E), ..., u(E)) (EeM.

Then u is a function with domain YR whose range is a compact convex subset
of R".

PROOF. Associate to each bounded measurable real function g the

vector
Ag=<Jgdm,angdm>

in R". Put ¢ = |u,|+ -+ |n,l. If g, =g, ae. [c], then Ag, = Ag,.
Hence A may be regarded as a linear mapping of [°(s) into R".

Each y; i1s absolutely continuous with respect to . The Radon-
Nikodym theorem [23] shows therefore that there are functions
h; € I!(6) such that du;= h;do (1 <i<n). Hence A is a weak*-
continuous linear mapping of L*(c) into R"; recall that L*(c) = L'(0)*.
Put

={geL[(6):0<g< 1}

It is obvious that K is convex. Since g € K if and only if

Osffgdasjfdo

for every nonnegative f € I’(0), K is weak*-closed. And since K lies in
the closed unit ball of [°(g), the Banach-Alaoglu theorem shows that
K is weak*-compact. Hence A(K) is a compact convex set in R".
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We shall prove that u(t) = A(K).

If y¢ is the characteristic function of a set E € I, then y, € K
and u(E) = Ag. Thus u(9t) = A(K). To obtain the opposite inclusion,
pick a point p € A(K) and define

K,={geK: Ag=p}.

We have to show that K contains some g, for then p = u(E).

Note that K, is convex; since A is continuous, K, 1s weak*-
compact. By the Krein-Milman theorem, K, has an extreme point.

Suppose go € K, and g, 1s not a characteristic function in L*(o).
Then there is a set E € M and an r > 0 such that ¢(E) >0 and r <
go<1—ron E. Put Y =y [*(s). Since o(E) >0 and ¢ is non-
atomic, dim Y > n. Hence there exists g € Y, not the zero element of
[*(o), such that Ag =0, and such that —r < g <r. It follows that
go + g and go — g are in K. Thus g, is not an extreme point of K ,.

Every extreme point of K, is therefore a characteristic function.
This completes the proof. /1//

A Generalized Stone-Weierstrass Theorem

The theorems of Krein-Milman, Hahn-Banach, and Banach-Alaoglu will
now be applied to an approximation problem.

5.6 Definitions Let C(S) be the familiar sup-normed Banach space of
all continuous complex functions on the compact Hausdorft space S. A
subspace A of C(S) is an algebra if fg € A whenever fe A and g € A. A set
E c S is said to be A-antisymmetric if every fe A which is real on E is
constant on E; in other words, the algebra A; which consists of the
restrictions f|p of the functions fe A to E contains no nonconstant real
functions.

For example, if S is a compact set in € and if A consists of all f € C(S)
that are holomorphic in the interior of S, then every component of the
interior of S is A-antisymmetric.

Suppose A = C(S), p € S, g € S, and write p ~ g provided that there is
an A-antisymmetric set E which contains both p and g. It is easily verified
that this defines an equivalence relation in S and that each equivalence class
is a closed set. These equivalence classes are the maximal A-antisymmetric
sets.

5.7 Bishop’s theorem Let A be a closed subalgebra of C(S). Suppose
g € C(S) and g|; € Ag for every maximal A-antisymmetric set E. Then g € A.

Stated differently, the hypothesis on g is that to every maximal A-
antisymmetric set E corresponds a function f € 4 which coincides with g on
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E; the conclusion is that one f exists which does this for every E, namely,
f=9
A special case of Bishop’s theorem is the Stone-Weierstrass theorem:
Suppose that

(@) A is a closed subalgebra of C(S),

(b) A is self-adjoint (i.e., f € A for all fe A),

(c) A separates points on S, and

(d) ateverype€S,f(p)# 0 for somefe A Then A = C(S).

For in this case the real-valued members f + f of A separate points on
S. Therefore no A-antisymmetric set contains more than one point. It
follows that every g € C(S) satisfies the hypothesis of Bishop’s theorem.

PROOF. The annihilator 4" of A4 consists of all regular complex Borel
measures u on S such that j f du = 0 for every f € A. Define

K={ueA:|pl <1},

where | u|| = | 1| (S). Then K is convex, balanced, and weak*-compact,
by (c) of Theorem 4.3. If K = {0}, then 4 = {0}; hence 4 = C(S), and
there is nothing to prove.

Assume K # {0}, and let p be an extreme point of K. Clearly,
||l = 1. Let E be the support of u; this means that E is compact, that
| #| (E) = | #|l, and that E is the smallest set with these two properties.

We claim: E is antisymmetric.

Consider an fe A with f|g real; without loss of generality,
—1 < f< 1 on E. Define measures ¢ and t by

do=3(1+f)dy, de=3(1-f)du

Since A is an algebra, c € A" and 7 € A". Since 1 + fand 1 — f are
positive on E, ||a|| > 0, |iz|| > 0, and

1 1
ol + 2] =5 J (1 +f)dlnl+5 f (A —f)dlpl =ul(E)=1.
E E
This shows that u is a convex combination of the measures o, =
6/\le] and T, = /| z|. Both of these are in K. Since u is extreme in K,
u = od,. In other words,

31+ f) du = |o| du

Therefore f = 2|g|| — 1 on E, 1.e., f|g Is constant.

This proves our claim.

If g satisfies the hypothesis of the theorem, it follows that
{ g du = 0 for every p that is extreme in K, hence for every u in the
convex hull of these extreme points. Since u— | g du is a weak*-
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continuous function on K, the Krein-Milman theorem implies that
| g du = O for every u € K, hence for every u € AL,
Every continuous linear functional on C(S) that annihilates A4

thus also annihilates g. Hence g € A, by the Hahn-Banach separation
theorem. //1]

Note: If (d) is dropped from the hypotheses of the Stone-Weierstrass
theorem, then (c) implies that there is at most one p, € S, where f(py) = O
for every f € A. If this is the case, then the proof shows that A = {f e C(S):

f(po) = O}-

Here is an example that illustrates Bishop’s theorem:

5.8 Theorem Suppose

(@) K is a compact subset of R" x € and
(b) ift=(t,,...,t,) € R" the set

K,={ze :(t 2) e K}
does not separate . If g € C(K), define g, on K, by g,(z) = g(t, z).

Assume that g € C(K), that each g, is holomorphic in the interior of K,
and that ¢ > 0. Then there is a polynomial P in the variablest,, ..., t,, z such
that

|P(ta Z) _g(t’ Z)I <é&
for every (t, z) € K.

PROOF. Let A be the ciosure in C(K) of the set of all polynomials
P(t, z). Since the real polynomials on R" separate points, every
A-antisymmetric set lies in some K,. By Theorem 5.7 it is therefore
enough to show that to every t € R" corresponds an f € A such that
fe=4..

Fix t € R". By Mergelyan’s theorem [23] there are polynomials
P(z) such that

gdz) = —Zl Pi(z) (z € Kt)

and | P;| <2 'if i > 1. There is a polynomial Q on R" that peaks at t,
in the sense that Q(t) = 1 but |Q(s)| < 1 if s # t and K, # J. Consider
a fixed i > 1. The functions ¢,, defined on K by

Pu(s; 2) = [Q™(s)P(2)|
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form a monotonically decreasing sequence of continuous functions
whose limit is <27/ at every point of K. Since K is compact, it follows
that there is a positive integer m; such that ¢, (s, z) <27’ at every
point of K. The series

[0 @]

f(s,2) = ), Q™(s)P{2)

=1

converges uniformly on K. Hence f € 4, and obviously f, = g,. /1]

Two Interpolation Theorems

The proof of the first of these theorems involves the adjoint of an operator.
The second furnishes another application of the Krein-Milman theorem.

The first one (due to Bishop) again concerns C(S). Our notation is as
in Theorem 5.7.

5.9 Theorem Suppose Y is a closed subspace of C(S), K is a compact
subset of S, and |u|(K) =0 for every ue Y. If ge C(K) and |g| <1, it
follows that there exists f € Y such that f|y =gand| f| < 1onS.

Thus every continuous function on K extends to a member of Y. In
other words, the restriction map f— f | maps Y onto C(K).

This theorem generalizes the following special case.

Let A be the disc algebra, i.e., the set of all continuous functions on
the closure of the unit disc U in € which are holomorphic in U. Take
S = T, the unit circle. Let Y consist of the restrictions to T of the members
of A. By the maximum modulus theorem, Y is a closed subspace of C(T). If
K < T i1s compact and has Lebesgue measure O, the theorem of F. and M.
Riesz [23] states precisly that K satisfies the hypothesis of Theorem 5.9.
Consequently, to every g € C(K) corresponds an f € A such that f = g on K.

PROOF. Let p: Y — C(K) be the restriction map defined by pf = f|.
We have to prove that p maps the open unit ball of Y onto the open
unit ball of C(K).

Consider the adjoint p*: M(K)— Y*, where M(K) = C(K)* is
the Banach space of all regular complex Borel measures on K, with
the total variation norm |u| = |u|(K). For each u € M(K), p*u is a
bounded linear functional on Y; by the Hahn-Banach theorem, p*u
extends to a linear functional on C(S), of the same norm. In other
words, there exists ¢ € M(S), with |o| = | p*ull, such that

ffd0= S p* > = {pf, u>=ffdu
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for every fe€ Y. Regard u as a member of M(S), with support in K.
Then 06— pe Y, and our hypothesis about K implies that
o(E) = W(E) for every Borel set E < K. Hence |u| < |oll. We con-
clude that || x| < ||p*ull. By (b) of Theorem 4.13, this inequality proves
the theorem. ////

Note: Since ||p*| = ||p| < 1, we also have ||o|| < ||| in the preceding
proof. It follows that ¢ = u. Hence p*u has a unique norm-preserving exten-
sion to C(S).

Our second interpolation theorem concerns finite Blaschke products,
i.e., functions B of the form

N
B(z) =c¢ ,
@) kl;[l 1 —a,z
where |c| =1 and |a,| <1 for 1 <k < N. It is easy to see that the finite
Blaschke products are precisely those members of the disc algebra whose
absolute value is 1 at every point of the unit circle.

The data of the Pick-Nevanlinna interpolation problem are two finite
sets of complex numbers, {z¢, ..., z,} and {wg, ..., w,}, all of absolute value
less than 1, with z; # z; if i # j. The problem is to find a holomorphic func-
tion f in the open unit disc U, such that | f(z)| < 1 for all z € U, and such
that

fzi) = w; O <i<n)

The data may very well admit no solution. For example, if {z,, z,} =
{0, 3} and {wq, w,} = {0, %}, the Schwarz lemma shows this. But if the
problem has solutions, then among them there must be some very nice
ones. The next theorem shows this.

5.10 Theorem Let {z,,..., z,}, {wg, ..., w,} be Pick-Nevanlinna data.
Let E be the set of all holomorphic functions f in U such that | f| <1 and
f(z;) =w; for 0 <i <n. If Eis not empty, then E contains a finite Blaschke
product.

PROOF. Without loss of generality, assume z, = wy, = 0. We will show
that there is a holomorphic function F in U which satisfies

(1) Re F(z)>0  forze U, F(0) = 1,

1 .
2) Fz)= = —2  for1<i<n,
1 - W;
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and which has the form

3) Fo) = S o 2

k= ak—Z

where ¢, >0, > ¢, =1, and |q,| = 1. Once such an F is found, put
B=(F—-1)/F +1). This is a finite Blaschke product that
satisfies B(z;) = w; for 0 <i < n.
Let K be the set of all holomorphic functions F in U that
satisfy (1).
Associate to each u € M(T) = C(T)* the function
n eiG 4z

4) F(2) = J — du(e'®) (z € U).

-

If P is the set of all Borel probability measures on T, then pu F, is a

one-to-one correspondence between P and K (Theorems 11.9 and
11.30 of [23]). Define A: M(T) = " by

(5) A/‘l = (Fu(zl)7 tet Fp(zn))'
Since E is assumed to be nonempty, there exists ux, € P such that
(6) A#O=ﬂ=(ﬁl,9 ﬂn)

Since P 1s convex and weak*-compact, and since A is linear and
weak*-continuous, A(P) is a convex compact set in ¢ = R?". Since
p € A(P), B is a convex combination of N < 2n + 1 extreme points of
A(P) (Exercise 19, Chapter 3). If y is an extreme point of A(P), then
A~ !(y) is an extreme set of K, and every extreme point of A~ !(y) (their
existence follows from the Krein-Milman theorem) is an extreme point

of P. It follows that there are extreme points u,, ..., gy of P and
positive numbers ¢, with ) ¢, = 1, such that
(7) Ale,py + - +eyuy) =B

Being an extreme point of P, each y, that occurs in (7) has a
single point a, € T for its support; hence

a + z

(8) F,(2) =

If F is now defined by (3), it follows from (7) and (8) that F satisfies (1)
and (2). /111

Kakutani’s Fixed Point Theorem

Fixed point theorems play an important role in many parts of analysis and
topology. The one we shall now prove will be used to establish the existence
of a Haar measure on every compact group. Rather than state it for linear
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maps, we shall state it in terms of affine maps. These are essentially linear
maps followed by a translation (Exercise 17), but in the present context they
need not be defined globally. The following definition makes this precise:

If K is a convex set, Y is a vector space, and T: K — Y satisfies

T(1 —A)x+Ay)=(1 —A)Tx + ATy
whenever x € K,y € K, 0 < A < 1, then T is said to be affine.

5.11 Theorem Suppose that

(@) K is a nonempty compact convex set in a locally convex space X, and
(b) G is an equicontinuous group of affine maps taking K into K.

Then G has a common _fixed point in K.

More explicitly, the conclusion is that there exists p € K such that
Tp=pforvery T € G.

Part (b) of the hypothesis may need some explanation. To say that G
is a group means that every T € G is a one-to-one map of K into K whose
inverse T~ ! also belongs to G (so T maps K onto K!) and that T, T, € G
whenever T; € G for i = 1, 2. Here (T, T;)x = Ty(T, x), of course; note that
the composition of two affine maps is affine.

To say that G is equicontinuous (compare with Section 2.3) means
now that to every neighborhood W of 0 in X corresponds a neighborhood
V of Oin X such that Tx — Ty €e W whenever x e K, ye K, x —yeV,
and T € G.

Hypothesis (b) is satisfied, for instance, when G is a group of linear
1Isometries on a normed space X.

PROOF. Let Q be the collection of all nonempty compact convex sets
H < K such that T(H) < H for every T € G. Partially order Q by set
inclusion. Note that Q # J, since K € Q. By Hausdorff’s maximality
theorem, Q contains a maximal totally ordered subcollection Q,. The
intersection Q of all members of Q, is a minimal member of Q. The
theorem will be proved by showing that Q contains only one point.

Assume, to the contrary, that there exist x € Q, y € Q, x # y.
Then there is a neighborhood W of 0 in X such that x — y ¢ W. Let
V be associated to W as in the preceding definition of equicontinuity.
If Tx — Ty werein V, for some T € G, then

x—y=T"YTx)— T YTy)

would be in W, a contradiction. We conclude:

FornoTeGisTx—TyinV.
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Put z = 4(x + y). Then z € Q. Define G(z) = {Tz: T € G}. This
“G-orbit of z” 1s G-invariant (ie., every T € G maps it into itself),
hence so is its closure K, = G(z), and therefore co(K,) is a nonempty
G-invariant compact convex subset of Q. The minimality of Q implies
that co(K,) = Q.

Let p be an extreme point of Q. (It exists, by the Krein-Milman
theorem.) Since Q is compact and Q = co(K,), Theorem 3.25 shows
that p lies in the closure K, of G(z).

Define a set

E={Tz, Tx, Ty): TeG} =Q x Q x Q.

Since p € G(z) and Q x Q is compact, the lemma that is stated below
shows that there exists a point (x*, y*) € O x Q so that (p, x*, y*) lies
in the closure of E. Since 2Tz = Tx + Ty for every T € G, it follows
that 2p = x* + y*, and this implies that x* = y* because p 1s an
extreme point of Q.

But Tx — Ty ¢ V, for every T € G; hence x* — y* ¢ V; hence
x* # y* and we have our contradiction. 1]/

Lemma Suppose that A and B are topological spaces, B is compact, n is
the natural projection of A x Bonto A, and E —c A x B.

If p € A lies in the closure of n(E), then (p, q) lies in the closure of E for
some q € B.

PROOF. If the conclusion fails, then every q € B has a neighborhood
W, = B so that (V, x W,) n E = ¥ for some neighborhood ¥, of p in
A. The compactness of B implies that B W, u --- u W, for some
finite set {g,, ..., q,}. Then ¥V, n--- n ¥, is a neighborhood of p
which does not intersect n(E), contrary to the assumption that p lies in
the closure of n(E). //]/

Haar Measure on Compact Groups

5.12 Definitions A topological group is a group G in which a topology
is defined that makes the group operations continuous. The most concise
way to express this requirement is to postulate the continuity of the
mapping ¢: G x G = G defined by

d(x, y) = xy~ "

For each a € G, the mappings x = ax and x = xa are homeomor-
phisms of G onto G; so is x = x~!. The topology of G is therefore com-
pletely determined by any local base at the identity element e.

If we require (as we shall from now on) that every point of G is a closed
set, then the analogues of Theorems 1.10 to 1.12 hold (with exactly the same
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proofs, except for changes in notation); in particular, the Hausdorff separa-
tion axiom holds.

If fis any function with domain G, its left translates L, f and its right
translates R, f are defined, for every s € G, by

(L f)x) = f(sx), (R f)(x) =f(xs)  (x€Q)

A complex function f on G is said to be uniformly continuous if to
every ¢ > 0 corresponds a neighborhood V of e in G such that

| ) =f()] <e

whenever se G,t € G,and s 't e V.

A topological group G whose topology is compact is called a compact
group; in this case, C(G) is, as usual, the Banach space of all complex con-
tinuous functions on G, with the supremum norm.

5.13 Theorem Let G be a compact group, suppose f € C(G), and define
H,(f) to be the convex hull of the set of all left translates of f. Then

(@) s— L fis acontinuous map from G into C(G), and
(b) the closure of H,(f) is compact in C(G).

PROOF. Fix & > 0. Since f is continuous, there corresponds to each
a € G a neighborhood W, of e such that | f(x) — f(a)| <e if xa=! €
W, . The continuity of the group operations gives neighborhoods ¥, of

e which satisfy ¥V, 'V, = W,. Since G is compact, there is a finite set
A < G such that

(1) G= V- a
ac A
Put
(2) V=1_)¥.
ace A

Choose x, y € G so that yx~ ' € V, and choose a € 4 so that ya ' €

V.. Then | f(y) — f(a)| < ¢ and since xa™' = (xy " Hya e V'V, c
W., we also have | f(x) — f(a)| < e

Thus | f(x) — f(y)| < 2¢ whenever yx~ ' € V.

For any s € G, (ys)(xs)” ' = yx~!. Hence yx~! € V implies that
| f(xs) — f(ys)| < 2e. This is just another way of saying that

(3) 1L f= Ly fIl <2e

whenever y lies in the neighborhood Vx of x. This proves (a).
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As a consequence of (a), {L, f: x € G} is compact in the Banach
space C(G). Hence (b) follows from part (c) of Theorem 3.20. /1//

5.14 Theorem On every compact group G exists a unique regular Borel
probability measure m which is left-invariant, in the sense that

(1) J fdm = J (L, f) dm [s € G, fe C(G)].
G G

This m is also right-invariant :

(2) j fdm = f (R f)dm  [seG, fe C(G)]
G G

and it satisfies the relation
(3) j f(x) dm(x) = J fx™Hdm(x)  [fe C(G)]
G G

This m 1s called the Haar measure of G.

PROOF. The operators L satisfy L L, = L,., because
(Ly L, f)(x) = (L, fXsx) = f(tsx) = (Lss f)(x).

Since each L, is an isometry of C(G) onto itself, {L,: s € G} is an equi-
continuous group of linear operators on C(G). If fe C(G), let K, be
the closure of H,(f). By Theorem 5.13, K, i1s compact. It is obvious
that L(K,) = K, for every s € G. The fixed point theorem 5.11 now
implies that K, contains a function ¢ such that L ¢ = ¢ for every
s € G. In particular, ¢(s) = ¢(e), so that ¢ is constant. By the defini-
tion of K, this constant can’ be uniformly approximated by functions
in Hy(f).

So far we have proved that to each f € C(G) corresponds at least
one constant ¢ which can be uniformly approximated on G by convex
combinations of left translates of f. Likewise, there is a constant ¢’
which bears the same relation to the right translates of f. We claim
that ¢ = c.

To prove this, pick & > 0. There exist finite sets {a;} and {b;} in
G, and there exist numbers o; > 0, 8; > 0, with z a=1= z B;, such
that

<e¢ (x € G)

¢ — Z o; f(a;x)

i

(4)
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and

(5)

<é¢€ (x € G).

¢ — Z ij(ij)

Put x = b; in (4); multiply (4) by B;, and add with respect to j.
The result 1s

(6)

< E&.

c— 3 o, flah)

Put x = a; 1n (5), multiply (5) by «;, and add with respect to i, to
obtain

(7)

< E.

¢’ — Z “iﬁjf(ai bj)

Now (6) and (7) imply that ¢ = ¢’

It follows that to each fe C(G) corresponds a unique number,
which we shall write Mf, which can be uniformly approximated by
convex combinations of left translates of f; the same Mf is also the
unique number that can be uniformly approximated by convex com-
binations of right translates of f. The following properties of M are
obvious:

(8) Mf>0 iff>0.
9) M1 = 1.
(10) M(af) =aMf  if ais a scalar.
(11) M(L, f) = Mf = M(R, f) for every s € G.
We now prove that
(12) M(f+ g) = Mf+ Mg.

Pick ¢ > 0. Then

(13) Mf—> o, fla;x)| <e (x € G)

for some finite set {a;} = G and for some numbers o; > 0 with
Y o; = 1. Define

(14) hx) = ¥ @, g(a ).

Then h € K, hence K, = K,, and since each of these sets contains a
unique constant function, we have Mh = Mg. Hence there is a finite
set {b;} = G, and there are numbers #; > 0 with )_ B, = 1, such that

(15) Mg — ) B;hb;x)| <¢ (x € G);

J
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by (14), this gives

(16) <¢ (xeQ)

Mg — Z aiﬁjg(aibjx)
i J

Replace x by b; x in (13), multiply (13) by f8;, and add with respect to j,
to obtain

<é¢ (x € G).

(17) Mf =) aB; fla,b;x)
Thus

< 2¢ (x € G).

(18) ‘Mf'i‘ Mg_zaiﬁj(f'l' g)(aibjx)
i’j
Since ) a;f; = 1,(18) implies (12).
The Riesz representation theorem, combined with (8), (9), (10),
and (12), yields a regular Borel probability measure m that satisfies

(19) Mf = Lfdm (f e C(G);

properties (1) and (2) follow now from (11).
To prove uniqueness, let u be a regular Borel probability

measure on G which is left-invariant. Since m is right-invariant, we
have, for every f € C(G),

j fdu= | dm(y) j f(yx) du(x)
G JG G

= | du(x) ff (yx) dm(y) = j fdm.
G G G

Hence u = m.
The proof of (3) is similar. Put g(x) = f(x ~!). Then

J dm(y) f g(xy~ ') dm(x) = J dm(x) j flyx 1) dm(y).
G G G G

The two inner integrals are independent of y and x, respectively.
Hence [ g dm = fdm. /1]

Uncomplemented Subspaces

Complemented subspaces of a topological vector space were defined in
Section 4.20; Lemma 4.21 furnished some examples. It is also very easy to
see that every closed subspace of a Hilbert space is complemented
(Theorem 12.4). We will now show that some very familiar closed subspaces
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of certain other Banach spaces are, in fact, not complemented. These exam-
ples will be derived from a rather general theorem about compact groups of
operators that have an invariant subspace; its proof uses vector-valued
integration with respect to Haar measure.

We begin by looking at some relations that exist between com-
plemented subspaces on the one hand and projections on the other.

5.15 Projections Let X be a vector space. A linear mapping P: X —» X
is called a projection in X if

P2 =P,

1e., if P(Px) = Px for every x € X.
Suppose P is a projection in X, with null space .4#°(P) and range Z(P).
The following facts are almost obvious:

(@) AP)=A&(I—-P)={xe X: Px=x}.

(b) A (P)= A — P).

() AP) N A(P)= {0} and X = ZA(P) + A (P).

(d) If A and B are subspaces of X such that A n B= {0} and X = 4 + B,
then there is a unique projection P in X with 4 = #(P) and B = A4"(P).

Since I—-—P)P=0, AP)=A(U—-P) If xe A —P), then
x — Px =0, and so x = Px € 4(P). This gives (a); (b) follows by applying
(@ to I—P. If xe AP) A (P), then x=Px=0; if xe X, then
x = Px + (x — Px), and x — Px € A"(P). This proves (c). If A and B satisfy
(d), every x € X has a unique decomposition x = x' + x”, with x' € A4,
x" € B. Define Px = x'. Trivial verifications then prove (d).

5.16 Theorem

(@) If P is a continuous projection in a topological vector space X, then
X = A(P) ® A (P).

(b) Conversely, if X is an F-space and if X = A @ B, then the projection P
with range A and null space B is continuous.

Recall that we use the notation X = 4 ® B only when 4 and B are
closed subspaces of X such that 4 n B= {0} and 4 + B = X.

PROOF. Statement (a) is contained in (c) of Section 5.15, except for the
assertion that Z(P) is closed. To see the latter, note that
A(P) = A(I — P) and that I — P is continuous.
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Next, suppose P is the projection with range 4 and null space B,
as in (b). To prove that P is continuous we verify that P satisfies the
hypotheses of the closed graph theorem: Suppose x, = x and Px, — y.
Since Px, € A and A is closed, we have y € 4, hence y = Py. Since
x, — Px, € B and B is closed, we have x — y € B, hence Py = Px. It
follows that y = Px. Hence P is continuous. /1]

Corollary. A closed subspace of an F-space X is complemented in X if
and only if it is the range of some continuous projection in X.

5.17 Groups of linear operators Suppose that a topological vector
space X and a topological group G are related in the following manner: To
every s € G corresponds a continuous linear operator 7.: X — X such that

I.=1, T1T,=T1  (se€G,teG);

also, the mapping (s, x) = T, x of G x X into X is continuous.
Under these conditions, G is said to act as a group of continuous
linear operators on X.

S.18 Theorem Suppose

(@) X is a Fréchet space,
(b) Y is a complemented subspace of X,

(¢c) G is a compact group which acts as a group of continuous linear oper-
ators on X, and

(d) T(Y)c< Y foreveryse G.

Then there is a continuous projection Q of X onto Y which commutes
with every T..

PROOF. For simplicity, write sx in place of T, x. By (b) and Theorem
5.16, there is a continuous projection P of X onto Y. The desired
projection Q is to satisfy s”'Qs = Q for all s € G. The idea of the
proof is to obtain Q by averaging the operators s~ ' Ps with respect to
the Haar measure m of G: define

(1) Ox = j s~ ' Psx dm(s) (x € X).
G

To show that this integral exists, in accordance with Definition
3.26, put

(2) f(s) = s 'Psx (s € G).
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By Theorem 3.27, it suffices to show thatf,: G — X is continuous. Fix
so € G; let U be a neighborhood of f (s¢) in X. Put y = Ps, x, so that

(3) So 'V = f{so).

Since (s, z) = sz is assumed to be continuous, s, has a neighborhood
V, and y has a neighborhood W such that

(4) sT\W)yc U if se V.
Also, sy has a neighborhood V, such that
(5) Psx e W if seV,.

The continuity of P was used here. If s € ¥, n V,, it follows from (2),
(4), and (5) that f,(s) € U. Thusf, is continuous.

Since G is compact, each f, has compact range in X. The
Banach-Steinhaus theorem 2.6 implies therefore that {s™'Ps: s € G} is
an equicontinuous collection of linear operators on X. To every
convex neighborhood U, of 0 in X corresponds therefore a neighbor-
hood U, of 0 such that s~ 'Ps(U,) = U,. It now follows from (1) and
the convexity of U, that Q(U,) = U,. (See Theorem 3.27.) Hence Q is
continuous. The linearity of Q is obvious.

If x € X, then Psx € Y, hence s~ 'Psx € Y by (d), for every s € G.
Since Y is closed, Ox € Y.

If x e Y, then sx € Y, Psx = sx, and so s !Psx = x, for every
s € G. Hence Ox = x.

These two statements prove that Q is a projection of X onto Y.
To complete the proof, we have to show that

(6) Qso =500 for every s, € G.

Note that s~ ! Pssy = sg(ssg) ™ ' P(sse). It now follows from (1) and
(2) that

~
Qsox = | s~ 'Pssgx dm(s)
JG
~

= | Sofi(s50) dms)

JG

~

So.fx(s) dm(s)
G

= Sg j £.(s) dm(s) = 54 Ox.
G

The third equality is due to the translation-invariance of m; for
the fourth (moving s, across the integral sign), see Exercise 24 of

Chapter 3. //1]
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5.19 Examples In our first example, we take X = L', Y = H'. Here I
is the space of all integrable functions on the unit circle, and H'! consists of
those fe L' that satisfy f(n) = O for all n < 0. Recall that f(n) denotes the
nth Fourier coefficient of f:

n

(1) f(n)=%f f(@)e~'"® 46 n=0, +1, +2,...).

-_-Tm

Note that we write f(0) in place of f(e*), for simplicity.

For G we take the unit circle, i.e., the multiplicative group of all
complex numbers of absolute value 1, and we associate to each ¢ € G the
translation operators z, defined by

(2) (T, S)XO) = f(s + 6).

It is a simple matter to verify that G then acts on L' as described in Section
5.17 and that

(3) (2, /)" (1) = €"f (n).

Hence T (H') = H' for every real s. (See Exercise 12.)
If H' were complemented in L', Theorem 5.18 would imply that there
is a continuous projection Q of L' onto H! such that

4) 1,0 = Q1 for all s.

Let us see what such a Q would have to be.
Put e,(0) = ™. Then 1,e, = e™e,, and

(5) 1,Qe, = Qt,e, = €"Qe,,
since Q 1s linear. The first equality in
(6) e™(Qe,) " (k) = (,Qe,) " (k) = e™(Qe,) " (k)

follows from (3), the second from (5). Hence (Qe,) " (k) = 0 when k # n. Since
['-functions are determined by their Fourier coefficients, it follows that
there are constants c, such that

(7) Qe, =c,e, n=0, +1, +2,...).

So far we have just used (4). Since Qe, € H' for all n, ¢, = 0 when
n < 0. Since Qf = ffor every fe H', ¢, = 1 when n > 0. Thus Q (if it exists
at all) is the “natural ” projection of I! onto H', the one that replaces f(n)
by 0 when n < 0. In terms of Fourier series,

(8) Q( Z a, eine) — Z a, einB.
— w0 0
To get our contradiction, consider the functions

(9) £(0) = i rinlging O0O<r<l.
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These are the well-known Poisson kernels. Explicit summation of the series
(9) shows that f, > 0. Hence

1 |7 | B
(10) | fell 1 =5 J_nlfr(ﬂ)l df = 7 J_ﬂfr(f?) do =1
for all r. But
- n,in8 __ 1
(1) QX6 = T 7™ = .

Fatou’s lemma implies that ||Qf.|, -+ o as r-»1, since | |1 — €' df
= 00. By (10), this contradicts the continuity of Q.

Hence H' is not complemented in L.

The same analysis can be applied to 4 and C, where C is the space of
all continuous functions on the unit circle, and A4 consists of those fe C
that have f(n) = 0 for all n < 0. If 4 were complemented in C, the operator
Q described by (8) would be a continuous projection from C onto A. Appli-
cation of Q to real-valued f € C shows that there 1s a constant M < oo that
satisfies

(12) sup | f(8)| < M - sup |Re f(0)
8 8

for every f e A. To see that no such M can exist, consider conformal map-
pings of the closed unit disc onto tall thin ellipses.

Hence A is not complemented in C.

However, the projection (8) is continuous as an operator in I7, if
1 < p< o. Hence H? is then a complemented subspace of I?. This is a
theorem of M. Riesz (Th. 17.26 of [23]).

We conclude with an analogue of (b) of Theorem 5.16; it will be used
in the proof of Theorem 11.31.

5.20 Theorem Suppose X is a Banach space, A and B are closed sub-
spaces of X, and X = A + B. Then there exists a constant y < oo such that
every x € X has a representation x=a+ b, where ae A, be B, and
lall + 6] < ylixIl.

This differs from (b) of Theorem 5.16 inasmuch as it is not assumed
that 4 n B = {0}.

PROOF. Let Y be the vector space of all ordered pairs (a, b), with
a € A, b e B, and componentwise addition and scalar multiplication,
normed by

I(a, D) = llal + [5].
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Since A and B are complete, Y is a Banach space. The mapping
A:Y — X defined by

Ala, b)) =a + b

is continuous, since |a + b|| < |(a, b)|, and maps Y onto X. By the
open mapping theorem, there exists y < co such that each x e X is
A(a, b) for some (a, b) with [(a, b)|| < 7[ix]. ////

Sums of Poisson Kernels

Let U and T be the open unit disc and the unit circle in €. Let ! = [}(T)
be as in Theorem 5.19, with norm

111, =51—f 1) do.
n 1

Associate to each z € U the Poisson kernel P, € I}(T):

1 —|z|?
|eiﬂ_ Z|2'

P.(e iG) =

It is easy to check that | P,|, = 1for every z € U.
Call a set E = U nontangentially dense on T if to every ' € T and to
every ¢ > 0 there is a point z € E such that

|z — e*| < min (g, 2(1 — | z|)).

There are such sets which have no limit point in U. To construct one, let
O<ry<r,<--, limr, =1, and place m, equally spaced points on the
circle r, T, taking m, > 2/(1 — r,).

It is a rather surprising fact that every f € I!(T) can be represented as
the sum of a convergent series of multiples of Poisson kernels. This was
proved by F. F. Bonsall as an application of the closed range theorem. Here
is his more precise statement :

5.21 Theorem 1If {z,,z,,25,...} = U is nontangentially dense on T,
then to every fe INT) and every &¢ >0 correspond scalars c, such that

Z|Cn|S||f||1+sand

f=2cP,,.

1

This turns out to be a special case of the following abstract result:

5.22 Theorem Let {x,} be a sequence in a Banach space X, with ||x,| <
1 for all n, and suppose that there is a & > 0 such that

sup | {x,, x*>| = o x*|l

n
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for every x* € X*. If ¢ > 0, every x € X can then be represented in the form
(v o)
X= Y €,Xn,
n=1
with 8 T | eal < IxIl + &

PROOF. Define T: ¢! - X by Tc =) ¢, x,, for c ={c;,¢;5,c;3,...}el".
1

Then, for every x* € X*,
<C, T*X*> - <TC> x*> = Z Cn<xn3 x*>
1
so that

< || T*x*|

i Ca Xy X*

if |c||; < 1. The supremum of the left side, over all such c, is
sup, |<x,, x*>|, which is >d|x*|| by assumption. Theorem 4.13
asserts therefore that T maps the set of all ¢ with ) |c,| < 1/6 onto a
set that contains the open unit ball of X.

This proves Theorem 5.22. Let us apply it with X = [(T),
x,= P, , where {z,} is nontangentially dense on T7T. Every
g € [*(T) = [}(T)* has a harmonic extension

n

1 o
G(z) = o J P(e®)g(e®) d6 = (P, g>.

4

Since {z,} is nontangentially dense on T, Fatou’s theorem concerning
nontangential limits of bounded harmonic functions implies that

sup [P, , g>|=sup |G(z,)| = 9]l -

Therefore Theorem 5.21 is a consequence of Theorem 5.22, with 6 = 1.

/11

Two More Fixed Point Theorems

It is a well-known consequence of the axiom of choice that there is no
measure on the real line R which is finite on compact sets, not identically
zero, translation-invariant, and defined on the g-algebra of all subsets of R.
The usual proof that nonmeasurable sets exist shows this. However, if
countable additivity—a property that, by definition, measures have—is
weakened to finite additivity, i.e., to the requirement that

WE, © - U E)=wWE)+ -+ uE,)
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for all finite unions of pairwise disjoint sets E;, then there do exist such
“finitely additive” measures u which have all the other above-mentioned
properties. Moreover, one can have 0 < u(E) < 1 for every E = R.

Theorem 5.25 will prove this, with any abelian group G in place of R,
as an application of an “invariant” version of the Hahn-Banach theorem.
The latter will be derived from the surprisingly elementary fixed point
theorem 5.23, due to Markov and Kakutani:

5.23 Theorem If K is a nonempty compact convex set in a topological
vector space X and % is a commuting family of continuous affine maps taking
K into K, then there exists a point p € K such that Tp = p for every T € & .

PROOF. For Te #, put T' =T, T""' =T o T" forn=1,2,3,....
The fact that the averages

1
(1) L=-(U+T+T*+---+T")

are also affine maps of K into K leads to the conclusion that any two
of them (with possibly different T’s and different n’s) commute with
each other.

Let # * be the semigroup generated by the maps (1). Thus .#* is
the collection of all compositions of finitely many averages (1). If f,
ge F* and h=f-g=g - f, then he %* Since f(g9(K)) = f(K) and
g9(f(K)) = g(K), we see that

(2) f(K) n g(K) = h(K).

Induction shows therefore that the collection { f(K): f € .#*} has the
finite intersection property. Since each f(K) is compact, there is a
point p € K which lies in f(K) for every f € & *.

Now fix T € .# and let V be a neighborhood of 0 in X. For
every n> 1, pe T(K), since T, € #* This means that there exist
points x, € K such that

1
(3) pu;(x,,+Tx,,+"'+T"_1x,,),
But then
1 1
(4) pﬂTp:;(xn—Tnxn)e;(K—K)a

and K — K = nV for all sufficiently large n, because K — K Iis
compact and therefore bounded. Thus p — Tp € V, for every neigh-
borhood V of 0. This forces p — Tp to be 0. /1]
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5.24 An invariant Hahn-Banach theorem Suppose that Y is a sub-
space of a normed linear space X,fe Y*, T =« 4(X), and that

(@@ T(Y)< Yand ST = TS forall S, T €T,
(b) foT =f, forevery T €T,

Then there exists F e X* such that F=f on Y, |F| =|f|, and
FoT=FforeveryT e€T.

Briefly, the given I'-invariant f has a I'-invariant Hahn-Banach exten-
sion F.

PROOF. Assume that || f|| = 1, without loss of generality. Define
(1) K={AeX* |[A|<1,A=fonVY).

It is clear that K is convex. The Hahn-Banach theorem implies that K
is not empty. Since K is weak*-closed, the Banach-Alaoglu theorem
shows that K is a weak*-compact subset of X*. For every T €T, the
map

(2) A—=-A-T

is an affine map of K into K which is weak*-continuous (as we will

see in a moment). Theorem 5.23 shows therefore that some F € K
satisfies F o T = Fforevery T €T.

To finish, we show that (2) is a weak*-continuous map of X* into
X*, for every T € B(X). Fix A, € X*, let

(3) V={LeX* |Lx;,— (A T)x;| <e 1<i<n}

‘)

be a typical weak*-neighborhood of A;T, determined by x,, ..
x, € X and € > 0. Then

4) W={AeX* |A(Tx) — A((Tx)| <¢ 1 <i<n)

is a weak*-neighborhood of A, and if A € W, it is clear that AT e V.
/11

5.25 Theorem If G is an abelian group (with + as group operation) and
M is the collection of all subsets of G (the “ power set ”’ of G), then there is a
function u: A — [0, 1] such that

(@ WE, v E;)=uE)+ wEy)ifE nE;, =,
b) WE+a)=wE)forallEe #,ae€ G, and

(¢ wG)=1.
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PROOF. This is trivial if G is finite. So assume G is infinite, and let
£%°(G) be the Banach space of all bounded complex functions on G,
with the supremum norm.

Let Y be the space of all f e £*°(G) which have a limit, call it Af,
at oo. This means that, if fe Y and ¢ > 0, then there is a finite set
E = G so that | Af — f(x)| < ¢ for all x outside E. Note that A e Y*
and that |A| = 1.

Let I" be the set of all translation operators z,, for a € G, defined
by

(1) (T S)x) = f(x - a).

Since G is abelian, any two members of I' commute; each 7, is a linear
isometry of £*(G); and it is clear that t(Y) = Y and that At, = A
onY.

The hypotheses of Theorem 524 are thus satisfied, with
X = £®(G). We conclude that there exists an extension L of A, a linear
functional of norm 1 on £%(G), which satisfies

(2) Lf=Af foreveryfeY
and
(3) Lt, f=Lf for every f e I%(G).

If we now define u(E) = Ly, (where y. is the characteristic
function of E = G), then (a) holds because xg + Xg, = Xg g, If
E, n E, = &, and L is linear, and (b) holds because

(4) YE+a(X) = xe(x — @) = 1, xg(X).

It remains to be shown that 0 < u(E) <1 for every E = G. This
is done by the following lemma, since A (hence also L) preserves con-
stants: If f(x) = c for all x € G, then fe Y and Af = c. 1]/

5.26 Lemma Suppose that X is a normed linear space of bounded func-
tions, with the supremum norm, and that L is a linear functional on X, such

that

IL| = L(1) = 1.

ThenO0<Lf<liffe Xand0 <f< 1.

PROOF. Put Lf = a + if. For every real ¢,
L(f—3+i)=a—-5% +ip +1)
Since | f — 3|l < 3, it follows that

@—524+PB+’<|f-3+it]>2<i+¢,
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so that a?> —a + B2 + 2Bt <0 for every real t. This forces B =0,
hence a®> < a, hence 0 < o < 1. 1]/

5.27 Example Commutativity cannot be dropped from the hypotheses
of the preceding three theorems. To see this, let G be the free group on two
generators, a and b. Except for the identity element, G 1s the union of four
disjoint sets, say I, II, III, IV, consisting of those reduced words that start
with a, a ', b, b~ ', respectively. If u is a finitely additive measure on the
power set of G,.with 0 < u <1 and wu(aE) = w(E) = u(bE) for all E = G,
then we see that p(I U III U IV) = w(I) and (I o II U III) = w(III). The
first of these shows that p(III) = w(IV) = 0, the second that p(I) = p(II) = 0.
Since singletons must have measure 0, 4 = 0. Thus Theorem 5.25 fails for
this group.

We conclude this chapter with the Schauder-Tychonoff fixed point
theorem. This 1s an infinite-dimensional version of Brouwer’s theorem con-
cerning the fixed point property of closed balls in R". It 1s nonlinear, and its
proof is therefore not really an application of any of the preceding material,
except that 1t will involve a Minkowski functional.

5.28 Theorem IfK is a nonempty compact convex set in a locally convex
space X, and f: K —» K is continuous, then f(p) = p for some p € K.

PROOF. Assume ffixes no point of K. Its graph
(1) G={(x,f(x)) e X x X:xe K}

is then disjoint from the diagonal A of X x X and 1s compact. Hence
there is a convex balanced neighborhood V of 0 in X such that
G + (V x V) misses A. In particular,

(2) fxX)gx+V (x € K).

Let 4 be the Minkowski functional of V. Theorem 1.36 shows
that u 1s continuous on X and that u(x) <1 if and only if x e V.

Define
(3) a(x) = max {0, 1 — u(x)} (x € X).
Choose x,, ..., x, € K so that the sets x; + V (1 <i < n) cover K, put
ai(x) = a(x — x;), and define
o B
4) B{x) = {x) (xeK,1<i<n),

o (x) + -+ o (x)

noting that the denominator in (4) is positive for every x € K.
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Let H = co{x,, ..., x,}. Then g, defined by

(5) glx) =2 Bx)x;  (x e K),

is a continuous map from K into the compact finite-dimensional
simplex H = K. The same is true of g o f. Brouwer’s fixed point
theorem asserts therefore that there is an x* € H such that

(6) g(f (x*)) = x*.

Since B4{x) = O outside x; + V, we see that

(7) x—gx)=2 Bx)(x—x) (xeK)

is a convex combination of vectors x — x; € V. Thus x — g(x) € V, for
every x € K. In particular, this is true for x = f(x*). We conclude that
(8) f(x*) eg(f(x*)+V =x*+V,

contrary to (2). /l]/

Exercises

1.

2.

3.

Define measures u,, u, on the unit circle by
du, = cos 0 do, du, = sin 0 df

and find the range of the measure u = (uq, u5).
Construct two functions fand g on [0, 1] with the following property: If

dpy =f(x)dx,  dp, =g(x)dx,  u=(py, W),

then the range of u is the square with vertices at (1, 0), (0, 1), (—1, 0), (0, —1).
Suppose that the hypotheses of Theorem 5.9 are satisfied, that ¢ € C(S), ¢ > 0,
g € C(K), and |g| < ¢|g. Prove that there exists fe Y such that f| =g and
| /| < ¢ on S. Hint: Apply Theorem 5.9 to the space of all functions f/¢, with
feY,

Supply the details of the proof that every extreme point of P has its support at a
single point. (This refers to the end of proof of Theorem 5.10.)

Prove the analogues of Theorems 1.10 to 1.12 that are alluded to in Section
5.12. (Do not assume that G is commutative.)

Suppose G is a topological group and H is the largest connected subset of G
that contains the identity element e. Prove that H is a normal subgroup of G,
that is, a subgroup that satisfies x~ 'Hx = H for every x € G. Hint: If A and B
are connected subsets of G, so are AB and A7 1.

Prove that every open subgroup of a topological group is closed. (The converse
is obviously false.)

Suppose m is the Haar measure of a compact group G, and V is a nonempty
open set in G. Prove that m(V) > 0.



9.

10.

11.

12.

13.

14.
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Put ¢,(0) = e'™. Let I? refer to the Haar measure of the unit circle. Let 4 be the

smallest closed subspace of I? that contains e, for n=0, 1, 2, ..., let B be the

smallest closed subspace of I? that containse_, + ne, for n= 1,2, 3, .... Prove
the following:

(@) A n B={0}.

() If X = A + B then X isdense in I?, but X # I,

(c) Although X = 4 @ B, the projection in X with range 4 and null space B is
not continuous. (The topology of X is, of course, the one that X inherits
from I2. Compare with Theorem 5.16.)

Suppose X is a Banach space, P € 8(X), Q € #(X), and P and Q are projec-

tions.

(a) Show that the adjoint P* of P is a projection in X*,

(b) Show that [P — Q|| > 1iff PQ = QP and P % Q.

Suppose P and Q are projections in a vector space X.

(a) Prove that P + Q is a projection if and only if PQ = QP = 0. In that case,

N(P + Q) = N(P) n N(Q),
R(P + Q) = A(P) + R(Q),
R(P) N A(Q) = {0}.

(b) If PQ = QP, prove that PQ is a projection and that

N(PQ) = A (P) + #(Q),
R(PQ) = A(P) N A(Q).
(c) What do the matrices

1 O 1 -1
and
0 O 0 0
show about part (b)?

Prove that the translation operators 7, used in Example 5.19 satisfy the conti-
nuity property described in Section 5.17. Explicitly, prove that

”Irg __ Isf”l -0

if r-sand g »fin L.

Use the following example to show that the compactness of G cannot be
omitted from the hypotheses of Theorem 5.18. Take X = L' on the real line R,
relative to Lebesgue measure; f € Y if and only if [z f= 0; G = R with the usual
topology; G acts on L' by translation: (t, f)(x) = f(s + x). The joint continuity
property is satisfied (see Exercise 12), 1, Y =Y for every s, and Y is com-
plemented in X. Yet there is no projection of X onto Y (continuous or not) that
commutes with every 7.

Suppose S and T are continuous linear operators in a topological vector space,
and

T = TST.
Prove that T has closed range. (See Theorem 5.16 for the case S = 1.)
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15.

16.

17.

18.

19.
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Suppose A is a closed subspace of C(S), where S is a compact Hausdorff space;
suppose u is an extreme point of the unit ball of A-; and suppose f € C(S) is a
real function such that

jgfdu==0

for every g € A. Prove that f is then constant on the support of u. (Compare
with Theorem 5.7.) Show, by an example, that the conclusion is false if the word
“real ” is omitted from the hypotheses.
Suppose X 1s a vector space, Ec X, T: co(E)— X is affine, and T(E) < E.
Prove that T(co(E)) = co(E). (This was tacitly used in the proof of Theorem
5.11)
If X and Y are vector spaces and T: X — Y is affine, prove that T — T(0) is
linear.
Suppose K 1s a compact set in a Fréchet space X and f: X — K is continuous.
Prove that f fixes some point of K.

Do the same if Q 1s a convex open set in X, Q> K, and [: Q- K is
continuous,
Prove the existence of a continuous function f on I = [0, 1] which satisfies the
equation

f(x) = J sin (x + f3(¢)) dt
0

for all x € I. Hint: Denoting the right side by (Tf)Xx), show that the set
{Tf: fe C(I)} is uniformly bounded and equicontinuous and that its closure is

therefore compact in C(I). Apply Schauder’s fixed point theorem (via Exercise
18).
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Introduction

6.1 The theory of distributions frees differential calculus from certain diffi-
culties that arise because nondifferentiable functions exist. This is done
by extending it to a class of objects (called distributions or generalized
functions) which is much larger than the class of differentiable functions to
which calculus applies in its original form.

Here are some features that any such extension ought to have in order
to be useful; our setting is some open subset of R":

(@) Every continuous function should be a distribution.

(b) Every distribution should have partial derivatives which are again dis-
tributions. For differentiable functions, the new motion of derivative
should coincide with the old one. (Every distribution should therefore
be infinitely differentiable.)

(c) The usual formal rules of calculus should hold.

149
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(d) There should be a supply of convergence theorems that is adequate for
handling the usual limit processes.

To motivate the definitions to come, let us temporarily restrict our
attention to the case n = 1. The integrals that follow are taken with respect
to Lebesgue measure, and they extend over the whole line R, unless the
contrary is indicated.

A complex function f'is said to be locally integrable if f is measurable
and [, |f| < oo for every compact K = R. The idea is to reinterpret f as
being something that assigns the number j f¢ to every suitably chosen
“test function” ¢, rather than as being something that assigns the number
f(x) to each x € R. (This point of view is particularly appropriate for func-
tions that arise in physics, since measured quantities are almost always
averages. In fact, distributions were used by physicists long before their
mathematical theory was constructed.) Of course, a well-chosen class of test
functions must be specified.

We let 2 = 2(R) be the vector space of all ¢ € C*(R) whose support
is compact. Then | f¢ exists for every locally integrable f and for every
¢ € 2. Moreover, 2 is sufficiently large to assure that fis determined (a.e.)
by the integrals | f¢. (To see this, note that the uniform closure of 2 con-
tains every continuous function with compact support.) If f happens to be
continuously differentiable, then

(1) Jf’fi): *Jﬂﬁ' (¢ € D).

If fe C*(R), then

2) me(p:(.-nkjf ®  (peD k=123 ..)

The compactness of the support of ¢ was used in these integrations by
parts.

Observe that the integrals on the right sides of (1) and (2) make sense
whether f is differentiable or not and that they define linear functionals on 9.

We can therefore assign a “ kth derivative” to every f that is locally
integrable: f* is the linear functional on 2 that sends ¢ to (—1)* | fo.
Note that fitself corresponds to the functional ¢ — | fo.

The distributions will be those linear functionals on & that are contin-
uous with respect to a certain topology. (See Definition 6.7.) The preceding
discussion suggests that we associate to each distribution A its “derivative”
A’ by the formula

(3) N(p) = —AM9) (e 2)

It turns out that this definition (when extended to n variables) has all
the desirable properties that were listed earlier. One of the most important
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features of the resulting theory is that it makes it possible to apply Fourier
transform techniques to many problems in partial differential equations
where this cannot be done by more classical methods.

Test Function Spaces

6.2 The space £(£2) Consider a nonempty open set Q = R". For each
compact K < Q, the Frechet space 2, was described in Section 1.46. The
union of the spaces 2, as K ranges over all compact subsets of €, is the
test function space 2(). It is clear that 2(Q) is a vector space, with respect
to the usual definitions of addition and scalar multiplication of complex
functions. Explicitly, ¢ € 2(Q) if and only if ¢ € C*(Q) and the support of
¢ 1s a compact subset of (.
Let us introduce the norms

(1) l¢|lxy = max {| D*@p(x)|: x € Q, |a| < N},
for p € () and N =0, 1, 2, ...; see Section 1.46 for the notations D*
and | o] .

T he restrictions of these norms to any fixed D, < D(SQ) induce the same
topology on Dy as do the seminorms py of Section 1.46. To see this, note that
to each K corresponds an integer N, such that K < K, for all N > N,.
For these N, |[¢|ly = pM@) if ¢ € D . Since

2) 1Dlln < lIPlin+ and PN®) < Py +1(9),

the topologies induced by either sequence of seminorms are unchanged if
we let N start at N, rather than at 1. These two topologies of 2, coincide
therefore; a local base is formed by the sets

1
(3) VN={¢e@K: ”¢”N<N} (N=1,23,..).

The same norms (1) can be used to define a locally convex metrizable
topology on 2(Q); see Theorem 1.37 and (b) of Section 1.38. However, this
topology has the disadvantage of not being complete. For example, take
n=1, Q =R, pick ¢ € Z(R) with support in [0, 1], ¢ >0 in (0, 1), and
define

U = B0 = 1)+ 3 Bx =2+ -+ + — Blx — m),
m

Then {y,} is a Cauchy sequence in the suggested topology of 2(R), but
lim y,, does not have compact support, hence is not in 2(R).

We shall now define another locally convex topology 7 on 2(Q) in
which Cauchy sequences do converge. The fact that this 7 is not metrizable
is only a minor inconvenience, as we shall see.
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6.3 Definitions Let Q be a nonempty open set in R™.

(@ For every compact K < Q, 1 denotes the Frechet space topology of
Dk, as described in Sections 1.46 and 6.2.

(b) B is the collection of all convex balanced sets W < 2(2) such that
Dx N W € 1 for every compact K < Q.

(c) t is the collection of all unions of sets of the form ¢ + W, with
¢ e D) and W € p.

Throughout this chapter, K will aways denote a compact subset of Q.

The following two theorems establish the basic properties of the
topology 7, which is quite different from the one discussed in Section 6.2.
For example, if {x,,} is a sequence in Q, without limit point in Q, and if {c,,}
is a sequence of positive numbers, then the set

{0e 2(Q): |o(x,)| <c,form=1,2,3 ...}

belongs to B, ie., is a t-neighborhood of 0 in 2(Q). It is this fact (see
Theorem 6.5) which forces t-bounded sets (and hence t-Cauchy sequences)
to be concentrated on a common compact set K < Q, and therefore
7-Cauchy sequences converge.

6.4 Theorem

(@) rtisatopology in 2(Q), and B is a local base for t.
(b) T makes 2(RQ) into a locally convex topological vector space.

PROOF. Suppose V, €1, V, et, ¢ € V; n V,. To prove (a), it is clearly
enough to show that

(1) o+WccV, nV,

for some W € .
The definition of 7 shows that there exist ¢; € P(2) and W, e
such that

(2) e +Wcl (=12

Choose K so that 2 contains ¢,, ¢,, and ¢. Since D, N W, is open
in D¢, we have

3) ¢ — ¢; (1 - 0)W,
for some 4; > 0. The convexity of W; implies therefore that

@) 6 — ¢i+ S W (1~ 8)W, + 6, W = W,
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so that
(5) ¢p+oWcco,+ WV, (i=1,2)

Hence (1) holds with W = (6,W,) n (6, W,), and (a) is proved.
Suppose next that ¢, and ¢, are distinct elements of 2(€2), and
put

(6) W ={¢ € 20): I$llo < ll¢; — P2lof,

where | @], is as in (1) in Section 6.2. Then W € 8 and ¢, is not in
¢, + W. It follows that the singleton {¢,} is a closed set, relative to 7.

Addition is t-continuous, since the convexity of every W € f8
implies that

(7) Wi+ W)+ W+ W)= +¥)+ W

for any ¥, € 2(Q), ¥, € D(Q).

To deal with scalar multiplication, pick a scalar o, and a ¢, €
2(Q). Then
8) ap — oo o = AP — o) + (% — %) -

If W € B, there exists 6 > 0 such that d¢, € 1W. Choose ¢ so that
2¢(|ag| + 6) = 1. Since W is convex and balanced, it follows that

9) ap — dg Po € W
whenever |a — ag| < d and ¢ — ¢, € cW.
This completes the proof. /1]/

Note: From now on, the symbol 2(Q) will denote the topological

vector space (2(Q), ) that has just been described. All topological concepts
related to 2(Q2) will refer to this topology 7.

6.5 Theorem

(a)
(b)

(c)

(d)

A convex balanced subset V of 2(QQ) is open if and only if V € f.

The topology 1y of any Dy <= D(Q) coincides with the subspace topology
that @Dy inherits from 2(X).

If E is a bounded subset of 2(Q), then E <= Dy for some K < Q, and
there are numbers M, < oo such that every ¢ € E satisfies the inequal-
ities

“¢||NSMN (NZO, 19 29"')‘
PD(Q) has the Heine-Borel property.
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(e)

(f)

9)
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If {¢;} is a Cauchy sequence in D(Q), then {¢p;} = Dy for some compact
K < Q and

lim [{¢; — ¢;llx=0 (N=0,1,2,...)
i, j= o
If ¢; = 0 in the topology of D(QQ), then there is a compact K < Q which

contains the support of every ¢;, and D*p; — O uniformly, as i — oo, for
every multi-index o.

In 9(Q), every Cauchy sequence converges.

Remark. In view of (b), the necessary conditions expressed by (c), (e),
and (f) are also sufficient. For example, if E = @, and |[¢||y < My <
oo for every ¢ € E, then E is a bounded subset of 24 (Section 1.46),
and now (b) implies that E is also bounded in 2(Q).

PROOF. Suppose first that V € 7. Pick ¢ € D, n V. By Theorem 6.4,
¢+ W < V for some W € . Hence

O+ (DN W)y Dy n V.
Since Py N W is open in 2, we have proved that
(1) Dy nNVerg if Vetand K = Q.

Statement (a) is an immediate consequence of (1), since it is
obvious that f§ < .

One half of (b) is proved by (1). For the other half, suppose
E e tx. We have to show that E =% n V for some V € 1. The
definition of 75 implies that to every ¢ € E correspond N and 6 > 0
such that

(2) Ve Y- ¢ly<d}cE
Put W, = {y € 2(Q): |¥|y < }. Then W, € f, and
3) DN (Pp+W,)=¢+ (Dxn W, < E

If V is the union of these sets ¢ + W,,, one for each ¢ € E, then V has
the desired property.

For (c), consider a set E = 2(Q2) which lies in no & . Then there
are functions ¢, € E and there are distinct points x,, € Q, without
limit point in €, such that ¢,(x,) #0 (m =1, 2, 3, ...). Let W be the
set of all ¢ € P(Q) that satisfy

(4) [$xn)| <m™ | Pu(x)l  (m=1,23,..)

Since each K contains only finitely many x,,, it is easy to see that
Dy N W e tg. Thus W € B. Since ¢,, ¢ mW, no multiple of W con-
tains E. This shows that E is not bounded.
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It follows that every bounded subset E of 2(Q) lies in some .
By (b), E is then a bounded subset of 2. Consequently (see Section
1.46)

(5) sup {|¢lly: ¢ € E} < o0 (N=0,1,2 ...

This completes the proof of (c).

Statement (d) follows from (c), since P has the Heine-Borel
property.

Since Cauchy sequences are bounded (Section 1.29), (c) implies
that every Cauchy sequence {¢;} in 2(Q) lies in some 2. By (b), {¢;}
is then also a Cauchy sequence relative to 7. This proves (e).

Statement (f) is just a restatement of (e).

Finally, (g) follows from (b), (e), and the completeness of P.
(Recall that 2 is a Frechet space.) 1]/

6.6 Theorem Suppose A is a linear mapping of 2(Q) into a locally
convex space Y. Then each of the following four properties implies the others:

(a)
(b)
(c)
(d)

A is continuous.
A is bounded.

If ; —+0in D(Q) then Ap; »0in Y.

T he restrictions of A to every 2Dy < D(QQ) are continuous.

PROOF. The implication (a) —» (b) is contained in Theorem 1.32.

Assume A is bounded and ¢;-+0 in 2(Q). By Theorem 6.5,
¢; -0 in some Dy, and the restriction of A to this 2, is bounded.
Theorem 1.32, applied to A: 24— Y, shows that A¢; >0 in Y. Thus
(b) implies (c).

Assume (c) holds, {¢;} = Dk, and ¢;—+0 in Dg. By (b) of
Theorem 6.5, ¢; — 0 in 2(Q). Hence (c) implies that A¢; —»0in Y, as
i = 00. Since Py is metrizable, (d) follows.

To prove that (d) implies (a), let U be a convex balanced neigh-
borhood of 0 in Y, and put V = A~ (U). Then V is convex and bal-
anced. By (a) of Theorem 6.5, V is open in 2(RQ) if and only if 2y N V
is open in D, for every @ = D(Q). This proves the equivalence of (a)

and (d). /111

Corollary. Every differential operator D* is a continuous mapping of
D(Q) into D(D).

PROOF. Since | D%y < ll¢plly4q for N =0, 1,2, ..., D* is continuous
on each @y . 1]/
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6.7 Definition A linear functional on 2(Q) which is continuous (with
respect to the topology 7 described in Definition 6.3) is called a distribution
in Q.

The space of all distributions in Q is denoted by 2'(Q2).

Note that Theorem 6.6 applies to linear functionals on 2(Q). It leads
to the following useful characterization of distributions.

6.8 Theorem If A is a linear functional on 2(Q), the following two condi-
tions are equivalent:

(@) A e D).
(b) To every compact K <= Q corresponds a nonnegative integer N and a
constant C < oo such that the inequality

|[A¢| < Cllln
holds for every ¢ € Dy .

PROOF. This is precisely the equivalence of (a) and (d) in Theorem 6.6,
combined with the description of the topology of 2, by means of the
seminorms || ¢| y given in Section 6.2, //]/]

Note: If A is such that one N will do for all K (but not necessarily
with the same C), then the smallest such N is called the order of A. If no N
will do for all K, then A is said to have infinite order.

6.9 Remark Each x € Q determines a linear functional 6, on 2(Q), by
the formula

0(¢) = P(x).

Theorem 6.8 shows that ¢, is a distribution, of order 0.

If x = 0, the origin of R", the functional é = d, is frequently called the
Dirac measure on R".

Since Y, for K < Q, is the intersection of the null spaces of these .,
as x ranges over the complement of K, it follows that each 2, is a closed
subspace of (). [This follows also from Theorem 1.27 and part (b) of
Theorem 6.5, since each 2, is complete.] It is obvious that each 2, has
empty interior, relative to 2(Q). Since there is a countable collection of sets
K, = Q such that 2(Q) = | ] Dy,, 2(Q) is of the first category in itself. Since
Cauchy sequences converge in 2(£2) (Theorem 6.5), Baire’s theorem implies
that 2(Q) is not metrizable.
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Calculus with Distributions

6.10 Notations As before, Q will denote a nonempty open set in R". If

a=(ay,...,a,)and f = (B,, ..., B, are multi-indices (see Section 1.46) then
(1) lal =0y + o+ ay,
0
(2) D*=D%--- D where D; = —,
axj-
(3) f<ameans f; < a;for 1 <i <n,
(4) aiﬁz(aliﬁb"'aaniﬁn)‘

If x e R"and y € R", then
(5) x'y:xlyl_{...._{_xnyn,
(6) |X| ::(x . x)l/?- :(x:;- + -+ x;':-)l/?..

The fact that the absolute value sign has different meanings in (1) and
in (6) should cause no confusion.
If x € R" and a is a multi-index, the monomial x* is defined by

(7) x* = x5t e xin,

6.11 Functions and measures as distributions Suppose f is a locally
integrable complex function in Q. This means that fis Lebesgue measurable
and fx 1f(x)] dx < oo for every compact K < Q; dx denotes Lebesgue
measure. Define

(1) AfP) = Lf;b(x)f (x)dx  [¢ € 2(Q)]
Since
(2) IAf(fb)IS,(J Ifl)' [ollo (¢ € Dy),

Theorem 6.8 shows that A, € 2'(Q).

It is customary to identify the distribution A, with the function f and
to say that such distributions “are” functions.

Similarly, if u is a complex Borel measure on Q, or if u is a positive
measure on Q with 1(K) < oo for every compact K < (), the equation

(3) Afe) = J ¢du  [¢pe Q)]
Q

defines a distribution A, in Q, which is usually identified with pu.
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6.12 Differentiation of distributions If o is a multi-index and
A e 2'(Q), the formula

(1) (D*A)@) = (—=1)"A(D*¢)  [¢ € 2(Q)]

(motivated in Section 6.1) defines a linear functional D*A on 2(Q). If

(2) [Ap| < Clolin
for all ¢ € Y, then

(3) [(D*A)@)| < C|D*@lly < Clidlin+al-
Theorem 6.8 shows therefore that D*A € 2'(QQ).

Note that the formula
4) DDA = D**?A = D*D°A

holds for every distribution A and for all multi-indices a and f, simply
because the operators D* and D commute on C®(Q):

(D*DPA)(¢) = (—1)(DPA)D*¢)
= (- l)IaI+IBIA(DﬂDa¢)
=(— 1)Ia+ﬂlA(Da+B¢)
= (D*"PA)(¢).

6.13 Distribution derivatives of functions The «th distribution deriv-
ative of a locally integrable function fin Q is, by definition, the distribution
DA, .

If D*f also exists in the classical sense and is locally integrable, then
D*f is also a distribution in the sense of Section 6.11. The obvious consis-
tency problem is whether the equation

(1) DaAf :ADQ;]‘

always holds under these conditions.
More explicitly, the question is whether

2 1 [ o dx = | @i ax

for every ¢ € 2(Q).

If f has continuous partial derivatives of all orders up to N, integra-
tions by part give (2) without difficulty, if |a| < N.

In general, (1) may be false. The following example illustrates this, in
the case n = 1.

6.14 Example Suppose Q is a segment in R, and fis a left-continuous
function of bounded variation in Q. If D = d/dx, it is well known that
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(Df)(x) exists a.e. and that Df e L'. We claim that
(1) DA, = A,
where p 1s the measure defined in Q by

(2) u(la, b)) = f(b) — f (a).

Thus DA, = Ap, if and only if fis absolutely continuous.
To prove (1), we have to show that

(A (@) = (DAy)@) = —A[(D9)
for every ¢ € P(Q), that is, that

3) Ld) du = — Ld)’(x)f(x) dx.

But (3) is a simple consequence of Fubini’s theorem, since each side of (3) is
equal to the integral of ¢'(x) over the set

4) {(,):x€eQ,yeQ, x <y}

with respect to the product measure of dx and du. The fact that ¢ has
compact support in Q is used in this computation.

6.15 Multiplication by functions Suppose A € Z'(Q) and fe C®(Q).
The right side of the equation

(1) (fANP) = A(f®)  [¢ € 2(Q)]

makes sense because f¢p € P(2) when ¢ € (). Thus (1) defines a linear

functional fA on Z(€Q). We shall see that fA is, in fact, a distribution in Q.
Observe that the notation must be handled with care: If f € 2(Q), then

Afis a number, whereas fA is a distribution.
The proof that fA € Z'(QQ) depends on the Leibniz formula

(2) D*(fg) = . cug(D*"Pf)D%g),
B<a

valid for all fand g in C®(€Q) and all multi-indices a, which is obtained by
iteration of the familiar formula

(3) (uv) = u'v + uv'.

The numbers c,; are positive integers whose exact value is easily computed
but is irrelevant to our present needs.

To each compact K = Q correspond C and N such that |A¢| <
Cl||@| y for all ¢ € Dg. By (2), there is a constant C’, depending on f, K, and
N, such that || /@y < C'|¢lly for ¢ € D,. Hence

(4) (AP < CCllly (¢ € Di).
By Theorem 6.8, fA € 2'(X).
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Now we want to show that the Leibniz formula (2) holds with A in
place of g, so that

(5) D¥(fA) = ). c.y(D*"Pf)DPA).

B=<a

The proof is a purely formal calculation. Associate to each u € R" the func-
tion h, defined by

h(x) =exp (u - x).

Then D*h, = u®h,. If (2) is applied to h, and h, in place of f and g, the
identity

(6) w+v)*= )Y Cap u* " Pyb (ue R", veR"

B<a

is obtained. In particular,
“=[v+(—v+u))l”

— Z Cap p* P Z pr( _ l)lﬂ—vlvﬂ—vuv

B<a y<B
= Y (—Weew Y (=) Peggey,.
y<a y<B<a
Hence
— 1) ify =a,
" vs§5a(_ W eap 5, = {E) ) otrlerwise.
Apply (2) to D¥(¢pD*#f), and use (7), to obtain the identity
(8) ﬂz (—1)Plc,; DP(¢D*~Ff) = (— 1)=fD*¢.

The point of all this is that (8) gives (5). For if ¢ € 2(Q), then
D*(fA)@) = (— D*I(fA)D*¢) = (— 1) A(fD*¢)
= Y (= 1)lc,g ADP(¢D*"Ff))

B<a

= ). caf(D’AY$D*’f)

B=a

= Y cygl(D*’f)DPA))(9).

B<a

6.16 Sequences of distributions Since 2'(Q) is the space of all contin-
uous linear functions on 2(Q), the general considerations made in Section
3.14 provide a topology for 2'(Q)—its weak*-topology induced by 2(2)—
which makes 2'(Q) into a locally convex space. If {A;} is a sequence of
distributions in Q, the statement

(1) A, A in 2(Q)
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refers to this weak*-topology and means, explicitly, that
(2) lim A;¢p = A¢ [¢ € 2(Q)].

In particular, if {f;} is a sequence of locally integrable functions in Q,
the statements “f; > A in 2'(Q)” or “{ f;} converges to A in the distribution
sense ” mean that

(3) lim jqb(x) fix) dx = A¢

i—= oo

for every ¢ € 2(Q).
The simplicity of the next theorem, concerning termwise differentia-
tion of a sequence, 1s rather striking.

6.17 Theorem Suppose A;e Z'(Q)fori=1,273,...,and
(1) Ad = lim A, ¢

exists (as a complex number) for every ¢ € D(Q). Then A € '(QQ), and
(2) D*A; - D*A in 2'(Q),

for every multi-index a.

PROOF. Let K be an arbitrary compact subset of . Since (1) holds for
every ¢ € Y4, and since Y 1s a Fréchet space, the Banach-Steinhaus
theorem 2.8 implies that the restriction of A to P is continuous. It
follows from Theorem 6.6 that A is continuous on 2({2); in other
words, A € 2'(QQ). Consequently (1) implies that

(D*A)@) = (- D)A(D*¢)
= (— 1) lim A(D%®) = lim (D*A;)(¢). /1]

i— oo i— o0

6.18 Theorem IfA,—> A in2'(Q)and g;— gin C*(Q), then g; A; > gA in
7(Q).

Note: The statement “g; > g in C*(Q)” refers to the Fréchet space
topology of C*(2) described in Section 1.46.

PROOF. Fix ¢ € 2(Q). Define a bilinear functional B on C*(QQ) x 2'(QQ)
by

B(g, A) = (gA)(@) = A(g9).



162 PART 1I: DISTRIBUTIONS AND FOURIER TRANSFORMS

Then B is separately continuous, and Theorem 2.17 implies that
B(g;, A) > B(g, A)  asi— oo.
Hence

(g: Ad@) = (gA)P)- /1]

Localization

6.19 Local equality Suppose A; € 2(Q) (i=1, 2) and w is an open
subset of Q. The statement

means, by definition, that A; ¢ = A, ¢ for every ¢ € D(w).

For example, if fis a locally integrable function and u is a measure,
then A, = 0 in w if and only if f(x) = O for almost every x e w,and A, =0
in w if and only if y(E) = 0 for every Borel set E = w.

This definition makes it possible to discuss distributions locally. On
the other hand, it is also possible to describe a distribution globally if its
local behavior is known. This is stated precisely in Theorem 6.21. The proof
uses partitions of unity, which we now construct.

6.20 Theorem If I is a collection of open sets in R" whose union is Q,
then there exists a sequence {y;} = D(Q), with; > 0, such that

(@) each Y; has its support in some member of T,

(b) 3 Yi(x) = 1 for every x € Q,
=1

(¢) to every compact K = Q correspond an integer m and an open set
W = K such that

(1) Vi) + o d(x) =1
forall x e W.

Such a collection {y;} is called a locally finite partition of unity in Q,
subordinate to the open cover I" of Q. Note that it follows from (b) and (c)
that every point of 2 has a neighborhood which intersects the supports of
only finitely many ;. This is the reason for calling {y;} locally finite.

PROOF. Let S be a countable dense subset of Q. Let {B,, B,, Bs, ...}
be a sequence that contains every closed ball B; whose center p; lies in
S, whose radius r; is rational, and which lies in some member of I". Let
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V; be the open ball with center p; and radius r;/2. It is easy to see that
Q=¥

The construction described in Section 1.46 shows that there are
functions ¢; € 2(Q) such that 0 < ¢p <1, p;=11n ¥, ¢; =0 off B;.
Define ¥, = ¢, and, inductively,

(2) Viep =(1—¢) 1 =@y, (=)
Obviously, ¥; = 0 outside B;. This gives (a). The relation
(3) Ui+t =1-(1-¢y) (11— ¢)

is trivial when i = 1. If (3) holds for some i, addition of (2) and (3)

yields (3) with i + 1 in place of i. Hence (3) holds for every i. Since
¢; = 11n V,, it follows that

4) Yix)+ -+ Y (x)=1 fxeV,u- - uV,.
This gives (b). Moreover, if K is compact, then K <= V, u --- u V,, for
some m, and (c) follows. /1]/

6.21 Theorem Suppose I' is an open cover of an open set Q = R", and
suppose that to each w € I corresponds a distribution A, € 9'(w) such that

(1) A, =A, ino N

whenever @' N " # .
Then there exists a unique A € 2'(Q) such that

(2) A=A, inw

for every w € T.

PROOF. Let {;} be a locally finite partition of unity, subordinate to I,
as in Theorem 6.20, and associate to each i a set w; € I such that w;
contains the support of ;.

If ¢ € D(Q), then ¢ =) ¥;¢. Only finitely many terms in this
sum are different from O, since ¢ has compact support. Define

3) Ad = T M)

It 1s clear that A is a linear functional on 2(Q).

To show that A is continuous, suppose ¢; — 0 in P(Q). There is
a compact K = Q which contains the support of every ¢;. If m is
chosen as in part (c) of Theorem 6.20, then

@ Abj= TAMS)  G=1.23,..)
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Since Y; ¢; = 0 in D(w,), as j - o0, it follows from (4) that A¢; — 0. By
Theorem 6.6, A € 2'(Q)).
To prove (2), pick ¢ € P(w). Then

(5) V¢ € Y w;, N w) i=1,273..)
so that (1) implies A (¥; @) = A (¥;¢). Hence
(6) Ap =Y AWid) = A V:id) = A, &,

which proves (2).
This gives the existence of A. The uniqueness is trivial since (2)
(with w; in place of w) implies that A must satisfy (3). /1]

Supports of Distributions

6.22 Definition Suppose A € 2'(Q). If w is an open subset of Q and if
Ad = 0 for every ¢ € PD(w), we say that A vanishes in w. Let W be the union
of all open w = Q in which A vanishes. The complement of W (relative to
Q) is the support of A.

6.23 Theorem If W is as above, then A vanishes in W.

PROOF. W is the union of open sets w in which A vanishes. Let I" be
the collection of these w’s, and let {y;} be a locally finite partition of
unity in W, subordinate to I', as in Theorem 6.20. If ¢ € P(W), then
¢ =Y ; @. Only finitely many terms of this sum are different from O.
Hence

Ap =2 AWi¢)=0

since each y; has its support in some w € I'. /1//

The most significant part of the next theorem is (d). Exercise 20 com-

plements it.

6.24 Theorem Suppose A € 2'(Q) and S, is the support of A.

(a)
(b)
(c)

()

If the support of some ¢ € D(Q) does not intersect S, , then A¢p = 0.

If S, is empty, then A = 0.

If Yy eC®Q) and y =1 in some open set V containing S,, then
WA = A.

If S, is a compact subset of Q, then A has finite order; in fact, there is a
constant C < oo and a nonnegative integer N such that

[Ag| < Cligly
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for every ¢ € D(Q). Furthermore, A extends in a unique way to a contin-
uous linear functional on C*(Q).

PROOF. Parts (a) and (b) are obvious. If y is as in (c¢) and if ¢ € D(Q),
then the support of ¢ — Y¢ does not intersect S,. Thus A¢ =
AW @) = (yA) (@), by (a).

If S, is compact, it follows from Theorem 6.20 that there exists
Y € D(Q) that satisfies (c¢). Fix such a y; call its support K. By
Theorem 6.8, there exist ¢, and N such that |A¢| < c,||¢|y for all
¢ € Dg. The Leibniz formula shows that there is a constant ¢, such

that ||y < c,||¢|y for every ¢ € 2(Q). Hence

A | = |AWP)| <y llYdlly < crcall@ln

for every ¢ € 2(Q).
Since A¢p = Ay @) for all ¢ € D(Q), the formula

(1) Af=AWf)  [feC?(Q)]

defines an extension of A. This extension is continuous, for if f; > 0 in
C*(Q), then each derivative of f; tends to 0, uniformly on compact
subsets of Q; the Leibniz formula shows therefore that yf; -0 in
2(Q); since A € 2'(Q), it follows that Af; — 0.

If fe C*(Q) and if K, 1s any compact subset of Q, there exists
¢ € D(Q) such that ¢ =f on K. It follows that P(Q) is dense in
C®(Q). Each A € 2'(Q) has therefore at most one continuous exten-
sion to C*(Q). /1]

Note: 1In (a) it is assumed that ¢ vanishes in some open set contain-
ing S, , not merely that ¢ vanishes on §, .

In view of (b), the next simplest case is the one in which S, consists of
a single point. These distributions will now be completely described.

6.25 Theorem Suppose A € D'(Q), p e Q, {p} is the support of A, and A
has order N. Then there are constants c, such that

(1) A=Y c,D%,,

lal <N

where 0, is the evaluation functional defined by

(2) 0,($) = ().

Conversely, every distribution of the form (1) has {p} for its support
(unless c, = 0 for all a).

PROOF. It is clear that the support of D%}, is {p}, for every multi-index
a. This proves the converse.
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To prove the nontrivial half of the theorem, assume that p =0
(the origin of R"), and consider a ¢ € %(Q) that satisfies

3) (D°¢)0) =0  for all & with |a| < N.

Our first objective 1s to prove that (3) implies A¢ = 0.
If n > 0, there 1s a compact ball K < , with center at 0, such
that

4) |ID*¢| <nin K,  if |a|= N.
We claim that
(35) | D*p(x)| < qrM 71| x|Vl (x € K, || < N).

When |a| = N, this is (4). Suppose 1 <i < N, assume (5) is
proved for all « with |a| = i, and suppose | | = i — 1. The gradient of
DB is the vector

(6) grad D’¢ = (D,D%¢, ..., D,D?o).
Our induction hypothesis implies that
(7) [(grad DPo)x)| <n - pn™ | x[V7F (x € K),

and since (D?¢)(0) = 0 the mean value theorem now shows that (5)
holds with B in place of a. Thus (5) is proved.

Choose an auxiliary function ¢ € 2(R"), which 1s 1 in some
neighborhood of 0 and whose support is in the unit ball B of R".
Define

X

(8) W(x) = W(";) (r >0, x € R").

If r 1s small enough, the support of ¥, lies in rB <= K. By Leibniz’
formula

©) D, ¢)x) = ¥ caﬂ(D“—ﬂw)(f)w%)(x)r'ﬂ'—'“'.

Bsa

It now follows from (5) that

(10) 1, @lly < nCllll»

as soon as r 1s small enough; here C depends on n and N.

Since A has order N, there is a constant C, such that |Ay| <
C,lly|l yfor all y € D. Since Y, = 1 in a neighborhood of the support
of A, it now follows from (10) and (c) of Theorem 6.24 that

1AD| = 1AW, d)| < Cilld, ¢y <nCCL ¥

Since n was arbitrary, we have proved that A¢ =0 whenever (3)
holds.
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In other words, A vanishes on the intersection of the r.ull spaces
of the functionals D*d, (|a| < N), since

(11) (D*3)¢ = (—1)"50(D*¢) = (— 1)"(D*¢)(0).

The representation (1) follows now from Lemma 3.9. /1//

Distributions as Derivatives

It was pointed out in the introduction to this chapter that one of the aims
of the theory of distributions is to enlarge the concept of function in such a
way that partial differentiations can be carried out unrestrictedly. The dis-
tributions do satisfy this requirement. Conversely—as we shall now see—
every distribution is (at least locally) D*f for some continuous function f and
some multi-index a. If every continuous function 1s to have partial deriv-
atives of all orders, no proper subclass of the distributions can therefore be
adequate. In this sense, the distribution extension of the function concept is
as economical as 1t possibly can be.

6.26 Theorem Suppose A € 2'(Q), and K is a compact subset of Q. Then
there is a continuous function fin Q and there is a multi-index o such that

(1 A¢ = (=1 jf (x)(D*¢)(x) dx

for every ¢ € D .

PROOF. Assume, without loss of generality, that K — Q, where Q is the
unit cube in R", consisting of all x = (x,, ..., x,) with 0 < x; < 1 for

i=1,...,n The mean value theorem shows that
2) || < max |(D;y)x)| (¥ € Dy
xeQ

fori=1,...,nn Put T=D,D,--- D,. For y € Q, let Q(y) denote the
subset of Q in which x; < y, (1 <i < n). Then

(3) W(y) = r (TY)x) dx  (f € D).

-JQ(y)

If N is a nonnegative integer and if (2) 1s applied to successive deriv-
atives of ¥, (3) leads to the inequality

(4) ¥l x < max [(TY)(x)| < L (T )(x) | dx,

xeQ
for every € 9.
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Since A € 2'(QQ), there exist N and C such that

(5) |Ap| < Cliglly (¢ € Py
Hence (4) shows that

(6) |Ag] < jI(TN“cﬁ)(X)I dx (¢ € Dg).

By (3), T is one-to-one on %,, hence on 2. Consequently,

TNt @, - Dy is one-to-one. A functional A, can therefore be

defined on the range Y of TV *! by setting
(7) ATV ' = Ad (¢ € Zx),
and (6) shows that

(8) AW =<C LI Y(x)|dx (W eY)

The Hahn-Banach theorem therefore extends A, to a bounded linear
functional on I}(K). In other words, there is a bounded Borel function
g on K such that

%) Ap=AT "¢ = fg(X)(TN“@(X) dx (¢ € Dy
K

Define g(x) = 0 outside K and put

10 o= | [T dn e dx e

Then f1s continuous, and n integrations by parts show that (9) gives

(11) Agp = (-1) J fONTY*2¢)x) dx  ($ € Dy
Q

This 1s (1), with a = (N + 2, ..., N + 2), except for a possible change
in s1gn. 1]/

When A has compact support, the local result just proved can be

turned into a global one:

6.27 Theorem Suppose K is compact, V and Q are open in R" and
K = V < Q. Suppose also that A € 2'(Q), that K is the support of A, and that
A has order N. Then there exist finitely many continuous functions fg in Q
(one for each multi-index f with B; < N + 2 fori =1, ..., n) with supports in
V, such that

(1)

A=) Dffy.
B
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These derivatives are, of course, to be understood in the distribution
sense : (1) means that

(2) Ap = % (— ¥ L fix)DP)x) dx  [¢ € D(Q)]

PROOF. Choose an open set W with compact closure W, such that
K =« W and W< V. Apply Theorem 6.26 with W in place of K. Put
a=(N+2,..., N+ 2). The proof of Theorem 6.26 shows that there
1s a continuous function f1n Q such that

(3) Ap = (—1) Lf () D*¢)x) dx  [¢ € D(W)].

We may multiply f by a continuous function which is 1 on W and
whose support lies in V, without disturbing (3).

Fix ¢ € 2(Q), with support in W, such that ¥ = 1 on some open
set containing K. Then (3) implies, for every ¢ € 2(Q), that

A¢ = AWe) = (— D™ Lf - D*(y¢)

— (_ l)ial f z Cap D“_Bl//Dﬂq‘).

Q f<a

This 1s (2), with
fo=(=1"""Fc,f Dby  (B<a) /11

Our next theorem describes the global structure of distributions.

6.28 Theorem Suppose A € 2'(Q). There exist continuous functions g, in
Q, one for each multi-index a, such that

(@) each compact K < Q intersects the supports of only finitely many g,, and
b) A=) D,

If A has finite order, then the functions g, can be chosen so that only
finitely many are different from 0.

PROOF. There are compact cubes Q; and open sets V; (i =1, 2, 3, ..))
such that Q, < V; = Q, Q is the union of the Q,, and no compact
subset of Q intersects infinitely many V;. There exist ¢, € 2(V;) such
that ¢, = 1 on Q,. Use this sequence {¢;} to construct a partition of
unity {y/;}, as in Theorem 6.20; each ; has its support in V;.
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Theorem 6.27 applies to each y;A. It shows that there are
finitely many continuous functions f; , with supports in V;, such that

(1) WiA=ZDm,a'
Define
2) G = __Zlf,-,a-

These sums are locally finite, in the sense that each compact
K < Q intersects the supports of only finitely many f; , . It follows that
each g, is continuous in Q and that (a) holds.

Since ¢ = y; @, for every ¢ € D(Q), we have A =) ¥;A, and
therefore (1) and (2) give (b).

The final assertion follows from Theorem 6.27. /1]

Convolutions

Starting from convolutions of two functions, we shall now define the con-
volution of a distribution and a test function and then (under certain
conditions) the convolution of two distributions. These are important in the
applications of Fourier transforms to differential equations. A characteristic
property of convolutions is that they commute with translations and with
differentiations (Theorems 6.30, 6.33, 6.37). Also, differentiations may be
regarded as convolutions with derivatives of the Dirac measure (Theorem
6.37).

It will be convenient to make a small change in notation and to use
the letters w, v, ... for distributions as well as for functions.

6.29 Definitions In the rest of this chapter, we shall write 2 and 2’ in
place of 2(R") and 2'(R"). If u is a function in R", and x € R", 7, u and & are
the functions defined by

(1) (z;u)y) =u(y —x), ay)=u(—y) (yeR".
Note that
2) (T W)(y) = u(y — x) = u(x — y).

If u and v are complex functions in R", their convolution u * v 1s
defined by

(3) (u * v)(x) = f

u(yyp(x — y) dy,
Rn
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provided that the integral exists for all (or at least for almost all) x € R", in
the Lebesgue sense. Because of (2),

4) (u * v)(x) = J u(y)z. 0)y) dy.

R

This makes it natural to define

(5) u*d)(x)=ut.d (ueP, e, xeR",

for if u is a locally integrable function, (5) agrees with (4). Note that u * ¢ is
a function.

The relation | (t,u) v = u-(t_,v), valid for functions u and v,
makes it natural to define the translate ., u of u € 2’ by

(6) (tu@) =ul_.¢) (¢p€2,xeR

Then, for each x € R", T u € 2’; we leave the verification of the appropriate
continuity requirement as an exercise.

6.30 Theorem Supposeue P',¢e D,y € D. Then
(@) t(ux @)= (1w * d=u=x(1,¢)forall x e R*;
b) u*x¢deC®and

D¥u * ¢) = (D"u) * ¢ = u * (D*¢P)

for every multi-index o;

(€) ux(@p*xy)=(ux*e)*y.

PROOF. For any y € R",
(zu * O)) = (u* )y — ) = u(r, , ),
(e ) * D)) = (z ullt, §) = ulz, . @),
(1 * (T PIY) = u(t, (T, $)*) = u(t,_, P),
which gives (a); the relations
y-x and  (1,9)" =71 ¢

were used. In the sequel, purely formal calculations such as the pre-
ceding ones will sometimes be omitted.
If u is applied to both sides of the identity

(1) T(D*¢)") = (= 1) D%z, ¢)

one obtains part of (b), namely,

(U * (D*@))x) = (D*u) * P)x).

T,T =1



172

PART [I: DISTRIBUTIONS AND FOURIER TRANSFORMS

To prove the rest of (b), let e be a unit vector in R", and put

(2) ne = r 1(‘50 — Tre (r > O)
Then (a) gives
3) nlu * @) =u*(n,P).

Asr—0,7n,¢ - D,¢in D, where D, denotes the directional derivative
in the direction e. Hence

(" ¢)) > 1(D. ¢)" in 2,

for each x € R", so that

(4) lim (u * (1, §))(x) = (u * (D, P))(x).

r—0

By (3) and (4) we have
(5) D, (ux* ¢)=ux* (Do),

and iteration of (5) gives (b).
To prove (c), we begin with the identity

(6) (@ * ¥)"(t) = L (s)(z, 1) ds.

Let K, and K, be the supports of ¢ and . Put K = K, + K,. Then
s sy,

is a continuous mapping of R" into 2, which is 0 outside K, . There-
fore (6) may be written as a & g-valued integral, namely,

(7) (¢*%“=L}@a$ﬁ,
and now Theorem 3.27 shows that
(u * (¢ * ¥))O) = u((¢ * ¥)")
=Lﬁmm%w=Ly—mummw,

or
(8) (U * (¢ * ¥))0) = ((u * @) * Y(0).

To obtain (8) with x in place of 0, apply (8) to 7_, ¢ in place of
Y, and appeal to (a). This proves (c). /1]



CHAPTER 6: TEST FUNCTIONS AND DISTRIBUTIONS 173

6.31 Definition The term approximate identity on R" will denote a
sequence of functions h; of the form

h{x) = j"h( jx) (j=1273...),
where h € D(R"), h > 0, and [z. h(x) dx = 1.

6.32 Theorem Suppose {h;} is an approximate identity on R", ¢ € 9D, and
ue 9. Then

(@ limg@ *h;=¢inD,

Jj—©

(b) lmux* h,=uin2'

Jj— ®©

Note that (b) implies that every distribution is a limit, in the topology
of @', of a sequence of infinitely differentiable functions.

PROOF. It is a trivial exercise to check that f* h; - f uniformly on
compact sets, if f1s any continuous function on R". Applying this to
D*¢ in place of f, we see that D*(¢ * h;) > D*¢ uniformly. Also, the
supports of all ¢ * h; lie in some compact set, since the supports of
the h; shrink to {0}. This gives (a).

Next, (a) and statement (c) of Theorem 6.30 give (b), because

@) = (u * $)0) = lim (u * (h; * ¢))0)

= lim ((u * h;) * $)0) = lim (u * h)(@). /]
6.33 Theorem
(@) Ifue 2 and
(1) Lp =ux¢ (pe)
then L is a continuous linear mapping of @ into C® which satisfies
(2) 1, L =1Lt, (x € R").

(b) Conversely, if L is a continuous linear mapping of 2 into C(R"), and if L
satisfies (2), then there is a unique u € %' such that (1) holds

Note that (b) implies that the range of L actually lies in C®.

PROOF. (a) Since 7,(u * ¢) = u * (1, ¢), (1) implies (2). To prove that L
is continuous, we have to show that the restriction of L to each @ is
a continuous mapping into C®. Since these are Fréchet spaces, the
closed graph theorem can be applied. Suppose that ¢, > ¢ in £, and
that u * ¢; > fin C®; we have to prove that f = u * ¢.
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Fix x € R". Then 7, ¢; = 7, ¢ in 9D, so that

f(x) = lim (u * ¢)x) = lim u(t.P) = u(r. P) = (u * P)(x).

(b) Define u(¢) = (L@)O0). Since ¢ — ¢ is a continuous operator
on 2, and since evaluation at 0 is a continuous linear functional on C,
u 1s continuous on 2. Thus u € &'. Since L satisfies (2),

(L)) = (r- < L)0) = (L $)O)
= Ut x§)") = u(r. P) = (u * P)x).

The uniqueness of u is obvious, for if ue 2" and u * ¢ =0 for
every ¢ € 9, then

u(@) = (u * $)0) =0
for every ¢ € 2; hence u = 0. /1]

6.34 Definition Suppose now that ue ' and that u has compact
support. By Theorem 6.24, u extends then in a unique fashion to a contin-
uous linear functional on C®. One can therefore define the convolution of u
and any ¢ € C® by the same formula as before, namely,

(u* $)x) = u(r,d)  (xe R".

6.35 Theorem Suppose u € @' has compact support, and ¢ € C*. Then

(a)
(b)

(c)
()

T @) = (1,1 * = u * (. $) if x € R,
ux e C®and
D*(u * ¢) = (D*u) * ¢ = u x (D*@).

If. in addition, y € D, then
ux*xy e D, and
ux(p*x)=@u=*@)*xy=W=+y) * ¢

PROOF. The proofs of (a) and (b) are so similar to those given in
Theorem 6.30 that they need not be repeated. To prove (¢), let K and
H be the supports of u and y, respectively. The support of 7,y is
x — H. Therefore

(u* Y)(x) =u(z J) =0

unless K intersects x — H, that is, unless x € K + H. The support of
u =y thus lies in the compact set K + H.
To prove (d), let W be a bounded open set that contains K, and

choose ¢, € @ so that ¢y = ¢ in W + H. Then (¢ * ¥)" = (¢ * V)
in W, so that

(1) (U * (¢ * ¥))0) = (u * (@0 * ¥))NO0).
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If —se H, thent,¢p =7,¢,in W; hence u* ¢ = u ¢, in —H.

This gives

(2) (u * @) * ¥)0) = ((u * Po) * ¥)(0).
Since the support of u * iy liesin K + H,

(3) ((u * ) * $)O) = ((u * ¥b) * $o(0).

The right sides of (1) to (3) are equal, by Theorem 6.30; hence so
are their left sides. This proves that the three convolutions in (d) are
equal at the origin. The general case follows by translation, as at the

end of the proof of Theorem 6.30. /1]

6.36 Definition If ue &', v € 2, and at least one of these two distribu-
tions has compact support, define

(1) Lp=ux(v*¢) (¢

Note that this i1s well defined. For if » has compact support, then
v+ pe P, and Lp € C®; if u has compact support, then again Lo € C®,
since v * ¢ € C®. Also, 1, L = Lz, for all x € R". These assertions follow
from Theorems 6.30 and 6.35.

The functional ¢ — (L@)0) is in fact a distribution. To see this,
suppose ¢; = 0 in 2. By (a) of Theorem 6.33, v * $, - 0 in C>; if, in addi-
tion, v has compact support then v * ¢, - 0 in D. It follows, in either case,
that (L¢,)(0) = O.

The proof of (b) of Theorem 6.33 now shows that this distribution,
which we shall denote by u * v, is related to L by the formula

(2) Lp=(uxv)*x¢p ($€D).
In other words, u * v € &’ is characterized by
3) (uxv)xd=ux@*9) ($e9)

6.37 Theorem Supposeue 2,ve P, we D'

(a) If at least one of u, v has compact support, then u * v = v * w.
(b) If S, and S, are the supports of u and v, and if at least one of these is

compact, then
S,..=S, +8,.

(c) If at least two of the supports S,, S,, S

(u*v)*w=ux*(*w)

are compact, then

v w

(d) If 0 is the Dirac measure and a is a multi-index, then
D*u = (D%9) * u.

In particular, u = 6 * u.
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(e) If at least one of the sets S, , S, is compact, then
D*(u * v) = (D%u) * v = u * (D%)

for every multi-index a.

Note: The associative law (c) depends strongly on the stated hypoth-
eses; see Exercise 24.

PROOF. (a) Pick ¢ € 9, y € 2. Since convolution of functions is com-
mutative, (c) of Theorem 6.30 implies that

u*v)*(@*y)=ux*@=* (¢ *y))
=ux((V* P xY)=u=* @y * (v * Q).

If S, is compact, apply (c) of Theorem 6.30 once more; if S, 1s
compact, apply (d) of Theorem 6.35; in either case

(1) (u*v)* (P *xth)=(uxy)*(v* )
Since ¢ * iy =y * ¢, the same computation gives
(2) *u)*(P*y)=(@=*¢)*(u*)

The two right members of (1) and (2) are convolutions of func-
tions (one in 2, one in C®); hence they are equal. Thus

(3) (wrv)x Q)b =(v+u)* @) .

Two applications of the uniqueness argument used at the end of the
proof of Theorem 6.33 now give u * v = v * wu.

(b) If ¢ € 9, a simple computation gives
(4) (u * v)®) = u((® * §)").

By (a) we may assume, without loss of generality, that S, is compact.
The proof of (c) of Theorem 6.35 shows that the support of v * ¢ lies
in S, — S;. By 4), (u * v)(®) =0 unlkess S, intersects S, — S, that is,
unless S, intersects S, + S, .

(¢) We conclude from (b) that both
(U *v) *w and u*(v*w)

are defined if at most one of the sets S,, S,, S,, fails to be compact. If
¢ € D, it follows directly from Definition 6.36 that

) (ux@*w)*xd=ux@*w)*d)=ux*x@x*Ww* )

If S,, is compact, then

(6) (uxv)*w)*xp=(u*v)*(W*@)=ux@®=*W*9)
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because w * ¢ € 9, by (c) of Theorem 6.35. Comparison of (5) and (6)
gives (c) whenever S, 1s compact.

If S,, is not compact, then S, is compact, and the preceding case,
combined with the commutative law (a), gives

ux(*xw)=ux(w*xv)=(W=*0) *xu
=wx@*xu=w=*uU=*xv)=(u*0)*w
(d) If ¢ € D, theno * ¢ = ¢, because
(8 * $)x) = 8z §) = (. BY0) = P(—) = (x).
Hence (c) above and (b) of Theorem 6.30 give
(D°u) * d =u* D*p = u * D¥ x @) = u * (D*0) * ¢.
Finally, (e) follows from (d), (c), and (a):
D*(u * v) = (D) * (u * v) = (D*) » u) * v = (D) * v

and
(D) *x u) * v =(u* D) »v=ux (D) xv)=uxDv. [/
Exercises
1. Suppose fis a complex continuous function in R”, with compact support. Prove
that P; — f uniformly on R" for some ¥ € 2 and for some sequence {P;} of
polynomials.
2. Show that the metrizable topology for 2(£2) that was rejected in Section 6.2 is
not complete for any Q.
3. If E is an arbitrary closed subset of R”, show that there is an f € C*(R") such
that f(x) = O for every x € E and f(x) > O for every other x € R".
4. Suppose A € Z'(2) and A¢ > 0 whenever ¢ € P(QQ) and ¢ > 0. Prove that A is
then a positive measure in Q (which is finite on compact sets).
5. Prove that the numbers c,; In the Leibniz formula are
“ o; !
Cap =
’ i]::[l Byt — B!
6. (a) Suppose c,, = exp {—(mNH!},m=0,1,2,....Does the series
Y. c(D"$XO)
m=90

converge for every ¢ € C™*(R)?

(b) Let Q be open in R*, suppose A; € Z'(Q), and suppose that all A; have their
supports in some fixed compact K < Q. Prove that the sequence {A;} cannot
converge in 2'(€2) unless the orders of the A; are bounded. Hint: Use the
Banach-Steinhaus theorem.

(c) Can the assumption about the supports be dropped in (b)?
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7.

8.
9.

10.

11.

12.

13.
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Let Q = (0, 00). Define
[» @] - I
A=Y 0" —) [¢eca@]
m=1

Prove that A is a distribution of infinite order in Q. Prove that A cannot be
extended to a distribution in R; that is, there exists no A, € Z'(R) such that
A, = A n (0, 00).

Characterize all distributions whose supports are finite sets.

(@) Prove that a set E = 9(€Q) is bounded if and only if

sup {|Ad|: ¢ € E} < o0

for every A € 2'(QQ).

(b) Suppose {¢;} is a sequence in (L) such that {A¢;} is a bounded sequence
of numbers, for every A € 2'(Q). Prove that some subsequence of {¢;} con-
verges, in the topology of 2(Q).

(c) Suppose {A;} is a sequence in Z'(Q) such that {A; ¢} is bounded, for every
¢ € 2(Q). Prove that some subsequence of {A;} converges in Z'(Q) and that
the convergence is uniform on every bounded subset of 2(€). Hint: By the
Banach-Steinhaus theorem, the restrictions of the A; to @y are equi-
continuous. Apply Ascoli’s theorem.

Suppose { f;} is a sequence of locally integrable functions in Q (an open set in

R™ and

lim J|ﬁ(x)|dx =0
K

i

for every compact K < Q. Prove that then D*f; - 0 in 2'({2), as i —» oo, for every
multi-index «.

Suppose Q is open in R?, and {f;} is a sequence of harmonic functions in Q that
converges in the distribution sense to some A € Z'(€2); explicitly, the assumption
is that

A¢ = lim | fi(x)p(x) dx [¢ € ()]

i~ oo JO

Prove then that {f;} converges uniformly on every compact subset of Q and that
A is a harmonic function. Hint: If f is harmonic, f(x) is the average of f over
small circles centered at x.

Recall that 6 (the Dirac measure) is the distribution defined by 8(¢) = ¢(0), for
¢ € D(R). For whichf e C®(R) is it true that f6’' = 0? Answer the same question
for f6”. Conclude that a function f e C*(R) may vanish on the support of a
distribution A € 2’(R) although fA # 0.

If ¢ € 2(Q) and A € 2'(QQ), does either of the statements

dA =0, A¢p=0

imply the other?
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Suppose K is the closed unit ball in R”, A € 2'(R") has its support in K, and
f € C*(R") vanishes on K. Prove that fA = 0. Find other sets K for which this is
true. (Compare with Exercise 12.)

Suppose K = V < Q, K 1s compact, V and Q are open in R", A € 2'(Q) has its
support in K, and {¢;} = D(Q) satisfies

(@) lim I:Sup | (D%®,)(x) I} =0
ivo LxeV
for every multi-index a. Prove that then
lim A(¢;) = 0.
t—* a0

The preceding statement becomes false if V is replaced by K in the hypothesis
(a). Show this by means of the following example, in which Q = R. Choose
¢y > ¢y > -+ > 0,such that ) ¢, < oo; define

Ap = ) (dc) — #(0) (¢ € D(R));
j=1

and consider functions ¢; € Z(R) such that ¢(x) =0 if x < ¢;,{, Pi(x) = 1/i if
c; < x < c;. Show also that this A is a distribution of order 1.

However, for certain K, V can be replaced by K in the hypothesis (a) of
Exercise 15. Show that this is so when K is the closed unit ball of R". Find other
sets K for which this is true.

If A e 2'(R) has order N, show that A = DV*2f, for some continuous function f.
If A = 9, what are the possibilities for f 2.

Express 6 € 2'(R?) in the form given by Theorem 6.27, as explicitly as you can.

Suppose A € Z'(Q), ¢ € D(Q), and (D*®)(x) = 0 for every x in the support of A
and for every multi-index «. Prove that A¢ = 0. Suggestion: Do i1t first for dis-
tributions with compact support, by the method used in Theorem 6.25.

Prove that every continuous linear functional on C*(Q) is of the form f— Af,

where A is a distribution with compact support in Q; this is a converse to (d) of
Theorem 6.24.

Let C®(T) be the space of all infinitely differentiable complex functions on the
unit circle T in €. One may regard C*(T) as the subspace of C®(R) consisting of
those functions that have period 2xn. Suppose

fl@)= > a,z"
n=0

converges in the open unit disc U in €. Prove that each of the following three
properties of f implies the other two:
(@) There exist p < o0 and y < oo such that

la,| <7y - nf n=1,23,..).
(b) There exist p < 00 and y < 00 such that
If@l<y-A-]z])"" (zel)

(c) lim,. [*, f(re®)p(e'’) dO exists (as a complex number) for every ¢ € C2(T).
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For u € 2'(R), show that

u— TUu

- Du  in D'(R),
X

as x — 0. (The derivative of u may thus still be regarded as a limit of quotients.)
Suppose { f;} is a sequence of locally integrable functions in R", such that

lim (f; * @)(x)

i~ oo

exists, for each ¢ € P(R") and each x € R" Prove that then {D*(f; * ¢)} con-
verges uniformly on compact sets, for each multi-index «.

Let H be the Heaviside function on R, defined by

H(x) = 1 if x>0,
= ifx<o,

and let ¢ be the Dirac measure

(@) Show that (H * ¢)(x) = [* , @(s) ds, if ¢ € D(R).

(b) Show that ¢’ * H = 5

(c) Show that 1 * 6’ = 0. (Here 1 denotes the locally integrable function whose
value is 1 at every point and which is thought of as a distribution.)

(d) It follows that the associative law fails:

1«0 *H)y=1%0=1,
but
(1*x6)*H=0=xH=0.

Here is another characterization of convolutions analogous to Theorem 6.33.
Suppose L is a continuous linear mapping of & into C® which commutes with
every D% that is,

(@) LD*¢ = D*L¢ (¢ € D).
Then there i1s a u € &' such that
Lo =u=* ¢.
Suggestion: Fix ¢ € @, put
h(x) = (1. L1, 9)(0) = (L1, $)(x)  (x € R"),

let D, be the directional derivative used in the proof of Theorem 6.30, and show
that

(D, h)(x) = (D, Lt,¢)(x) — (L7, D, $)(x),

which is O if (@) holds. Thus h(x) = h(0), which implies that 7, L = Lz, .
Can the assumption that the range of L is in C* be weakened?
If fe L}((— o0, —6) U (6, 00)) for every 6 > 0, define its principal value integral to

be
PV Joo f(x) dx = lim (J‘%é + ~[Oo)f(x) dx
e 00 — o8 J
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if the limit exists. For ¢ € 2(R), put

A¢=Jw é(x) log | x| dx.

Show that
N = PV r o9 =,
A'¢p = —PV J ? 4’()‘);24’(0) dx.

Find all distributions u € &'(R") that satisfy at least one of the following two
conditions:

(@) t,u = ufor every x € R",

(b) D*u =0 for every a with |a| = 1.



CHAPTER

7

FOURIER
TRANSFORMS

Basic Properties

7.1 Notations (a) The normalized Lebesgue measure on R" is the
measure m, defined by

dm(x) = 2n)~"? dx.

The factor (2r) ™2 simplifies the appearance of the inversion theorem 7.7
and the Plancherel theorem 7.9. The usual Lebesgue spaces I?, or I?(R"),
will be normed by means of m,,:

1/p
||f!|p=” | f1P dm.,} (I <p <)

It 1s also convenient to redefine the convolution of two functions on R" by

(f * g)(x) = f S(x = y)g(y) dmy)
Rn
whenever the integral exists.
(b) For each t € R", the character e, is the function defined by
e(x) =e" * =exp {i(t;x; + +t,x,) (x € R").

182
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Each e, satisfies the functional equation

e(x + y) = e(x)ely).

Thus e, is a homomorphism of the additive group R" into the multiplicative
group of the complex numbers of absolute value 1.

(c) The Fourier transform of a function f e I!(R") is the function f
defined by

f(t) = v[ fe_,dm, (t € R").

The term “ Fourier transform ” i1s often also used for the mapping that takes
fto f. Note that

~

S@©) = (f * e)(0).

(d) If a is a multi-index, then

1 a al 1 a ap
D =(M"pr={-—)| .. = —

The use of D, in place of D* simplifies some of the formalism. Note that
D, e, = t%,

where, as before, t* =t§! --- 3" If P is a polynomial of n variables, with
complex coefficients, say

PE) =Y c,& =Y c,&f -+ &m,
the differential operators P(D) and P(— D) are defined by
PD)=Y ¢,D,, P(-~D)=Y (~1)*c,D,.
It follows that
P(D)e, = P(t)e, (t € R").
(e) The translation operatorsAt,c are defined, as before, by

@Y =fy—x) (x, yeR

7.2 Theorem Suppose f, g € '(R"), x € R". Then

@ (@ f)=e_.f;
B) (exf) =115

© (f+9"=f4 )
(d) If2 > 0and h(x) = f(x/2), then h(t) = 2" f(At).
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PROOF. It follows from the definitions that

(. f)(E) = J(rxf) e = Jf' T_x€; = Jf e_(x)e_,=e_[)f()

and

(ex ))N(O) = Jexfe—: = er—(:x) = (. /)Y,

An application of Fubini’s theorem gives (c); (d) 1s obtained by a
linear change of variables in the definition of f. /1]

7.3 Rapidly decreasing functions This name is sometimes given to
those f € C*(R") for which

(1) sup sup (1 + |x|*)V[(D, f)(x)| < o

lal <N xeRn

for N=0, 1, 2, .... (Recall that |x|?> =) x7.) In other words, the require-
ment 1s that P - D, f is a bounded function on R", for every polynomial P
and for every multi-index «. Since this is true with (1 + | x |*)YP(x) in place
of P(x), it follows that every P - D, flies in L'(R").

These functions form a vector space, denoted by & ,, in which the
countable collection of norms (1) defines a locally convex topology, as
described in Theorem 1.37.

It is clear that P(R") < &,

7.4 Theorem

(@) & ,is a Fréchet space.
(b) If P is a polynomial, g € &,, and a is a multi-index, then each of the
three mappings

f=Pf  f-oaf, f-oD.f

is a continuous linear mapping of & ,into & ,.
(c) Iffe &,and Pisa polynomial, then

(PD)f)"=Pf and  (Pf)" = P(—D)f.

(d) The Fourier transform is a continuous linear mapping of & , into & ,.

[Part (d) will be strengthened in Theorem 7.7.]

PROOF. (a) Suppose { f;} is a Cauchy sequence in &, . For every pair of
multi-indices @ and B the functions x?D*f|(x) converge then (uniformly
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on R") to a bounded function g,,, as i - oo. It follows that

gap(X) = xPDggo(x)
and hence that f; = goo in &,. Thus &, is complete.

(b) If fe &,, 1t is obvious that D, fe &,, and the Leibniz
formula implies that Pf and gf are also in &,. The contnuity of the
three mappings is now an easy consequence of the closed graph
theorem.

(c) If fe &,,so0is P(D)f, by (b), and
(P(D)f) = e, = f = P(D)e, = f » P(t)e, = P()L f * e,].

Evaluation of these functions at the origin of R, gives the first
part of (c), namely,

(P(D)f)(t) = P(t)f ().
Ift =(y,...,ty)and t' = (t; +¢&t,,...,t,), € #0,then

nN_ —ix1e __ 1 .
f(t),-g fi _ f xS0 e dm)

The dominated convergence theorem can be applied, since x, f€ L,
and yields

0 . .
22 jo- f x1f(x)e ™ dm,(x).

i ot,

This is the case P(x) = x, of the second part of (c); the general case
follows by iteration.

(d) Suppose fe &, and g(x) = (— 1)*'x*f(x). Then g € &,; now
(c) implies that § =D, fand P-D_f= P - § = (P(D)g)*, which is a
bounded function, since P(D)g € L}(R"). This proves that fe &,. If
fi—fin &,, then f;— f in IXR"). Therefore f(t) > f(¢) for all t € R".
That f— fis a continuous mapping of &, into &, follows now from
the closed graph theorem. 1]/

7.5 Theorem Iffe L}(R"),thenfe Co(R™, and | fl, < If],.

Here Cy(R") is the supremum-normed Banach space of all complex
continuous functions on R" that vanish at infinity.

PROOF. Since |e,(x)| = 1, it is clear that

(1) fOI<1fl, (fe I’ te R".

Since 9(R") =« &,, &, is dense in L'(R"). To each fe [}(R") corre-
spond functions f,€ &, such that | f—f;|; »0. Since fie &, <
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Co(R") and since (1) implies that f; = f uniformly on R", the proof is
complete. /1]]

The following lemma will be used in the proof of the inversion
theorem. It depends on the particular normalization that was chosen
for m, .

7.6 Lemma If ¢, is defined on R" by

(1) ¢n(x) = exp {—3|x|*}
then ¢, € &, dS,, = ¢,, and

@ 640)= | 4. dm,
Rn
PROOF. It is clear that ¢, € &, . Since ¢, satisfies the differential equa-
tion
3) y + xy =0,

a short computation, or an appeal to (c) of Theorem 7.4, shows that
¢, also satisfies (3). Hence ¢, /¢, is a constant. Since ¢,(0) = 1 and

Q0

Cal(o) = J ¢y dm, = 2n)~ 12 J exp {—$x*} dx =1,

—

we conclude that ¢, = ¢,. Next,

(4) Gn(x) = @y(xy) - Py(x,)  (x € R

so that

(5) $ult) = $slty) -+ bu(t) (e R).

It follows that ¢, = ¢, for all n. Since ¢,(0) = | ¢, dm,, by definition,
and since ¢, = ¢,, we obtain (2). /l]/

7.7 The inversion theorem
(@ Ifge,,then

(1) g(x) = -[ ge, dm, (x € R").

(b) The Fourier transform is a continuous, linear, one-to-one mapping of &,
onto & ,, of period 4, whose inverse is also continuous.
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() Iffe INR"),fe LXR"),and

(2) Jo(x) = J fexdm,  (xe€R"),

then f(x) = fo(x) for almost every x € R",

PROOF. If fand g are in 