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Pl ot e,
PREFACEL.

Tne commencement of the publication. of a ¢ Treatise on the Theory
of Algebraical Expressions,” of whicti the first number appeared in
1831, under the direction of the ¢ Society for the Diffusion of Useful
Knowledge,” having been accidentally interrupted, I was directed by
the same Society to compose the present Treatise, keepiug in sight the
views of the author of the ¢ Algebraical Esxpressions,” at the same
time keeping pace with the advancement made, since the former date,
on this subject.

The maiu view of the author of the work quoted, I learned, was to
conduct his subject 5o as insensibly to lead the learner from pure
algebraical theoriés to a knowledge of the principles on which the
more advariced branches of analysis depend. 'To this advice from an
excellent analyst I have adHered as well as I was able; but, in con-
sideration of the recent progress of the ¢ Theory of Equations,” I felt
it mecessary to alter the plan, assuming however the propositions
proved in the other work, to which therefore the reader will find several
subsequetit references.

I will now n:ake a short statement of the plan adopted in the present
work, premising that ho treatise with exclusively the same object has
been published of late, as far as I know, either at home or abroad.
To collect and methodically digest the scattered elements of this theory,
as far as its present advauced state imports, was attended with no
inconsiderable difficulties ; therefore, though an ohject of great utility
has been, I hope, obtained by the composltlon of this wurk it cannot
be expected to be altogether faultless.

Before examining algebraical equations theoretically, it appeared
necessary to canvey a precise idea of the continuous rinture of algebraic
functions, and to show that their numerical magnitudes may be
eéxtended through every quantity from negative to positive infinity,
notwithstanding the existence of certain maxima and minima values.
This subject is discussed in a series of propositions, the more clearly
to impress the reader with the steps of the reasoning. Having attained
this object, the ordinary properties of equations relative to the existence,
number, limits, and symmetrical relations of the roots, followed as easy
consequences ; on these deduced properties 1 have not much dilated,
as lhey have been already ably treated in the work before referred to.

A2
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iv PREFACE.

I have then given the theorenig of both Sturm and Fourier relative
to the discovery of the number of realand imaginary roots of an equa-
tion, the combination of which with the methods of approximation due
to Newton and Lagrange conducts to the solution of all numerical
equations of finite dimensions, except for imaginary roots, for the dis-
covery of which I have employed a method deduced from recurring
series, These numerical applications I have. illustrated by examples in
a later part of the work.

The formation of literal equations being understood, I have explained
the logarithmic method for obtaining with rapidity the series which
analytically represent the differeut roots and their furctions ; and have
then shown how to effect some general and useful transformations of
equations, and explained the algebraical solutions of the equations of
inferior degrees, and the analytical meaning of the dlﬂ"t.rent surd parts
which constitute the roots.

The theory of binomial equations is treated much in the manner of
Lagrange, and the methods for the general resolution of equations are
then discussed ; and wherever useful applications to the kindred branches
arose, I have supplied them in the form of Scholia, in order to preserve
a proper arrangement of the subject more especially treated.

After giving several useful analytical results springing from the
employment of the methods before given, I have passed ou to discuss

recurring series, which have been used from an early date for the solu- -

tion of equations. I have then pointed out the useful extension made

but left unproved by I'ourier; I have supplied the proofs for that .

part which was correct, and substituted right theorems for those in
which lie has committed errors.

After then giving the various methods of approximation to the roots,
and using all the appliunces by which they may muiually assist each
other, and thereby facilitate the numerical solution—on which occasion
I have also considered several properties of continued fractions—I have,
in conclusion, considered the properties of geuneral classes of equations
of finite and infinite dimensions, ayd shown in what cases the theory
of the former mnay or may not be applicable to the latter.

All parts of the work I have taken care to illustrate with numerical
or more general examples, and to draw such inferences as will be
found useful in the higher branches of analysis. A glance over the
table of contents, which I hope will form a useful epitome of the whole
subject, will convey a more complete idea of the nature and extent of
the matters here treated.

I have availed myself of an accidental delay in the publication of this
Treatise, to revise, correct, and augment different parts, with the view

of rendering the work as complete as possible.
R. M.

February 3, 1838.
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THE THEORY OF EQUATIONS.

’

ArricLE 1. The direct processes of arithmetic were at first purely
computative, as addition and multiplication. An expertness in per-
forming these operations, arising from habitude and the assistance of
tables committed to memory, easily conducted to the inverse processes
of subtraction and division, and to the compound process of proportion.
‘When the direct process, however, became more complex, as when it
consisted of various multiplications and additions, the discovery of
methods for finding the unknown quantity or quantities was a matter
of extreme difficulty to arithmeticians, and but for the employment of
general symbols denoting the quantities on which the operations were
performed, the discovery of the proper inverse processes of arithmetic
would have progressed very slowly.

These symbols however were employed : the problems on which they
were engaged conducted generally to simple equations, the results of
which furnished rules for Single and Double False Position, Alligation,
and other purposes of arithmetic to be found in the old treatises on
this subject.

Questions, in which the quantity sought was multiplied by itself, or
which in symbols conducted to quadratic equations, were afterwards
attempted by the rule of double false position, which necessarily gave
only an approximation. For greater readiness in obtaining the same
object, a . tentative method, similar to that now usnally employed in
extracting the square root, but taking into account the second term of
the quadratic, was adopted, and was afterwards extended to equations
of higher orders, a method which was not only tentative but tedious
and barren.

2. The actual solution of the quadratic equation in general alge-
braical symbols was of the greatest importance; the interpretation of
the two roots which satisfied the equation, the consideration of these
roots when imaginary, and the obvious relations subsisting between
the roots and the coefficients of the given equation, much more than the
solution of the cubic, and_of the biquadratic which soon followed, tended
to replace a string of unconnected devices by a true analysis possessing
connexion and symmetry. Thus, in the hands of Harriot and Des--
cartes, algebra ceased to be a system of artifices and became a science.

This science thus opened was cultivated in this country by Wallis,
Newton, Cotes, Waring, and Thomas Simpson, and abroad by many,
amongst whom we distinguish Bezout, Tchirnhausen, Euler, and La-
" grange, Difficulties, however, remained, many of which have been
B
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successfully combated by men of the present day; and the next gene-
ration will probably find the subject far from exhausted.

There probably exists no branch of pure analysis on which the exer-
cise of close reflection is more calculated to improve the student in
precision and elegance of research than the Theory of Equations.

3. The first step towards classifying equations consists in arranging
the terms, according to integer powers of the unknown quantity, com-
mencing with that having the highest index, and descending uniformly
to the absolute term, or that which does not involve the unknown quan-
tity ; all such terms being placed on the left-hand side of the sign of
equality, zero will alone remain on the right.

If z denote the unknown quantity, the left-hand member thus pre-
pared is called a rational and integer function of 2, because this symbol
is then not affected by either fractional or negative indices.

Further, it adds to the simplicity, while it does not diminish the
generality of an equation, to divide the whole by the coefficient of the
first term, or that which involves the highest power of r.

Ezample 1. Arrange the terms of the equation

az -2b
x4 a= z¥2%a’

Result : 2*+2axr+ (@4 b)) =0.
The given eguation, we thus learn, is of the second order, that being

the highest power to which z.is raised in the arranged equation.
Example 2. Arrange the terms of the equation

{2+ a+ (@422 + B +{at+a— (@ + 20+ B} +y=0.
By taking the actual cubes, the irrational parts disappear in the
addition of the two; we thus obtain, first
2(® + Y +6(z + a) (+* + 222+ B) + ¥y =0,
and from thence, by farther reduction, the result, which is

2 + Buzt +%(9¢’+8ﬁ)w+ %(a'-l-&aﬁ-l—%):o,

therefore the equation proposed is of the 8rd order.

Example 8. Arrange the terms of the equation

(@ + az + ) =y.(z + ).

Result :

# + 2az’ + (o, + 28— 9)2* + 2 (af = YD)z + (B — y®) =0,
an equation of the fourth degree.

4. When the equation is thus arranged, the index of the first term
(which is the highest) marks, as it has been variously termed, the

order, degree, or dimension of the equation, and also, of the rational
function which eonstitutes its left member.

Prorosrtion I,

. Positive values, 50 great, may be assigned to z, that the correspond-
ing values of 2" shall be incomparably greater than those of any given
rational integer fanction of 2 of dimensions lower than 7, - :
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Let A7 4+ Bz™' 4+ C2™*'+ . . . . . + Pz + Q be the given
function, where m is less than n.

'This funetion for abridgment we shall denote by ¢ (#), and suppose
M to be numerically the greatest of the coefficients A, B,C. . . .
P, Q, if they are unequal, or one of them if equal,

* 'Then it is plain that Ma™ > or = Aa™,
Mz=-'> or = Ba™",
Maz™* > or = Ca™"
&e. &c. . ‘

In the right-hand members of these relations the signs of the quan-
tities which constitute them may be at variance, some perhaps positive,
others negative ; if so, this would only strengthen .our conclusion
formed by taking the sums, viz., :

M +Ma™ '+ Mo™2 - &e. + Mz + M >,
or, =A2"+ Br'+Cr"4...4+Px4+Q;

1 ' .
hence, M. .z:-ll > or=¢(2);
and supposing 2 > 1, it obviously follows that
amh
M. —i> $(z).
Now, Mt s M .
x—1 : z—1

If 2 — 1, and therefore z,be exceedingly great, then % is very small,

converging to tero, while 2#-™! is either unity (when m=n = 1), or
exceedingly great (whem m <n—1); therefore z*™~' is incom-

parably greater than

et and by proportion z* must be similarly

‘ 1 .
far greater than Ma" » and for a stronger reason greater than ¢ ().

-1

To make 2z*™! > , we have only to suppose (z — 1)*~"!

= .r_MT’ which gives =1 4 MF, this value and much more any

greater value of z will rendet #* > $(2):

" Example. Assign to x such a value that #*> 72* 4 6z + 5.
Héere M =17, n—m=1, henece z=8, or upwards, will have the
desired effect. '

5. When the terms of an equation are properly arranged (Art. 8.)
we nay assign to x values so great, that any term may be made far
gréater than the sum of all the succeeding ; ‘this we have seen in Art. 4. ;
and with respect to the terms preceding, we have an -analogous theo-
rem, viz.

x -1

P
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Prorosition II.

Positive values so small may be assigned to z, that the.corresponding
values of z* shall be incomparably greater than those of any function
of 2 consisting :Lrowers of 2 higher than the nth.

Let Ar™4 Bz™" 4 CamH 4 ,.... P2 4 Qa* be the given func-
tion, where m > n.

Denoting this function by ¢ (), and supposing M to be the greatest
coefficient, we have as before,

Mz™ 4+ Ma™H M2, ... 4+ M2 + Maf > or =¢ (o).

Hence, if we continue the left band member to infinity, which will be
convergent when # < 1, we shall have

M .
1—2 >¢(2).

. Mz~
‘l-x
as z diminishes between 1 & 0, 2™ also diminishes, converging to
zero, while 1 — 2z increases, converging to unity; therefore the ratio
1 -z : Ma™" continually increases, and when z is sufficiently small,
may be made > than any assigned ratio. Hence, 2* is then incom-

lM_.r';, and & fortiori than $(z).

Put w=£, then 1= : Ma»™::y—1:
y—1 >F" put it =(y_—-l_);:"7" which gives y =14+ M"™";
therefore -—1,— » and g fortiori, any smaller fraction when put for

l+Mm—u
« will render 2™ > ¢ ().

Example. Assign to # such a value that 3z > 82* 4 92°.
Divide, first by 3, then M =8, m=n=1, hence 2= %, or any

Now, z*

i1 1 e=2: Ma™™,

parably greater than

;5 and now to make

—_—
»—n-
™ -

smaller fraction ‘will answer the condition required.

6. These two propositions teach us what terms in a rational function
are the most important when values exceedingly great or small are
assigned to #, viz. : in the former case, that which contains the highest
power of z; in the latter, that which contains the lowest.

To obtain a clearer insight into the reasoning of the following articles,
it is advisable that the student should practise the tabulating of for~
mule, or, which is the same thing, the ¢racing of functions.

If, for instance, ¢)(z) is a function or formula to be tabulated, put for
x successively. . . —5h, —4h, —8h, —2h, —h, 0, h, 2k, 8h, Ak, 5h....
.and register the corresponding values of ¢ (): the greater the number
of terms to the left and right of zero in this arithmetical progres-
sion, and the smaller the common difference /, the more perfect will
be the table.

~~
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Example 1. Tabulate the formula z*—5z = ¢ (z)
L @=| 5|4 8 2| 1]0|=1|- 2/~ 8- 4- 5] &
¢ ()=| o0|—4—6|—6|—4|0| 6| 14 24] 36/ 50| -
IL z2=| §| 2 &| 1| $|0|=F(= 1i— §— 21— §
¢ (@) =|—%|—6—%¢|—4|—2[0] ¥ 6 ¥ 14 7
Example (2.) Tabulate a*—3 2*+2 2=¢ (z)

Example (3.) ....... a*—4zx=¢ (2)

Example (4.) s0eae.. ’%’:—l—m =¢(z) )

In the table marked I. the value of & is 1, and in that marked II, it
is }; and an iuspection of the consecutive values of ¢ (z), in both tables,
from =2 to r= —2, will show how much nearer these values are, in
the table where & has the smaller value.

7. In thus tabulating ¢ (), if « were any particular value assigned -
to x, the next value in the series would be a<-k, and the result in this
case, namely, ¢ (a+h), may be derived from the preceding result
¢ (=) by the following theorem,

Prorosirion III.

Let ¢'(«) be that rational and integer function of a, which is derived
from ¢ («) by multiplying each term of the latter by its index, and then
diminishing the index by unity, each term retaining its proper sign.

Let ¢"(a) be that which is derived in the same mauner from ¢/(a)

dl”(a)-- 00000 ess et P oetitcse0ecotocs to o n-oo..¢”(¢)
&e.
Then shall

h'
¢ (a+h) =¢ (@) +¢'(a).h+¢" (a). 1
K @ (o)t
+o'(@. yggte e VO @S
For let the given function which is represented by ¢ (z) be
+Ar 4B, ...+ P24+ Q=¢ ()
Then

¢ (a+h)=(a+h)"+ A (a+2)*"'+B (a+h) " +...+P(a+1)+Q.
Now expand each term by the binomial theorem, and let the whole
be so arranged that like power of & stand in the same vertical columns.

Hence - . . o
P a+h)=a"+n e htn.(n—1)a"2 ... [t maklen
. : L ;
. +Aa 4+ (n=1)Ae" ht (n - l)(n-2)Aa""Ik—2+ o AR

hl
+Ba™*4 (n—2)Ba""h+(n—2)(n - 3)Ba" 15 +. - 0

’

+..{,.a'-‘+.é:'b'.""..""".... LA N ]
+Q
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The first vertical column does not contain 4, its value is
+Aa*'+Ba"*+.,.+Pa+Q, or which is the same thing ¢ ()

The coefficient of 4 in the second vertical column is

: a4 (n—1) A+ (a—2) Ba*+ .. +P
which is derived from ¢ (o) by ‘multiplying each term by its index, and
diminishiug that index by unity ; it is therefore ¢/ («), as defined in the
annauncement of this proposition.

3

And in the same way the coefficient of -l—h—z, in the third vertical
column, is derived from ¢’ («) in the same manner that the latter was
derived from ¢ () ; it is therefore' ¢'/(«), by the notation agreed upon
in the proposition.

We have thus a simp]g and condensed mode of forming ¢ (@+k)
from ¢ (), and arranging it according to the ascending powers of k.

¢' (@) is called the first derived fupction of ¢ ()
@' («) is the first derived of ¢’ (&), or the second derived of ¢ (=)
@' (@) is the third derived of ¢ (), and so on.

It is obvious from the proof that the general formula of this article
holds true whenever ¢ (#) is an aggregation of terms involving any
powers of , whether negative or fractional, but in the theory of equa-
tions those powers are most commonly positive integers.

Example. Let ¢ (2)=a*=8 2+ 22 A -

When 2 =a =1 ¢ (2)= ¢ (a)=0; itisrequired tofind the value of

11 _ - 1
@ (2) wlhen w= o5 =a+h, where h=. )

Wehave .........¢p (a)=o*—8a+2a=0
1st derived function ¢' (¢)=80® =642 =—1

2nd derived.....,. ¢" (a)=6 a—6 =0
3rd derived. . ceies @ (a)=6 .
Hence ¢(a+A)= (o) + 8/ (a)h-+#(a). o5 + $1(o). Lo

1 1
=0-pt+0+1w
=-.099

8. In the last example it was seen that when 2=1¢ (z)=0, and
when 2=1.1 ¢ (¢)=—.099 a value differing but little from zero,
which was the former value. If h were taken, still smaller for instance,

. 1 .
ifh= oo’ that is, if #=1.0], the resulting value of ¢ (z) would be

still nearer zero than before, and by taking k sufficiently small, we
make the result to be as near that produced by substituting unity for z
as we may desire; this will be generally proved by the following

ProrosiTion IV.

Every rational and integer function of z will produce an uninter-
rupted series of values, which shall be nearer to each other than byany -
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agsigned difference, however small, by merely assigning to z a series of
values with small consecutive differences.

For let « be one of the values assigned to x in the given rational
function ¢ (z), and @+ A the next consecutive value of x; the correspond-
ing results by the substitution of these values for z are ¢ (z) and

¢ (a+h) respectively. Now by Prop. IIL.
B AN D+ @) . 1 + 3 (0 T

1.2.3

Foeee

11 (n h'
RAGA v
= / $(a) B () &
_¢(a)+¢(a){h+—¢,7~m _¢l(,)'1.2.3+&°‘}

the meaning of the ‘accented functions being the same as that described
in the preceding article.

The part of this last expression enclosed between the brackets is a
rational and integer function of A, and all the coefficients of the powers
of k are finite numerical quantities, except when ¢’ («)=0, which, at
present, we shall suppose not to be the case.

Now by Prop. II. a value sq small may be assigned to & that the
first term, viz. 2, may be made iucomparably greater than the amount

. . (o) B () A
of all the succeeding, viz. F (@12 F(m1.2.3 + &c.

Hence the difference between ¢ (a+4) and ¢ (a) may be made to
differ by as small a shade as we please from ¢ («).4; and it s clear
that, by giving very small values to &, this may be made less than any
assigned quantity. '

But if ¢ («) vanished, a similar reasoning would lead us to the
same certain conclusion, for then

_ " (2) { AN }
P(at+h) =0 (a)+ 2 R4 T 3 + &e.
and the terms after A' between the brackets may, by Prop. IL, be
made to bear as small a ratio to the first 4* as we please, so that phe
whole may be represented by k%, where k is exceedingly near to unity,

hence ¢ (a+4)—¢ () = R @' (&) .k, which of course can be made

lesg than any assigned quantity. .

And in the same mapner we could continue to reason if ¢ (a)
vanished as well as ¢ (a), and so on.

But may pot all the accented quantities vanish ? No, for the last term

@™ (a) i : 4 nis exactly A°, as will be immediately seen by referring

to the manner in which the functions ¢’ (), 9"’ («), &c., are formed.
Therefore, by taking % sufficiently small, ¢ (a-+4) must differ from
¢ (o), and that difference may be made less than any assigned
quantity. ]
This proposition shows that $ (), which is here used for a rational
integer function of x, is perfectly continuous, that is, while the results
are always real, the diﬂgrence ¢ (ath)—¢(a) and ¢ (a=r)= ()
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converge to zero, as k is made to diminish continually towards the
same, whatever « may be.

9. In assigning to x an indefinite series of values which consecu-
tively differ from each other by only very small quantities, the resulting
values of ¢ (a), when tabulated, present to the view the nature, if
we may so speak, of the function; these results may sometimes go
on successively increasing, at another stage they may commence to
diminish, and continue thence to diminish, up to a third stage, where
they again may recommence to increase, and so on, or they may go on
continually increasing or diminishing. At the stage at which the
function ceases to increase and commences to diminish, it is said to
have acquired there a maximum value, which, however, is not to be
taken as absolutely the greatest of all the values in the table, but only
of those which immediately precede and succeed it in the determined
order of tabulation. In the same sense the function is said to have
acquired a minimum value when, after decreasing, it has arrived at a

.stage whence it commences to increase, The least of all the minimum
values of which the function is susceptible is called the absolute mini-
mum, and the greatest of the maximum values, the absolute maximum ;
the true characters by which we can recognise when a function has

, really attained its maxima or minima values, will be given a little

further on; the preceding observations will however materially tend
to the comprehension of the full force of the following

ProposiTION V.

If A and C are two different resulting values of a rational and integer
function ¢ (), which are produced when two quantities &, v are sub-
stituted for z, then if B be any number chosen intermédiate between
A and C, it will be the result of the substitution of some quantity S, for
«, which is itself intermediate between « and ¢.

Let « be'the least of the two quantities a, v, including under this
designation a negative number relatively to zero, or a positive ; in other
words, let y — a be positive.

Again, suppose first that the result A is less than the result C.

Now when a+h, a+2k, «+38h, &c., are substituted in the func-
tion for 2, h being a very small common difference, it is possible that
the results, instead of increasing and thereby approaching to C, may
commence with diminishing; but they cannot continue so to do in
the interval from r=a to =1, for then they could not ultimately pro-
duce the result C without a breach of continuity ; which is contrary to
Prop. IV.

They must therefore either increase all along between the above-
mentioned limits, or, if they commence with diminishing, they must
arrive at one or several minima values: from the last of which (that
is, the minimum for which the corresponding value of z is nearest
to ) the results necessarily increase uninterruptedly up to C when r=1y.
All values therefore intermediate between the absolute minimum and
C, are then passed through at least once, and therefore by a stronger
reason all values intermédiate between A and C, are necessarily passed
through once or oftener in the actual limits of the series of values given
to z; some quantity 8 between these limits (or it may be several)
necessarily corresponds to the result B,
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A similar train of reasoning would manifestly apply to that case
where C is the least of the two given results.

10. By the theorems announced in the preceding propositions, we
are enabled to trace rational functions, and observe the values of which
they are susceptible ; we can thus know whether a possible or impos-
sible condition is imposed when such a value is to be assigned to x
that ¢ (x) may acquire a certain given value ; for uniformity this given
value is made to be generally zero; if it were otherwise, as ¢, we may
bring it to zero by transposing v, that is, subtracting « from ¢ () (vide
Art. 8); should the condition thus be possible, it must be verifiable by
some value or values of 2 from — ® to + o (which are usually termed
real) ; and should it be impossible, it is a curious and interesting fact

that an algebraical value of #, of the form a+ﬂ\/ ~1 (called imagi-
nary), where « and 3 are real quantities, may then be found, which
shall fulfil the condition which it was impossible to fulfil by real
quantities ; this part of the subject we now proceed to consider, first
observing that the quantity, real or imaginary, which when put for »
would verify, or render identical, the equation ¢ (r)=0 is called @ root
of that equation. We use the indefinite article, for there is nothing in
the preceding investigations to show that there may not be several dif-
ferent roots, and, farther on, we shall seé¢ that such there generally are,

Prorosition VI,

Every equation of odd dimensions has a real root.

Let p(2)=a"+ar* 40"+, ... +pr+g=0 be the given equa-
tion where n is an odd number.

Now we may ussign to # a value so great and positive that
2* > ax"'+ba**+. ... &c. in quantity, by Proposition [.

Hence the function "4 a2*~'+4bz"*4 &c. is then positive. Let P.
be this value of x, and + A the resulting value of ¢ ().

Again put 2= —y, and observing that the odd powers of negative
quantities are negative, and the even powers positive, the function then
becomes

—(y"—ay*1+by**—&c.)

Now by the same proposition a value so great may be assigned to y

that in quantity y*>ay™—by**+ &c., and therefore
—(y* —ay '+ by*—*—&e.) is negative.

But this great positive value of y is equivalent to a great negative
value of x, which therefore renders z*+az"~'4 &ec. negative. Let
—Q be this negative value of x, and — B the resulting value of ¢ (z).

Hence by Prop. V., there exists a real quantity, intermediate to P and
—Q, which shall render ¢ (z) any quantity intermediate to A and—B;
let this intermediate stage be zero, and the corresponding intermediate
quantity between' P and —Q by which it is produced is then a root of
the given equation ¢ (2)=0.

Cor. We may further easily perceive that this root has a sign con-
trary to q the last term of the function.

For if we put =0 the result is ¢ : suppose this positive, then put
= —Q, and the result is —B, which is negative, hence the interme-
diate result zero is producible by a quantity between O :and —Q, that
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is by a negative ropt ; in the same manuer, if ¢ be negative, there must
be a real root between O and 4P, since the latter gives a positive
result.

ProrosiTion VII.

Every equation of even dimensions, of which the last term is uega-
tive, has at least two real roots, one of which is positive, and tlie other
negative.

Let ¢ (r)=a*+az*"'+b2z**+. ... +pr—q=0 be the equation.

Let x be taken so great and positive that 2*>az*"'+bs** &c.;
abstracting from the sign of the latter, let P be this value of =, the
resulting value of ¢ () must be some positive quantity + A.

Again put z=—y, then

@)=y —ay" ' +by" . .. —py—

Let y be taken so great and positive that y">ay"“—by"’ &c.,and
suppose Q to be this value of y, and the resulting value of ¢(z) is
then obviously also a pasitive quantity as +B. :

Lastly, let zero be put for z, the result is the negative quantity —gq.

Therefore, first, between @ and +P there must exist a real root by
Prop. V.; and, secondly, another real root must lie between Q and
=~ ; the former is evidently positive, the latter negative.

11. Equations in which the last terin is very small, compared with
the coefficients of the other terms, have always real roots, which are
also very small, as will be seen by the following

Prorosition VIII.
Let an equation, @ (£)=0 be divided by the coefficient of , s0 as to
. be reduced to the form
: ~ k424 ax' 4 b2’ + et 4 &e.=0=¢ (z)

1 . .
4(M+1) where M is the greatest coeffi-

cient, then the equation has a real root less than

Suppose that « is less than

MDD (Ml+ 1),andofa sign
coutrary to the absolute term —«.

First, suppose —« to be actually negative, then =0 renders
¢ (x)=—« a negative quantity.

Again, a value « for £ would manifestly render ¢ () positive, if it
could make —«+4 2 —Maz®—Ma*—Mat, &c., ad inf. to be zero, sup-
posing this value of « to be less than unity.

Put therefore —Kkta— lh_i_ “;:0

Hence M+1) a*—(14«) a+x=0
N L L {( T4 \° K
~2(1+M> vV \2a+m) 1+M}

=3 (1+M) {14+ e—y{142c+e—4c 1+ M)}
This value of « is obviously real, sinee 4« (1+M) <1, and the part
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under theradical sign is greater than V¢ + 3, and therefore >, there-

fore p is less- than , and since a put for & makes ¢) () posi-

1
2(14+M)
tive, and zero makes it negative, there is a real root between 0 and o,

1
and therefore less than T+
In like manuner if the absolute term were « instead of —«, putting
x= —y, and changing all the signs in the resulting equation, we should

‘ 1
find y less than TATND’ and therefo're « would be between zero and
1

BERESH)
ProposiTioN IX.

12. If such a value imay be assigned to z as shall make a rational
function @ (2) to become a maximum or mlnlmum, “this value will be a
root of the derived equation ¢/'(x)==0.

Let « be such a value, and suppose the function to be then a mini-
mum, we must have

D) <P (at+h)and <P (a-h);
therefore @ (a+h)—¢ (a) and ¢ (a—h)—¢ () must have the ‘same

sign when & is snfficiently small.
Or by Proposition III

?'(a). h+¢"(¢) 1% + ).
and—g/(a). h+¢”(a) 1= ?(a)

Now by Proposition I_I., a value so small may be assigned to £ that
the first term in each series may become much greater than the sum of
all the others, consequently these series cannot have like signs unless
@'(x) =0, that is « must be a root of the derived equation ¢'(x) =0.

The sign of each series will then be the same as that of ¢//(a), this
must therefore be a positive quantity for the minimum ; and the same
proof shows that it would be negative for a maximum, unless it were
altogether to vanish, then the same reasoning would show that ¢ was
also a root of the 3rd derived equation, and the same criterion might
be applied to the 4th derived function @¥ («) to determine whether
¢ () was a maximum or minimum, and so on,

1.2.3 2 8 + e, must have like
+ &e. signs.

Example. Let ¢ (2)=a* 45z
then @ (x)=2x+5H
@' (2)=2

The SIgn of ¢/ () is positive, and therefore ¢(z) is suscephble of only
a minimum, and not of a maximum value ; this minimum occurs when

¢ (x)=0 ar z=— —Z—, and its amount is -?42.
Example IT, Let ¢ (2)=2"—27z
¢/ (2)=82"—27 ¢''(z)=6x.
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If ¢/ (2)=0 we obtain 2=+ 3, or —3, the former making ¢ (z) a
minimum, the latter a maximum. :

Put, for instance, —2, —8, —4 successively for 2, and register the
corresponding values of @ (z) ; they are 446, + 54, +44.

Thus we perceive z=—3 makes ¢ () a maximum relative to the
values preceding and succeeding it, but not an absolute maximum,
since z may be made so great and positive, that z* may be incomparably
>27x; for a similar reason £=3 would not produce an absolute
minimum.

In short, no rational function of odd dimensions is susceptible of an
absolute maximum or minimum, as appears by the demonstration of
Proposition VI. :

13. But every function of even dimensions is susceptible of an abso-
lute minimum, as appears by the following

ProrosiTioNn X,

“ Let 4 az* '+ ba*"*4 &c. =¢ (z) be a rational function of even
dimensions ; and M the greatest coefficient abstracting from its sign.

No real value can be assigned to x which shall render ¢ (z) less
than the least of the two quantities —M=n and —M {(n—1)M}*},
that negative quantity which is most remote from zero being considered
least. :

For n heing even, whether to x we assign a positive or negative
value, we have @ (z)>a"—M {2*'+2*"+....a+2+1}. Now if
we assign to z first a value less than unity, then evidently

l4z42'+....2"'<n
therefore ¢ (x)>x"~—Mn
and z* being positive, it follows that ¢ ()> —Mn, when for  we put
any quantity between 41 and —1, inclusive.

Again, if 2>1, then n2*'> 2" 42" ot at+ 41
therefore ? (x)>a*—nM a2,

Now the minimum value of 2*—n M 2*! is found by putting its
derived function nz*~* {s—(n—1)M }=0, which can only be satisfied
by =0 or x=(n—1)M, the latter giving the minimum, viz.,
Y (2—naM)=—Maz""'=—M {(n—1)M}*; that this is the mini-
mum we are assured by consulting the sign of the second derived
function.

Hence ¢ (2)>—M {(n—1)M}*! for all values of x from 1 to
and from —1 to — .

Thus it is easy to observe the nature of the continuity of the values
acquired by functions of even dimensions. When z is very great and
positive, ¢ (z) is great and positive; as x diminishes, ¢ (z) also
diminishes towards a minimum, to which it afterwards arrives. If this
be not an absolute minimum, and we continue to diminish, z, ¢ (z)
then increases towards a relative maximum, after which it must again
diminish, and so on, until it arrives at an absolute minimum, after
which, if we continue to diminish z, so as to make it approach — o,
@ (x) increases towards + @ beyond any assignable limit.

Let us suppose 7 to be the absolute minimum of ¢ (z), and ¢’ be
any quantity less than 4, the equation ¢ (x)=q' is not verifiable by
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any real  value of z from — o to +4 ®, in other words, the equatio
@ (z)—«'=0 has no real root. .
Example. Let ¢ ()=2"4az
Then ¢' (2)=2z4a ¢"'(z)=2, we have therefore an absolute

(because the only) minimum, when r= ;--";—; therefore 4 =— %.:

: ]
hence if 2*+ax=17’, where o' is less than — %,the equationwill have

no real root; the term less, when the sign is retained, indicates that
quantity which, subtracted from the other, would give a positive re-
mainder.

? ProrosiTioNn XI.

Let ¢ () be a rational function of x, and ¢/(z) its derived function,
and 7y a quantity introduced.

Divide ¢ (z)—v by ¢'(x) in the manner of finding the greatest com-
mon measure; the remainder, which will be of lower dimensions than
¢/(z), being the next divisor, and ¢/(x) divided.

Continue this process until x disappears in the final remainder, which
is a function of 4, as F (¢).

Then the real roots of the equation F (y)=0 will be the general
maxima and minima values of ¢ (z), and when there is an absolute
minimum it is the least root of this equation, the term less having
reference to the sign.

For the value of 4 rendering the remainder equal to zero, it follows
that ¢ (x)—y, and ¢/(z) have a common measure, such as —a, which,
if the corresponding quotients were P and Q, would give

¥(@) =(@—a)Q
and putting « for 2 in the identities,
we have ¢ (a)—y=0

(@ =0
the latter equation showing that ¢ («) is a minimum or maximum, and
the former that « is the value of this minimum or maximum. Conse-
quently the absolute minimum, if such existed, would be the least value
of 4.

’I‘he process described in this Proposition is to be followed exactly
similarly to that of finding the greatest common measure of algebraical
quantities, namely, by introducing factors into the dividends to avoid
fractional forms.

Example I.  Let ¢ (z)=2a* +az

¢'(x)=22+a
2(@(2)—v)=2s"+2ar—2y

Actual division 2x4 ¢ )2284-2ax—27(x

' 24 ax
az—2y A
Multiplied by 2. 2ar—4y(a o
azr4-a*
—a'—4y
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The final remainder is therefore (witli sign changed), 4y + %, and
a?

if we put this = 0, we find the absolute minimum y = — —,

4
Example 2. () =2® + ax
¢ (2) = 32 +a
32* + a)32® + 3a23y(x
82 + ax

2ax — 8y)6dr* + 2a°(8x
6ar® — Qyx
9yzx + 2a°
18ayx + 4a*(9y
18ayz — 27*
279 + 4a°
Thus the relative max. and min. are the roots of the equation

@+

In like ménner we can find how many are mazima and how imany

—~ minima, for ¢"z being positive for a maximum, and negative for a mini-

mum, we haveonly to proceed in the same manner for finding the greatest

common measure of ¢’(2) and ¢/'(z) — 3, until we arrive at a remain-

der independent of 2, which therefore is a function of 3, which, if we

equate with zero, the number of positive values of 3 is the same as the

number of minima, and that of the negative is the number of maxima
values of the given function ¢ (z).

Example. $(2) =a®-8asz + b
¢(2) =8(s* —a); $'(2) =62
Hence, rejecting the multipliers 3 and 6, We proceed as in finding
the greatest common measure of 2* — a* and £ — 3; -

@=P P —at(z+
2 — po

Bz—at
Bz—p
Bt = a* .
Now the equation 3* — a% = 0 has two real. roots, one positive, the

other negative ; hence, ¢(r) admits one minimum and one maximum,
and no more, /

Prorosition XII.

16. If by assigning a series of real values to z, any function of » as
¢(2) attains a minimumn value when z = @, it can be rendered yet less
by making z=a+ h+ k=1 when & and & are very small ; the sign
of hbeing + or —, according as the first derived function of $(2),
which does not vanish when = has the same sign with the suc-
ceeding derived function, or a contrary sign.

For if we separate the imaginaryfrom the real part of ¢(z + A+ AV'=1)
the expansion of this function is .
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ks . ‘kt
- —_— iv -
P(r+k) W(«?+h)-l.2+¢ (&"l'h)-m &ec.

o ke . B
(/ "
+w l{cb(a:-l-h) PG+ g5+ ¢ D) g - el
Now suppose x == a, then ¢'(z), or ¢'(a) = 0, which is the con-
dition necessary that ¢ (z) should be either 2 maximum or a minimum.
_ And it is peculiar to a minimum that ¢”(z) or ¢” («) may be posi-
tive unless it also vanishes, which we need not at present suppose to
be the case (for the subsequent reasoning would then similarly apply
to the next derived functions, since it would be then necessary that
¢ (a) = 0 and ¢" (a) be positive; and if @" (a) also vanished, we
should extend the same reasoning relative to the next two derived
functions, and so on).

Now $@+RN=¢@ +¥@.h+d"(). 15+

h’

and FE+R=F() + 6@ b+ ") 15

Making . = & in these expansions we find

b e+ h) =) +¢"(a)-i%+&c.

+ &c.

o+ B) =40 b+ 8"(a). = + &
Therefore,

ola+h+rv=1 )=¢(a)+¢”(¢).l—’f’§ + &e.

& & '
=" (@th). g5+ ¢ (ath)  gogy — &

A
1.2
3 K
— " (a+ k). ?k—-s + ¢" (a4 R). 33.4.5 &c.}

Now in order that this fanction may be real, it is necessary that the
quantity between the brackets may be zero.
Next suppose that k is taken very small, then

]
¢ (a)-h + ¢"(a) - T'h.? &e.

VT {¢" @)k + 9" (o). + &c.

. "

may be made as sinall as we please, and putting it =« .2-——-(2"“—:1) we'

| Flath) K

¢"(a+k) " 4.5
Hence, by Prop. VIIL., & will have a real positive root to satisfy

this equation, provided x be essentially positive ; that is, provided:

have =kt k- + &e.=0.
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1]
9" (a) .k + ¢" (a)élfi&c. has the same sign as ¢/ (a+4), or finally,

¢" (a)+ ¢”’(;) .2—'&&&.

" (@) +.¢"(a) .2 &e.
supposed very small, the sign of this fractien is the same as that of

that % has the same sign as ;3 and since h is

L4
:T,,% , therefore & must be positive or negative, according as ¢"(«)
and ¢”(a) have their signs like or unlike ; and this we have supposed
to be the case in the Proposition.
But 4* having a real positive value, it follows that k£ has also a real
positive and another negative value ; therefore ¢ (a 4 4 +kJ:_1) will
be a real quantity. :

v +k k‘
Now k=1k— %—Th).m&c. = Ak* suppose.
hl
" ¢” (“).h+ ¢”’ (a) - 2—.& B't
And -2—'—3'= ¢'"(a+h) =T.o..

whence we see that A is of the same order as %, the limit to which the
fraction L approaches as % diminishes, bein B or Q‘PZI(Q (puttin

7 g A 4"(a)’ P g
k = 0 for the extreme case.)

Substitute for A its value % .k* inthe expansion of ¢(a+h+ wW-1),

and observing that the imaginary part has been made to vanish, it
becomes

& h¢ U
| ¢ (a) _¢Il(a+h), 1—.2 + ¢|v(¢+h).m, - &ec.+ 2_%.’ ¢” (a) Lkt +
&c. ' ) .
Now ‘l’” (= + h)=¢l/(a)+ ¢Ill(a) . %—‘ ¥+ &e.

Hence ¢ (a + b +/=1) = ¢ (a)—¢" (a).iﬂg +D.¥+ >E.k‘+ &e.

¢|'(a)‘ A’ )
T.3.3.4 e ¥ @

E=

Now ¢"/(«) being essentially positive, it follows that ¢(a+ A+ W -1)
< ¢ (a); and from what has been observed ahove, it is clear that we
should find the same result if ¢/ («) = 0 and. ¢" (a) were positive,
which circumstance is then essential to a minimum.

Corollary. By a similar process it may be shown, that when a series
of values are put for z in the function ¢ (z) until it reaches a maximum,
it may be made to increase above this maximum by giving the corre-
sponding value of z-an imaginary increment similarly determined.

- putling, for abridgment, D = — 2-%-.¢"(¢) +

il

-
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Example. Required to diminish the function
-2 +2—-2
below its minimum value.
Here ¢ (2) =2*=2r2~2

¢'(r) =32*—4r+1
¢"(x)=6z — 4.

Put | ap’(z).éo or.z'—%.w:-

Wl ~

whence x=1 orx=

in the former case ¢” (z) = 2, and in the latter ¢" (£) = — 2; there-
fore the former only gives the minimum value of ¢ (z), which is 1—2
+1-2= =2, '

To diminish the function.below this we put 2=1+hA+AivV =1,

Hence ¢ (2) = — 2+ (A+iV 1)t + (b +hV —1)°

= =24 K+ 1* -k - 3hk*
W1 (@4 3—
To make the imaginary part vanish we must have
k= 2h 4 8%,
which will be small and positive if A be small and positive.
Then ¢ (2) becomes — 24-A4*4-A* — (2h+3k%) (1+34)
= —2—2h—8h*—8A,
'P” (z.)
¢lll(w)
imaginary increment h+k~/ —1 given to that value (1) of # which
corresponds to the minimum, succeeds in reducing the function below
that minimum.

16. In the preceding proposition, as well as Proposition X., we have
supposed that cases may occur in which not only the first derived func-
tion vanishes for a particular value of z, but also some of the succeeding
ones for the same value : the following proposition will show under what

circumstance any function of # and m —1 of its successive derived func-
tions will all vanish for the same assigned value of .

and since A is positive (the same sign as » it follows that this

Prorosition XIII.

When « is put for 2 in a function f(r), and in its m—1 successive
derived funttions, should they all vanish it is necessary that (z —a)™
may be a factor of f(z).

For if we put a4 (z—a) for z,
&+ 2a(z—a)+ (z—a)? for 2%,
W +8a%(z — )+ 3™z — )+ a® for 2, &e.
it is clear that f(x) will be reduced to the form
At Az =a) + As(@=a)"+ i Api(2- )"+ Aw(2 — )" + &e. = f(2)
. c

-
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Hence A4 2A,(z— 2)4-8A5(x+a)' + ... i
wa(m=1DA,_(z2=a)" 4 mA (v — )" &e.=f(2).

Now when z is put equal to «, we suppose f{x) and f'(z) both to
vanish, which manifestly requires that A;=0 and A,=0.

Therefore Sf(@)=A; (r—a)*+ Ay(r—a)*+ &c.
that is, f(z) in this case has a factor of the form (z—a)*

If the next derived function, viz. .

2A,+6A(r—a)+ 12A(z—a)* + &e.
also vanish when 2=«, we must have A,=0.

Therefore, f(x)=As(z—a)*+A(z—a)*+ &c. must have (z—aq)*
as a factor; and by continuing this process, it follows in general that
when a function with its m—1 successive derived functions vanish for
&=uw, then (2—a)™ must necessarily be a factor of f(z). )

Note. Tt is usual to say in this case that the equation f{z)=0 has m
equal roots, by which it is meant, that f(2) has m equal factors of the
first degree, namely (2—«) (v—a) (z—a).....m times. '

Example. Let f{z)=a*—5s"48z—4, which vanishes when 2=2,
nence J'() =82*—10x+8.., also vanishes for =2,
f"(®) =6zx—-10 which does not then vanish.

In this, therefore, f(z) hasa factor (r—2)* or 2*—4x-+4, which can
be verified by actual division a*—4z4-4)2°~52*48z —4(z~—1
P-4 t+42
- *+41-4
- *+4r—4
0

17. By Proposition XII. we have seen that where the series of
values belonging to a function of z of any dimensions ceases to diminish
when real quantities are substituted for #, a continuation of that series
in the same direction, that is, diminishing towards negative infinity, is
produced by the substitution of imaginary values ; and the next theo~
rem shows that this series thus prolonged may be continued on unin-
terruptedly, without ever turning back.

Prorosition XIV.

An uninterruptedly decreasing series of values may be produced for
any rational function of @ of even dimensions, by the substitution of
imaginary quantities y +2¥ 21 in the place of x.

Suppose ¢ (z) to be the propased functiop, the following notation is
adopted for abridgment : '

2! 2
- —ch! o — iv R -— .
Let P=¢@) —¢"®)y5+ 80 555 e
5

Q=¢@).2-¢"W)- 753+ 15575 — &

P=¢/) —4"@)- 15+ ¢ @) ogg — &

! i s
=4 @) =D 5 T [T~ &




THE THEORY OF EQUATIONS. 19

the accented quantities in the expansions denoting, as in Proposition IIT.,
the derived functions.

" Put y+z~/:T for x, then ¢(z) becomes
d(y+zv¥—1) =P4+QV¥=1;

and that this value may be real we must have Q=0, and as Q is of
odd dimensions in y, we can find a reul value of y for any value =;
thus y becomes a function of z, and therefore also P is a function of z.

In giving particular values to z, and obtaining the corresponding
values of y, which salisfy the equation Q=0, it is possible they may
also make Q'=0, and then Q would be a minimum for this particular
value of z; in that case, by the preceding proposition Q must be of
the form (y—a)® ¥(y), and ¥ (y) being of odd dimensions we can get
a different value 8 for y, which, making ¥(y) zero, will also make Q
vanish without making Q' disappear ; the case of Q being a minimum
at zero and therefore Q' vanishing, we may thus dismigs altogether.

In the equation Q=0 suppose z to become z+ A, and g to become
y+k, Q becomes (as will be readily found by actual substitution)

Q+(Ph+Q'k)+ &c., which must still equal zero;
and taking % and & very small, we have
!
- %—; o+ AR+ BR® &c.
the first term of which is finite, since Q' does not vanish.

In like manner we find that the real part P which expresses the
value of ¢(x) becomes

P+ (Pk—Qh)+ & =P-

—
==

Py Qe
Q

and when % is small and of the same sign as @/, the decrement of P
Po4+Q" .

9 .k, the numerator being the sum of two squares, cannot
vanish unless both =0 Q'=0; but the latter case we have seen how
to avoid.

Thus the real functions of imaginary quantities do not admit of
maxima or minima,

It is possible that @ may vanish without Q teing a minimum;
namely, if Q" also ==0 in this case, the diminution of P would go on
without taking for y a different root from @, which we have done when
Q was a minimum, for £ would then be of the form k=ph®4 gh*, &c.,
and the new value for ¢(z) would be of the form P—p,h*+q4*, &e.;
but whenever Q for a certain value of z is a maximum or minimum, the
diminution of P can only be effected by passing from « to a different
real root, which, as we have seen, will always exist in such a case.

If we arrange Q and Q' according to the powers of y, and proceed
as in finding their greatest common measure, we ultimately must come
to a remainder containing only 2 as F(z), then all the values of z for
which Q becomes a maximum or minimum are real roots of the equa-
tion F(z)=0: for the two equations Q=0 Q'=0 subsisting simul-
taneously, the equation F(2)=0 must also subsist, since it is merely
the result of eliminating y between the former two.

+h+ AR+ BA, &c

is

c?2
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Hence the following mode of forming an uninterruptedly decreasing
series of values for ¢(z) below the absolute minimum to which it
arrives when real quantities are substituted for .

Put for z y+z~‘ ~1, and taking z very small, we can by Propo-
sition XII. diminish ¢(z) below its absolute minimum, and as little
below it as we please, so that the new chain of real values arising is a
continuation below those resulting from the substitution of real quan-
tities for . Continue, according to the present Proposition, to dimi-
nish ¢(x) by changing z through insensible degrees, the changes of
¥ which correspond to small changes of z so as to preserve Q=0,
will also be very small, until z arrives at a value which renders Q a
minimum, and which is therefore a root of the equation F(2)=0; in
this case, for a very small change of 2, y has a finite or sensible change,
and the real value of ¢(z) or P has only a very small change, which
we may take in the direction of its’ continued diminution, after which
the corresponding changes of ¥ and z will be agzin of the same order
of magnitude, antil z arrives at another value making Q a minimum,
and therefore F(z) =0, when the process is continued as before.

Tt is moreover to be observed, that % =0, from which the values

of y are derived, would not contain an absolute term unless ¢(x) con-
tained some pdd power of z; but this may always be effected by the
system of substitutions given in Proposition XII.. )

.Example, P(2)=a*—4z2+6,
when this function is at its minimum, \
¢ (2)=4(2*~1) =0, or z=1;

thus ¢(z) = +38 is the absolute minimum by the substitution of real ‘
quantities for a.

Put z=y+z/—1, and ¢(r)=P+QV—1
then =y -6y"2*+2'—4y+6 Q=2 {4y’—dyz*—4}=0. |

Hence, Q' =4z{3y*'—2*}.

Now by taking z very small, we can get a real value fory, as in

.Proposition XII., by which P will be made less than the minimum
value of ¢(z).

Continue to increase z from zero upwards ; Q’, being supposed not to
vanish, will have the same sign, and therefore P will continue to dimi-
nish: thus, let z=1, then the two values of y are very nearly equal,
and to find when they become exactly equal, we proceed as for the
greatest common measure :

3y* - 2)3y? — 3y2*— 3(y
3y*— y2*
2yz*+3)6y*2*—224(3y
6y"="+9y
9y 42z
18y2*+42°(9
18y2"+ 27
- 42— 27=F(2)=0
or = ;M8§—=l.3 &e. =ea.
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then Q will be divisible by (y—«)* and the quotient equated to zero .
will give a different value for y, with which the diminution of P is to
be continued.

After passing this value of z, the case of Q' as minimum will not
again occur, and therefore P will continue to diminish rapidly ; thus,
let =10, then Q=40{y*—100y—4} or y=10 very nearly;
therefore, = —4(10)*-4046= —4036 nearly;
and by continuing to increase z, the value of P continues to diminish
towards negative infinity. .

The reader may revert to this subject of tracing the real functions
of imaginary quantities when in possession of methods for the nume-
rical solution of equations.

18. Having thus discussed the mode of tracing functions by substi-
tuting for z quantities real and imaginary, we distinctly see that ¢ (z)
is susceptible of any real value y ; and since for uniformity we take this
quantity to be zero, it follows in other words, that when ¢(z) is a
rational and integer function of x, the equation ¢(z)=0 has always a

root either real or of the form a4 ,B~/ —1 called imaginary ; also if
¢+ MW1)=P 4+ Q/=1 =0, then it is easy to see that
¢(a—/3\/ 1) = P-'Q~/_—_l , and we have seen that Q is always zero,
therefore the first equation gives P=0, which renders ¢( —,BJ ~1)=0,
and therefore imaginary roots are always couples of the fi a:tM -1.

ProrosiTioN XV,

An algebraical equation of n dimensions has n roots, and no ‘more ;
it may always be decomposed into the product of n simple factors, and
into the product of some simple and some quadratic factors which shall
be aways real ; some of its roots may be equal, and thus it may not
have n different roots.

Let ¢p(z)=0 be the equation, and let z=a, be a root : divide ¢ (x)
by 7— oy, continuing the division until the remainder R, is free from «,
and therefore only a function of «: let ¢,(2) be the quotient, and sup-
pose x=u, a root of the equation, ¢,(z)=0: divide ¢,(z) by T—ay
until we arrive at a remainder R, free from 7, let ¢;(x) be the quotient,
which is of n—2 dimensions, ‘'and continue the process until we come
to a function of the first degree, which may be represented by ¢,_,(z)
or x—a, Hence

d@)=(z=m) $(x)+R,

(1) =(2—a) $s(2) + R,

Hu(D)=(z—0as) Ps(2)+ R,
¢L—X(I)=(‘t— “-) + Ru ~‘

Put =g, in the first identity, 2=a, in the second, &c.; and since
these quantities are the roots of ¢(2)=0, ¢ (z)=0, &c., they make
these functions vanish, therefore R,=0, R,=0, R;=0.. .-.R,=0 3
multiply together the left and right members of these equations thus

reduced, and divide the product by ¢;(z).$s(2).¢s(7)+ . ¢ s $as(2), and
we get
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#()=(1=) (T=a) (T—0). .o oo (T ~a),

which quantity vanishes when £=w, , o « ..o, ; and as no other quan-
tity will make any simple factor vanish, and therefore would not make
the product ¢(zr) vanish, it follows that the equation ¢(x)=0 has no
more than these n roots, some of which however may be equal, so that
¢(2)=0 may have less than n different roots; but it can never have
less than n simple factors.

Thus, (z—a)*=0 is only true when z=a, it has no other root;
it has not therefore 8 different roots, but it is the product of three simple
factors (r—a)(x—a)(z—a). (Vide Prop. XIII.) o

Again, if «, should be imaginary, suppose it of the form ﬁ‘+'y|~/ -1,
then there must be another root «, as we have seen, of the form

Pr—yW=1, hence
(r—ap) (2= 0w) ={(.z‘—[3,)-—y|«/-:f}. {(‘t—ﬁl)'l"}'lf—_l}
=(z—PF)+ 7,
which quadratic quantity being the sum of two squares, is essentially

positive : by thus coupling the factors containing corresponding ima-
ginary roots, it is obvious that ¢(z) will be reduced to the sum

@) =(@—a)(@—a)(2—05) ... (2= ) {(z—B)+7'}
{(@=La)*+vs} «0es
and therefore ¢(r) is always the product of real factors, simple or quad-
ratic; and the species of imaginary quantity which inay enter the
solution of a quadratic is the only one which can enter the solution of
an equation of any higher order. -

19. The roots of an equation ¢ (x)=0 being either real or imagi-
nary, our next step is to consider some method for discovering the
number of real roots and the number of imaginary ; for this purpose we
give

ProposiTioN X VI,
Sturm’s Theorem.

Let ¢ (z) be a rational and integer function of z, of which ¢’ (2) is
the derived ; divide ¢ (2) by ¢'(), in the manner of finding the greatest
common measure, only with the peculiarity of always changing the sign
of the remainder before making it a divisor, and continue this division
until it terminates, either by giving a final remainder independent of r,
or by a divisor which exactly measures the.preceding.

. These successive divisors after ¢’(z) may be represented by ¢, (z),
¢e(z), D5 (z). Let A, B be any two numbers, of which A is the least
(regard being had to it® sign).

Substitute A for x in the series of functions following

@ (2), ¢'(2), ¢ (2), Pa (). ...

and register in the same order the signs of the results.

Count the number of sequences of two terms having contrary signs
in this series of results ; suppose @ that number, substitute B now for
x in the same series of functions, counting as before the number of
variations of sigus in consequent terms, suppose it =b.

|
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There must exist @—b real roots of the equation ¢ (z)=0, which
are greater than A and less than B, and there can exist no other real
roots between these limits.

The process employed furnishes us with the following system of
equations :

¢ (D)=Q\.¢' ()= (2)

@' (2)=Qy.%,(x)—@, (2)

¢ (2)=Q, ¢y (x)—dhs ()

b (x)=Q:& tn(2) =9, (2)
c.

First, we shall suppose ¢ (z2)=0 not to have equal roots, or, which
is the same, that the function ¢ () has no equal simple factors,
Let « be a real root of the above equation, and suppose & — A, a-+A,
put for z in the series of functions
$@) ¢ @ B2 () &e.
They become for x—F

b (2)—¢' (o). h+9" (m)-—l’t—’2 &c.
¥ (=" ()B4 () s b

1.
& ()—h w_(a) b+ (a) .7 e
&e., &c.,

in each of which we may suppose & so small that the sign of the whole

will depend on that of its first term.
Their signs arranged in order are therefore the same as those of

—@(a), +¢'(@), b1 (a), Pala) &c. Since ¢ (a)=0

in like manner if a+#4 be put for 2, the signs of the results are the

same as those of
d’l (“)’ ¢/ (0‘)’ ¢l (“)a d’! (“) &e.

Therefore, by varying & from a quantity a little below a real root to
another above it, one variation of sign (to the left) is lost, “that is
exchanged for a permanence.

We have here supposed that none of the quantities ¢, (), ¢a(2). &e.
vanishes, but if one of them did, this would not alter the number of
variations of signs.

Suppose ¢, (a) to vanish, then since
. ¢n-l (“)=Qn+l ¢n (a) —¢n+l (a)
we have ¢n_, (£)=—¢(asn (), neither of which vanish, for if two such
consecutive functions vanished, then tracing backwards by the equation
Prs ()=Qn Py () = Pu(a), We should have successively ¢,_s ()=0,
@us (a)=0), &c., up to ¢/ (4)=0, which is contrary to the hypothesis
we have made. Hence ¢o_; (&), Puyi (@) form a variation.

Put now x—h for a:when his small, ¢,_, (2), Pata () will have the
same signs as before, which were contrary, and, therefore, whatever sign
¢. () may have, the three fanctions ¢,_, (x—£), $u (a —h), a1 (a—1)
must either form first, a permanence, and then a variation, or first, a
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variation, and then a permanence, in either case but one variation : thus
no variation is lost by the vanishing of ¢, (a).

If therefore r be increased by insensible degrees from 2=A to 2=B,
every time its value becomes that of a real root of the equation ¢ (z)=0,
the series of signs of ¢ (z) @' (2) ¢\ (x) ¢s(a).,..loses a variation
and only then ; hence there are as many roots between A and B as
there are more variations for A than for B.

Suppose now there exist m equal roots for the equation ¢ (z)=0,
then ¢ () has m equal simple factors, or ¢ (z)=(z—a)". F(z), the
latter function as well as the former being rational and integer, put
a+hforx

hence ‘¢ (24 h)=(x—a+k)". F (z+k)

¢ (D) + P (2) .k, &c.
={@—a)"+m (z—a)"-' b, &c.}. {F (&) +F'(+) . h+&e.}

and equating the coefficients of & at both sides we have

¢ (@)=(@x=-a)"{(z-a). F (2)4+m F (2)}
that is, il an equation have m equal roots its derived will have m~1
of them, as we have seen before in Prop. XIIF. Now, since in this
case ¢’ (z) and ¢ (z) have a common measure (z—a)™", if we divide
¢ (x) by it, we reduce it to the case of unequal roots, and the same
reasoning equally applies if other sets of roots are equal.

The same method as before applies in the case of equal roots, a, for
in the expansions of ¢ (a—h), ¢'(a— k), the first terms which do not
vanish have necessarily contrary signs, as is obvious by inspection of
their developments, and they have similar signs when a+A is put for
x, the series of quantities ¢ (2), ¢/(%), ¢1(x), Pg (*);.. .+ .Pa_m (z), are
n—m+2 in number, and the number of différent roots is n—m+1,
which is the greatest number of variations of signs in this series ; there-
fore the number of different roots between A and B, is the excess of
the number of variations of sighs when the less quantity A is substi-
tuted for x above that arising when B is substituted.

It is easily seen that the same reasoning would apply if there ex-

- isted different sets of equal roots.

Corollary. From hence follows an easy method of finding the
whole number of real and of imaginary roots in an equation, when the
number of the quantities ¢ (z), ¢’ (z), ¢, (z), &c. is n+1, which it
will generally be, n being the dimensions of ¢(z).

When + (), or an exceedingly great positive number, is put for x
in this series of quantities, the signs of the results will necessarily be
the same as those of the first terms by Prop. I. Let m be the number
of variations of signs in consecutive terms of this series.

When — () is put for z, the signs of those functions which are of

- even dimensions will he the same as before, but those of odd dimen-
sions will be the contrary.

There will, in the latter substitution, be therefore as many variations
of consequent terms as there were permanences in the former, namely,
n—m.

And since all the real roots are comprised between these limits, their
number by this Proposition must be (12 —m) - m, or n=2m."

Hence, the number of impossible roots is 2m; there exist therefore

or
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as many pairs of impossible roots as there are variations in the signs of
the first terms of the functious ¢ (z), ¢’ (z), ¢,(x), Ps(x), &c.

Example. _ Let ¢ (r)=a°—622+82+440
¢ ()=81"—122+8
Multiply ¢ (z) by 3 to avoid fractions, and in like manner the sub-
sequent dividends or divisors may be multiplied by any positive number.

32*=122+8) 32°—18 2%+ 24 24120 (z—2
8:°—12 2°+ 8z

— 6241624120
— 6xy+24z2— 16
- 824136
divide by —8, which will change the sign, aud we have
(1) =2—17
z=17) 82*~122+8 (3243
8r*—b5lx .

39248
89 x—663

671

$a(2) = —671
The series of signs of the first terms of @ (z), ¢'(x), ¢ (), ¢o(x),
is in this case 4+ 4 4 —; there being one variation, the equation
must have one pair of impossible roots, and therefore only onc real root.
Example 2. b (2) = 2*-3px+2¢q
¢’ (x) =32*—3p
a*—p) a*—38pr+2q (x
X% —px
—2px +2q
$1 () = pr—q

x q
z— % - <_+._
re—g) @-p (o425

¢s (1) = p°—q* for p* is necessarily positive.

The series of signs of the first terms are the same as those of
L1pp-¢

If p be negative there is one variation, and therefore only one real
root ; if p be positive and p* < ¢* the same thing happens ; if p* > ¢*
there are no impossible roots.

20. Another theorem for finding the number of real roots of a given
equation, which lie between two assigned numbers, was given by
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Fourier ; its application is very easy, but it has the great fault of only
indicating a number which the sought number of real roots does not
exceed. The discovery of Sturm renders almost useless the tedious
process by which Fourier sought to perfect his original proposition,
which is as follows : — ‘

Prorosition XVII.
Fourier’s Theorem.

Let two quantities, a, b, of which a is the least, be substituted for x
in the functions ¢ (z), ¢’ (), ¢ (2), ¢" (z), &c., each of which is the
derived of the preceding, and let the signs of the results be noted ; there
cannot be more real roots of the equation ¢ (r)=0 lying between @ and
b than the excess of the number of alternations of signs which result
from the substitution of @, ever the number resulting from the substi-
tution of b,

Suppose « to be a root of the given equation, and A a very small
quantity, and let @—4 be put for z in the above series of functions, the
results are

—¢' (a).h+&e., ¢ (a)+&e., ¢ (a) +&e., ¢"(a)+ &e.

Now let —h be changed to +4A, which is the same as putting a+4
for x, the result will be

+¢/(a) h+&ec., ¢’ (a) + &c.y ¢" () + &e.y ¢"(a) +&e.

The two first terms in the former series give an alternation, and in
the latter a permanence of signs; and supposing none of the derived
functions to vanish when 2==a, we see that an alternation of signs is
lost by passing from a quantity a little below a root to one a little above.

But this series may also be affected by the vanishing of any of the
derived functions (being continuous, they cannot change signs without
passing through zero). Suppose 8 makes ¢/'™ () vanish when sub-
stituted for x, and taking k very small, this part of the series of functions,
when 3—4% and 3+ 4 are respectively put for x, will be

d’” (m=1) (ﬁ) - &c‘, _¢m (m41) (ﬂ) . h+ &c" ¢m (m+1) (ﬁ) —&e.
¢II (1) (B)_'_ &c', +¢/¢I (m+1) (ﬁ) .h+&¢-, ¢III (m41) (ﬂ)+&c'

Now if ¢/ ™=9(3), ¢"™+D(B) have contrary signs, the first series
will give an alternation followed by a permanence, the second a perma-
. nence followed by an alternation, the total number of alternations then
is unaltered.

But if ¢/ ™=V (8), ¢ ™+V(B) have like signs, the first series gives
two alternations, the second twe permanences ; in this case two alter-
nations have disappeared.

And if several consecutive derived functions vanish for any value of
x, then it may be shown in the same manner that an even number of
alternations disappear. .

By increasing therefore insensibly the value of z from a to b, an
alternation is lost as often as we meet with a root of the given equation
in that interval, beside which an even number of alternations may dis-
appear when we meet with a root of any of the derived equutions,

. The following example is taken from Fourier:
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Given @ (2)=a%—31*—242°4951*—462—101=¢,
¢ (x)=b1*—122°—722*+ 1902 — 46,
@' (2)=202"— 362~ 144z + 190,
@" (2)=602' — T2z — 144,

P (x)=1202—172,

@' (z)=120.
2=—10 Number of alternations of signs =5
r=-1 . . . . . =4
Tr= 0 . . . . . =3
r= 1 . . . . . =3

= 10 . . . . =0

* Hence all the roots are between —10 and 410 ; there is one real root
between —10 and =1, another between —1 and 0; no root exists
between 0 and 1, and one at least must exist between 1 and 10; these
substitutions leave us in uncertainty with respect to the other two roots,
whether they also lie between 1 and 10, or are imaginary; Sturm’s
theorem is free from this capital defect. .

21. The rule given by the early analysts, Descartes, Harriot, &c.,
relative to the number of positive and negative roots, and which is
proved in the Theory of Algebraical Expressions®, p. 14, namely, that
the number of positive roots cannot exceed the number of alternations,
nor can the number of negative roots exceed the number of permanences
of the signs of the consecutive terms of the equation it contained in the
preceding theorem of Fourier.

For when 0 is put for , the signs of ¢ (), ¢’ (2), ¢" (»), &e. are
evidently the same as those of the terms of the equation from right to
left.

And when z is supposed exceedingly great and positive, the signs of
the same functions are then all positive.

Therefore there cannot be more positive roots than there are alterna-
tions of signs, (Prop. XVI.)

Similarly, when « is su?posed very great and negative, the series of
signs of ¢ (2), ¢’ (2), ¢"(x), &c., form only alternations, and their
number is evidently the sum of the number of alternations and perma-
nences in the terms of ¢ (z), and therefore exceeds the. number of
alternations for =0 by the number of permanences in the terms of the
equation ; hence the number of negative roots cannot exceed this.

The same theorem comprehends another rule, given by Newton, for
finding a superior limit to the roots of an equation, that is, a number
greater than the greatest real root ; it is this: put 2=y--e, and assign to
e, by trial, a value so great as to render positive all the {ferms of the
transformed equation arranged according to the powers of y; that
value is the superior limit, ' S

For hy Prop. (3), the transformed equation deduced from ¢ (x)=0

will be , "
6 @+¢ @9+ T2 4 T oy oo

and since @ (e), ¢’ (¢), " (€), &c. are all positive for the assigned value
of e, no root of the equation ¢ (e)=0, or § (z)=0, can lie between this
value and positive infinity.

* Library of Useful Knowledge. .
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22. There are some remarkable relations existing between the roots of
an equation and those of the derived equation, which, though not always
useful for finding numbers between which the roots of the primitive
equation lie, have considerable use in the theory of equations.

ProrositioNn XVIII.

If the real roots of an equation ¢ ()=0 be substituted in the order
of magnitude, beginning with the greatest, in the derived function
@’ (z), they will produce alternately positive and negative results; or,
in the case of equal roots, they will make this function vanish.

Suppose a, b, ¢, &c. to be the real roots, decreasing in magunitude, of
the equation ¢ (r)=0; and suppose a+84/—1, a—p4/—1, to be a
pair of imaginary roots of the same, if any such exist.

From the real roots are formed real simple factors of ¢ (z), viz., v—a,
x=b, x—c, &c.

From the imaginary roots real quadratic factors are formed, such as
(z—a)*4 3% (Prop. 14.) These factors are essentially positive when
any real value is assigned to x; the sign of ¢ (z) is therefore the same
as that of the product of its real simple factors.

Now ¢ (2) is of the form (x—a).P, where P denotes the product of
the remaining simple and quadratic factors, its sign depending only on
the former,

Let ¢’ (2) be the function derived from ¢ (z), and P’ from P, we
easily find ¢/(2)=(r—a) . '+ P.

The simple factors of P, viz. —b, z—c, &c. are all positive when &
is substituted for 2, and by the last equation ¢' (x) is also positive.

Again, we may put ¢ (z) = (r—d) . Q, and therefore ¢’ (z)=
(z—5).Q'+Q; and of the factors of Q, viz. z—a, z—c, &c. one only is
negative when b is put for z, namely b —a ; the substitution of b renders
therefore ¢’ (2) negative.

In the same manner it will easily be perceived that the substitution of
¢ for ¢ would give to ¢’ () a positive value, and so on.

From this proposition we see that between two consecutive roots of
the primitive equation ¢ (#)=0, an odd number of roots (one at least)
of the derived equation must exist. .

Also, that the first derived equation has at least as many real roots as
the primitive, wanting one; and the mth successive derived function
has at least as many real roots as the primitive wanting m, all which
lie between the greatest and least of the primitive.

When there exist p equal roots in the given equation, it is of the form
(z—a)*.R; and therefore the derived is of the form (z—a)?-!.S, that
is, p—1 of such roots descend to the first derived, and similarly p—2 to
the second, and so on, and the same law holdsiif there are several systems
of equal roots.

Ifall the roots of an equation be real, all the roots of any of its de-
rived equations will also be real.

The converse theorems to those above given are not necessarily
true.

Example. ¢ (2)=x"(1—a)"
The equation @ (x)=0 has = roots each equal to zero, and other
rools each equal to unity.
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The nth derived equation is

_ n n+l n(n—1) (n+1) (n+2)
0—1——i-. 1 :.a.‘-[- T2 1.2 28—, &c.

This equation must have all its roots real, and between 0 and 1.

23. Tt is frequently convenient to make equations undergo trans-
formations, which, as they in general affect all the roots in the samc
manner, will produce, as coefficients to the terms of the transformed
equations, symmetrical functions of thése roots; an abridged but
expressive notation to indicate the symmetrical function which enters
the process, with a little attentive practice, has the desirable effect of
removing a mass of unnecessary labour, and of giving with distinctness,
at a glance, the mutual relations of such functions. Perhaps the simplest
mode of representing symmetrical functions is by prefixing the sign =
before one of the terms of the symmetrical function, which is taken as a
type of all the others, and from which they may be generated by merely
changing in all possible ways so as to produce different combinations,
the roots which enter that term, the prefixed Z denoting the sum of all
the similar but different terms thus generated, which sum is the sym-
metrical function to be expressed.

Ezamples for Practice.

Let a;, ay a, .. ..a,, be the n roots of an equation of n dimensions.

Let S, Sy, Ss, +« .. S,, be respectively the sums of their first, second,
third, &c. powers.

Let a, @y, ay ¢ . « Gy, be the sums respectively of the roots them-
selves, of their combinations, two and two, three and three, &c.

First example. S, =2a,. a,=Za,.

therefore S,—a,=0.
Second example S;=3a,*
a,= zal Sl= za,
but a,.S, is not the same as 2.}, it includes besides terms of the form
a,as, and each term not altering by permutation must enter twice ;
hence a,S,=a,'4+23a,q,;
and since 2a,=2Za,a,, we have
S,—G‘SI + 2(1,: 0.
Third example. Se=2a,’.
—a,S;= — 2a,.Za,'= — 2a,}— Za,’a,.
a8, =Za,00. 2a,= Za,*a* 4 8,505,
because the change of roots in the latter term produces necessarily three
like terms
and since —-3a,= —8Fa,aza,,
we have by addition S;—a,S;+ S, —3a,=0.
Fourth example ; m not greater than n.
S,=2a,™
~@, Sy ==2a,. 2a,"'=—3a,"— Zaa"’
a3 S s =203 2" *=3a," eyt Zajaza""", .
— 05 Spuos = — 20405 20, 0= ~ Za,"*agay— Za,aza5a" "%
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in each of which the last term of the right-hand member is the same,
with a contrary sign to the symmetrical function which is the first term
in the same member of the next identity ; but as the index diminishes
in these combinations to m—1, m—2, &c., successively, it will be
- reduced. to unity, in the identity of which the left member is*a,,_,S,, it
will not then be altered by putting successively all_the roots for that
with the index so diminished, and as the sign £ implies that only
dz erent combinations enter under it, we must give this term a co-
cient m, or .
Gy 17220040 - « « 2 Gy + W EQ 4G+« + O
and by the addition of these identities we have
8,~«Sa 1+280 3s—aS.s.... @, S, Fma,=0,

which is a verification, by actual process, of the theorem of Newton for
the sums of the powers of the roots, which has been proved directly in
the Algebraical Expressions, p. 18, by Mr. Drinkwater.

When m > n, the index under 2 in the last term of the right hand
members never reduces itself to unity in all the equations wheve both
the factors multiplied are polynomials; it is for this reason that the
theorem then becomes

Sm_al Sn—l+aﬁsn—l—atsu-a+ Seoo iausu-q=0'

These forms of Newton’s theorem have been long used, first to find
the sums of the powers af the roots when the coefficients of an equation
r—a, 2" aga"*—. . ,. T a,=0, are given, and, secondly, to find the
coefficients when the sums of the powers are given, by both which pro-
cesses combined the transformations of algebraic equations can be
effected with scarcely any difficulty but the length of the process.

24. The sums of the powers of the roots thus found are implicit,
that is, expressed not explicitly in terms of the coefficients, but made
to depend on each other by a formula of reduction; they may be ob-
tained explicitly by the following theorem.

ProrosiTion XIX.

Divide the left hand member of an arranged algebraical equation by
its first term, or that which has the greatest exponent, the equation
becoming then .of the foom 1 + P=0, in which P contains only
negative powers of . 'Take next the logarithm of this quotient by the

formula,

Loy 1 .. 1 1
Log. (1+P)_P—-2—.P +—§P“. oo X mP"’, &e.

and commencing with the last-written term select the coefficient of
™™ in that and as many of the preceding as contain it ; this quantity,
when multiplied by m, and the sign changed, will be the sum of the
mth powers of the roots.

But if the equation be divided by the last instead of the first term of
its left-hand member, and then the logarithm taken, &c. as before, we
should thus obtain the sum of the inverse mth powers of the roots, by
taking the coefficient of ™ and multiplying it by —m.

For let a,, ag, agy ««....a, be the roots of the equatiou, decompose
the left member of the equation into simple factars, it is equivalent to

di k.
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(t=—a) (z—as) (z—ag)..e...(T—a,).
Hence, dividing by 2*,
l+P=(1 hand ﬂ)(l ‘-i'>(l —&).‘auco(l -l'
., @ x x x /3

therefore
Log. (1+P)=Log.(l - %) + Log.(l - %) + Log(l - %)4.

a,
0.-.0-.+L°g-(1—'7)

_ aq 1 ¢ 1 1 an
= w-2.1"-3'1', teenee .F—,&c
a 1 o' 1 af 1 a%

@l la_ e
z 22 822 U mia

- S, 1 S; 1 S 1 s }
-——{7+—2"-;.'+'§.?+.ooo-.+—";-;;+,&c.

From whence it follows that — S__';: is the coefficient of z~™ in Log.

1+P).

In like manner, suppose the equation divided by its last term, which
is the same as —a,.a5.05....a,, 8nd the quotient resulting from the
left-hand member to 14 Q, we have

tee=(-)( 50D (- 2)

- 1

Put now S_.=l-+—+ —l—+ +—1—
a, a; a a,.

’ 1 1 1 1
S_s : a,’+ - a_.’+ . +';.;

1 1

sa=tplylo 4l

1 Qag as Ay

Hence Log. (1+Q)= —{S_l.w + %—.S_,.w‘+%—.s_. ol N

+ —1- S_,,..t"+&c.},
bl
by.which the second part of the proposition is manifest.

Ezample 1.—To find the sum of the direct and inverse mth powers
of the roots of a quadratic equation, 2%+ ar+4b=0.,

By the proposition just proved we have -
1 o a, b }
= e Se= coefficient of 7 n{L()g. {l.+(-;‘+.-?> a0
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Rejecting the terms which would involve negative powers afler =™,
and inverting the order of the terms; lastly, multiplying by —m, we
shall have

. - ,, a, b\ m [a  b\*!
S,. = coefficient of z~™in (—1) <—-—+ .z’) gy —--|- -
m-8
+ -2 (24 — &}
— mlom_ mat m (m 3) a™ '_m (m_4) (m—5
=(=1) {a_ m.a b+——1 2 ¢} —123  °
a™-* b+ &c}

the number of terms being —’2’3 +1,0r "—‘g—l, according as m is an even
or odd integer.

Similarly,

- % S_n =coefficient of a™ in Log 1+ (— .t+—- . x‘)

Therefore, S_,, = coeﬂicnent of a™in (—1)" (—. x + ik :t)

m-—l(b .z'+ .z‘

-—, which result is verified by recollectmg that ™ is the product of

m-1

+aef

bn
the mth powers of the same two quantities, for which S,, is the sum of
the mth powers.

Ezample 2.—To find the sum of the inverse mth powers of the roots
of the equation z* —az+b=0.

Here we have

- S,.. = coefficient of 2™ in Log. {1 -5 (ax— ")}
When the logarithm is expanded the only terms whlch may contain
™ are

- —(ax—a: ) ——e 1 (aw—z")’-——%;(ax-w“)'. cene -mlb" aw—m“)"‘.

2b%
Therefore
S_.... = coefficient of 2™ in ——{(aw-— r“)"‘+ — . b (ax -w")"‘"

+ m_2 . bt (ar—a")™* &e. }
The general term of the series between the brackets is—

m k — mek
m_k.b(ar- )™t .
Now, (a‘p xﬂ)m—k = g™~k gmk —(m=k) P Wt L LR
(m-k) (m-k-1)
1. 2

m-k-l m-i-lu-k‘l &c’

Y
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the only values of % which would allow the existence of a term con-
taining 2™ on this expansion are obviously

k=0, n-1, 2n—2, 3n—-38, &ec. ; hence

Nt (M - xl)m -ntl

l{ n
S_ .. =coefficient of 2™ in —1 (az=2") +— n+l
m

+ PR, bh-l (ax-.z"‘)""""" + &C}

m—2n+2
—_— 1{ u m-n hn=l m(m—2n+1) Q™= jin-s
=@M = y

m(m 3n+2)(m—8n+l) g p-
1.2. b +&c'}

the number of terms being the integer next greater than '—: .

As a particular instance suppose a=0, b=-1.

When m is not a multiple of n the whole series vanishes, and when
it is a multiple the required sum is equal to n; the equation in this
case is 2" — 1 =0, and the same property of the roots of unity is equally

1
true for the sums of their positive powers; for if we put x==—, the

equation becomes y*—1=0, the roots of which are necessarily the reci-
{)rocah of the roots of the former, which, being the same in form, it fol-
ows that, amongst the roots of the equation #"—1=0, each has its reci-

procal, and therefore the sum of the direct and inverse mth powers must
be alike.

Ezample 8.—To find the sum of the inverse mth powers of the roots
of the equation z*—aa®+1=0, where z>>p, and prime to p.
Expanding the logarithm we have—

r +S_ = coefficient of 2™ in +(az"—.z") +—2—(aa:"—a:")'

+ -:],7 (ax®*—2)3, &ec.
k. (k l)
.2
And in order that 2™ may enter, it is necessary that some of the fo
lowing equations may be possible in integers, viz, :—
=m, m+p—-n, m+2p~2n, m+3p—3n, &e.

First suppose m to be divisible by p; and since p is prime to 7 it ¢
measure no multiple of z between 0 and pn, between pn and 2pn, &«

Now (a‘rp_wﬂ)k=a&.zp& _kak-l z,ip-.-ﬂ—p + k lw&p-l-!(u—p) &c

hence the possible values of % are :ﬂ, %+p—n, %+2p -2n, &c.,

negative terms being excluded ; hence "TS-, is the coefficient of

in the series .

__(a‘r!’-.‘t‘)p.‘_ __.l.__(,up xﬂ)""’ " _L._._.
—+p n ;+ p—2n
(az"-.z")—w , &e.
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. ‘.
or, 8_.=par :

m(%-l- P -n—l).(%-l-p-n—!z‘) . (’% -n+ 1) -
s —
t—r 7% . 3 . 7 car (-1}

m.("i+2p—zn-1).(’1+2p-2n—a)..('—"-—2n'+1) -

+ 4 . - 4 Lar
1 0} 2 . 8 . ’ gp

+, &e.

. When p dpés ngt measure m, put

pk=m-+-¥ (p—n), or ph+(n—p) K=m,
and if K be the greatest value of &k which satisfies this indeterminate
equation, its other values are K +p—n, K+2p—2n, &c. ; and then

'i';sé_g coeffient of #° In - (aef ~ ¥ + g (o~ Vi
2 %G ’

And if « be the least value of £, its other values are x+p, «+2p, &ec.,
and these determine the nlace of the ferm which must be selected from
each of the above binomials.

25. In the next place, it will be very useful to be able to find expli-
citly the coefficients of an equation when the sums of the powers of ity
roots are supposed to be known.

Prorosition XX.

- ’ 3
Form the expansions 1 -8,.k+ A —l—ss'—i. Ky &c,ton+1terms.

1.9°
- S 1 s'l _ s" ¢
1= 5 Mg M1 g5 o the
number of terms being the integer next abgve -;'- .
L 3
g‘ & & lh” &c., the

-5k e M 1ssw
number of terms being the integer next ghove % .
. And so on to the final series, consisting only of twe terms, viz. :—
8 .. ’
1 - —’;- . h .

If S, 85 S4ees0e.8,, be the sums of the first, second, third ,.,
nth powers of the roots of the equation 2*+a,2*'+a,**+...+a,,
then a,, will be found by taking the coefficient of 2™ in the product of
the first m series given above.

For by the last Proposition
L ?.'} S 3.5 1%
tog {14 St B 4 =2 g2 =X

(L3

* write & instead of % , and dengie by's the base of Naperian logarithms,
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Hence l+ahk+ahi+t....+ah' = :‘5"'.5‘*’"!.' E L Y *%

and the series given in the present proposition are the expansions ac-
cording to the powers of % of each of the factors in the right hand
member of this identity ; only the terms which have higher powers of

h than the nth are rejected, as from the nature of the identity. the total
coefficient of any such power must be zero.

Example 1, To find ¢,, a5, a;, &c.

_ _ 8 s s S
a==8 &a=i5—3 «=—153+8% 3

&e.
Example 2. To form an equation such that its roots may possess
the property S,=0, S;=0, 8,=0....S,.,=0, S,=c.
In this case the first n—1 series contain no power of & ; therefore
S, ¢

a,=0, a=0...4,,=0, a=-— <= — the required equation

is therefore z* — %: 0.

Example 3. Given 8,=0, $,=0....8,=p, §,,,=0....8,.,=0,
S, =n.

The two seriés to be multiplied in this case are
t
1w+ 2, ge, and 1o, &e

Suppose p does not'measure n, and % the greatest number of times it
is contained .in n, the product of the two is

- -
T R

1w 2y -1
' 102 et ( <7 "
the required equation is therefore

1 1 1

LIty — -2p n~8p
SAnC A v S v S TIEES W o

But if p measures n, the twp last terms must be united. -In like
manner may the coefficients be found when the sums of the negative
powers of the rogts are given.

26. Scholium. In the two preceding propositions we have sup-
posed the reader acquainted with the expansions of a* and log (1+2) ;
if not, their investigations are here supplied.

To expand a according to the powers of y.
Let a*=f(z); then,since a*.a*=a""", we have
' ¥y

@) f@)=fz+ =)+, (2)y + f”(x).i"/'—; +H"(@). g + &e.

.x“'*'-71=0.

I L N i O W Y i C W
thergfore, S=1+ f(@) Yyt fx) "1.2 + fAx) ° l.2.3+&c’
where f'(x), f'(x), &c. are the syccessive derived functions of f(2).

Butitis clear that y being arbitrary, the expansion of f(éy), that
D
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. - x .
is a¥ cannot contain x, and for the same reason L (w) cannot containy ;

therefore all the coefficients in the above series are independent both of
x and y, and consequently must be some functions of @ ; let us there-

fore put i(( )) ¢(a) ; hence we find
f (r) ¢(a) .flx); f'(2)=¢(a).f'(x)=(ga)’, f(7)
S"(@)=($a)* .f(2), &e.
by substituting these values we obtam

f=149@-y+ (@) Loy $L2

4+ &e. =a'.

Now, for some particuiar value of @, which we denote by &, the
value of ¢(a) will be unity; this quantity € is readily found by putting
in the preceding expansion

¢(a)=1, y:l a=s¢,

cr 1 ——
which gives 1+1+4+ 1—-2- 23 2 3 + &c.=e=2.712818, &e.

Hence 14y+ -— + —y'— + &c. =e; .

write now y¢(«) for y in thls expansion, and compare it with the
former, and we have s”(")—a" therefore £“=a; and hence, by the
definition of a logarithm ¢(a) is the log. of @ to the base &, that is the
Naperian log. of a.

To expand the Naperian log. of 14 a.

Let 14 x=a, hence (14+2z)'=14+¢(a).y+ (¢a)*. -:£+ &e.,

where ¢(a) is the Naperian log. of 14x, and is the coefficient of y in -

the expansion of (14 x)'.
But ‘also (+ay=1+y.x
yy-Hy—2E—3)

+ 1.2.3.4

Select now the coefficient of the simple i/ from each term of this ex-
pansion, and it must be equal to the coefficient of the same quantity
found by the former method. Hence

y(y—1) yy—Dy-2) |,
L PO IRE A s o T

2*4 &c.

A\
~

Nap. log. (1 +x)—.r— 5 + + &e.

Our object here is only to prove those expamxons which are of the
most frequent application in analysis, and not to follow out the different
properties of loganthmxc series.

27." We shall now give some instances of simple transformations of
equations, pointing out the uses to which they are subservient,




|
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Problem 1, ,

To increase or diminish the roots of an equation by a given quan-
tity e.

Let ¢(x)=0 be the given equation: put y=z--¢; the transformed

~

is  ¢(y+e)=0 or ¢(e)+¢’(e).y+¢”(e).%-{-......

(n-1) y--l

H O T e
the dimensions of ¢(e) ¢'(e).¢"(e). ... "*0(e) are respectively =,
(n—1), (n—2)....1, and therefore to deprive an equation of its
second term, we must solve a simple equation, of its third a quadratic,
&c. ; but none of these transformations, except that of taking away the
second term, is much used. De Gua pointed out one use of taking
away the other terms, namely, ifall the roots of ¢(z) were real, and we
make ¢/™(e)=0, this equation has also real roots, for all the derived
functions necessarily have them (Proposition XVIIL.), Let @, 5, v, &c.
a, b, ¢, &c., o, B, 7/, &c. be the roots taken in the decreasing order
of magnitude of the equations

¢Ill(m-l)(e)=o’ ¢Ill(m)(e)=0' ¢"’(”+‘)(e)=0,

a lies between @, 3, and makes ¢"™=Y(¢) negative for any quantity
greater than @ would make it positive, and there is but one root « be-
tween such a quantity and @, but @ also makes ¢"™*)(e) positive
(Proposition XVII.). The same considerations show that b, when put
for e, would make ¢"™~"(e) positive, and ¢/"™+V(e) negative, and so
on; therefore, when a term is taken away from an equation with all
real roots, the terms immediately preceding and subsequent must have

+y"=0,

. contrary signs ; conversely when a term of an equation is wanted, if the

preceding and succeeding terms have the same sigms, there is at least
a couple of imaginary roots.

To deprive an equation of its second term, divide the coefficient of
the second term by the index of the first, and put « equal to y minus
this quotient.

Thus a°—62"+12z%, &, =0; to take away the term involving
a®, put -1 equal to y, or z=y+1.

And in the equation 2" —az*"'+bz""?, &c., put r=y+ E.

Remark. The algebraical solution of the quadratic, cubic, and bi-
quadratic, are much simplified by this transformation : let us consider
the reason of this: the value of 2, in the most comprehensive state in
which it is capable of algebraical expression, consists of a term free
from radicals, and of other terms affected by them ; this single expres-
sion being required to give all the roots, can only do this by varying its
radical parts accordiug to the different values of the roots of unity ;
the part unaffected by any radical is therefore the same in all the roots ;
Bow the rational coefficient a being the sum of all the roots, it follows

....@a . .
that the part in question in each root is o for the radical parts in the

summation must destroy each other to give a rational sum.
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Hence, when we putz; s =y, the values of y will have one

term fewer than the values of & (and consist essentially of radicals);
it is for this remson, that greater simplicity attends the research of y
than of a. .

From this it is obvious and worth remarking; that the part of the
general expression for the root of the equation #*—az*~'+ bz*~* —&e.,

which is free from radicals, is always = ?{'

28. Problem 2. To transform an equation into one of which the
roots are those of the given equation multiplied by a given number.
Let m be the given number z*—az*~'4-bs*~*— &c.=0, the given

equation, put r= 3—‘-, then by substitution, and multiplying by m*,

we have y"—amy"~' 4 bm'y"* — &e.
The use of this transformation refers only to the numerical solution
of equations ; for if any term in the equatioh proposed tiad a fractidhal

coefficient ’—; , then put r= %, and all the coefficients of the 'tmhs-

/
formed are integers; if there were two such coefficients as g v » put

X = _g_’ and 56 on,

If the propdsed equation had any rational root, the transformed
would have an integer Yoot ; for if an equation has all its coefficients

. . r . )
integers, it cannot have a fractional root ; for suppose T put for the

unknows quantity, and all the lerms aftér the first collected over a
common denominator ¢*-!, andlet N be the nuinerator; hence,
Tt =0, T 4N=0, which would be impossible i - were a
fraction in its lowest term, since then :‘: would also be in its lowest

terms.
Any equation which has numerically a rational root may be easily
solved by this transformation. '
29, Problem 3. To transform an equation into one in which the
roots are the reciprocals of the roots of a given equation.

Put z= :l/ and multiply by 3~

Tt will easily be seen in this transformation, that if an equation in »
want the mth term from the beginning, the transformed in y will want
the mth term from the end ; by combining therefore this transformation
with that in Problem 1, we can take away the last term but one by a
simple equation, the last but two by a quadratic, &e.

If the coefficients of the terms of an equation taken from the begin-
ning be the same as those equidistant from the end, the transformed
and original equation have the game form, and therefgre the same
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roots ; but since y= -l-, it follows that amongst the n roots of the
3 g,

proposed eﬁuution for each root, there is another which is its reciprocal
these equations have been called recurring or reciprocal equations.

If o, B, v, &c., be roots of a recurring équation, then ‘!;, %, ;. &c
also are roots; and when their number is odd, there must be at least
one root which s its own recipfocal, and fts value is thereFore + {.
Having separated this root if it exists, by the division of the factor
xF 1, the quotient will ¢ of a récarring form, ahd will be reducible

to one half its dimensions by putting x4 %_: y; to facilitate the

transformation we may use the formuta

n(n=3) ., nn-4) (n=~5)
.z Y 77 128

which is the sum of the nth powers of thve roots of the equaation
2t —yz+ 1=0 by Proposition X VIII.

1 .
@+ = =y —ny~'4 v, &c.,

\

Example, 6%*+ 852"+ 6222 485r 4 6=0.

Hente 'c(z' 4":?) +35(a{‘+£)-]- 62=03; put = §=y.
6(y"—2) 4 8%y 4620,

‘When ¥y =-§ and — -13(-’-

1 P

Ta'king the first value a4 ;g- &+1=0, wherewrrz -2 and ...-%,,

eeeenee second.....t’+!§9.t+l=0, vess a==8 and -—_—l-.

s

80. Problem 4. To transform an equation into one of which
the roots shall be the mth powers of the roots of the proposed.

Liet @, B, v, ‘&c., be the voots of the proposed a*—az*~*-bz*"*, &c.
=0, then a”, 8", 9™ &c. are the roots of the transformed.

Let S,, S;, Sg &c. be the sums of the first, second, third, &c.,
powers of the roots of the proposed.

o, 03y 0y, &c. similer sums in the required equation ; then
61=Sn, 05=8;ny V3=5;,, &c.; hence, if the required equation be
y*—Ay*~'+By**—Cy*~®, &c. =0, the coefficients A, B, C, &c.,
may be found by Newton’s formula, or by Propesition XIX.

Remarks. Since A=S,,, and a root of the equation in y is the mth
power ‘of that in &5 and einrce it 'has been sdowa that the coefficient
of the second term divided by the radix with sign changed is ¢he ra~

tional part of the general formula for the root, t'here'fore% ~ the
rational part ‘of the yth power of ahy oot ’
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{ We must be careful to remember, that the root is here, as before sup-
posed to be, in a form which comprehends all the roots, which is that
given by the algebraical solution of the equation.

Thus, even though an equation be not solved algebraically, we can
find the rational part of a function of its root.

31. Conversely, by comparing the rational parts of the powers of

éompound surds with the values of ;.S... in the equation of which

the surd represents the general root, we can find the quantities affected
by the different surds, and thus discover the root of the equation. At
present we shall not pursue this further than to give a few examples
for illustration.

Example 1. Suppose a;l-ﬁ* to be the general root of the equation
& —ax+b=0,it is required to find « and S. .
Rational part of (a4 /3%)‘ =a }
” » of (“+ﬂ1})’ =d'+f
Again, 8,=a, S;=a?—2b; hence, by the above principle, we have

e o, a@=2
a=g dHb=—3

S
or ﬂ:;—'-’—b.

Example 2. We have seen that when the second term of an equa-
tion is taken away, the general root is entirely surd ; suppose therefore

a%'+,6i' to be the general root of the equation a* 4+ ¢z — b =0, to find

e and 3. .
Observe that ¥ being an irreducible surd, o¥ is also such, for if
rational and equal to v, we should have o = ‘y’}, which would give a

different form for the root than that supposed.
The only part which can be rational of (a’} + ﬁ’})’ is therefore
2 (aﬁ).}, that is, 0 must be a perfect cube ; and since S;= —2a, the

above rational part = %’ which gives (aﬁ)& = —% .

Again the rational part of (a} + ,B‘})’ is only a4 for the term

h B* = ‘S(aﬁ)*.a%and is irrational, because (a/})‘} is rational.
o But since Sy + @ S, — 8b = 0, therefore S; = 8b; hence a+3 =10

the equations for finding} «, B are o8 = — ﬁ-a-l-ﬁ:b; whence
b »® & b /\/ b a L
a-—§+ 4.+2—7> B._-Q—-. (74- +2—7 andt}'u?value
of 2 is then o3 + ﬁé subject to the condition (aﬁ)".. . rational, - r
Thus we obtain the same system of roots as that given in the Alge-

braical Expressions.

Example 3. Suppose a% + ﬁ* + -y’} to be the gener;l root of the

B b 8 ot e
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biquadratic deprived of its second term a¢ + aa® — bz + ¢ = 0, to find
a B, . .

Rational part of (a% + ﬁ*.+ 7% =a4B+y
e« o o o Of (a* +ﬂ* -|- 'y‘})‘ - 6(aﬁ-y);

for the simple rectangles (aﬁ)’} &c. are radical, otherwise ,,*_'.354_75
would be eqnivalent to only one square root.

Rational part of ( an:i +ﬁ* + 'y% =d'+ 8"+ ‘Y'

Again S, = — 2a, 8, =3}, S, = 2® —4c; therefore to find «, 3, v,
$
we must have a4+ y= — -g-- (a,B-y)% = % ¢'+ﬁ'+y‘=%’ ~c.

' ]
Hence of3+ay+fy= Z —Z therefore a, 3, y are the 3 roots of

2 8
. a c 2 b* .
the cubic a’+?. ¢'+<-§-— %) e—e1= 0; and then @;:a‘} +

ﬁ%-l—'y* subject to the condition ui. [3*. 'y*. . of same sign as b, which
determines its four roots. -

These are moreover the only forms of irreducible surds, by which the
general roots of quadratic, cubic, and biquadratic equations can be re-
spectively expressed ; that which has been called the irreducible case
of cubics, and which exists in reality only in the arithmetical solution
can therefore never be removed by any algebraical solution seeking
to express a root by irreducible surds ; we have a sure test of this by’
the impossibility of making the rational parts of the powers of other
surds to coincide with the corresponding quantities deduced from the
coefficients of the equation.

It may also be remarked that the march of the index of the mono-
mial surds as we pass from an equation of a lower to a higher degree
does not follow that indicated by the dimensions of the equation, but
by the prime divisions of the degree: thus the index in the quadratic
is &, in the cubic {, in the biquadratic }, for the same method wiH show
that it is impossible to express the general root of a biquadratic in jrre-
ducible biquadratic surds.

32, Problem 5. To transform an equation into one of which the
roots are any given functions of the roots of the proposed.

Let &, 3, 7, &c. be the roots of the equation ¢ (2)=0, and F(a),
F (B), F (), &c. the roots of the required equation ; eliminate x be-
tween the equation ¢ (¢)=0, y—F (z)=0, by a process similar to that
of finding the greatest common measure, the resulting equation in y
will have the roots proposed. :

Or, if we denote by F (0), F'(0), F”(0), &c. the values which
F (x) and its derived functions acquire by putting =0, we have

F (@)=F (0)+F (0). z+F"(0). 1—’; &ec.
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and therefore if S,, S5 &e. represent the sums of the powers of the
roots of the given equation, o, o, &c. of the required, we have
0).
a,=nF (0)4+F/(0)1 SH-F;-'(—E) &c:
ax=n{F(0)}* + 2F(o).w(0).s,+{{v(0) P+F). E'(o)}_. 8.+ &e.

And 8,, S,,..8,, are known by the coefficients of the given equa-
tion, while the coefficients of the terms of the transformed are kuown
by the calculated values of o,, 0y, o}, &c.

Remark. If the transformed equation is of the same form, that is,
has the same coefficients as the original, it must have the same roots,
and therefore to each root a there corresponds another F(a), which is
the given function of it: if the dimensions are odd, one root will be de-
terminable by the equation (F a) — =0, and may be found by seeking
the common measure of ¢ (z) and F(z) —=, and the other roots may
be found when this is separated in the same manner as in equations of
even dimensions, by putting F (¥)+ r=2z, which will give an equation
in 2z of only half the dimensions of the équation so reduced.

88. Problem 6. To tind an equation of which the hoots-are the dif-
ferences of the roots of two given équations. :

Let " =—ax*"'+da" - et 4 &e, =0

Y= aym 4 byt — Yy 4 &e. =0
be the given equations, we are required to form an équation of which
the roots are the excess of the roots of the sécond above those of the
first. ,

Since each root of the first being subtractéd from any one root of
the second gives a root of the required, the latter must have m.n roots,
and its form (putting g=m.n) may be represented by

29— A 27 4 B 227%—C 2124 &c. =0

Let S, 8,, 8, &c. repretent the suins of the first, second, third, &c.

power of the roots of the equation in .

8/, 8, 8, &c. similar quantities for the equation in g
and sy, %, 8, &c. the sums of the powers of the roots of the equation
inz, . ‘

We have s,=2z=3(y —2)=2Sy— Zr=nS',—mS, for the sum Iy, is
to be taken for mn terms, and the same cycle of terms recur after we have
gone through the m values of y ; the same reniark applies to the sum of
any function of y unaffected by z; but when combinéd as, T2* y* this
has no such cycles, and is strictly the saime as Xa® Zy”, under which
form the pure powers may be included, for £a%*=22* Zy’=m 3a*

And generally since

8=F 2P=Z (y—2)° : L
— 0. . -y Y p'(P"l) 5, p-9 e R4
=2y 3%~ p Ty Sa+t- T Sy Tt &e.
therefore

P ' y . —‘ N “
LM = nS', —pS'p-l Sl + 'B'I(—??—)'S'p_’ S.o sevecs i pS’l S,-, im S,

The quantities 8y 8, %, being calculated from this formula, the co~
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efficients of the required equation are known by the theoréms alresdy
iven. . )

g Remark. Suppose the two given equations to be exactly alike, the

dimensions of the transformed equation would be n*; but as it must

have # roots equal to zero, it becomes of n(n>~1) dimensions, by di-

viding by 2" ; thoredvér the roots df the transformed equation have for

each an equal root with a contrary sign ; therefore the sums of their odd

powers vanish, the degree of the transformed equation may be then
- L. . s
reduced to '—'1(12—-‘-2 by making u=2*; the terms equidistant from both

ends of the foregoing value of s, being aliké may be taken together,
and therefore if U, be the sum of the p* powers of the different values

of # we have ]
2p(3p—1 .
Up=.h8~,—2ps,8b_‘+%-.2 Sy Spati.iini.

2p(@p—=1) 2p—2)......(p+1) (S)*

! ' sheve t 10 20 8 ..'..C.OO".P 2
n(n-—1) . . " .
Putm=—— and form an equation .

u™ 4+ Au'4+Bu*4-. ... + Pu4Q=0;
such, that the sums of the p* powers of the roots may be that quantity
expressed by U,, the toots of this equation will be thé squares of the
differences of the roots of the equation in z; this transformation first
given by Waring has yet some important uses in th.e solution of equa-
tions. -

84, Problem 7. To find the Jast or absolute term in the equation
whose robts are the squares of the differences of the Foots of the pro-
posed.

Let a, 3, , &c. be the roots of the equation ¢ (z)=0, and let ¢’ (z)
be the derived function of ¢ (z), then since

¢ @)=@=P) (z=v) ... +(@=a) (z=h...
- +@—a) (z—3) (x—¢)....&c.
therefore 6’(¢):(¢—B) (@—9) (@=B) .50,
and similarly ¢’ (8)=(B8—02) (B—7) (B—2?)
¢ ()=(y=02) (v=p) (y—?)
' &ec. &e.

Hence i
¢ @B G =(=D) T (@=Pr = B=1 ...

This is the required last term. ‘ . )

The product ¢’ («) . ¢' (B) + ¢'(¥).+. . .being a symmetrical func-
tion of the roots may be readily expressed by means of the coefficients
of the proposed equation, and also by means of those of the derived
function @’ (z) by the follewing consideration. L

Let'a, B, v, &c. be the roots of the equation ¢’ (2)=0, then
since ¢/ (D)=a(@—a) (2—B) (3=).s 1 8&e
therefore  ¢/(a) . ¢/ (B) . ¢/ () - - =0" (@ =) (B—) (y—a1). ..

x(a—B) B=B)(y—B)+» X (@=7) (B=7) (y=71)++. . X &e.
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But (z=a) (B=a) (y=a)es.. =(—1)" $(a))
(=B (ﬁ"ﬁx) ('Y-ﬁl) cee = ( -1)*¢ (@A)
&e.
and observing that (—1)*®-V = 1,'we obtain

@ . B (Neee. =0 (@) D (B) D ().....
the last product being a symmetrical function of the roots of the de-
sired equation.

35. In order that an equation may have two equal roots, a certain
relation of the coefficients is necessary; this relation, which expresses
their mutuzal dependence, must be such that the last term in the equa-
tion to the squares { the differences above obtained may be zero, since
one of the roots of the latter equation is nothing; the condition there-
fore that the equation ¢ ()=0 may have equal roots, is ¢'(a)
¢ (B) . ¢'().... =0, or which is the same ¢ (=) . $ (5. (7). -

==0; the latter is preferable in practice for having fewer factors.

Example 1. Required the condition that 2°+4axz4-b may have two

equal roots.
¢ (z)=a"+ax+d. ¢'(2)=2z+4a
Hence = - %'

1]
therefore ¢ (2,)= (—g)e - % +b= — ‘;_‘ +b

' ]
the required condigon in this case is b— % =

Example 2. To find the condition that the cubic *4 az®*+br+c=0
may have two equal roots.

Here ¢ (@) =z +azr* +br+c ¢ (v)=82"+ 2ax+ b
or w’+% . o+ g— = (z—a) (s—p1)

we must have (2 + a2,® + b, + ¢) (B2 + aB* + B, + ¢ =0

: hence 2B+ ax,* O} (o + ﬁn) + be, ﬁl (“l + 6" + c(“l"‘".Bl')
H a ¢:’ 2 + aba, B, (2,40, + ac (o' + 58,0 + b, f,+be (¢t+ﬁ|)
=

b
~ Put 3 for o, 3, and collect the terms which mulhply the same sums
of the powers of a, 3,; this gives

(10b‘ L ) (4"”'_,_ bc) (a+8) +( +ac) (af +ﬂ.‘)

+c(a’ + B =0
2a
Wherea,-l-ﬁ,._—— a4+ -—4—(‘---2-6 o'+ pB2= _id‘_l-?ab
by substituting these values the requlred condmon becomes

A+ ?i‘-"(za--sb) + = (W—a) =0
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When ¢=0, the proposed equation becomes (=* +artb).z2=0
and the condition for the equality of two of its roots is b* (4b~a") =0,
which is satisfied either by supposing =0, or a'—4b = 0; on the first
supposition the two equal roots are zero, and the second condition is
that already found for the equality of the roots of the quadratic equa-
tion #* + ar + b=0.

It is usual to suppose @==0, which simplifies the proposed cubic, and

the condition for equal roots is then ¢ + -—b- =0

36. Problem 8. To eliminate = between the equations ¢ (z) +y=
F (z) =0 these functions being rational and integral.

Let a, 3, v, &c. be the roots of the first, and a,, 3,, ¥,, &c. of the
second equation, then the condition {y +¢(a)}.{y+¢(B)}.
{y + ¢ (x)}.... =0, implies that y+¢ (z) =0 is true simultaneously
with the equatum F(z)=0: it remains to reduce this product to the
form y*-+ay™~'-+by™"* + &c.=0, where m, which represents the num-
ber of factors, is mnmfestly the sume as the dimensions of F(z).

Taking the logarithms of these identical expressions, after dividing
each by y™, we obtain

Log.{l+s+§7+...+—,.”:+§q;} ‘
= Log. {l +,¢(a')} + Log.{l +¢(ﬁl } Log. {l'-{- 95_:(;/‘7_1)}_'_

= 2 Log. {1 + (qS ')} for abridgment

{¢al s <¢a‘)' +1 <¢;;) ~se)

But since a, is a root of the equation F (2)=0, we have

Z¢(a)= coeﬂiclent of ! in — ¢ (z) Log. F (I)

(‘l‘)
F (.z')

S{p(@)P=.cceeers. m-24:(w)¢’(a:) Log.

S{p(a)P=etieenrs m-8¢(w)’¢’(z') Log. ——
&e.
and also observing that
_tz d@).¢ () (¢2) @) — =9
y v 1 v ¥ + &e. T y+o@)
therefore  Log. {1 + 5— + l’y? +.. -:';t—_’i +y—%} = coefficient ofn: in
-¢@ ;. F@
L YTe@) 8 T

Well y+¢ (2)=(x—a) (x—B) (x=7)ees.. .takmg the coefficient
of the highest power of # to be unity,
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—¢@ __ 1 1 1
Heme  ¥e® a-zTh-z Ty-a+%
1 .
= T for abridgment
'=Xq'+a a4+ T at+ e

Also
. F ' ) '
Log. —:.f—) = Log. (l-%) + Log. a-2)4 Log. (1+3’->+&c.

. - & 2

= ¥ Log. (1—=

&

il

1 T 1 ,,1 1,
- {;‘ 2“1"'?-? o' + 37 A &c.}
and if the corresponding terms in both series are multiplied, the pro-

ducts will each contain -i_— s whet:efore

Log. {1+—;-+§;+,..,.;7{’;‘;%} .

1 1
== { g Za' T Za 2,“""!"3‘-% Eatk &c.}
where y being of n dimensious, we may stop ip seeking a at the term

1 l!a."Za“ , and 0 on.

ry Za" Za™ and for b at the term o :

. 1 [ -
The exact exdpression for y™ 4 ay™~t+Dy"~* &c. is y™.¢ :" a2
the sign 2/ denoting the sum from n=1 to n=cc

Corollary. Let the form of the function F(5) be 2m—1; then if -
m’ be not a multiple of m, we have Za™=0, and when it is*a multiple,
Za™=m ; hence

Log.
a b N q} Zp(@) _ 1 Z(ge)t 1 ¥(gpm)'
l+—+_+-n-'+—-_—'+—.= -—— g +=
{y'y' vy y 2 ¢y 3¢
&e.
=-Z{e"+a™ta™+ &c.}
if the former series be used, we may omit in (¢pa,)™ those terms in
which the index is not a multiple of m, and put m for any term in
which the index of « is a multiple of m, and equate like powers of y ;
if we use the latter series we may equate like powers of y, taking
"always one term more under the sign of Log. than under that of 2 :
thus, ’

Coefficient of

1, a 1
- h -{l - = ! ‘ f" i -’o
ym g +y} coefficient o ymiq
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Coéfficient of
1. ,a, b . 1
—y—.m Log.{l,-{-'g-l_- -!-/; = coefficient Ofi'—l'-

in Z(a™+a7"),

) 17
and the exact expression for y™+ay™ '+ by"Y, &c., is § ’(""-1)
where £ stands for the base of Naperian logarithms.

When ¢(z) is of lower dimensions than m, we have a=0 ; for then
Z¢(@,) evidently vanishes, .
Generally, let %, be the sum of the coefficients of 2, 2* , &c., in

" (¢z), then, ‘
RO I
+ {1 + ";—f’ ""lll_;i%: + &e. }+t&c. "
thus
a=mk, , b= Tl_'.k_; +fmk; y 6= rl,—n-:-% +m'k, ko +'l;5? » &e.

87. We shall now proceed to the solution of equations in finite surds,
first by simple individual methads, and secondly on general principles,
adding remarks on each. :

CUBIC EQUATIONS.

The general form of a cuhic equation is .z’-l-qx':i-bt,—l—é:O, & b, c,
being known quantities, positive or negative.
“The simplest equation in this class is a*—1=0, one root of which

.‘being ¢=1, we may reduce 2*~1 to the form (¢—1) (z*+241);

the other two roots are given by the equation 2*+x+1:=0, and avre
—14v—3 -1-4/=38

3 xe= 3 , each of which

easily found fo be x=

is the square of the other; for if we call one af them e, then since
a*=1, we have bysquaring (a*)’=1; therefore, a* is a root as well
as o,

If there is proposed x*=b, and « denote, as before, one of the ima-
ginary cube raots of unity, and b the arithmetical cube root of b, the
three values of x are then /'3 , a¥'b ¥ b, for the cubes of any
of these quantities is b.

Thus, let *=—1, then 2=—1, is the real root, and the two ima
ginary roots are —a—a’

Given 2®+4az+b=0. i

Put 2, which is no longer a simple cube root, equal tq the sum of

two cube roots; that is, let ,r:p*-i- q‘}.,
Then, s=p4+3piqtintettg -
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= (p+o)+3Cpq)* (p¥44D),
and ar+b= b+ a (p"+q‘}).
We thus have (p+q+b)+{ 3(}"1)*+a}(p*+q3") =0,

which equation, containing two indeterminate quantities, allows us to
make another condition between p and ¢; namely,

t__2
(r9)" = 3"
Hence p and ¢ may be determined by the equations

a
pt+g=-b, PI==5z
P+2pgte= ¥
or - 4a®
4pq --—2—7

. »
therefore  p*—2pq- q'=4(-z- +5
: b
p=g=2,/ (T"‘ 507');

b - b a b » e
whence p=35+ <T+§ 3 q=§—,\/(-;-+-271),

and z =p"+ q* .
Now, p* admits also of the values ap*, ¢'p§,

q‘- veseesss Of ooool.oa.a"q*’ aq!;’ r)
and the products of the pairs in the same vertical lines arise each the
same as p*.q"L, since o’=1; that is, they satisfy the condition im-
posed in the process of investigation ; viz. (pq)*= —-g a rational

quantity, admitting of only one value.
Hence the 3 roots of the cubic equation 2*+4-azr+5=0 are

X :
w=p§+q', z=¢p’}+a'q+, z=a’p§'+aq*,
where @ is an imaginary cube root of unity, and p, g have the values
above assigned.
If the proposed equation has equal roots, the condition for their

. . »* la®
existence 18 T+ o= 0;
b a®
we' have then p=q=g = \/_. 77

therefore, p\s =q%= ,\/ - E;
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and the values of z are '

= i can/ T,

w:ap*+ a’q‘:: (a-l-a')\/ -_g = -\/ - g, s

the latter two being the equal pair.

38, It will be useful, in connexion with the general theory of equa-
tions, to add some remarks on the roots thus obtained for the equation
2*+ax4-b, for which purpose let

a=p+ ¢ n= apttargh, o= “'Pi"*' ag¥;

hence, #,+z;+2; =(1+a+$at) (p*+ qi'), and by the known pro-
perties of the roots of unity we have 14a+a*=0 ; therefore,

Z,+ 23+ 2,=0,
Again, xz,= ap}+ (ata?) p*q*+ a q*.
5, 2y =atp¥+(ata?) prgt + agf,

Ty 2= p* +(a+a*) p‘}q*+ q*; since o*=1, and a*=a.
Hence, '.r,w,+.r,w.+ 2yty=3(a+2") }%q*: - 3(pq)§' ,

Wi

which agrees with the supposition we had made, that (pq)} = -

. ’ 1
Thirdly, z@yz=p+(1+ata?) (¥ +p¥q)+q =p+g.
Again, from the equatious which express z, and x; we have
@ty = Ty = (et —a) p} , o, —Zs= (a— a*) q’} H

3

similarly o2~ 23 =(a—0?) p’l' y  o'ay=xy=(a*=—0a) ¢°,
Ly —azg=(a—1) p'} , ary —x,= (1- a)q’}.

Put —z,—r, instead of 7, in the second and third systems of gqua-
tions, and observing that a4 1= —a?, a*+1=-—aq, the second system
is the same as the first, and the third gives

@+Dztan=(a=Dpt; (@4+Data=1—a)g,

which, being multiplied by @, reproduces also the first system. -
But since a is oue of the imaginary cube roots of unity, we shall

obtain a second system of values of p*, q'} » by writing o', the other
imaginary cube root, for ain the first system ; viz.,

a¥r,— 15 =(a*—a) p‘} , at,—a;= (a=a?) g*,
: E
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which gives ar, —z,= (a—a?) p‘}, a'.t.—z,:(a'-—a)q*:

thus pl' and q* merely interchange valyes,
By cubing we have. ‘

o' —3azr'syt-3a’s,2% - 2,' S — 8(aVwa) p,

' —3a'z 1+ g2t —2'= 3(a'-a)q;
and if we suppose x =z, we should have p=gq, which would also
result from the suppositions #,=2, zy=a,; thus, the condition for
equal roots in the proposed cubic descends to the reducinf quadratic.
Noaw, the quantity under the sign of square root In the solution of the
quadratic, gives the condition for equal roats in that quadratic; there-
fore the quantity under the same sign in the solutiorn of a cubig, by
being equated with zero, gives the condition for two equal roots; in

a'
— 4 —=0. !
1tey
" We may, d posleriori, infer from these considerations the form of the
surds which enter the root, the condition for equal roots which results
by eliminating z between 2*+ax+3=0, and 3z*4a=0 is of two
dimensions in b, or of 6 ip reference to the roots} the sign of ﬁl , which
(]

fact, we have found this condition to be

comes over the form of this condition %—-I— g—; reduces it to 38 di-

mensions ; a cubic root on thi§ square root, added to or subtracted

.from anather term of 8 dimepajons, would veduce all {y gimilarity with

the roots.

With respect ta the arithmetical application of the solution of p ¢nbic
deduced from the preceding algebraical solution, it is easily seen that
it will he impracticable by the mere extraction of roots when all are
real (except two are equal), and practicable when two roots are ima-

-14¥/=3 ~1-J"3
3 g

we find p and ¢ iLn_aginary when z, and x, are real; but if 2, ﬁ', be of

ginary; for putting for a a® their values

the form m+m/—l , m—mn/—1, then the above expressions for p
~ and q are gasjly found to be real.

89. Given a*+ax*+ br+4c=0, to find z

Put m+§ =2, from whence we have

a a
' Ia’az’-az'-l--:?z-«-ﬁ,
2*  8a°
'— —p— —
atF - gty
bz e= ! bz..%l:,
c= c.

at ab 2a°
t - =0} s
Let a'=b 3 V=c 3t 37 s
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hence : s*+a'zt b'=0
therefore : 2= p*

whete p— 2+ \/ ("" “")
VD)

Now since LA .‘.‘1’ a
252 \6 " 27
b's at /b ag a‘
theyefore TS (-— 27) _< ) :
d 'n a—'=!)- a
and since o= g — o,
a® ¥ o' /b* o o
therefore =G <-§ —_ .§_+ §T> ;
®* d* ¢ ab a® /b at
whence —4—+-2—7-_Z-— _6——4_) +27< T)’
therefore R

=i S ““) -
3695 -2 G-

This apparently complicated value of # may be reduced to one of
great simplicity, never before noticed, to my knowledge, by the follow-
ing considerations :

If the given equation had two equal roots, the cubic in z would also
have two equal roots, the reducing quadratic would have two equal
roots, the term under the sign ,/ in the solution of that quadratic
would vanish ; therefore, the equating with zero the term under the
sign +/ in the solutlou of a cubic gives the condition for equal roots as
well as does the equation resulting by eliminating z between the pro-
posed and its first derived equatlon, their left hand members being of
the same dimensions, can only differ by a numerical factor ; in fact, let

¢ =a*+aa’+ by +c=0,
¢'=3s*+2ar+b =0,
the result of the elimination of & arranged according te the powers of

¢, with unity for the coefficient of the highest power of ¢ has been
found to be
2ac b*
o'+ 57 (2a*~90b) + o7 (4b—a") =0

this resuliing by the elunmahon of 7, between ¢==0 and ¢/=0, may
be represented in reference to this origin, by

¢, ¢#1=0.
2
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Now, comparing the quantity [¢, ¢] with that under the signy
in the above solution of the general cubic, we find the latter to be ex-
actly %[«ﬁ, ¢'}, differing only from the former in its numerical
factor.
Next suppose the given equation has 8 equal roots; then its left

member is a perfect cube, and we get .r=—g-; the total quantity

under the sign {.. ..}* in the general solution must therefore
vanish, but the part of this under the sign ,/ already vanishes from
the condition of two equal roots ; therefore, the part outside ./ being
equated to zero, gives the additional condition necessary for a 3rd
equal root, and being of the same dimensions, must be equivalent to
that obtained by eliminating  between the proposed and its second
derived, differing only by a numerical factor ; in fact,
¢ =a*+art+br4c=0,

gives @'"=62+42a;

]
whence [¢p, ¢"] = c— ‘-:—:3 + ;—‘;— , making always the coefficient of

the highest power of ¢ unity : now, by comparing this with the part
outside the sign 4/ in the cubic radicals, we find that part exactly equal

to % [¢, ¢"], thus differing only by a numerical factor ; the actual

solution in this form is remarkably expressive.
If ¢=a*+a2*+bx+c=0,

then & = 5+ {3 10"] + 3416 #1 + {31991 -3V 1411

The quantities [¢, ¢'}, [¢, @] are readily expressed in symbolical
functions of the roots; let @, 3, y be the roots of ¢ (#)=0, then the
condition for the coexistence of the equations ¢(r)=0, ¢'(z)=0 is
¢'(a).¢'(3).¢'(y)=0; and since the coefficient of c?, that is (z3y)* is
unity in [¢, ], we have

[ 91 =5 (). $B). ().
similarly  [¢, ¢”] =¢”é¢)_ .¢”éﬁ) .¢,/§Y) ..
Now ¢/(a)=(a—B) (1), #(B)=(B-2) (B=1);
d(@)=(r—a) (y—B);
therefore [ ] = g {(a= B) (==1) (B—7)}"
from whence we easily see the cause of the arithmetical failure when

a, ,B,y are real and unequal, and of its success when two of them are
imaginary,

e —— ——— ,‘___J
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: !,
Moreover, L§Q=z+§ =z -a-—.*'—gil;

therefore [, ¢l’]=§l;l Rz —pB=v)(2B—a—y) (2y—a—p); hence a,

B, and vy are simultaneously expressed by a symmetrical function of
the roots.

In like manner, for a quadratic if p=a?+4ar+b, ¢'=2r4-a, and z be
eliminated so that the coefficient of the highest power of b be unity, we

have [¢, ¢'] =b—§, r= —g+J -[¢, ¢, where. [¢, ¢’]=¢—'gi) .?g}_‘
= -(B-a)" T

40. In making arithmetical usage of the formula

RGN T IS/ (A
""{ gt (4 "'27)} i3~ (?"'2_7 }
in the equation 2*+ax+b, it will be sufficient to compute one of the
cubic surds, the other will be given by the equation
1
plaf= -2,
and the imaginary roots will be pa+-ga*, pa*+qa, or putting for z its

value, they become -1’?1 P_;_q_ ./ =3 ; from whence it follows, that

when p‘l" is rational (the coefficient @ being supposed also raiional) q'}
is rational, and therefore the part of the imaginary roots will be a

rational quantity multiplied byh/ —8. Now, since a cubic equation
may be formed in which the surd ‘part of the imaginary roots
is any whatever, if we suppose it irreducible to /-8, it follows that

1
p* cannot be rational; nor, consequently, ¢¥, and yet their sum may be
rational, for its value is double the real part of the imaginary roots with
a contrary sign ; therefore, though the sum of two irreducible quadratic
surds cannot be rational the sum of two cubic surds may.
. We give an example.

Let l+«/——T, 1—4=T, and —2 be the roots ;
a_, 8 _100 .
277 217 2

7 27 .
$ Jm————r -
10 10 '
-T='\/-—2+——— <2+-———)=-—2"
, AN
but since it has been proved that

(6 $1= — g {(@=P)* (= (B=7'h:

it is visible that when the parts real and imaginary of @, (3, y are com-
mensurate, or do not involve ¥/ 3, then '3 will enter in the summable
cubic surds,

b!
then a=-—2, b=+4, z-l-
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BIQUADRATIC EQUATIONS.

41. The method of Thomas Simpson, an analyst of first-rate genius,
affords perhaps the most direct und easy solution of the biquadratic
ever given ; with slight variation it is as follows—

QGiven z* 4 ax®*+by* cx+d=0, to find x.

Add to each side a quadratic function Bz*+Cz+D, and let B, C, D
be 80 determined that both sides may be exact squares ; then, extracting
the square root, we shall have two quadratic equations to determine the
four values of x.

Thus, 2¢+ aa®+ (b+ B)s*+-(c+ C)z+ (d+ D)=Bz*+Czx+D.
The second side will be a complete square of 4BD=Cs, ... (1).

L]
The first side may be compared with (.zﬂ+ -;—.r + m) , Or
* 8
rtar*+( 2m + -%)z‘+am+m’;

. .
whence B=2m+(%-b>, C=am—-c¢, D=m'=d.

The equation (1) serves to determine m, as it gives

'{m +%<%: - b)} o (m*=d) =%(am-c)'.

b ac & d/fa
Or, """T’”"*‘(T"d ""'{“e"" -s('z‘ )}=°-

m being known from this cubic, B, C, D are known by the equations
above given, and extracting the square root we have

o+ -;-a+m== t WB.2+yD),

which furnishes two quadratie equations for finding a.

42. We shall now give Euler's method, previously showing the rea- -
son which justifies the assumption for the form of the roots.

Let 2*--ar*+ba* 4 cd+ d=0.

The rational part of the root, as has been shown before, must be

- %; put therefore z = —%+z, whence

#4a'2* 4 b'z4 =0,

3 ‘ab  a® ac  ba* Sat
where @'=b— —g*, b=c—— 4 —, =d——t o= —,
g% =gt d=d-gt 555

Suppose the rools of this equation are z,, z,, 2, z, and that we seek
another equation of which the roots are the sums of these taken two and
two ; then, since z,+2z,42,+2,=0, we have

(214 25) = — (2, + 2), (Bt 25)= = (2t 2), z,+2=—(z+2).
Hence, though the required equation would have 6 dimensions, yet
since there corresponds to each of its roots another with a contrary sign,
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it must be deficient of -any terms involving odd powers of the unknown
quantity, and it may therefore be reduced to half the dimensions; in
other words, its 6 roots are the square roots of the roots of a cubic.

Let 4p, 4q, 47 be the roots of this cubi¢; hence

Byt a= t?&’i st 2= IQQ,;;
2+ 2zy= i2~/q 2yt 2= q:2~/¢-i
otz +oWr z,+z.=1:¢~/v-':

Add these ‘equations together, observing that g, 2z,+ z,+2,=0, we
will find, on dividing by 8, that

2=+ Wp+Vg+4r)

whence  z,=F(Wp-Ng—+r), " since z,+2z,=2p.
2=t (Wp-g+41)
=k (Vp4+/g—ir).

" Buch is the reason of the assumption, z = /p+Aq+r, where p, ¢,
r are the roots of a cubic equation, vig.:—

y"+Ay'+By+C=0,
in which p+q+r=—A} pg+pr+¢r=B; pgr=—C.
Squaring the assumed value of z, we have
' 8+ Az y/(py)+ 8/ (pr) + 2/ (gr) 3
and apain squaring,
(*+A) - 4B=8(pgr) (Vp+VT+Vr)=BJ(=C).15;
therefore £ 4-9As* -8 ¥ =C.s+(A'—4B)=0;
whence, by comparison with the given equation fn s,

o L ¥ o e d
A=gs C=-g B=gg—7i,

the reduting cubic is therefore "
o a’ y .‘
RAurs ""(“4‘ “")‘4 ~gl}

and since Vp . Wgs J::./-—C:——g-,, the products of these surds

are under the condition of having the contrary sign to b/, and the other
roots are easily found by observing this condition to,be

sexp—g—r
= —6 + J«; - 4;
z==np -y +¥r; .
and sit.xce z= —;-i- z, its four values are_thus completely determined,
5

43. We come now to an interesting examination of the quantities
influenced by the different surds in the complete expression for the root
of the biquadratic, showing first, by d prioré refieotions, what they may
be expected to be.

The form of the root, or its simplest type, is
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r= = THJPHYQEVRIHFIC o DY (PH

+J{P+.... }
the blank spaces being occupied with the same quantities Q, R, affected
by the quadratic and cubic roots of unity, in the forms already shown
in the solution of a cubic.

What do the quantities P, Q, R signify in connexion with the pro-
posed biquadratic? by what formula may they be expressed ?

Let ¢ = a*+4-ar*+ba*+cz+d.
¢ = 4s*+3az*+2bzx+c.
¢" = 12z*+ 6az+2b.
¢"=24z 4 6a.
And let the equation resulting by the elimination of x between ¢p=0
and ¢/==0 be represented by [¢, ¢/], that between ¢/=0 and ¢/'=0 by
[¢', ¢"], and that between ¢”"=0 and ¢"’=0 by [¢", ¢'"].

If the proposed equation had two equal roots the reducing cubic
would have two equal roots; for the roots of the latter squared are
linear functions of the roots of the former, hence the equation R=0 and
[¢, ¢'1=0, of the same degree, imply the same condition, and therefore
R ‘can differ from [¢, ¢'] only by a numerical multiplier.

If the biquadratic had three equal roots, the cubic should have the
same number of equal roots; the additional conditions necessary for
which is, as we have seen, Q=0; and Q, like /R, is of 6 dimensions.

- Now an equation can be formed of six dimensions arranged according
to the powers of ¢(z), which shall be equivalent to the equation
@¢'(2)=0; that is, which shall express the coexistence of two equal
roots. Representing this equation by

{¢"@}+A{¢"(2)}*+ B¢ (2)+C=0,
it is evident that the condition C==0 will express the coexistence’of
three equal roots, and it will be only necessary to calculate this terin;
we will first show how to form the equation.

Let x,==ay, then ¢'/(2,)=121,*+ 6az, 42
=12z\*—61r, (2.r,+a:.+.r.)+2b
=2b—62, (z,4-7)
=2b —6 (2 25+ 152,).
Similarly, if #,=x,, then ¢"(z,)=2b - 6 (x, x5+ z,2,).
‘Lastly, if a#,=ua,, then ¢'/(x;)=2b-6 (w,x.+.r,:c,) s
and it is easy to see conversely, that if

{¢"(2)—2b+6 (z,7,+2:2) } . {¢"(2) — 2b+6 (2,2, + 2,2) } .
{¢"(2)—2b+6 (2,744 2:7,) } =0,
there must exist a pair of equal roots.

If we now put ¢"(2)=0, we shall express the same condition as by
making Q=0, and one of the same dimensions, and we can easily verify
the inference that -

Q=W {b—8 (2,23 +%:7,) }. {0 -8 (x, 7+ 2e7)} . {63 (-7134"'!1‘:”-)}
this product is a symmetrical function of the roots; and may therefore
be expressed by the coefficients of the equation ; we shall represent it by

Q=VF[$, ¢/, ¢"].



-THE THEORY OF EQUATIONS. 57

The characters between the brackets express the function from which
Q is formed ; the vanishing of Q being a condition of their co-existence,

For the existence of four equal roots the additional eondition P=0
is necessary and sufficient ; P therefore is of the same dimensions and
expresses the same condition as [¢", ¢/''], when the latter is equated to
zero ; hence P=F'[¢",d"].

Those who may desire to follow on a more extended scale this mode
of considering the solutions of algebraical equations are referred to a
separate Memoir which the author has published* on this subjeet, and
in which are given all the factors of the constituent parts of the roots of
equations as far as the 5th degree inclusive.

44. The roots of the reducing cubic are functions of the roots of the
proposed biquadratic, and we shall terminate our observations on the
solution of equations of inferior degrees with the consequences which

- follow from this consideration.

Let z,, x4, @, x, be the four roots of the biquadratic.
a*+ax®+ bat+ cx+4+d=0.

That is, | #=— J+ap-+ip+ir
a
a=—=3+dp—Jg-r.

o= =St

,
ra=—§-~/p-~/q+ Jr.

Hence 4/p=2z2,+ 22+ a=x--1y—2y—x,,
4/q=2x,+2z,+ a=z,+ 1.~ 23— 7,
4Jr=214 22+ a=2,+ 24— Ty — Ty

Therefore p—g=(/p+9) Wp—v9) ='} (11 =2,) (23—3).
p-'=(~/}’+~h‘) (A/P"'/") =% (2, —a3) (29— ).
g=r=Watyr) W= = 3 =) (@ =2).

Now the quantity which is under the final square root inthe solution
of a cubic is—(p—q)* (p—r)* (¢—7)*, therefore the same quantity in
the biquadratic is

= (2, = 2,)* (2 — 2)* (2, = 2)* (24—5)* (22— 7)) (27— )",
Thus the quantity under the sign of the final square root in the

second, third, and fourth degrees is the product of the squares of the
differences of the roots multiplied by constants peculiar to each degree.

In like manner the quantity Q is in the cubic proportional to .

(2p—q—r) (2¢—p—r) (2r—p—q) ; it follows therefore that the fac-
tors of Q in the biquadratic beside a numerical constant are

* Phil, Trans, 1837, Part I
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(2.~ 2) (=x)+ (0~ B) (8,2, »
(o= xy) (72 —2) + (2,—8) (n—2y),
(@) =Xg) (Fe=x0) + (% = 2y) (Fs=~2y),

which agree with those found in the preceding article.

45, The quantity which is under the final square root

P m=ldd)

= = g (@ a2 (=) (B 2 (e’

where z,, Z,, & a, are the roots of the biquadratie, is now to be dis-
cussed. -
If all the roots are possible, this quantity is obviously negative, and
the solution ceases to be arithmetically practicable.
Suppose two possible, as x,, z,, and two impossible, as
. 'rymmAn /—1, zmm—n J=1.
Then (&, — ) (x.-.f.)'t:l(m-w)’+n' 1
(19— )" (23— )= (M—ﬁ)'-l-n'}’,
@ —20) (B—x)*'= —4n'(a-0)",
in which case —-1—12-' [ff.fl.] is positive.
Lastly, if x,=m’+n’J =1, ay=m/—n'J-1, v =m+n J= 1,
- i=Mme—-n 4 -1. ' .
Then (2,—2,)* (23—, )t=16m3n"",
(7 —csg' (2y—ad*= l (m' = m)*+(n' —mn)'}",
(@, —=2)* (Zg—35)*={ (m' "m)’+(n/+n)2}’;

and therefore — %. [¢,¢'] is here negative,

The numerical solution is thus confined to the case where two roots,
and two only, are possible, always excepting the cases of equal roots.

Several writers have fallen into errors with respect to the proper
roots of unity which form the coefficients of ¥p, ¥g, Jr, in the four
roots of the biquadratic; the simple rule to wvoid error is, « preserve
’ «/p x~/p x~/r always of a sign contrary to 8c+a (4*—4b),” for this is

supposed to be the case in the solution. 4 :

It is easy to show that the method of Thomas Simpson leads to the
same roots under different forms, and that the reduced cubic has all
its roots possible when the biquadratic has only all possible or all im-
possible roots.

ON THE ROOTS OF UNITY.

Prorosition XXI,

46. Two binomial equations of the form a*=1, y*=1, the degreés
a, b of which are prime to each other, have no common root beside
unity. T
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For a and b being prime to each other, two other integers, A and B,
may always be found such that aA «~bB=2t1;
an({ the equation x*==1 gives a*A=1,
. o YP=1 .. yP=]; )
therefore, if @ be a root common to both, we get by division at*4-*8=1],
whence a = 1*'=1: thus unity is the only rvot common to the
equations. .

-Paorosrnqu XXIIL

47, If a be any root of the equation 3™=1, except unity, and p any
number intermediate to 1 and m, the latter being supposed a prime
number, then o* shall be a different root of the same equation for all
the values of p between the above limits. '

First o is a root, for a being & root, we have a™=1, therefore (a*)"
=l1r=1.

Secondly, if p and ¢ are different numbers less thanm, a® and af are
different roots of the equation 2™=1; for if not ¢ be the greater num-
ber, and af=a”; therefore a'?=1, or a is algo a root of the equation
y*-*=1, which 18 impossible, since ¢ —p is less, and therefore prime
to.m. :

Corollary 1. Hence the m—1 different quantities a, a*, a?,.. .a™"*
are roots of the equation 2==1, and therefore with unity they contain
all its roots, so that the knowledge of any root different from unity is
sufficient for the formation of all the other roota,

Corollary 2. Unity is the only real root of the equation 2®=1 when
m is odd, and +1 and ~1 are the only real roots when even.

For if a>1, then a, a% a &c. go on increasing, and are therefore
all >1; and if a<1, then a, a*, a®, &c. go on decreasing, and must be
all <1; therefore, if a be a real quantity different from unity, whatever
b;its sign, we can never have a™=1, from which the proposition is
obvious.

ProrositTion XXIIIL.

48. Every rational function of a (where a is an imaginary root of
the equation 2#™==1, and m is prime) is reducible to the form
A4 Ba+4Ca®+Da’+......Pa™" :
For, first, if it contain no function of a as a divisor; that is, if it
an integer function of a, then, arranging it according to the powers of
a, any term involving powers higher than the (m —1)th powers may be
reduced to those which are lower, since a™z=1, a™‘'=zq, a™M=a?,
eveeca™=1, a™t'=aqa, &c.; and then the terms which contain like
powe(si's. being collected will change the form of the function into that
stated.

Secondly, if the given function be of a fractional form, as g{g—.’ where

F and ¢ denote integ’er functions, we can change its form to this equi~
F(a).¢(a®).¢(a*). .....¢p(a"") - .
valent . the denominator
* S5 @) Ha: . H D
of which is also a symmetrical function of all the roots of the equation
2®—=1==0, and is simply numerical as well as ¢(1) ; the expression thus

receives an integer form, which, as we have seen, i8 reducible to that
stated, '
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. If the denominator ¢(a) is a simple power of a, as a* in which case
n may be always made less than m, we may multiply both numerator
and denominator be ™%, and thus the denominator will become unity.
" 'Thirdly, if the function contain several fractious, as above, each being
separately reduced to the integer form, it is clear that the aggregate
may always be brought to the form given above.

In addition to these properties it is to be remembered, as before
mentioned, that the sum of the roots, or of their similar powers, positive
or negative, is always zero when the index is not divisible by m, and is
m when the index is equal to m or a multiple of it.

, Prorosrrion XXIV,

- 49. The roots of an equation of the form z*¥*:=1 (when a, b, c
are different prime numbers) are the terms of the product

Q+ata*+. ... 4a* ) A4+B4+B4.... 44
A+y+yt coer. 9, &e.
where a is a root of the equation a*=1,
. . =1,
1% . . =1,
&e.
and all different from unity. : :
First, it is clear they are roots of the given equation ; for since
a*=1, therefore a*%::-=1.
similarly go%-=1,
u..=l'
&ec.
Therefore the product of a, 8, v, &e., respectively raised to any powers,
is obviously a root of the proposed equation. ’
Secondly, all the roots after the first, which is unity, differ from it,
and from each other ; for suppose, if it may be possible, '
a™. By .. =a”B"y. ... ; then a™ ™. B* " 7, . =1,
all the indices in which may be supposed positive, as they can easily
be made so; thus, if 2—n' be negative, then 8*~ may be put in the
form (3*~®'-", where the index is necessarily positive, since n and n' are
both less than b.
" This being premised, and observing that a®=1, we should have
B P, ... =at= "),

. the left member of which is a root of the equation z>--=1, aud the
right, of the equation y*=1 ; now these equations cannot have a common
root, for a, b, ¢, &c. being prime numbers, @ must be prime to b.c....
Since, then, the_';)roduct mentioned in this proposition contains a, b,
¢ .... terms, all of them roots of the given equation, and all differing
from each other, these terms are themselves of necessity all the roots of
‘that equation.

50. Corollary. A similar proof evidently applies if @, b, ¢, &c. are
any powers of prime numbers; therefore, if the degree of a binomial
equation be any composite number, as u, we must decompose it into
its prime factors p=a*.8”.c”...... ; und having found all the roots
of the several equations

z'”:l, y’":l, z":l, &e
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then by taking every possible product of these roots, one selected from
each equation, the products thus resulting will be the roots of the
equation z*=1,

Lagrange, and after him other writers, have supposed that the solu-
tion of binowmial equations with composite indices are always reduced
to those with prime indices. This is an error; the reduction has not
yet been effected when the index is the power of a prime number : thus,

aecording to Lagrange, if @, being prime, 2 =1, take a, a root of the
equation =1, and  a root of the equation y*=a, and then all the -
terms of the product (I+a+a*4....a*') Q4+B+B+....8*"
are the roots of the proposed. 'T'his is true ; but how is 8 to be found ?

for since a=4/1, the equation y*=y1 has for its solution all the diffi-
culties of the proposed.

The same thing can be seen easily by the trigonometrical forms of
the roots of unity: thus, if 2** =1, we have

: m . (m ‘

x_cos(;z- 27 ) +4-1 sm(;z- . 2u->'
where 2% denotes the circumference of a circle of which the radius is
unity, and m is any number from 0 to ab—1 inclusive. Now a, b being

prime numbers, the proper fraction a—";- may be decomposed into two

proper fractions §+ bg' and the above value of z will then by trigono-
metry be the same as

m:{ oos(%’.%r + /=1 sin(’;’.&r)
(cos (%.21)+ f:I sin % . 2:)}

the first and second factors of which are respectively roots of the equa-
tions y°=1, z'=1, agreeably with the preceding algebraica'l theory ;

]

but if a=b, the frhction% is undecomposable, except m be @, or a mul-

tiple of a; in this case only @ of the roots are discoverable by the re-
duced equation z°*=1, the other roots (a) (a—1) in number remaining
unknown. This oversight I think it useful to point out, as Tam not
at present aware that any analyst has attempted the algebraical solu-
tion of binomial equations of which the indices are powers of primes.

SOLUTION OF BINOMIAL EQUATIONS OF PRIME
DEGREES.

51. It will be convenient to mention those properties of prime num-
bers on which depends the solution of this class of equations.

If p be a prime number, gnd @ a number prime to p, then a*'—1
will be divisible by p. 'This theorem was given by Fermat and proved
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by Euler; various demonstrations of it are now well known, and may
be found in nearly every treatise of the theory of numbers.

The same things supposed, if q be a number < p—1, and if a'~1
be divisible by p, then ¢ is a divisor of p—1; when a is such that no
numbers of this nature exist, @ is called a primitive root of p; there
may be several primitive roots of p, :

Thus, if p== 3 ¢=2.

.. 5 ..2,8

.. T .85,

.11 ..2,6,7,8.

.18 ..2,6,1,11.

. 17 ,.8,5,6,7,11, 12, 14.

.19 ..2 8, 10,13, 14, 15,

.23 ..5,7,10,11, 13, 14, 15, 17, 20, 21.

..29 ..2,8, 8, 10,11, 14,15,18,19, 21, 26, 27.
&e. &ec.

But in general the first number in the table may be taken with advan-
tage, being either 2 or 8 in so many cases, and is therefore easily found
by trial. B

If g is a primitive root of p, then every term of the series a, a', a*, a*,
« ... a’? leave different remainders when divided by p; for suppose
that, if possible, @™ and a™ two terms which leave the same remainder,
then a™ —a™ is divisible by p, and supposing m>m', we must have
a@™-™—1 divisible by p, the other factor a™ being prime to p. Now,
if this were the case, @ would not be a primitive root, contrary to
hypothesis.

ProrosrrioNn XXV,

52. If a be an imaginary root of the equation 2°=1, where p is a
prime number and @ a primitive root o p, then all the roots of the
equation are

9 ) -1
1, a% a* ah o ..., o1

For let any term of this series have a™ for its index; divide a™ by p,
let the quotient be ¢, and the remainder r; then, since &"=cp+r,
therefore @*" =(a*)’.a"=a"; and we have seen that, in the series of
remainders thus arising, 7 has all integer values from 1 to p—1,
inclusive, though not in the order of the natural numbers, The above
series differs only from the following in the arrangement of the term,
viz. : 1, a, d, a® a'......a",
which, by the preceding article, are all the roots of the proposed equa-
tion. It is easily seen that a®”" is the same as a.

53. Problem 9. The roots of the equation z*=1 being (besides unity)
the series a o, o, o, o, .....a"" ‘
and the roots of the equation'y*~*==1 being represented by the series

1, o, &% & c00oc 0P,
it is required to find the sum of the products of the corresponding
terms in both series.

I‘t Vaa-l-u. ‘+N'!a.’ +U.oﬂ.. o‘v' eve 'i"d’.'o“r.,
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then, first, V*=! is such a function of the quantities a, a*, o', &c. as
not o change when a°is put for a3 for let V become V,, when «° is
put for a, we readily see that, sinee az=w*~'a®", therefore V= 0uV;;
whence VP-'=V ),

And in like manner, if any other two of the same series of quantities
be put the one for the other, which is equivalent to substituting some
term of the series for a, then V?-! will always remain unaltered. -

Now, in raising V to this power, wherever w receives an index higher
than p ~ 2 we may depress it, since w?'=1, w**=w, &c.; hence V?-! js
of the form A,+wA;+w*Ay+......+w?"A,_,, which being a func-
tinm that does not change when a° a*', &c. are put for a, the com-
ponent functions A, Ay, . . « A,_; must clearly have the same property.

Suppose A,, Ay, &c. actually expressed in terms of the roots as; a*,
&ec. (and it is clear they may also be expressed in terms of the same
roots in a different order, viz.: a, a% .. ...a?"); let, therefore,

=+ batcat+dat.... .p.a"-'.
Put now a® for a; und since A, should not change,
A=a,+ bla'-!-c,a" Feivene +p,a"'",
whence we see, by comparing bhath, that ,=¢,, c;=d,, ,, . pi=b,;
hence A=a,+b (atasta’.....a®)
where a, is the term free from a, and b, is the coefficient of any power

of a below p which we may choose to select, and are therefore known
numbers.

Now, since l+ata’+.....q°"'=0; this gives
A=a,—b,; ot
similarly, Ay=ay—by, &e.

hence V> is perfectly known, and from thence V,. Moreover, since
p—1 is a composite number, we may, by decompesing it into its prime
factors, reduce still lower the roots of unity required in the extraction
of the value of V.

54, Problem 10, To find all the roots of the equation 2*=1, when
p is a prime number,

Let 1, oy ws, @y +« o o o0, be the roots of the equation y*'=1,
and let Vi=a+ a*+a +a'f. Foereota®,
Vi=a4w,a+ oY o' +o? P +wl"'"a"",

Vi=a+ wa®+ ot a® +w,’a" B I . il

L) L] ’ L *

Vya=a+tw, 0"t o,y P R a"-’,

where V, is manifestly = — 1, and V,, V, are derived from V, by
writing wy, w;, &c. for w, and the calculation of V,, as in the last prob-
lJem, determines all the others.

Then by the properties of the roots of unity already mentioned, we



64

have

Thus all the roots are known.
’Illf’ﬁ f:)lr example,-we apply this method to the equation z*=1, we
will fin

da=—1+4/5+ J(—=15420/-1)4 Y(~15-20/=1).
The rational part in the roots of an equation of any degree is the

coefficient of the second term with a changed sign divided by the
index of the first; and in the present instance, a, a*, a®, !, are the

roots of the equation 2

ingly, —

55. This- process admits of a simplification, since p~1 being a
composite number, if ¢, b, be its prime factors, we may take for w a
root of the equation 2°=1 different from unity ; this root will mani-
festly be common to the equation y*~'=1.

+ Then V will be composed of b groups of terms in which the powers
of w will recur in the same order, and which enjoy common properties

THE THEORY OF EQUATIONS, 1
V°+V|+V|+ ° 0-...000; +v'.. =(P—l) a"
Vot w? ' Vit wf'Vet. .. +'l’p-r‘ VM=(p =Da*, -

Vot ol Vit ol Vit oo o 0, V, o=(p—1)a",
&c. &c.

—: =s'42*+a*+2+1 =0, and accord-

X =

i- is the rational part of its roots.

with V; thus if

(b=1)e
a* R

Uo=a“.-i-a" +a“~ RN o
U‘=a¢ +u¢0+l+a.ll+l Foennns +a.(b—l).+| ..

U= ot + a"cﬂ-l-a"“ + s +a'o-')m‘,

€0 000 ¢ 0 000 co000v 00 Q000 0s 0000t

U,_.:a‘c-l-l- a™! +a""-' +.. o

Then V becomes Uy+oU,+w'Ug+....0"'U,_,.

Ve will by the same reasoning be a function not changing when U,
is changed to U,, U, to U,, &ec., which is precisely the same as
changing a into a®; this is obvious by inspection of the formule above
given for U,, U,, &c., and by adding the ¢ values of V thus deduced,
multiplied respectively by the corresponding cth roots of unity U,, U,, -
&c., will obviously be found in a manner strictly analogous to that of
the previous process for finding a, a%, &c. ‘

. Next, to deduce from hence the values of a, a*, &c., m:;ke

U= a+w’a"‘ + N” a"u+‘ XN + l/kl ﬂﬂ(‘-})..’

where «' is & root of the equation #*==1; and it is clear by similar

reasoning that U? is a function of a, a"', &c., when for a, o ... is
substituted ; U® will then, like V*=! in the problem before the last, be

completely known, and from thence, as in the last problem, a, a“.' » &e.
are readily deduced.
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Gauss was the first who took advautage of the properties of prime
numbers to make the indices of the different roots of unity proceed in
geometrical progression, and from that he deduced the solution of
binomial equations of prime degrees ; the preceding theory, founded on
the same idea, and remarkable for simplicity and symmetry, is due to
the great analyst, Lagrange.

The same process is easily extended to the cases where w —1 has
several prime factors.

Example 1. Given 2*~1=0.

Here p.—1 =4, therefore, c=2, =2, and w as well as o' is a root
of the equation y*=1 (which is common to y*=1. The primitive root
for 5 is also 2; we have, therefore,

V=a4twa'+wa? 4w (a being a root of *=1)
=(a+a') +w(a'+2%)
~ =U,+ul,.
Hence, Vi=(U2+U;»)+20U,U,.

Now since U=a+a'; Ul=a4a*+2,
and since U=at+a®; Ul=a‘4+a+2,
therefore, UM Ul=4+ata*+a’t+at=3;
and UU,=a’+a+a‘'4a'=-1:
whence, Vi=3-—-2w.

Put for w its value —1, and form the equations for Vo, V,.
Hence =ata'+ta 4o’ =-1=U+U,; .
4 .=a+wa’+w’a" +w'a® =45=U,-U,.
therefore, 2U,==1+4,/5, 2U,=-1-=4/5.

Thus, Uy, U,, are found exactly by the steps indicated in the
general process,

Now, to deduce the values of a, a*' , &c., put as above directed,

U=a+4w'a", where w'=w=-1;

then U'=(a+w’a‘)' =o'+ a +2;
—1—=J5 '
“but a'tat=U= —12—‘/— y W=-2,
=B/ » T f=h=as
hence U= 5—2’/—’—; therefore, a—a‘= ,\/ ——2—‘—/-3— ,
-1 5
and ata'=U,= —-;i—-

whence @, o, are known; and similarly o*, o which differ only in
the signs of the radicals. '
?
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Example 2. a7—1=0.
Here, p—1=6, of which the factors are 2 and 3, and the least pri-
mitive root is 3 ; therefore the roots are of the form

la,a’.a,a"d"d" orl,a.a',a'a‘a‘a‘ observing
that «™=1, when m is integer.

- Take for w a root of the equation y*=1, and thercfore ! is a root

of the equation 2*=21.

.
R

. V=¢+wa'+w’a" +w”af' +uwio +w’d" , ‘
" =(ata*+ot) 4 w(@®+a'+a%),
=Up+wU,.
Now U'=(a"+a'+a)+2(*+ o +af),
Ul=(+&+a*)+2(*+atat),
therefore Ul+Ufl=—=1-2=-3;
similarly, U,U;=3-1=2,
therefore, V'=-844w; put now —1 for w.
Hence, U+U=-1, U,-U=/-17,
2U=—14 -7, 2U=-1-_T7.
It remains now to find e, o, o, from U,, U,;

put therefore, U=a+w'a®+ wat, |

then U=A,+ o' Ay 0'A,,

where A =4+ a4 6=T,46,
=3(a*+ a*+a)=3U,, .

A;=38(a"+a*4a*)=38U,.
—~1+,/-3 —1-y-8
’ 2

denote, in particular, the middle one, by o', and let Uy, U/, U/ be
the corresponding values of U; we have

a+a'+a'=1,,;

a+w'at 4 oftat=2/(U,%)}

at et 4 't = (U,
whence &, &c. are found by addition.

F.xamples for practice :
at-1=0, a"-1=0, a"—1=0.

Put now for o' its three values 1, , and

With respect to the last equation of the seventeenth degree, since
p—-1=16=2.2.2.2 its solution will depend only on quadratic surds,
and comparing the real and imaginary parts of the roots with

cos —m-lr+~/—l sin E;"T""
where m is any integer below 17, this being the trigonometrical form
of the roots, it ﬁ)llows that the division of the circumference of a circle
into 17 equal parts depends only on the solution of quadratic surds,
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and therefore may be effected by constructions, such as Euclid has
aiven in his fourth book of Elements, for the division of the circum-
ference into 5 equal parts ; when p=5, then p—1=4=2.2; thisis
the cause of the practicability of the latter by the right line and circle
only. ‘

(’.‘[)6.) On the uniform methods proposed for the solution of equations,

It is of great advantage in all branches of analysis to bind together
isolated methods of solving problems which are at bottom of the same
nature : the advancement of analysis has been principally thus achieved ;
classification to the chemist and naturalist generate science; compre-
hensive processes are the perfection of analysis.

Two are here selected of several methods proposed at various times
for the solution of equations, all of which in reality have much in com-
mon with either that given by Lagrange or that by Bezout, the first
distinguished by the symmetry of its processes, and the second by the
facility of its application.

Lagrange’s method (Berlin Memoirs, 1770, 1).

Let the roots of the proposed equation, of the nth degree, be denoted
by 2, g, @3 ....%,, and let o be one of the imaginary roots of the
equation y"=1; lastly, let

V=u 4wt +o'ryb ..o o o ta,,

At first sight the number of values of V* appears to be 1.2.3....n,
such being the number of possible permutations of z,, a5, ..... T
among each other, but in general they are reducible, for the changes
given by these permutations are the same as if the different powers of
w by which they are multiplied were permuted inter se.

Now the simultaneous change of x, into 4, &, into x,, x;intoa,,
z,_, into x,, and x, into z, evidently changes V into w*~'V; the simul-
taneous change of z, iuto x5, x5 into r,, &ec. changes V into w**V, and
so on ; consequently, the changes of V* are only 1.2.3....(n—1) in
number.

Let V=X, F+oX,+X;4..... +w;“X,._. H

the quantities X, X,, X;, &c. will evidently have the property of not
changing when , is changed to 2., 75 to &3, &c. simultaneously ; and
if we put for w the successive roots of unity, V* will take successive
values which we may represent by Vo*, V*, V. .....V,_ " where

Vo =4+ 24+ &+....+a,
Vi =04 0rg+ oG 4....4+ 0" ' 2,
Ve =a + o'ryt o'z, +.0. . F 0™ 02,

Via=a,4eo" ' p o2+ ... 008, 3

whence 2,, ¢, ....7,, will be known when X,, X,...X,,, are
known, because these determine Vo, V, ....V,_;.

V, is evidently the coefficient of the second term of the equation
with the sign changed ; and if we add these equations after multiplying
each by that power of unity which is supplementary to n, in reference
to that by which any root which we wish to find is actually multiplied
in these equations, we get

: F 2
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nr,=V,o+ V.+ Vat..oo4 V..,
Nry=Ve+ o'V, 4"V +....4 wV,_,,
My =Vo+ " *V,+u"*Vy f....+6'V,_,,
nry= Vot oV, 4V, +...... 40"V __,.
In seeking the quantities V,*, Vg*,...V._*, we distinguish the cases
of n being a primne or a composite number.
In the first case, suppose these quantities to be roots of the equation
v —avtt 0t — &e. =0,
Then a=V "+Vo4+ ....4+V._"
b=VrV 4V VS .V VN,
&c.
the quantities a, b, &c., by the various permutations of z, into x, . &ec.,
admit of 1.2.8...n—2 values ; the determination of the coefficients of
the reduced cquation depend theréfore on the solution of an equation
of this degree, which is higher than the proposed when n is auy prime
number > 8.
When z is a composite number we can take for w that root of unity
which is common to y"=1 and 2z = |, p being a factor of n : thus, as in

the binomial equations already treated, V will be composed of z groups,

and so will V*, by which each of these groups may be determined as
before, aud then the same process repeated for finding the actual roots,
using those roots of unity given when the other fuctor of z is the index.
Of the whole of this general process the preceding solution of binomial
equations is an examnple ; a few more will completely illustrate it.
Example. a*—Ar+B=0 roots r,, r; -
In this case w is a root of the equation y*=1 and
V=n+owa,
Vi=X, + wX, .
where X, = . + x4 = A'-2B,
X, =2z 2,=2B
Put for w its values 1, =1 .
Vi=X,+ X, =A?
Vi=X,-X,=A,—-4B
and by the gen:ral formule for the roots applied here
2n=V,+V,
2r,=V,—V,
(In all cases V, = A) : these are the known values of the roots.
Example 2. a*—Aa?4-Br+C roots x,, x;, Ty
Here w is a root of the equation 3*~1.=0 ’
V=uo, 4+ wzy + 0 24
Ve =X, + oX, + 0 X,
Xo=2a°+ 2 + a° + 62, 1; 74
X, =322y + 2 1, + 1,' 1)
X, =32t x, + 25 1y + 1,° 1)
X, X; ure the roots of a quadratic equation (the coefficients of
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which, depending generally on an equation of 1.2....,n=2 dimen-
sions, are here rational), this equation is easily formed, since X,+ X,
and X,X; are clearly symmetrical functions of the roots.
Then Vo=, + 1,
V=2, + ory + o',
Vi=a + o'ty 4 wr,

—144 =3
2

give 2, 4, 2,, V5 V3, being what V* becomes when

-1- 2t§ are successively put for unity.

(57.) The method for the general solution of equations given by
Bezout in the old Memoirs of the Institute, applies with uniformity
and comparative simplicity to several cases, and its processes have
been greatly improved by Mr. Lubbock in a MS. memoir, which he
has kindly permitted the author to consult; the processes of elimina-
tion between several unknown quantities of the first degree, are com-
pletely avoided in Mr. Lubbock’s method, which is here adopted.

Let ¢(x)=0 be un equatiou of n dimensions of which the roots are
sought. Moreover, let f(y)=0 be an equation of any given form and
of n dimensions in y, and lastly, let 2=F(y); the latter function
ought to contain n coefficients in order that the result of the elimina-
tion of y between f(¥)=0 and x—F ()=0 may be rendered identical
with ¢(z), which has n coeflicients; hence F(y) must be at least of
n—1 dimensions.

Now the equationi f(y)=0 being of n dimensions, and chosen at
pleasure, we may suppose its roots ¥, ¥s, ¥s.. . . . ¥ to be known quun-
tities. (See Art. 36 )

The result of the elimination, which will be the same as ¢(z), if we
suppose the coefficient of a* in the latter to be unity, is therefore

{z=F()} . {z=F@);} - {z—F@a)}..... {z=F(@.)}=¢(2)
Hence Log. {l F(y.)} + Log { ﬂ'.’})} +.o..
)

Log.{l F(-"")l = Log "’(‘)

-

in which expression all lhe loganlhms are to be cxpanded according
to the descending powers of x.

Now let Log. 51):1‘____'_ + % &ec. ad inf.
and let F(y,)+F(y,) +F(y,), c. =8,
{F)Y+{F(y)}*+ &e. =S8,

therefore —{ +-l- -S' .1 .?l + &e. } = ﬁ‘..i_A’ +‘::,

&c
comparing the ﬁrst n terms we ﬁnd

Si=—A, S;=-2A, S§;=-3A,..... S,=-nA,;
that is, we have n equations between the 2 unknown coefficients which
cuter the assumed function F(y); if the coefficients be thence deter-
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minable, the n values of = (which are the roots sought for the equation
¢(2)=0) will be z=F(y,), t==F(¥,)... .. #=F(y.), where the form
of the function F(y) has been determined by the above process.

The principal labour in, the application of this method arises in the
formation of the symmetrical functions denoted above by 8,, S,, S,, &c.;
this will obviously be most abridged when we take the function F(y)
of the lowest dimensions possible consistent with the number of con-~
stants in ¢(z), that is of n—1 dimensions; if taken of higher dimen-
sions, some of its terms would remain indeterminate, and we should
then be at liberty to impose a certain number of additional conditions
on them; butin the case where f(y)=0 is the binomial equation, y*—1,
which is chosen generally on account of the simplicity which it gives
to the functions S,, S,, &c. from the properties of the roots of unity
already demonstrated, such additional terms would be utterly useless,
since the function of y in this case, of whatever degree it may be, neces-
sarily sinks to one of (n—1) dimensions by Prop. XXIII. For these
reasons we shall take F(y) to be of (n—1) dimensions, and f(y) to
be y*—1 in the applications which follow.

Let F(y) =p+qy+ry*+ sy®+, &c. ; then putting for y the n roots of
unity in this series, and taking the sum, we find S,=np=—A,, there-

fore p= —%, and it is evident that A,, which is the first coefficient in

(=)
x"
hence we see, as before, that the rational part of the root of the equation
¢(x)=0 is that coefficient with its sign changed and divided by = ;
we see also that the application of the present method is facilitated by
previously taking away the second term, for then p=0, and we have
only n —1 quantities g, r, s, &c. to determine ; but no particular advan-
tage arises by taking away more than the second term, for such a change
would not alter the number of unknown quantities, and would but little

affect the manner in which they are involved.
Example (1.) ¢(z)=x*+az+b=0 -
f@)=y"—1=0 roots +1 and —1.
z=p+qy

therefore p(r)={z — (®+9 Y{e—(p-9)}
and comparing with the given form we have 2p=—a, p'—¢*=>

. 2
therefore p= -g q= (% -b)

a a?
whence x_—Ei'\/(T{ - b) ‘

Example (2.) ¢(z)=2*+ux+b=0
J@=y*—1=0; roots 1, o, o* )
r=qy+ry*

the expansion of , must be the coefficient of the second term in ¢)(7):

Therefore,
{z=(@+D)} {z—(qut+rv®)} « {z—(qu*+rw)}=2*+ax+b

U P S G N P8

&
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b 1 a
= Log. 1"'(.:0 .z-') =atoaya b

therefore (g+7)* + (qo+ 7)) + (qu*+rw)t = ~2a
(g+47) + (qutre?)® + (qgu*+rw)’ = -8
and observmg that 1+ o'+ w'=1, 14 &*+w*=38, &c. these equations

become
qr=~—a
F+r=-b;

from whence we easily find g and 7, as in the ordinary solution.

With respect to this method, it may be observed that when the equa-
tion f(y)=0 is of the binomial form, it no longer essentially differs
from Lagrange’s method, and when it is not of that form, it will not
generally lead to a soluuon, hence its advantage, if any, consists in
the mode of its application.

The problem of the algebraic solution of equations in finite surds
consists in reducing a polynomial to a binomial, or system of binomial
" equations : the last term of the binomial in equations of degrees higher
than the fourth is a demi-symmetrical function of the roots of the pro-
posed, which circumstance is due to the fact, that the roots of unity to
a corresponding degree do not enter in a perfectly symmetrical manner
in the form of all the roots of the proposed equation except in parmular
cases easily foreseen; such as in a 5® power we may have z,= Ja
+¥8 ze=wif/a + B ry=o* Yo+ o ¥B x, =0 Ya+ /B
T =w ya + w3/B in which  is used to represent one of the ima-
ginary fifth root of unity ; for the perfect symmetry ought to exist not
only with respect to w, w', %, o', «° (by the substitution of any of
which for another in the above formul& we produce another root,) but
also with respect to the interchange of @ and 3 (which also happens in
this case) : now as both these properties cannot exist when the roots of
unity have more than two imaginary roots, except in particular cases
such as the above, the deficiency of symmetry in the assumed form
ought necessarily to cause the reducing binomials to be demi-symme-
trical—such too is the actual form obtained in the Memoirs* before

uoted.
a Since the general form of all the roots in the case above mentioned
is included in the equation s=wy/a+w*JG, by merely putting for
all the fifth roots of unity successively, we find by taking the odd
powers

2= b+ 436D (o fatot P
or .1’—3(a[3)3' "= w'a 2a 8 +w a’ﬁ*
and #=(a+p) +6("at + ' gh). (wﬂ>*+10<«»a:+w‘ﬁ*) o
=(a+) + 5@B)* {2 —8(ap)’ &}-+10af)} a

therefore —5(a[3)“ .z’+5(a,3)* z=a+f3

where we see that the particular root of unity (w) employed disappears,
because of the symmetry of the roots when only one pair of the ima
. ginary roots of unity enters the formula for the roots; and the same

* Transactions of the R. S. 1837,
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thing is general for equations of any degree. Hence equations of the

form
+Ar4 4. A2+ B=0
are easy resolvable.

(58.) We can form the more general equation of which the roots
are r=wyfa+w" '3 B, r=w'Ya+e"?YB, r=w'}fatw"*/pB, &
(where v"=1) in a similar manner, this equation will be of n dimen-
sions, and if we make J/23=p we have by Art. 24. Ex. 1.

- n(n 8) , —_ n(n—4) (n— 5)

ik o I A 1.2.3
. C =a+ B

¥ Hence an equation of this form may be solved by putting the last
term with its sign changed equal to a+f, and the coefficient of the
second term divided by n will give p or ¥/af: these equations are
sufficient to determine a« and 3, and from thence all the roots of this
equation are known.

But according to the method of Art. 57, we may suppose this equa-
tion to arise from the elimination of w between the equations

z=wifate"! &Iﬂ and o"~1=0,

Now we may observe, that by the properties of the roots of uoity,
the sum of any odd power of the diflerent values of =z is zero, while in
any even power the middle terms repeated n times will alone remain
after the addition, all these powers being supposed less than 2. Hence

Sl_o S! znp Ss_() s‘_i_s.npi S'._.O So—6 .5. 41) &e.

Pt + &e.

which values being substituted in the Iognnthm:c expansion of the last
quoted article glves (wrmng unity for .t in that identity).

—"’P+ P+ P+&°}

(n 3) . n(n 4) (n=5) .
A v % P A

in which equation either series is supposed to be continued until p' is

¥

= Log {1 —np+—

raised to the power ?-'—;—l or g——l; but it is clear that the identity

thus true for this number of terms whatever n may be, would be also
true were both series continued ad infinitum : we thus find that

{l "p+n(n 3).,, 7'("-14;(:"5) s+&c_}

is a quantity mdependent of n,
In order to determine this quanti(y, suppose n== — 1, and it becomes

L4p+ 5. P g . P30t e,
Il 11 l 13 11385 '
=-2-{2 Ap+2°2.(4p°+ 27 2°2.(4pr+2°2°2°2. (4p)‘+&c}
P (£ 1.2 ,1 2.3 1.2.3.4

~1-J(1—4p)
=
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From this result the following remarkable expansions are easily de-
duced. :

{I—J(l 'i”—)}'=1+np+"('l’+3’ n(n+4) (n+5)

2 . .
2p LA VO B

ad inf. .
{l +4/(1=4p)
2P

ad inf.

nn-3) n(n—4) (n-5)
1.2 ° 1.2.3

}'= 1—np+ 20+ &e.

L, 4.5 5.6.7

1 —J1—4 3
—L——R=P+§. p’+'2—.8'~11'+§-'—ﬁ» P+ &e. ..

2p
# (59.) Scholium. There are some important trigonometrical series
which are intimately connected with the preceding, and upon which
some obscurity is allowed to remain in most treatises on that subject :
it will be therefore useful, though somewhat irregular, to consider them
here ; since simple algebra is sufficient to remove the difficulties which
surround them. Whatever may be the value of 2, we have generally

{1+J(1~4p)}~+ {l—J(l—-W)}'
2p 2p
n(n-8) , n(n—4)(—35)
1.2 7 1.2.8
"
+p‘+np"+‘r‘:i- ——"(;l;i)— .P'“+'-————'(H; t‘;————f’;"* )
where the general term of the first series is
n(n—m—1) (n-m—'))'....(n-2m+]) -
I.....2......8 ccceieeenum — =P
therefore when = is a positive intcger the cocfficient of (—p)™ will be

Log.

=l-np+ . p*+&e. ad inf.

PP +&e. ad inf.

1
zero as long as m is between n—1 and 7}—;—-—— or g+ 1 inclusive,
namely, 7%1 when 2 is odd, and ;—l+l when n is even ; these vanish-

ing terms occur for any integer value of n which is greater than 2:
thus if n=3 or 4 there is only one vanishing term; if n=>5 or 6 there
are two snch terms, and so on, Hence the number of terms of the
. . nt+l n
first scries which- precede the vanishing terms is -; or g +1 and
the succeeding terms do not again re-appear until m becomes equal to
or greater than 7. The successive terms which then emerge are ex-
actly equal to the first, second, third, &e. terms of the second scries
tuken with a contrary sign.
Thus the coefficient of

n.—1.-2......=(n-1) onct
= < o (=D=(~-1 =-1
? 1.2.8 c00iiieeeant (===
the cocflicient of
n,—2.—8. .....—(n+1)

1.2. 3...cee.(utl) =

HH= (=1)"", n=—n’

* ) J—
=
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the coefficient of

.+,_n.-3.—4 ..... «—(n+38) 1) (] e n.n4+3
=T e CUTEEDT .
_n.n+3
- 1.2 °
&e. &ec.

therefore the terms of the first series which emerge, after the vanishing
terms, are destroyed by the addition of the terms of the second series :
hence in the case of # being a positive integer we have

R

tinued only for ntl terms when n is odd, or g +1 terms when n is

2
even,

There is another case in which the series is terminating, namely,
when 7 is a negative integer, for then the second series contains va-
nishing terms, and those which succeed them are destroyed by the first
series,

But when 7 is not an integer, it is obvious that none of the coeffi-
cients in either series can vanish, neither can the terms of the second
series destroy by addition any terms of the first, since none of the in-
dices of p in the second are then integer, and all the indices in the first
are such ; we can however introduce the terms of the second in alter-
nate places amongst the first in the order of the increaring magnitude
of the indices of p, and the infinite series thus resulting will be the true

value of the expansion in 'this case: thus, let n=% then

o e RV

: . 1
1 = - (-
=1+I7*+§p+ %p*+-;;(2 8) p‘+§(2+3> pE &e.

i .

.2 7 1.2
1l gy L1 by 118 3
_.l+2 ‘(2p ) 2.4.(21) ) +ﬂ_.5'(2p,) + &e.

=J{1 +2p5'} a result which is obviously true.

Having thus obtained clear notions on the algebraical expansion of
the sum of the n™ powers of the roots of the equation a*— -+ p=0, we
may deduce the trigonometrical series for the cosine of the multiple arc
in terms of the powers of the cosine of the simple arc in the following

manner :—
Let p =-——1—— in the preceding equation, of which the roots will

4cos® 6
T e —1sin6 6 —J—1sino
then be —— 0+4 —1sin and — o/ = Lsin the sum of the
2cos0 2 cos0

2 cos n9
th i 1§ —— J 1 Y i
' powef's of whxlch is @oos o) by Demoivre's theorem, and substi
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-4p) )"
tuting in the series above given for the expansion of {li(zl__p)}

+ {l_—*/_2(l_:‘17.’2}-, and then multiplying both sides by (2 cos6)* we

find _
2 cos n6 = (2cos 9)* — n(2 cos 6)** + 7—‘9-;:23—) (2 cos 0)*4—&ec.
+ (2 cos )~ +n(2 cos )~ +"(1"—";,l) (2 c080)~" + &e.

n+1
2

or g-{-l terms, of the upper series for the positive value, and of

where if n be a positive or negative integer we are to take only

the lower for the negative, inasmuch as all the other terms of either
must vanish, or mutually strike out; but when n is not integer, the
whole of both series must be retained, but then these series are di-
vergent for real values of 6.

The other expansions for the trigonometrical functions of multiple
arcs being deduced from that which represents the cosine, it will be
unnecessary to follow them up in this place, having deduced the fun-
damental theorem applicable to every case, from algebraical principles.

For practice the reader may take also the cases of 4p =:,L- and

sin* 0
4p = sin® (20).

(60.) In general, if the monomials of the form assumed for the roots
of an equation are not transmulable both with respect to the quantities
under the surd signs, and with respect to the roots of unity employed,
these surds, on the inverse consideration, are not symmetrical functions of
the roots, and cannot therefore be expressed by the coefficients of the equa-
tion ; this in all cases is necessarily the criterion of the algebraic solu-
bility of equations. The form of expression for those which are reducible
to classes of a given form will be facilitated by expansions obtained in
that particular form ; for instance, the solutions commonly sought are
equivalent to the reduction of the equation to the sums of the roots of
equations of the form y*=a, y*=da', y"=d", &c., but any other sum
may, as far as analysis is concerned, be as legitimately adopted ; for
instance, the form may be the factorial y(y—£&) (y —2h) (y—84)....

(y—n—1.k) =a; instead then of arranging the left hand member of
equations in powers, we should arrange it.in functions of the same
nature with those of which the inverses are granted to be known ; such
is the true generalization of the problem of algebraic equatious; in
symbols it may be represented thus : to reduce the solution of the equa-
tion aF(x,0)+bF(z,1) + cF(2,2) +..... pF(zn) =0, (that is the
discovery of the simple relation of F(z,1) and F(2,0) ) to the conceded
solution of the equation aF(z,0) 4 BF(2n) = 0; in the case of fac-
torial equations the following theorem will be useful.

Theorem. Let us denote the product 2(x—4) (z—24k) (x—8k)....
(z—(n—1).h) of n factors in arithmetical progression [x]", then shall
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[z 431 = [ + nla~'y + "(nn_;l) [ (910

-1 -3 - i
+ 1,2(_,‘_737(;‘__2. [J‘J'-"'. [‘1/]' + &e. -~

a theorem analogous to the binomial and identical with it when £=0.
For let z represent any arbitrary quantity, then by the binomial
theorem we have
a(z=h)

:_ z .
(l+z)'-_l+h. z 4 N +

or adopting the notation suggested above for factorials

(1+z)7'=1+z.%+[—’-]-'. G)’-*- Lz T (IE‘>.+.....-.1-&0.

z(x—h) (z=2h) , .
12.3. 0 - té

1.2 1.2.3°
Similarly c [y .
< z_lyl* /N, [y T (5 )
L A z)+ ivs - (5)+ e

Now if the two series are mwltiplied together, the coefficient of

(/z_z) iu the product is evidently

n.(n—1)
1.2 °

———l'—“—ﬁ {0 +ale" . y+

Ly &e
1.2. 170y + e

sty
~ However, since that product is the same as (1+2)* it may in like
maunner be represented by the series

or § 4 EET (Y bl (55

. z t [+ y]" .
where the coefficient of the same power (h) is 123 ' the

. equating this expression with that before obtained gives the identity
announced in the theorem.

Example. Let [2]*+ar=b, or z(r—h)+ar=b
2
add to each side [g] then

R al_ a’]t : .
N RS R
a’|® a’l*
R or [x +.§] =b+ [;] ,

1] N
where [.r + g:\ denotes the same as (1 + g) (a' + g——, h) H

such in this case is the simple equation to which the proposed qua-
dratic is reducible.

Thus it will be seen that the solution of equations in the algebraical
sense cnly consists in reducing them to binomials of a particular form,
and that form has the advantage which contains only pure powers of
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the unknown quautity ; but the question admits of extension to an),
form of function in which @ may be regularly involved.

(61.) The early analysts (more particularly Tchirnhausen) have
been much occupied with methods for taking away the coefficients of
equations, and the same track has been pursued recently by Mr. Jer-
rard in his *“ Researches,” with a power of notation much called for
in the complicated involutions of the higher degrees, and most cre-
ditable to the inventor: but towards the solution of equations by the
reduction of polynomial to binomial equations—these or any other
proposed methods cannot advance nearer than the general methods of
Bezout (Mémoires de U'Acad. des Sciences, 1765). Nevertheless an
extended and close examination of the properties of what may be called
conjugate equations, that is, those mutually reducibie, or having ana-
logous relations to the analytical 7educed equation, would have more
value than as merely speculations. Like the properties of elliptic
functions, which, though not reducible to circalar or logarithmic, have
reducible differences, aud have most useful applications in the pure
and physical mathematics: so further researches into the surd tran-
scendants, which constitute the roots of equations of the higher degrees,
may not improbably remove some of the existing difficulties iu differ-
ential equations, and this surmise is only introduced to show that those
who have reaped less fruit from this class of researches than they have
bestowed labour, onght to turn their attention to extract valuable
results, though different from the object for which they originally
started. The reader who will cousult.a Memoir presented by the Au-
thor to the Royal Society, on the analysis of the roots of equations,
will see that many beautiful properties are couched in the surd ex-
pression alone of the roots.

/ (62.) On the Solution of Equations by Series. . )

The method for obtaining series for the roots of equations contained
in this article is taken from a Memoir communicated by the Author
to the Cambridge Philosophical Society, and may be found by referring
to the fourth volume of the I'ransactions of that body.

Let the given equation be arranged according to the powers of the
unknown quaantity x, and by division make the coefficient of the first
power of x to be unity.

Divide then the equation by £, and take the Naperian logarithm of
the quotient of its left member by the known formula
2 2 2
2 +3 4

Take the coefficient of i in this series, seeking what it is in each

Log. (1 + 2)=z- + &ec.

term ; this with its sign changed will be a root of the equation.
For let the equation be ¢(x)=0, and its roots o, B, 7, &e., then
d()=Ax—a) @—fB) (x—7) (..... &c.

where A is independent of .

Hence ¢(z) == A’ (x —4) (1 - -E-) (1.— %) :
where A=A . (=0B)(=%).e.ee.

Therefore ?—% = A’(l_— g)(l - %—)(1 - —5—)... o .A.. ,
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‘and Log. 22 = Log. A+ Log. (1 - -;‘—) + Log. (1 --;—)

+ Log. (1-57-)+.....

The only term in the right hand member which contains negative
powers of z is manifestly

o a 1 & 1 o
Log.(l-—- -——-‘”——-2-.— -3-.1—."‘&0.
“1) is —a«, which with a

The coefficient of - therefore in Log. —=

changed sign is a root of the equation.
(Example 1 ) Given z*+ax+b=0 to ﬁnd 2 root e.

Here d’—(-z—a+ +

Log. (“’(”)) =Log. (a)+ Log. (1 4z) where z= -(.r+ )

Hence — a = coefficient of -; in z—? +? + -—4— &ec.

Now the coefficient of -l- in z=-?-
x a
: ]
e e s e e e e e v e oin 2= —
3
..... . . .inz’:}ﬂ’_
&c. = &ec.

N | : -
and no term mvolvmg = appears in the even powers of 2.

b' 55 145

Hence a=— (—- +__ 4+ = 2
a‘l

Setee)

We can easily obtain, if we deslre it, the genernl term of the series;
thus, since 2®H =( z + 2)!-—!-!

;gnﬂ (2n.— l) (271 _2) (n + 2) bn+l
1 2. 3 4. ....8 Gun

»® 6.5 M 817.6 b
FtEy etaEr et )
We may observe that one root found by the surd solution is

SIES

- _fz_ ( 4b§

Coefiicient of - in

Thus o= - {-94,- ?4._

2
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1 4b 4b 1.1.8/4b\°
"’{2 i ( > 2.4.6<?>+&°'}
which expression is obwously identical with that above obtained.

Let S, be the nth term of either series, it is evident that
2n(2n—1) (2n—2).....(n+2) b

2. 3. 4. ... " a™%
(2n-2) (2n—=38).....(n+1) b

ad == g L Al @ '

2n(2n-1) b
n+).n " a* '

]

S, = -~

therefore S, = St

1
, -5 4
=——T~. —,.S._,

When n is sufﬁciently great, if 4b>a' S, will be > S,_, and there-
fore the series must in such case become divergent as the roots of the
equation become imaginary.,

Before leaving this example, we shall examine " which root of the
equation the series gives when convergent; let «, 8, be the two roots,

atpB=—a a3 =05 hence
_ af a'pt 2 a*p*
Root =t @t ey o

Let a beAthe least, then
Bﬁf_;= aﬁ(ﬁ +a)" =a(l Z 17 ﬁg ﬁ, &e. ad mj)

because the series between brackets being convergent, we may regard
it as strictly true when continued ad inf.

Again %““'ﬁ(“ﬁ) =o(F-3F +o5 & _
S e

hence if we add, all the terms mutually destroy except the first, and
therefore the series represents strictly the least root.

This series is therefore a discontinuous function of ,3: being rational,
it can only represent one of them at a time, though both are analyti-
cally involved in the same manner. If we suppose one of them, as a,
to be variable, and the second, B, to be constant, the variable will be
truly represented by the series, when it is less than the constant, and
the constant afterwards will be represented. For further information
on this subject, consult a Memoir by the Author, in Vol. 1V,, Camb,
Trans., with the title, ¢ First Memoir on the Inverse Method of
Definite Integrals.’

If the proposed equatlon @(2)=0 contains no term involving the
first power of #, we may put #=2+%, and seek z by the same method,
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or write the equation in the form z4+¢(x) —2=0 and expand the

Log. {1 + 4_’&%—_1'} and take the coefficient of -‘—:—

Example (2). Given +"+ar+5=0

Here a6 )—l+ (b+.z’)—l+-— .
suppose, Thercfore )
Root = coefficient of ~— in—Log. (1 +—> .
2 2
= 0 e e e il = — ! —z————l—.A—:— &e.

ar = 2 ° ar 3 " d?

that is, we must take the absolute term in — La,A the coeflicient of
. 1 2 . . 1 2 )
zin 5.5, the coeflicient of 2*in — A &c.
Now since z=b+2" it is clear that the only powers of x which
enter z, 2, 2% &c., are the nth, 2nth, &c.; hence, besides the absolute
. 2 . . 1 Pl
term in — =, we bave the coefficient of 2* in (—1)*+. e R

en4-1
of 2® in ~ ol -Z;;—l- &c. ; these are easily found, and collecting
them, we obtain
) b > 2u bt 3n(3n—1)0*
= ——— — &e.

a  (—ayt " 2.a 7 2.3(—a)*"
which includes the former example when n=2,
Example (3). To find a a root of the equation r=g¢"
We have here ¢ (1)=r—s**

therefore, « = co.ffic’ent of % in — Log. (1— :“)

€ being the Lase of Naperian jogarithms.

. l . Ell l ‘laa Elﬂ:
Hence a = coefficient of o in {;—--{- - ;.—-}- Y &c.}

2
Expand the exponential functiuns by the formzula,
l
&= e,
l+z+ + 123 &e

8'a® 4%q°
1.2.3 ' 1.2.8.4

a series of which we shall examine the divergence or convergence.
Represent the nth term by s,, we have .
(na)™" (nt1)'a

"= 1.2.3...(—D.n T T12.8... 0.4 1)

Whence a = 1+T9§ + &
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St n41\! n n+l> La< n+l)"

« @ = —

s, n n+l

Now (my:m,,‘ : ( )(‘")

st
<1l+1 + + i &e.
therefore ¢,,, < €as,; henoe the series is convergent when §a < J,

or when a < 5. We may observe that when a =% then both the

given equation x— & = 0, and the derived 1 —a =0 have a
common root, viz., x = &, therefore the given equation has then two
equal roots.

From thence also it follows that if ¢ < % then

-*(ad inf)
a.&
a"
a.§
2a 8'a* 4%q® .
£ = ldygtigztigsat &

Again, if we put a = %, we fiud the left memnber of this equation to
be merely €; which is obvious, by supposing the series of indices (o
terminate at any distauce, however remote.

2 3 4
 Heuce l“‘“ tieetiess Y T2sae

Example 4. To find the value of z, when z = ¢ &"

By the same rule we have for the required root,

a = coefficient ofl in = Log. (l —-2 . s“')

+, &ec.

c’ " l 0'4 -
2 F.E’“_-‘-!—i.?.ém,&c.

Now these exponentmls contaiu only such powers of = as are mul-

-......m-t“'+

. . . 1
tiples of n; and therefore the terms of this series, which contain 3

are the first, (n 4+ 1)th, (2r 4 1)th, &c., that is,
a= coeﬂicient of
1 o 1 -

1 IS
- - " (n+l)u - (2n+1)uy
rm z ol n-i-l Tyt + 2utl € &e.

= ctactty—— +l a® ..,+,+(3n+;) ¢ &e. (2“‘*‘) e,
2.
Corollary. I‘ut c 1, x=¢, therefore £=¢**", hence a=¢""
1 2u41 1 Ba+1) 1
therefore l—;“" P + —2—— . ;m“l' —2—'?— . ‘m &C
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or putting
. _qa) 142 Log.z 1 (1+8Log.2) 1
‘-—Z,f—l+z+_'2—'—- "z—'+ 2.3 o-z-‘ &e.

Ex. 5. Let 2*=a*; heuce it is required to expand a according to

the powers of l— Log. a.
Log a

Result. Let —=—=A. Then
] 8 Al ®
a= l+2 ‘+(3 A) +(4 A) + &ec.
2.8.4 \
This theorem is capable of a remarkable extension, as follows :—

Let £ (z), f'(2), f'(x), &c., represent any function and its succes
sive derived functions, and k any arbitrary quantity ; then

fe+D=r @+5. -0+ E promgiy 1B

f’”(w—Sk), &ec.
There are some particularities to be remarked in the application of this
theorem, for which I must refer to a memoir on the ¢ Theory of Ana-
lytical Operations,’ prepared for ‘the Royal Society by the Author.
(63.) To find the sum of m roots of an equation.
Let @ (z) =0, as before, be resolved into factors ; that is,

P()=A(r—a)(@—a) (@) . .  (T—an) (=)o o (2—a2) 5
heuce, é}: = A’ (l—%"-)(l —9-3)(1 —; l——) (z—a.+.). .
(I—a.),

when A and A’ are independent of .

Then Log. ?;7’ = Log. A+ Log. (l—g—')-}-Log. (1-%’)4-.

(4k)°
2.34°

Log. (1 —:—")-&-Log. (= atpy,) +Log. (@‘—a.+;)+. vee
1408‘- (1‘ - au)- A
Expand the Logarithms, and take the coefficient of l— at both sides,

Hence ay+ o+ o+ - . . +an = coefficient of —in —Log. —-* ¢(‘t) ;

Example 1. To find the sum of two roots of the equation
*4+ar+ b 0.

The required sum is the coefficient of -; in —Log. (l+%+—2-.), that

is, —a, which we know by other considerations.
Esxample 2. To find the sum of n—1 roots of the equation

& +aa:""+b=:0. i
The required sum is the coefficient of in —Log. (x+a+ ), or the ‘
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. 1 b
same in —{;(m+x__> 2a'(x+'c‘“) -i-3 . (4 —5 ) &c}, and

it is obvious that the quantity ! a.ppears only in the (n— 1)“‘ and suc-

ceeding terms. 'This sum is therefore the coefficient of m the fol-

lowing series, vtz
Oyt ) gt ) ).
(n— l) a! ! 2n-1)a"* F Rl

Its value therefore is— , ‘
b 2n—2 b2 (3n-2)(83n—3) b

(—a)"‘l 2 (-a)r! 2.3 °(—~a)°""—&c°
When =2 we get the root of the quadratic before found. When z=3
2
it gives ai— 25 +7—b-—&c as the sum of two roots of the cubic a®
b 26’ b° '
+a2*+b=0; and therefore the third root is -—a-——+ 7 —<&e.

By this theorem we can find all the roots of the equntxon @ (z)=0;
for we have only to subtract the sum of m—1 roots from that of 7 to
find the mth. The reader must refer to the Memoirs already men-
tioned to see that this method gives the m (numerically) least roots,
not considering the sign.

Example 3. a™=¢",

Here the required sum is the coefficient of in —Log @ ——) the
value of which, it is easily seen, is—
am™! + @a)™! n (8 )™
1.2...(m=1)"1.2...(2m—1) " 1.2...3m—-1)’
The sum of m~1 roots is got by putting the equation under the form
n—l_.E(ﬂ——)

&e.

and repealting this process.

(64.) To find any given rational and mteg‘er function of a root of an
algebraical equation.

Let ¢ (£)=0 be the proposed equation, of which suppose the roots
to be o, 3, v, &c.; then, C denoting a quantity independent of z, we
must have—

(/)] (a.?p"‘c (=) (@—P)(x~y) .....
( ) ANa=2)a-2
and —=C'(1 a:)(l a (1 Y)..... :

therefore Log. U:Log. C'+ Log. (1..2)4; Log. (1_§>‘

_z =Loex. ¢'—(* 1, 1a 1

+Log. (1 )+ =Log. C ( 2.zﬂ+3a:“ cee
1 a2

~(grtyte ) 25 (rgrEt)

- &c. &c, :

a2
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in which expansion it is visible that the negative powers of x are multi-

a'

plied by the positive powers of «, and the multiplier of ;l'_ is -0 in
)

other words, o" is the coeflicient of -:-: in the expansion of the function

-nz*! . %‘Q ; and, making an accented quantity represent the
derived function of that quautity relative to #, we find a"— coefficient

| I $(r)
of; in —(z")' Log. rat

Hence, if f(«) be any function consisting of the positive and integer
powers of a, excluding the absolute term, it follows that

. 1. :
Jf(a) =coefficient of S in —f(x) Log. ‘é—‘(:—);

for this is only to take n successively equal to 1, 2, 3, &c., in the for-
mula above found, and, multiplying by the proper coefficients in the
expansion of £ (), to add together the results.

Example 1. What series represeats the square of the least root of
the equation 2*+az4b=0?

The given function being z*, the derived function is 2z, and there-

b :
fore a*= coefficient of % in ——'Z.t'Log.{l +‘—ll(z+;>}; that is, in

1 b 1 LA | AT } .
—2z{z<x+;)—%,(\x+;) +ﬁw+w) &e. s henfe, in the de-

X . 1.
velopment between the brackets we must take the coefficient of o in

the second, fourth, sixth, &c. terms, and multiply their sum by —2.
We thus find the required series to be
‘ b 2 bHbh
—a; —‘Z‘— ?-[-&L. ;

' 1
For the coefficient of et in the (2n)th termn of the above-written series,

" _ 4 2u(2n—-1)......(0)
C2na*” 1.2 .....041

- 26 ()(n+1)....(2n=1)

a "  2.8..... a+l

, and therefore the con;esponding term

of the required series is

Example 2. To find the value of 2* in the equation x=ce".

£ 200z 3cyar]
Since — Log. (1 -c: )=ﬂ‘;+ ic—:-:: + }c ;, +&c., therefore we

.

. \ . 1 :
must select in this case the coeflicient of p from the terms of the series

{l e 1 c'+'5('+‘)“ l c=+t‘(u+l)n
"' "z '+n+l' x* 1§+2' at ! c},

amaa s oa -
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which is easily found to be

& +nac™ti+2 (a+2)a*c'+'+" (”""3)

@ &,

If, instead of dmdmg ¢(x) by z, we dmde hy 2™, it is plam that
the same method shows that the sum of one and the same function of m

of roots is found by subtracting the coefficient of % in the expansion of

J'(x) Log ¢( ) from mf(o)

By sub(ractmg‘ the sum so found for m roots from that corresponding
to m+-1 roots, we may obtain successively the given function of each
root of the equation.

When this function is not developable in positive iuteger powers of
x, we may apply the same method by making r==~k+ z, leaving % arbi-
trary, and considering the transformed equatiori as one in which 2 is
the unknown quantity.

We murst have recourse to the same expedient when there is no term

@in the proposed equation with the same exponent as that power of r
by which we are to divide; for the logarithmic expansion in z then
fails.

(65.) Problem. If ¢(y) represent any given function of y, it is re-
quired to expand according to the powers of k any other given rational
and entire function of w, as f(y), y being connected with % by the

equation
y=a+ké(y).
Put y=14«, and this equation becomes
x—kd(a+41)=0;
und we are to find the expansion of f(y), or f(a+ ).
The principles explained in the preceding articles give

f(y) —f(a)=coefficient of i in -f (a+ z) Log. {l—f—:¢(« +1) },

where f(@) is subtracted, being the absolute term.
Let y,(a) be put for abridgment for f (a).¢(a), ¥.(a) for

J(a).(pa), &c., hence f(y)=f(a)+ the coefficient of P in the following
series, Viz.
vt +i. £ttt S yatn, e, |
and, expanding the functions by the general formula
vf(a+w)=w(«)+rw'(a)+f—;~v”(a)+&c-,
we find
SW)=S(a)+ky.(a) +—' {¥s(a)}' + {‘P-(a)}” &e.

Corollary. When f(y) =y, then J! (a)....l, and ¥i(e)=¢(a), V:la)
={¢(a)}, &c., and therefore

y=athpla)+ o (B} + oo (B, b
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These theorems are due to Lagrange, but were ohtained by him
from the calculus of derived functions.

For other similar but more extensive theorems, as comprehending
several roots of the equation, it will be here sufficient to refer to the -
Memoir, already mentioned, on the solution of algebraical equations,
in the Cambridge Phllosophlcal Transactions.

A remarkable inference relative to series of the above form is that, if
we multiply two of them, the product will be of a similar form ; and so
will the quotient when one of them is divided by the other, the funda-
mental equation y =a+ kp(y) being common to all. For, if F(y) be
another function of ¥, and II(y)=f(y). F(y J» we have simultanequsly

FO=A@)+h(@)-$(@) + 555 (£ (@). (Bay'}
+2-T4" {f(a). (¢a)°.}"+&°-
F(y)= F(a)+kF '(a).p(a) + {F '(a). (pa)'}
2 3 4{F,(a) (¢a)8}ll +&c
(y)=M(a)+k'(a). ¢(a)+ {H'(d) ($a)’}

e @0} + e,

The third series is therefore the product of the first and second, and
the second is the quotient of the first divided by the third. This pro-
perty may be easily verified by actual multlpllcatnon

(66.) Problem XII. To find the sum of the inverse nth powers of the
roots of the equation z=a + Ad(z).

Let a, 3, v, &c. be the roots of the equation; then, C denoting a
quantity independent of &, and ¢(x) being supposed rational aud inte-
ger, we have

a—2+hp(2)=Cla—a)z-B)(z=7). .
and Log. (a—w)+Log.{ idC )}—Log C'+ Log. (l —-)

+ Log. (1——)+

where C'=C(=a)(—P)(—=9)ee..
Now Log. (l-—>+Lug (1—-— +.. .r(u-{- + +.. )
‘-&x “'p"*' 7',+....)

e Grpryte)

Theref‘ore -—+ + +. .+ is the coefficient of 2* in the expansion

ﬂl
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of —nLog, ("5 —n Log.{1+h:;g}

=-‘l;;‘—coeﬂicient of z*in —;n_-_-_h;¢(z)'-f-2(—:—_’:),(¢;)l

nh®
-—8—(;——'_1)‘.(¢2)'—&C.
Let ¢(2)=A+ A2+ A2+ Ayr®+. . . +A 2" &,
then, since ——=s 4 L4y Db+t &e,
a—2 a6 a' d a at!

therefore the coefficient of 2* in ¢(—1)-=-A-’—I+J-A—,'.+ -?—_'-|+. .
a-z &t a da
A, 1
+7;= ";.',,‘,1?(“):
provided we admit none but negative powers of a.

Let f(a)= Zl:’ then f'(@)=~— ;:—:_—,.

Hence the coefficient of z* in—zl-ﬁ‘{,f(“:2 =kf" (a).¢ (a) under the re-

striction above mentioned.
For the same reason, the coefficient of z*in
—nh* ($x)*
AD =k f1 @) (3 @)
and taking the derived functions relative to @, we have the coefficient

of z*in —7%}::—2?%).’:]:’{ f' (a). (q}a)"}’, recollecting that only negative
powers of a are retained.

Write (¢ (z))* for (¢x)% and take the derived functions relative to o,
hence the coefficient of z* in_.-zia._g‘g—z-'= gu { f' (a).(¢a)® }” ‘and so
on for the remaining terms.

Substituting these values in the expression for the sum of the inverse
n® powers of the roots, we find for the sum required, the expression

R he )
£ @+hF1(@.4(8) + 517 @[ 455 {7 @. oy} + e,
when all but negative powers of @ are excluded.
1.1 1
Corollary. Let S,= -;;+§_+—y;+, &e.
1 1 1
Sepm= ‘;:7.."‘?‘.;. +—77—'+' &e,

then if « be the least of the real quantities a, 8, v, &c., a"S,, and
™™ S, converge to unity as » increases indefinitely, and thereforg

in the same circumstances converges towards a™.

Suim
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1 -
—+= =F(a), we have

Putting now -i; ; I ()
8. = £ () + I (@) $ (@) + 5 '@ ($a)'} + &e.

Surm = F (@) + hF ()4 @ + S {F () .(p )} + &

both series Leing continued to infinity when n is infinite, and we have
seen that the quotient of one such series divided by another must pro-

duce a third of the same form, hence if %((i-a)) = ¥ (a) = a™, we harve

= —§S'—=¢(a) + k¥ (a).¢(a) + i,;(wp' (@) ($a)*)’ &e., ad inf.
m

This accords with the result found immediately by the logarithmic rule
for finding the m"power of the least root, and demonstrates the property
of such a series giving the least, when it gives a real root.

Example. To find the sum of the inverse n™ po: ers of the roots of
the equation 3*—sz + p = 0.
Let ’;’-: asthenz=a + ho (1); h=1—.‘ ¢ () =a*: and

J(a)=a"", hence f’ (a) p(a)= -na'-"f'(a); (P a)* =—na*"&c,
whence

8=/ (@) + b £ (@) + o () Sa)} 4+ ('(@). (g0} e,

=a"—nha'"* 4 (n;-i).h’ a,___n___(n—;____)s(n—ﬁ)‘h, a4 &c.
to be terminated when the index of a is reduced to—1.
Replace now the values of a, & given by the equation, therefore
* n(n-3) &
.1 2 LR ]

S, = -‘:‘ —-n
the 'same result which would be obtained by taking the coefficient of
2" in Log. (l - -»:— + %), and then multiplying by — a.

(67.) Many instructive theorems may be obtained by applying the .
logarithmic method of solving equations. These will easily suggest
"themselves to the reader who has made himself familiar with the
method. We give one example.

To find a series arrarged according to the powers of &, of which the
logarithm is the same series multiplied by A.

Let the sum of the series sought be represented by z, the conditions
of the question require that Log. () = ha. - '

Now in this, and many other examples, a previous transformation
greatly facilitates the application of the rule for finding the root. In
this instunce make each member of the equation the index of an expo-
nential, of which the base is £; that is, that of the Naperian system of
logarithms, the transformed equation is & = €, the root of which is
the coefficient of

-
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e 1 e
] —;m—-Log (l-—-——) tbatls,m +——. .z"+3 e — & .
and if we expand each exponential in thls series, the coefficient of
3%* L8
l.2.3+l 2.8. 4+&

Now, the property imposed on this series by the conditions of the
gnestion is,

-;— is readily found, viz., 1 + % +

8kt 4 } { ¢ 3k 4% }
Log.{l+h+ +123+&c l+h+ +l23&c

Suppose &4k to be put for &, then x, which is a functmn of A, is
changed to z +7 h + w’ L + &c., where a2’ 2’' &c. represent the

derived functions of x rclatwe to h; thus
o= A 4K 5% 5 e
=143 + + 2.3
the above identity being general mll remain when h+kis put for h;

that is,
Lo«'{ r+rBie }—(l+k){z+a’lc+¢"£&‘}
.\ +x l.2+ c.o = (A 1.2 C.

from which subtract the original identity, member by member, viz.,
Log. x = hx,
hence,
£

" ’ N »
Lmr.{l —-.k 4 !—.k'&c.} =@+ )+ + ,El—) k + &c.,

and if we cquale the coefficients of like powers of &, we shall obtain as
many wparate indentities, the first of which is,

—_w+lu’

4*h2 432 53¢
=0 +h+ P s G T P4 T ae

3%' 4°h?

‘_1+2h+ +123+&c.:
4%: 5%
therefore (1 4 3k -I- l 2 3&c.)
._(l+h+ + &c). (l+2h+——+&c)

123

Equate vow the coefficient of i——2—:———7 in both members of this

identity, hence

(n+2)"= (n+1) 4+n.2"! +u:—1.3 (n=1""*

n(n-1) (n 2)
+ 1.2.3
cr which, if we please, may be written in the following ﬁmn

)n—l &C R
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3 —
n <+ %.(n—l)"‘+ 347—2'—(.%—1—).@—2)f-‘+&c.=(n+2)'—(n+l)';

provided 7 is a positive and integer number.

(68.) Reversion of series,

When the number of the terms in the left member of an equation is
infinite, and they are arranged according to -the ascending powers,
the equation is of the form

ar + ba* 4 ca® + ex* + &e. = ¢
to find the value of x, arranged in a series according to the ascendmw
powers of £, is, in other words, to revert this series.

This general problem may be solved by assuming a series with inde-
terminate coefficients, as = A . £ 4+ B & 4 C & 4 &c., then

at= A'E* 4 2AB& + (B* 4+ 2AC) & + &e.
2* = A*E 4 BA'BE + &c.
o= A'E + &e.
Substitute these values in the given equation, and then compare the
coefficients of like powers of £, you will thus find
aA =1
aB 4 bA*=0
aC +2bAB + cA*=0
ED + b (B4 2AC) + 3cA’B 4 eA* =0
¢,

whence = -

Example 1. Let z 4 2* 4 #* + z* + &c. =,
then a=1,b=1l,c=1e=1, &c,
therefore A=1,B=~-1,C=1,D= -1 &,
or ) r=t—8 4 P — ¥ &,
which may be verified by observing that the given equation being the

same as 1= = —E,ora:=£-—wE,
we must have z=§+£: :E'+€°—5‘+&C-
Example2 Let « +-2—+? +-Z-+&c—5
a=1, b= ;—, c=-—l-, e= -41,&.: :
therefore
A=LB=—0=) —pega D= f g —g= "y
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E‘ Eo Ec L
therefore .1:_1-,'-—-2 +23 234+&c

which is also obvious, by considering that, since log. (1 —2) = —¢,
therefore r=1—5%

(69.) Definition. If when ¢ (z) =y, we have v = f (¥), the
function represented by f is said to be inverse to that which is repre-
sented by ¢, and the notation ¢~ is used to express this inverse
function.

Problem. To find the function which is inverse to any given
rational function of r, us ¢ ().

If we form the equation ¢ (k) = z, we have h=¢! (1), it is there-
fore only necessary to determine A in this equation.

We may put this equation under the following form.

hk
A T OETIC)

then h=¢ . f (h)
from whence b =¢ . f(k) + iE._Q {(fRY+

E_ B+, be.

k being supposed = 0 in the right-hand member of this equation.
therefore,

¢:'(w)={‘—¢(°)}[¢(,) j¢(o)] + t—¢(0) 4 [(¢(~1)— ¢(0)> ]

" (o) |

+ &e.
z being put = 0 in the quantities included by square brackets.

When ¢ () vamshes wnlh z, the form of the inverse function is.

@ =a [w] + 1 [<¢ ,,)‘] e [(w) ]”

Example Let¢(.z‘)—a1'+b.z"+c:t'+c.r ,

then T) = (a+ bz + ca®, &c.)* of which the absolute term = o-?

(;—) = (a+ba + ca, &c.)*; coefficient of + = — 2 b

('P_) (@ + bz + c2*, &ec. )“, when the “coefficient of

a:’.————[( )]" —~8ca™t +6b°a
¢a>

bzt (20 —a c)a:a

a® a®

therefore ¢! () = z - , &c,
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the coefficient of 2" in ¢~'(z), being the same as that of 2"! in
-71-‘(~a + bx+ c2*, &c)™"

The method of indeterminate coefficients inay Le used when there
are two series, one arranged according to the powers of x, and the
other to those of y; the one vanishing when =0, and the other when
y=0; thus if )

ay+ by +cy+ey, &e.=dax+ Va4t +, &e
puty=Az4+ Bz 4+ C? 4 D2 4, &ec

then substituting and equating the coefficient of like powers of x, we
have .

/
aA=d therefore A = :—

N bl ba"‘)
[ Y} — —_—— ——
CBHBAT=Y i B
7 3 ’ hat
aC+2bAB 4 cA’=¢ c=°—_°i‘—?¥(b'a'—ba'*)
e a .
&e. &e.

where, if we accent the unaccented letters, and remove the accent
from the others, we shall obtain the coeflicients in the series arranged
according to the powers of y, by which x is expressed.

' Put p(@)'=d Va4 e 2t &e.
Y@ =ay + by +cy’+ ey, &
then since ¥ (y) = ¢(x) therefore y = Y~ ¢(x)
But

om0 ] + o

(x being ultimately put equal to zero within the square brackets),
in which, if we putfor ¢(2) (9(r))?, &c., their values arranged accord-
ing tothe powers of x, we shall obtain the same value of y as before ;
but in many of the astronomical applications ¢:(x), (¢z)®, &c., must
be expressed, not in powers, but other functions, such as the circular,
in which case the terms containing like multiple arcs must be taken
together. '

(70.) Recurring Series have been much used by Bernouilli,
Euler, &c., in the solution of algebraical equations; we shall here
trace their principal properties and applications.

Definition. LetS=u, 4+ v, + v+ v, +........ + u, +, &e.,
represent a series, of which the general, or ath term-.is wu,; if this
term be such, that any term is the sum of a given number of preceding
terins multiplied respectively by given constants, it is said to be
recurring.

If m be the number of such constants, it is evident that m terms
must be given, in order to form the series ; these with the m constants
form 2m arbitrary quantities necessary for the forn:ation of the
series. '
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The m constant multipliers are called the constants of relation : by
the term constants is meant, that they do not vary with the number of
the termn of the series which they multiply. o

Example 1. One constant of relation 3, and one given term of the
series 2.

Series. . . -2, 6, 18, 54, 162, &c.
thus the geometrical is the most simple of recurring series.

Example 2, Two constants of relation 1, 3, and the two first
terms 2, 4.

Series.... 2, 4, 14, 46, 152, &ec.
for 14=2%x14+4%3;46=4x1+14%x3; 152=14x1+46 x3, &c.'

Example 3. Three constants of relation, —1, 0, 1, and the three
first terms, 1, 2, 8. )

Series.. 1, 2, 8, 2,0, — 3, —5, —5,— 2, 8, 8,10,7,—1, ~11, &e.,
in which, if we subtract from any term that preceding it by two places,
we get that which succeeds to it.

The sumn of two recurring series, each huvmo' but one constant of
relation (that is geometrical series) will be another recurring series,
but with two constants of relation.

Let v, be the general term of one geometrical series, the constant of
relation, or common ratio of which is a.

Let v, be the general term of another series of the same kiftd, and
of which the constant of relation is 3.

Let w, = u, + v, be the general term of the sum of the two series,
when added term by term.

. It remains to eliminate u,, v, between the three equations.

ut-Pl = au;, v:+l= ﬁvs; ws=ux+ T
This elimination can be effected in the following manner :
(1) w, = !l‘+ vs_
therefore (2) w,y = ey + Vo= a1, + Bo,
3 W,ps = Ugps F Vops = X Uy +ﬁ Ve =au, + ﬁi (¥
Multiply (1) by an indeterminate constant A, (2) by M’ and equate
this sum with (3), hence 10,3 = N w, + N 10,41, under the following
conditions, arising from the sums of the right-hand members of these
equations.
al = xl + AII
ﬁi — xl + xl!p
therefore a, 5, are the.two roots of the equatlou a=N +)\"z and by
the theory of equations, it follows that '=— a8, N = « + 3, which
values, it will be easily seen, satisfy these two equations ;

therefore w,4s = — @ Bw, + (a + B) won
that is, the sum is a recurring series, of which the constants of relation
are —af, a+ .
The two first terms of this recurring series are given by the
equations
w= u+ n
wg = au, + Py,
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Esxample. Take the two geometrical series, of which the respective
first terms are 3, 1, and the constants of relation 2, 8, viz,
First series. ... 3, 6, 12, 24, 48, 96, &c.
Second series. . 1, 3, 9, 27, 81, 248, &ec.
Then the third series, formed by adding these, term by term, viz.,
4, 9, 21, 51, 129, 339, &c.
is a recurring series, and since a = 2, 3 =3; the constants of rela-
tion in this seriesare — 2 X 8= — 6, and 24 3= 5.
Thus 21=—6 X 44+5%9 5l==6%x945x21
120 = —6 x 21 + 5 x 51, &ec.
In the very same way, it appears that if three recurring series, each
with one constant of relation, a for the first, 3 for the second, vy for
the third, be added in correspofiding terms, the sum will be a recurring
series, having three constants of relation, X, A", A/, that is,
Woys =N w, + N 1w 4 N 1w,y
where ' =afly ‘M =—@B+ay+By) N'=c+B+y
And geuerally let o', a”, a'"', &c., be the respective constants of
relation of = geometrical series, of which the general terms are
u, u', u',, &c., and w,, that of the series arising by taking their sum,
then

w, =u, +u', +u", 4, &. ...l e eeeeaeaaes (1)
W=t eyt o+ 4, & =d Wt d" v a4 &e. . (2)
Wopa B st et gt &, ="/ 4w " w4 Ge. . (3)
Wopa =Wyttt " at &e.=c"u, 4o v, + " u" 4 &e. J(n4l)
Multiply the first by X/, (2) by A”.... (n) by N"®™, and equate the

sum with (n41), hence

Wepa=Nw, 4+ N0, 4, +N"0, oo oo o FN 0,
provided the (n) constant N, N/, N, &c., satisfy the n equations of
condition,

o =N NG N o NS

=N NG A e, NN
thut is, &/, ", &c., are the n roots of the equation,

2= X'-l- Xllz+xlllzg+ e e +xlll(u)zl-l
whence by the theory of equatiohs we find

xlll(-) =al+all+d”+' e +a”/(¥)

XI/I(Q—I): _{alall+alalll+a//¢lll+. vee }

N =(=1)""a !, ., a!®
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thus the constanis of relation being known, and the first n terms hy.

the equations . )
U= u'|+ u”[-l-u”’l. v
wy=a'v, +a'u", f M\ 4. ., L .
. . L - . . . . . . . L[] . .
W= oM, +a".-lu". +a’”('_l)u"', Fone
the recurring series for the sum is completely known.

+ If it should happen that the constant of relation in several (m) of
the geometrical progressions was the same, then the number of the
constants of relation in the recurring series would only be n—m+1;
thus, if & = &” we have u/,,, = o' «/,, v",,, = o u”,; therefore if
u, = ¥, 4u',, we must have u,,, = o v/, o'u’,= a'n,, so that the
sum of m such geometrical progressions is equivalent to one geo-

metrical progression having a constant of relation differing from those

of the n—m remaining series.

If the terms of a recurring series u,+u,+u;+ &c. be multiplied

by the corresponding terms of the geometrical series, 1-4z+2'+
&c., term by term, the series resulting will be another recurring
series, .

For let N/, N/, X', ., \\//® be the constants of relation in the given
recurring series, or let

Uy N Uy N U e N g b oo N _
therefore u, ., 2"t '=Nz" w4 2" N2 v, 2" A N2 0, 2" ..
Nitg gy o 200, :
Now the product of the two series, taken term by term, is the series

Uty 2+ 132" u 2% &e.
which, by the preceding equation, must be a recurring series, of which
the constants of relation are N2", N/2*~%, N//z*-%,,, \/®z
(71.) A recurring series, such as this, which is arranged according
to the powers of some quantity z, is merely the expansion of a rational
fraction, of which the denominator is of 7, and the numerator of in-
ferior dimensions.
Represent the expansion of the rational fraction
Gt a, 24 a; 2* +a; 2 +....4a,,2"?
1—N 2P N1z(=0) _\/lg=8) | oo NH®™ 2

by the series .
WA Uz Uy 22 oo o Uy 2 U 2 a0 U T 4 &el

If we multiply this series by the denominator of the fraction, and
arrange the product according to the powers of z, it is clear that the
coefficients of higher powers of z than the (n— 1)th, must vanish.

Now the coefficient of z*+*! in this product is visibly

Upyn— Ny NIy =Ny =Ny,
therefore #, =N, 4+ N %ypy 4+ N tUppg +20ee NPy,

consequently the coefficients %, form a recurring series, of which the
constants of relation are A, A/, N ,... N/® but in order that the
fraction may be completely identical with the series, the first n terms
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“must have the following velations with the uumerator of the fraction,
viz.,

a, =u,

a, =ug--\"®y, b

ag =y— Nll(o—l) TR Nll(-) Uy .

@y =y, —N"CD g NN gy N\ g, y

e e e e e s seas s e s e e e
Aoy =U=N'ty—=N"s0g— ... e =N"®y,_,

Conversely, by these equations, when the first n terms of a recurring
series and the constants of relation are given, we can find the rational
fraction by the expansion of which it is produced.

Example 1. To find the rational fraction which generates a re-
curring series, of which the two first terms are 24 42, and the constauts
of relation are 2* and 3z, viz.,

24-4z4 14204+ 462+ 1522+  &ec.
AN=1 \N'=3 =2 u,—=4
=2 a,=4—6=-=2
the fraction required is therefore 2—2z
1—-2'—3z2
Verification 1—~3:—2%)2-2: (2442414224464 &e.

2—-6z2 —_‘2_3_'
424228
42—122°—42°
142°4-42°
14x*—422°— 14_2_'
46z°4+142*

- 462" -13827— 462"

Example 2. o find the rational fraction which generates the

series .
1492242204 2% 28— 82°— 527 ~52— 22°4- 32 &e.
when #,=1 %,=2 =3 N=—1 AN'=0 N'=1
a,=1 , @=2-1=1
a;=3—1.2=1
. oo 14242

. 'The fraction required is therefore Tyz—z"

DECOMPOSITION OF RATIONAL FRACTIONS.

(72.) We have seen that the expansion of rational fractions produces
recurring series ; now each such fraction cun generally be decomposed
into simple fractions, each of which (with exteptions in the case of
equal roots) would generate geometrical series, agreeably with the
theorem before proved, that the sum of any number of geometrical
series, added in corresponding terms, is a recurring series,
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Let o/, &, a'", ....d™® bhe all the roots of the equation ¢:(z) =0,
then ¢(2)=C.(z—a’) (z—a") (z—a&'")....(2—a'®), the quantity
C being independent of 2.

Let f(2) be another function of z, of dimensions inferior {0 n; the
most general form of f(2z) will be Ag+Az+A2'+... .44, 2"
which contains 2 constants. .

Suppose now we reduce tv a common denominator, and add to-
gether the n simple fractions in the following expression :

A A” AIII Alll(-)
z—a + z—a! +.z—-a’" +eeeet

2—“"’6 . ‘.

the common denominator, or thut of the sum, will be %dz(:), and

the numerator will be a function of z of n—1, dimensions, viz.
A(z—a")(z—a") ... (z—a"®) L AV (z—d)(z —a")...(z —a""™) 4
&e.

which, being arranged according to the powers of z, may be made
identical with f(2), by determining A’, A", &c., so as to satisfy the
n equations, .
A" A AT e A= AL
A"+ 4. )+ A (", &) . o o =—A
A @ o4, )FA (@ 4, &) ... .= A,
&e. &e.
But it should be abserved, that if two or more of the roots «’, &”,
&c., be equal, then we should have fewer unknown quantities than
equations: thus if a'=a", it is clear by inspection of these equations-

that A’, A" have the same multipliers, so that they enter in all in the

form A’ 4 A”, which is also obvious, since the simple fractions
A ” ' " .

y A+ . .
=7 +—;~_—a7, would then be the same as T therefure, thisis a

case of exception, in which n simple fractions are incapable of preduc-
f(z)
#(z)

only of the first degree, or is linear in the denominator and the nume-
rator constant: this case of equal roots we shall at present reserve, and

ing as their suin, by simple fractions being meant, such that z is

- suppose ', «”, &c., to be all unequal.

The early analysts generally sought the numerators A’, A” &c., by
elimination between the preceding equations. The following method
is, however, more expeditions, in which we suppose C = 1, for if it
had any other value, we could take it into the coefficients of the nume-
rator by division,

Since
f(z) _ ‘&l A" ] A'l® ."!
G@=a) (@=d)....z=d"®) " 2—d + z2—a .. ‘z—a/it®?

therefore , n
Jf(2) ar L N(E=a)  AM(z—o
(3—-0/’) (z_“m) Ve (i-'—a"' (u)) - A + - “,, + z__al';
This, when A’, A", &c. have been properly determined, must be an
absolute identity, whatever value we assign to z; for A/, A", &c., being
~ H

+ &e.
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constants, that is, not containing z, can be in no way affected by putting
for z any value at pleasure, as they depend only on #/, o, a™, &c.
Put therefore z = o, and this identity becomes

1) "
(a’— a’) (al_a"') (ai_zif_p(ﬁfj =A.

We may get more simply tlus expression for A’, by observing that,
since ¢ (z) = (z—a') (z—a")....(z—a"®); therefore
()= (z—a") (z—d")....(z—a" ™) + (:—d") (z—a") .
+(z—a") (2—a') (z—a®).... + &c.
where ¢/(z) denotes the derived function from ¢ (2) ; hence

¢I(¢I) (al__all) (“J ‘/Ir) (a " (-))
S
[
Therel‘ore TAl= i (a”
similarly A= ¢f E:,,;
&e.;

that is, if we write for z the successive roots o/, o, &c., in the formula
J )
% ()
tions ; and it is obvious that the same formule hold true if ¢ (z) should
contain a constant multiplier C.

——, we shall obtain the successive numerators of the simple frac-

¢ .
H

(z- -a)( =B

. here F(2)=1; ¢ (2) =2'— (a+f) z—aP, ¢'(z)=2z—a+f;
f@&)_ 1

L ¢(2) T 22— (atp)

Put «, 3 successively for z, and we obtain the numerators of the

Example 1. To decompose the fraction —

. . . 1
simple fractions ; viz., —— and _—
a—

—f3 ﬁ-a
1 1
therefore TS = ,,._l,( ~78)

2x 4+ 1
2.(z+1) (2+2)
The roots of (he denominator equated to zero are 0,—1,—2, which,

AC)

being substituted for z in ——
¢'(2)

2241 - . o .
CIDGID4:G1D) F2 GFD’ give the numemtorf of the
simple fraclions , viz., )

L 28 24l ____(1 '3 )
2’ 2’ 2.4+ +2) ~+l z+2

All the nuinerators are unity when f'(z) is itself the derived function

of ¢ (2), for then fg ;
if o/, o/, &c., be the roots of the equation ¢ (z) = 0, we have

Example 2. To decompose

, or, which is the same, in

= 1, whatever value be assigred to z. Hence,
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Y 1 11
¢ =@ tma tr b

Example. To decompose ‘”l_ into simple fractions.

1
First, we change the form of the proposed fraction thus;
. & K 3
1 _ &7 _1&§¥+e3"
. = = - - —
Mol ey AL

. Now, if m denote anyinteger positive or negative including zero, and
= be the semi-circumference of a circle of which the radius is unity, the

principles of trigonometry give g™ VTi_gmv-1=0, Hence, if we
. rJ 1

put & —¢ ’ *=0, we have z=- : the values of z are there-

fore in number infinite, viz.

2ry/—=1 4x/—1 6mfj—1
h R h ’ h ’ &c'
2/ =1 —da/=1 -6/ 1.

TR R

0,

P 7.8

E
h
Now make ¢(z)=s—'"—5"‘: '--2 .z+(£‘).. ]—fa

2.3]
+() 2345+&°} 5’

therefore ¢/(z)= h l+< ) 2+(h = ——-&e. }

‘1.2.8.4
h
=g eV 4e T ) ¢
1 ¢ 1
Hence E”—I—Z'm-i
1 1/1 1 1
=——a —+&c
ata|zt 2m/—l+ _4a/ =] + l
Tk k .
1 1
— 4 _+&c
l 2o/ =1 and/=
Y S |
Corollary 1. Since
1 h At h® . R
—_— = 2% &,
+2m/—_1 27/ — 1+2'7r'z YN iy g 2 HEC
1
therefore — -— { N e l’~’ &
z 2m/_1+ P s il O vt c}
— o .

H2
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Expanding similarly the other corresponding pairs of simple fractions,
and collecting all the coefficients of like terms, we have

1 1 1 2hz

2/4%:°
i 2¢+ 4‘+?i7+&c')
-l-&c .
Let 1|+ 2|+ 3s+&c -=2B,x*
: 2 B_,'rr‘
1 o 2 B,'n‘
T+‘2'-*?+&_°'—1.2.3.4.
&e. &e. ; '
1 1 U Ky I
we have then ——— '/T“""'B‘ hz+Bo g o5+ Be 555 !

from which we see that, though g —1 consists of both even and odd
powers of z, its rec:procal contains only odd powers and a constant. |
The numnbers B, B, B, &c., inay be easily culculated without |
sum:ning the preceding series. Thus, since (putting A=1)
$@_ 1 1.1 . » |
o —F-1tTg=; Bt Byygtée |

And again, |
22 1Y }
Log. ¢(z) Log. z4+Log. l+( '3 3-|- 5330 5+&c)

Suppose the latter logarithm, expanded and arranged according to the
powers of 2% to be A,z — A4 A2’ —&e., then, taking the derived
functions relative to z, we have also

$()_1
¢(z) +2A,z 4A:2°+6A 2"~ &c,

therefore B,=1.2A,, B,_l.2.8.4A,, B,=1.2.8.4.5.6A,;, &c.

R 1 1
t = et -— - H
Buth=z3. 3’ A= T Faas e it
1
therefore B“"Fﬂ’ B.._2, 35 &e.

Corol'ary 2. From hence the sums of the even negative powers of
the natural numbers ure easlly known.

ot
‘,+ 2.+ + .ad inf. =2Bn*= 3 ‘

1 1 1 _2Ba* o
'F+'E;+—3—;+ DI ... .o —l—.—.'2§=9-6
&e. &e.
. 1
The expa of P according to the powers of z above
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found, admits of a remarkable extension, which has great use in the
summation of series, and it may be easily deduced therefrom, as fol-
lows :—

First, we have

hz-(e~—1)+§hz(s~—1)-B,h'zt(s*--1)+B,li:—'§(s"—l)&c.=o.

With the left member of this equation compare the following series : —
bf'(2) = (fla+B) —f(@)) + 3 (fz+ W) =)’
=B f(z+h)—fla)} + &e.
It will be seen immediately (by putting for &, in the former, its expau-

$.2
sion 1+hz+-’l;—f-2. &c., and for flz+1h), in the latter, its value f(r)

2
+f'(x) . h+ ”(z).-—’i- +&c.) that the coefficient of z in any lerm of
1.2 y

the first series is the same as the coefficient of f’(z) in the corre-
sponding term of the latter ; that the coefficient of 2" is the same as
that of f(x), &ec.; and, since the first series is identically zero, the
coefficients of each power of z collected from the different terms must
separately be equal to zero ; and therefore the same is true of the coef-
ficients of f'(z), f"(x), &c., in the second series: consequently this
second and much more general series must also be identically nothing.

Let F(2)=/(s)—3Af () +BYf"(2) - 132h3 G
BA°

128457/ (D&
then the preceding general theorem is equivalent to this:
F(z+h) =T (2)=hf'(x).

Example 1. Let f{z)=ux, and consequently F(x):a:-—g; therefore

F(a:+)t)=w+§, and F(z4A) — F(x)=h, which agrees with the theo-
rem, since f/(z) is in this case equal to unity.
t]
Example 2. Let f(2)=a* and therefore F(z)=a®-hr+ %, from

whence F(r+ k) — F(2)= 2z + h)h—h*=2zh=hf'(x).

78. The application of this theorem to the summation of series is
the converse of that contained in the preceding examples; that is,_
F(z+41)-F(x) is given, f'(z) which is equal to this difference, is
therefore known ; hence the successive derived functions f”(x), (),
&c., are easily found ; and if we can find f(r), the function from which
J'(z) is derived, then F(z) may be found by the theorem F(z)=f{(z)

B
— @O +BS (@)~ g @), &e.

Let w,, u,, 4, &c., be the terms of a series which it is proposed to

sum, and let F(x) represent the sum of z terms; then

F(@)=u,tvytut..0. +ug;
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therefore Fr+D)=u+u,4+u ... +0, 40,3
whence F(z+1) -F(2)=u .

‘We must consider u,,, as f’(z), and then tind F(z), as above de-
scribed. It is only necessary to remark that, since we are to reascend
to f(x) from f'(z), it will be necessary to add an arbitrary constant to
any particular value found for f(z), since, if C be a quantity inde-
pendent of z, then (f()+C)’ =f'(z). This constant merely deter-
mines where the series is supposed to commence: if the sum, for in-
stance, be taken from the first term, then F(1)=w,, which equation
will determine the constant.

Having given this general theorem as following from the theory of
rational fractxons, we shall only give one example of its application,
since Sur object in this treatise is not to discuss the summation of series
except when the latter subject is correlative to the theory of equations.

To find the sum of z terms of the series 1°+ 28+4-3* &e. -

Let F(2)=1°4+2°4 3°+4°+.. .. +2°
Fx+1)=124224 344+, ... 4+ 22+ (24+1)%;
therefore f'(z)=F(z+1)—F(z)=(z+1)
S(2)=3(z+1)? :
f'(@)=6,
which, bemg constant, needs not to be written separately, but may be
comprised in the arbitrary C of the function, of which (x+1)® is the
derived, viz. 3(z+1)*+4C.
Hence ~ F(x)=C43i@=+1)—=4(z+1)°+1(x+1)%
To determine C, put z=1, observing that F(1) is merely the first
term ; therefore 1=C+43(2¢—2¢42%), or C=0;
therefore F(z)=(z+1){(z+1p—2(x41)+1}
_{w.(z+ 1)}9 .
="z "

thatis, 1S+248+....+22={14+2+483+.... +¥}"

From this the learner wnll see how to apply the theorem to other
examples, the only difficulty being to find f(z) from f(z), which is
given; and therefore its more extensive applications must be postponed
until he has acquired a knowledge of the integral calculus.

74. We are now to consider the decomposition of fractions when the
denominator, equated withj:ero, contains several equal roots, as in the

2)
G-d) G- (z—a".. (2= ") |
sions of the numerator are supposed inferior to those of the denomi-
nator.

Put, as before, ¢p(2) =(z— a’)(z—a”) (z— /”) .. (2 =),

1 1 L 1 + 1 e

'P( 92 (@) z—a " (@) z— u” 4"(!1"’) (z—a”’)

and since f(z)={ f(2) —A&') } + @)= {f(z) = (&) } +f(o')=&e. ;
R 1 fOfE, L R

o(2) 4"(1“') f z—ad 'P(u”)" z—a ‘
@) 1 flay

¢/(al) Z— 1+¢)/(a,,) - — d,+&ca

fraction , in which the dimen-

then —

therefore =—=<
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the uppermost line obviously being an integer function of =, and the
lower purely fractional.

Suppose that o’ +£ is written for & in each term of this identity, and
that the terms thus arising are expanded according to the ascending
powers of £, and finally that the coefficients of 2*~! on both sides of
the sign = are equated, this will give the required decomposition,

¢(z) is changed into (z—o' —h)(z ~a")(z—da"). ... (z—a""" )) or,
Pz ) '
(a=d—h)= 4>(z)<1 -2

which is the same, it bécomes ;

fG) f(2) A

—1
oG becomes - ) 1- :-;,) 3 and if we expuud this
f(2)

negative power we find the coefficient of A" '=———>—*
°! =90
is, the proposed proper fraction itself.

The uppermost line of the identity, as has been observel, is an
integer function of 2z, and will be such when &’4-4 is put for o ; aund
therefore the coefficient of A™-!, taken throughout the whole of this
line, must be identically zero, because otherwise we should have an
integer function of z equal to another function of the same which was
a proper fraction, and that is impossible. .

We have therefore only to consider the coefficients of A™"', when
o/ +4 is put for o’ in the lower line.
fla'+ k) 1
(o +h) z—o—h
factor according to the powers of &, we may write it thus:

fah fN R e\ } { 1 h
{7 ')+ & ) tiz («W) toef ate=a

(z ),+&c } .
therefore the coefficient of A"~! in this term is
L LD () 4ot (Y 4
(z—«’)"‘{co G Ngw) +72 \ew) oo
(Z - al)’l-l fal 1" (m=1) l

. +‘l.2.8...(m—-l)' &7) fi
Nz) Iy -

=) (z—a"), &o which contains

therefore

; that

The first term is altered to , and, expauding each

in other words, it is that part of

the negatnve powers of z —a',
The coefficients of A™~! in the remmmng terms are much more easily
found; thus, since ¢'(o)=(a"’—a')(@"—a'") ... (a"—a'"®), the

a'l =
change of o into o'+h converts ¢'(a”’) into ¢’(a/’)-+afh

, | 1 o\ )
=¢'(a"). (1 - ,), and 7 into ¢,(a,,).(l ‘a”—-a'> ’ while
"

this change does not at all affect —zf—:—(_g;,)-,; therefore the coefficient of
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A"-% in the second term of the lower line, when o’ 44 is put for o', is

1 L")
( —a’)“"¢'(a”) z—
third term, writing a” for a”, and so on.
Collecting now all these coefficients of 4™, and equating with the
given fraction, we have
f&) S 1 fN 1
G=d) 9@ Pa) G—arT\Fa) =)

fal U 1 y
ot ) TaE—a &
iCH) LI (G 1
(a"—a’)""dz’ a")'z— " (alll_al)m-l :(am)'z_

observing to contmue the upper line only while it contains negative
powers of z—d’, and to cease at the term which contains (z—a’)"".
It is easy o see that (a” —a')"*'¢/(a")={(z —a’)*"'$z}’, when = is

pu{ equal to a”; and therefore the coefficients of ! 1 1 —n &e.

2=a Z—a

may always he found by the application of the saume rule as that for
urequal roots,

s and a similsr expression is obtained for the

+

7+ &e,

=

Fa—1)

'l‘uke the fractwn ,)"( pr and finully make d'=0, u”"=1.
In this case f(.)"l P()= (Z— a’)(z —d"), ¢"() 2z —(a’ +a")
and therefore ¢'(«')=a’'=a", and M) _ 1 ) ( )

’ ¢'o’ ' —a”

(22 O

Example 1. Decompose

1y M)
L2 )=1ca) o« o
Put now, for o, «’their values in the general formula.

lle"ce ;:6"_'—1')_—2—“—-:‘“—-‘ F. PP -—;+;—_.—l-,
which we" ehould also deduce if we write the proposed fraction in the
form — l_—.z_.. _l.+._l_.._
l=2 2" 2-—1

. 2:° 472"+ 6242
': Example 2. Decompose rrares

‘The roots of the denominator cquated to zero are 0, 0, —2, —1.
The numerators of the fractions of which the denominators are 242,
z+41, will be obtained by the rule for unequal roots by writing —2,

. . 2247246242 1
-1, successively for z in T they are -2 and-1.
Again in this case ¢(z) = (241)(z — &) ( +2) o being finally
made zero, hence ¢/(a)=(a'+1) ('+2). -
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J(@) _ 2462 +7a"422"°
¢'(/) 2484 +a"
’ ’ ' - -
and making o' = 0 we find i,((:,)) =1 £ ,(&?2 ) = g ; therefore the
. . . 1 1 1 1 31
required partial fractions are — 2 iy aFI’ 3

In like manner if we had several sets of equal rools as in the fraction
Jz)
f. z—a")"(2—a")(z— o)1 &e.
J(z)

(z—a") (z—') (z—a"" &c.
put @+ k for o o'’ +k for a” &'’ 4+1 for o’ &c. and seclect from the
compouent fractious the coefficient of A=~'k*~'{1~'., .. .and we shall
have the required simple fractions. ,

75. 'The decomposition of rational fractions in the case of equal
roots may however be more readily effected by the following theorem,
which, 1 believe, has not been before given.

r . . L
Let — be a proper rationsl fraction, the numcrator and denominator

Q

being functions of z, and the Iatter containing a factor repeate(f n times,

that is Q=(z-«)*. Q,.
Expand gin the form A+ A, (z—a')+A,(z—a')+.....
' +A.(z—-a)' 4 &ec.

AC AI A! An-l wi
Gz=a) ' =)'’ (=)t 2o
fractions,

Again, let (z~ &”)? be another factor of Q, or Q=(z—-a"')* . Q,

therefore =1+ ;«' + ga” &e.

We have only to decowj.ose » and then

Il be partial

" then expand% in the form B,+B,(z —a”) 4+ By(z—a")*+....
. 2

B,..(z—a")*"'+ &e.
B B ' B B,_ ,
v _oa”)' s (z—a"')"" ’ (z_‘:,,),,_,... . ;—ﬁ are also partial
fractions, and proceed in the same way for all the different factors

of Q.

The given fraction P will be the sum of all these partial fractions.

then

_ For it is evident that all the partial fractions which have no power
of z—a’ as denominator may be expanded in the ascending powers of
(z—a"), all with positive indices, and they would give in the correspond-

ing value of g no power of z—a' inferior to the nth; the powers which
. 1

) P
are inferior to the nth in the expansion of = must, therefore, arise

Q

1
from those terms only which contain z—a’ in their denominator; con-

sequently if the first 2 terms of(—l;—be A+ A (z=d)+ A (z—a')'+. .
1 ’ - .
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A..i(z—d')* the partial fractions of %which have z —a' in the deno-

A, A,
G- G-

applies equally to the partial fractions containing z — a” &ec.

]
>=Z.
z

. 1 a1 2
First: £=z—" -2) '—z_‘ +.;+ &o.

minator must be &c., and the same reasoning

Example. 1. Decompose (z,l_

. 1 - 1 . .
Second : Z = d=a x {1-(1-2)} a= z)‘ l- &e.
) _ 1 1 2 2
therefore, by this theorem (z—’_—_z;> == +(l—z)°+ p +l_-é
l
Esxample (2). DecomposeZ =———— l) n even.
n(n+1 *
=1 (1-:)--——+ __,+ (1 .2). LI

11(n+l)(/z+2). . (2n-2) 1

1 2..3. .. (n—l) PR )

—_— 1
ol Z= o (1Al =g b e gt
n(n+1) 1
1.2 (1—z)~-'+““
\ 1 1 1 1
Therefore, Z ={;~ + a_—z);} + n{z"—"‘ -+ (T-‘;)T-T}“*
n(n+1)( 1 1
1.2 '{z_~-_’ T o= } + &e.
the last term being n(7:+;) (;H-Q)' . 2((':‘:3 . {% + ii—z}

Example 8. The same when n is odd. 'The same method is easily
applied. .

The decomposition contained in these two examples is of use in
finding the complete solution of a remarkable differential equation, of
which Laplace only used a particular solution. (¥Vide 3rd Memoir on
the Inverse Method of Definite Integrals, Camb. Phil. Trans.
Vol. VI1.)

Corollary. Putz=

[

» then when = is a positive integer,

n(n+1 n(n+1) (n42)
2.4 2.4.6
the same series continued to infinity would be 2%, that is the firstn

terms are exactly one-half the sum of the whole series. For the re-
maining half we have

-~ W

= 1+ + n terms, And
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_n(n+1) (n42)....(2n—1)

LEDY
? T 2.4.6. . . 2n

2n 2n(2n41) )
{l taret @ arn T %)

1 ll
E . . 1
xample 4. Decompose z"(1 —2)" and (-2 .

Example 5. Decompose m;b—);.

The partial fractions which result from the decomposition of any

proper rational fractions are all of the form the expansion of

. . A{ 2z a(+1)
which, viz. = l+”'2+ "

(a—2)”

2
. Z—'-&c. } is a figurate series,

the coefficients of zbeing figurate numbers, which are distinguished

by the property that the mth figurate number of any order is the sum

of m figurate numbers of the next inferior order, which property is

obvious if we equate the coefficients of 2™ on both sides of the identity
A=z =(1-2)"'x(1=2)".

Now, since every recurring series arranged according to the powers
of z is the expansion of a proper rational fraction, it follows that every
recurring series may always be decomposed into figurate series ; and
in the case where all the roots of the denominator are unequal, these
series are geometrical,

By this decomposition also it is easy to find the general term, and
the sum of  terms of any recurring series.

Let - be one of the partial fractions, the coefficient of z* in the

Aay,
(e—2)
n.(n4+1) n+2)... . n4+z—1 (l)’
. \5

expansion of this fraction = A 1.2.3 . . .¢

z4+1)(2+2)....(c+n~-1 AN .
=A.( 1 ‘)(2 - 3) .( (n-—l);) . (;) , and collecting the co-
efficient of x from each partial fraction developed, the sum will be
the coefficient of z in the recurring series.

With respect to the summation of recurring series it may be effected

by observing that, since
a*—2°
a—-z
we can, by taking the derived equations relative to a determine the

sums of figurate sevies, and therefore those of recurring series which
are decomposable into them.

- 76. Application of Recurring Series to the Solution of Equations.

Suppose A, , A, , A,....A, are the constants of relation of a recur-
ring series, of which the general term is w,, the following equation
gives the case by which each term is formed from the n preceding
terms :

= '-l+al-'2+ar‘_!z’+' e '!'z’-l

S
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ua+;=Al"s+A‘!u¢+l+Alu:+l+' oo +An"a.«l--l°
‘We know, moreover, that 2" is the general term of the expansion
of a proper rational fraction of the form, ‘

Jz)
1-Apz2"—Ap~ =A™ ... —Az
Let «, 3, y, &c., be the roots of the equation,
y.=A|+A|y+ A;y“". .0 +A.1,--‘,

; , l . 1 , &c., are the roots of the above denominator equated

then
with zero, and the factors of that denominamr,.bcside a constant, are
therefore
R 1 1
’ z—;,z—/-;,z-; &c.,
which we shall suppose at present to be all unequal.
The fractions may be therefore written in the form

J(2)
B(l—az) —Bzx)(l=y2)......’
which may be decomposed into purtial fractions, (as above shown) or
is equal to

Cl C’ C.
Tcaz™ l—ﬁz+ l1—yz + &
where the coefficient of z* found by expanding each of these simple
fractions is evidently C, @*4C,3°+C, ¥+ &c., it follows that this
formula expresses the general term of the given recurring series, or

u,=C,a" 4 C:ﬁ‘+ Cay* + &c.;

therefore,
wt . Ca.a’+CB.0°4+Coy. v+ &e.
u, T C| . a"+C, . B""C; . 7'+&c~

’ AN\ s+1 o4
=e.C+C,. (g) +C ‘(z) + &ec.
et (B) +a(Y) +ee

‘ Suppose now that a is the greatest of the roots, then (E)" (2')’
; - :

diminish rapidly as z increases, and we therefore find

Upg v

« = Limit of when r=cc.

To converge o the greatest root of the equation

y"=A‘+A.y+A.y'+ eoe o +ALY
assume 7 arbitrary numbers for the first n terms of a recurring series,
of which the constants of relation are A, , A;, A;....A,, the quotient
arising by the division of any of the formed terms of this series by the
preceding term converges to the greatest root, the more nearly as the
term is more remote from the origin cf the series,
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Example 1. Given y*= — 4 4 8ys. (See Euler’s Introduction.)

Assume for the 3 arbitrary numbers 0, 1, 8, aud from them con-
struct a recurring series, of which the constants of relation are — 4,0, 3,
the terms will be

0,1,8,9, 23, 57, 135, 818, 711, 1598, 3527, &c.

* We have selected this example after Lagrange, to show the slow
convergence to which this method is liable in the case when the greatest
is a double or triple root, that is one of two, three, &c., equal roots : in
the present case the roots of the equation are 2, 2, — 1, and the series
converges very slowly to the double root 2.

To see the reason of this we must recur to the decomposition of
fractions. When there are equal roots to the denominator thus, if
a= (3, the theory before given shows the rational fraction which
generates the series of recurring coefficients, when decomposed is of
the form :

C, - C, C, 7 C,
(1—-a2z) titez T 1-8z + l—yz +é&e. .
and in such case we have '
", = coefficient of z*={C, . (+1)+Cs} «*4+C; 3+ &ec.
341
e (Ciz+2)+C.} +C, (g) &e.

=N
u,

{Cz+D) +C}+ G, . (g) &e.

And as r increases only by unity each term of the series, it is clear
BN YN . A C 2)+C
that though Kg) (5) rapidly diminish, yet (—3:811;1&- does no
couverge to unity with sufficient rapidity for practice. -
Example 2. Given y'=10+9y.

Assume 1, 5 for the two first, and with the constants of relation
10, 9 form a recurring series as follows :

1, 5, 55, 545, 5455, 54545, 545455, 5454545,
it is clear from inspection that the quotients made by dividing each
term by the preceding, viz.
545 5455 54545 5454565 5454545
55’ 515’ 5455’ 54545° 545455
converge rapidly to 10 being alternately less and greater, the eiror of

&e.

5

© o .
-’5‘:'—', or its difference from 10 being always here =

Example 8. Given y*=1—10y—63°. A ]
The constants of relation are 1,—10,—6, but if we make y = -},

we have -
v*=146 v4100%,
when the constants are positive,
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Make 0, 1, 5, the first three terms of a recurring series, in which the
constants of relation are 1, 6, 10, the subsequent terms are,

56, 591, 6251, 66112, 699217 . . . .

Now if u, be the ath term of this series, then u;“ converges to

=
od

v, and since v=}-, therefore ul'. converges to y, thus the approximate

66112 .
value of y, we have @W.—.OQ%E»IM «.+.. which is correct to

the last figure, and closer than the approximations deduced by
Lagrange (Note VI., Traite de la Résolution des Equations Nume-
riques), this example has also been treated by Newton, with his
method of approximation.

Let us next consider how far this method may be affected by the
existence of impossible roots; for this purpose let S=a+b—

which may be put under the form R iCos 6+4/=18Sing}, RCos a_a ,
R Sin 6=b; therefore R*=a*+b*, then by Demoivre’s theorem in

trigonometry we have (3= R*{Cosn 0+4 —1 Sinn0}; hence it is
clear that @ must be greater than R, or a* must be greater than the
product of a pair of conjugate imaginary roots, that this method
may be successtul in converging to the greatest root.

77. I will here add a simple rule for the extraction of the square
* roots of integers, which is founded on the principles of recurring series,
and is taken fromn an unpublished memoir by the Author.

Let @ be the difference between the given number N, and the next
perfect square which is less than it.

Let b be the difference between the perfect squares, which are im-
mediately greater, and Jess than N.

u
Take any proper fraction ;", and form from it a second -—-, the

new numerator #, being found by multiplying the denommator v by
a, and adding the numerator, thus u,=av,+u, and the new denomi-

nator by multiplying v, by 4, and adding u, ; similarly let = ;—, ;L', &e.,
s Vs

. Y, S
be successively formed, then ;’ converges to the decimal part

of ,/N. i )

For let m be the integer part of ,/N, then ¢=N-—m!, b=2m+1,
the quantities u,, v., are, by hypothesis, formed successwely by lhe
equations.

Uy = (N=m) 0, + % « + o o o « « o o« . (1)
Vo =Cm+Dv. 4+, . . . . . . ... . (2

From equation (2) we find = 1::“ @m+l) . . . ()

8

Subtract now equation 2 from that which it becomes, when 241 is
put for 2.
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Hence v, 43— v, =@m+1) (Vou—0:)+ Ue—%) . . (4)
But by (1) .y —u,=(N-m"v, '
Substitute in (4), and arrange it according to the sub-indices of v,
Therefore v,.3—2.(m+1)v,y, + {(m+1)*—N} 9,220,
or v, is the general term of a recurring series, of which the constants

of relation are —{(m+1)*—N} and 2(m+1), and since the roots of
the equation, - :

y*'= ~{(n+1)’-N} +2(m+1).y -
are (m+41)44/N, and (m+41)— , of which the former 1s the
greater; it follows, by the ‘preceding theory, that the limit of
t;i' = (m+1) 4+ J/N; therefore, by equation (8), the limit of
1:1 = o/(N)—m; now mt being the greatest perfect square below N,

it follows that /N —m is the decimal part of VN, from whence the
theorem is evident. '

Esxample. To find the decimal part of ,/10, by a series of con-
verging froctions.

The nearest perfect squares below and above 10, are 9 and 16;
therefore, a==1, =" ; therefore assume any proper fraction, add its
numerator and denominator for a new numerator, and add its nume-
rator to 7 times its denominator for a new denominator; thus a series
of converging fractions will be formed, the limit of which is the decimal

part of J10.

1 . ' . .
Let 8 be the proper fraction assumed, then the converging fractions

25 179 1282

s . 7
arising are =, 7295 T708° 7900 '

. if the last fraction be

“converted to a decimal, we find for /10 the quantity 3.162278 . . . .

which is correct, except the last figure, which should be 7,

When the method of approximation to the greatest root of a given
equation, by means of recurring series is used, if the equation be
transformed, so that its two greatest roots may have contrary signs,
the converging fractions will then be alternately greater and less than
the true value ; consequently if two consecutive converging fractions be
reduced to decimals, the cyphers which are common to them, must
certaiuly belong to the true root ; this advantage is not possessed by
many other known methods of approximation, and it can be easily found
as follows:

Let u, be the general term of the recurring series, and «, 8, 7, &c.,
the roots of the given equation, of which the two numerically greatest
are-a, (3, which we suppose to have contrary signs, then

u, =C,a"4+C;F+Coy"+ &c.
: 241 z41
l+c,.<§) + e (Z + &
u..H = a (*4 a

s lfl-c..(g) +c,.‘(§> + &e.
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- . C, C
where ¢,, ¢, &ec., are’put for =%, = [&e."

’ v A
v G0
WEI(Pf 2 (s e
Hence X2t — ,— 2\ x %
U, 1+¢c, (g) +c. (E) + &e.

Now when z is great, since 5>y ({—f) is very great compared with

(Z). &c., but is itself a very small fraction, because a>f; hence tle

o

diffecence between ' the converging fraction and the true root is

¢ . f-a . (ﬁ) very nearly, and consequently it is alternately posi-
«a a

u:—l-l

M

tive and neguative, B being necessarily negative; therefore
a

alternately greater and less than «.

78. The sums or differences of .the corresponding terms of two
recuiring series, one of which has a constants of relation, and .the
other 7', will itself be a recurring series, having n41/ constants of
relation. :

For let u,, v, be the general terms of the two recurring series
respectively, then if a,, a;....a, B, fs....0. be respectively the
roots of the denominators of their generating fractions, when equated
with zero, we have

U,=C,a7° 4 Cya" + C; &, + &c.
v: = B, 8"+ B. B + BB+ &e. '
where B,, B,, &c. C,, C,, &c., are constauts,

therefore u,+v,=C0* 4+ Coaf+ . .. 4+ Ca* £ B,3, B3+, .. B.S.5,
which is obviously the general term of another recurring series, the
denominator of the generating fraction of which is the product of the
two denominators, and contains n+4n' constants. The same would
obviously be true relative to figurate recurring series, if any of the de-
nominators contained equal roots.

The products of the corresponding terms of two recurring series,
one of which has n constants, aud the other 2’ constants of relation,
different from the former, is itself a recurring series, having ax’ con-
stants of relation.

Again, if u, be the gcneral terin of a recurring series of 2 constants,
%, U,y is the general term of another recurring series, having 1(121-—1—)
constants of relation; these properties are casily proved in the same
manner as the first.

79. In the Expose Synoptique, which precedes the posthumous
treatise of Fourier, Analyse des Equations, there are some remarks on
recurring series, which contain original theorems relative to the dis-
covery of the different roots of equations by this method. No demon-
stration of these theorems has yet been published within the knowledge
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of the author of this treatise ; we give here the substance of these
remarks, merely adapting the notation to our own.

Suppose that we have formed the primitive recurring series, which
is directly derived fromn the coefficients of the proposed equation, or
the constants of relation, and from first terms which are arbitrary.
Let u, represent the ath term of this series, and let ', o', J”, &ec.,

- be the roots of the proposed, written in the order of their magnitude

(abstraction being made of the sign), if there are imaginary roots,
their magnitude is estimated by the square root of the |product of a
conjugate pair, as we have already seen.

 If the root o, which occupies the first place, is real, we can ap-
proximate to it indefinitely by dividing each term of the’ recurring
series by the preceding ; this has been also proved, but it only gives
one root.

To determine the following roots, take four consecutive terms, as
u,, Ug, U, u,, form then the product u,.u,, of the extreme terms,
and subtract from it the product %,.u, , of the two mean terms; write
the remainder, w, u,—usu,, below the first series, and perform’ in
the same way this operation for the four consecutive terms u,, u,, ., s,
ahd then for the next four, %5, %,, u,, %s, and so on.

We shall have thus a second series, v,, v,, %5, vy, &c., derived
from the first, of which we may express thus the general term,
V==, Uy —Usp, Uasa o ' . _

This second series is recurring, and the limit of the “series of

wotients 22, o, ., e , is the sum a’'+4a” of the two first roots of
q
v, v v, ™

1 ] s .
the proposed, and as the first « is known by a preceding operation,
the value of the second root «” will thus become known also.

If instead of choosing four consecutive terms of the first series,
we only take three consecutive terms u,, #,, %, and if from the
product u,.u;, of the extreme terms, the square of the mean term w,
be subtracted, these remainders will generate another series, of which
the general term is u, ¥, — %, . .

This series is also recurring, and the quotients arising from the
division of each term, by that immediately preceding, converge towards
a’.a’”, that is the product of the two first ronts,”

And in like manner rules may be given for finding the sum, the
sum of the products two and two, and the absolute product of the first
three roots, and so on. From what has been said we can form,

First, A recurring series, from which the approximate values of the
root o are known. ,

Secondly, A series of quotients which give the value of the pro-
duct o' o,

Thirdly, A third series, which gives the value of the product
o o' o' of the three first roots, and so on.

If the first root is imaginary, that is to say,:if the product of two
conjugate imaginary roots exceeds the square of each real root, the
first series will give no result, the series of continued quotients will be
divergent and vague, as remarked by Euler [and the reason of this is
easily perceived from the form of o'*, viz., ﬂ‘(Cos.t¢+~’ ~1Sinz @)
the trigonometrical functions creating a species of periodicity]. But
in the same case the second series of quotients is convergent, and the

! I
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limit of these continued quotients is the real product o/ o'/ of the
‘conjugate imaginary root3,

If the third root is real, the third series of quotients is convergent.
'The contrary happens when the third root is imaginary, but then the
fourth series of quotients corresponding to o’ " o &/ is mnecessarily
convergent ; thus two consecutive series mey both give convergent,
but cannot both give divergent results.

From these theorems it follows that to know in all cases the roots of
a proposed equation, it suffices to form series relative to the successive
products and to the successive sums of the roots. Thus we shall find
the approximate values of all the real roots, and for each imaginary

root, the real part and the coefficient of & =1; this is the most extended
use which has been made of the method of recurring series for the
solution of equations.

.. Fourier concludes with observing, that this method in practice can-
pot he deemed sufficiently expeditious ; the examples given by Euler
are ingeniously chosen, but that mode of approximation requires in
general too much caleulation; we only consider this question in a
thegretical point of view. The properties announced, he adds, are
incomparably more general than those known to the first inventors
pf those series, and the authors who have since treated on them, stating
that his object was to complete one of the principal elements of Alge-

raical Analysis. .

- Though M. Fourier has opened here new views with respect to the
.application of recurring series to numerical equations, yet, by some
singular oversight, the preceding theorems, with the exception of those
referring to the continued products of the roots, are undoubtedly in-
correct ;' the transformations above indicated give recurring series,

and if v, = Co"+C'8*+C"y*+ &ec., then -'?, will; as we have seen,
converge to a, the greatest of the quantities, , 8, v, &c., if it converge
at all, now none of the preceding transformations will introduce a
sum of two roots in the general expression for the transformed re-
curring series, for a term such as (a+0)* =ma*+2a""'8 +, &c., could
not be deduced from the primitive recurring series, without in some
way introducing « in the transformation, which is not done in Fourier’s
rules, but a combination of two recurring series, in the way of a
quotient, which does not generate a recurring series, is able to give
the simple sums of roots, or the sums of symmetrical functions of a
certain number of roots. It will be here the most satisfactory course
to investigate the analytical expressions on which those rules are
founded, and then give a correct rule for finding the sum of two roots
by means of recurring series.

Let a, B, v, &c., be the roots of an algebraical equation ¢(z)=0,
and let %,, ug, %, U/ ... 2%, &c., be the terms of a recurring series,
formed by means of its coefficients, and certain arbitrary quantities,
as before shown, so that

u, = Ca" + C/f* + C'y* 4+ &c.

and consider first the value of the product %, su.iw,in which we
suppose 7' not less than #.

.
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This product will consist of two parts, in one of which the simple
roots «, 3, v, &c., will be raized to the power 2z, with certain co-
efficients, and the other of the rectangles of the roots of3, 2y, Bv, &ec.,
raised to the power z, with different coefficients,

Thus %, =Coa* .+ C'B . 4+C'v". v+ &c
) ﬂm:=c a"+C'ﬁ"l ﬁt+cllﬂl r+ &e.
Therefore  u, . ttopw == CL ™. at* 4 C B, B¥4 Cy ™yt t &,
+CC/(@p + B )(aﬂ)‘+ CC"(a"r™+7"a¥) ()" + &c.
The terms which involve the simple powers of the roots are there-

fore invariable, if n4-n' be constant, and they may be made to disappear
by subtmctlon, thus if m+m/=n<n’, then

Uppalls Uy pmltlsgm = CC' ("B +- '8 — a™B™ — a™'B™) (aB)”
+ CC'(o™"+ 7"/ = a™y™ — a™y™) (ay)*
+ &e. :
which, for abridgment, may be written c¢(z8)*+ ¢ (ay)*+¢/(By)* + &e.
Now if we represent this remainder by », we find

o O
2 ﬁ>+ : ()+ &e.

which therefore converges to af as 2 increases, @, 8, being the two
greatest roots.

In the case of equal roots, the convergence is more slow, as ¢/, ¢/,
&c., are then’ algebralcal funcuons of z.

Thus let =0, n'=2, m=m'=1, then the condition m+m'=n+n’,
is satisfied, and we have V,=u, U, g—U,.4,, and therefore Fourier’s
rule for the product of the two first roots is correct, and hereby
demonstrated.

Again, if n=0, n'=8, m=1, m'=2, and therefore 1z+n’—m+in'

we have Vs Uy Uiz Ui Uigy and as we have found that s changes

to 2B, Fourier's rule, which says that it converges towards a+B, is
evidently incorrect, and it is obvious that only products, and not sums, -
can be obtained by means of a single recurring series, of which the
general term v, is obtained by the means above used.

But the quotient of the general terms of two recurring series,
which does not itself exist as the general term of any recurring series,
is susceptible of giving sums of the roots, or] *of the symmetrical
functions of a certain number of roots, as its limit, when « is infinite.

For with the same notation let v+ 1'=p+4/, and let

Ve & Uy Uy = Uy Uy
then

v, =CC/(a"B" 4B —a"B™ — ™ ™) (aB)*+ ¢/ (ay)*+"(By) + &c.

V,.=CC/(«B" + '8 — B —a'B*) (aB)* +€¢(a7)*+¢'(BY)"+ &e.

where ¢, ¢, &c., represent constants, formed similarly with ¢, ¢, &e.
12
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Hence, « 8 being always the-two first (when real greatest) roots, we

have y 8 g g
+a- .- -_ -

Limit Of . 1ﬁvl+arlﬁv apl ﬁ» —_— wppl .

Let n_O =38, v=0, vV=2, m=1, m'=2, p=1, d=1;
then v,==1, Uy rs—Urps Ussey Va==U, U, 49—, and the value of this
a4 B — o' —apft

a4 pf2—2af

general expression is then = a+8, from whence

this rule will follow.

In the recurring series, formed with the scale of constanis, given by
the coefficients of a proposed equatjon, take four consecutive terms,
and from the product of the extremes subtruct the product 'of the
mean terms.

Omitting the last term of the four, from the product of the extremes
of the other three, subtract the square of the mean.

Divide the former remainder by the latter, the quotient will converge
to the sum of the two greatest roots when real, and when the two
first roots are imaginary, to double the real part of either imaginary.

- 'This rule enablmg us to find «+4B approximatively, and either
Vi

v, O V.
‘@ and B by the formula —of- a+ﬁi \/ (

No other easily prachcable me(hod is yet known for converging to
the real and imaginary parts of impossible roots; but, having thus
obtained thejr first approximate valueg, we can find them as exactly as
we please by T. Simnpson’s extension of Newton’s method of approxi-
mation.

, couverging to B, as has been proved we can thus find

EXAMPLES,

(1.) Given 2®* = 6z — 10.

Assume 1, 2, for the first two terms of a recurring series, of which
the constanls of relation are —10 and 6

1, 2, 2,- -8, —68, —328, &c.

Take the four last terms, and from the product of the extremes —656
subtract the product of the means 544 ; the remainder is —1200.

Again (omitting the -last term), from the product of the extremes
—186, take the square of the mean 64, remainder = —200. Divide
the former remainder by this, the quotient is 6, which is the sum of the
roots exactly, and its one-half 8 is the real part of the imaginary roots.

From the product 2624 of the last term and last but two, subtract
4624, the square of the last but one, and divide the remainder —2000
by the former corresponding remainder —200; the quotient +10 is
the product of the roots, or the sum of the squares of the real part,
and of the coefficient of the imaginary part ; this coefficient is therefore

only unity, and consequently the roots are 3 + 4/ —1; this example
tests the accuracy of our rule, and of Fourier’s correct, rule for the
product of the roots.
Example (2.) 2*=72-6
Assume for first terms 0, 1, 2, scale of constants -6, 7, 0
7,8, 817, 14 211,
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Now all the roots here are real, yet, if we divide each term by the
preceding, the quotient, which should converge to the greatest root
—38, does not until the series is continued so far that the terms shall
be alternately positive and negative, but if we apply the rules for the
sum and product of the two greatest, we find respectively —.9 and
-—6.05, the correct values being —1 and —6, thus the want of con-
vergence, arising from badly assuming the first terms, may be greatly
corrected by the application of these rules.

(80.) When the ratio of the first root, or first produet’ of ‘roots, to
any other, is such that the sum of the squares of its real part and of
the coefficient of its imaginary part is unity, this method will fail : thus,
putting u, = Co” + C'8* + &c. = ar'{C + C’(g) + &e. } then if E

/4
be of the form above mentioned, it may be written Cos o+M—1. Sin 6;
and therefore (g) will be periodical instend of converging to zero,

this inconvenience may be remedied by a transformation of the equation
proposed, which shall increase all its roots by a constant.

Other inconveniences, as Lagrange remarked, may be avoided, by
forming the first terms according to the law for the sums of the
powers of the roots; the subsequent terms will then be also similar
sums of the powers expressed by the number or place of such term in
the recurring series, and the nature of the derived recurring series will
be then easily and accurately known.

Thus u, = o + B* + 7 + &e.
U5V Upyy = (2 — B)2 (@4 B) (aB) + (a—=7)*(a+7)(ay) +
(B—7)'(B+1)(BY) &e.
Ulpa— ey =(@—B8)* (@B) + (a—9) ()" + (B — 1)
®By) + é&e

and it is, by inspection of these values, easily seen, that the approxi-
mation will be most favourably couducted, when v, J, &c., being

-small compared with «, 8, a—v, f'—~7, &c., are not great compared

with «—#8; when «, B, are real, it is an advantage if their signs be
contrary.

It would not be difficult to extend these rules to comprise the com-
binations of three or more roots, but the numerical calculations greatly
multiply for the formation of the proper series, at the same time the
convergence becomes much more slow, because the number of separate
parts *which compose the general term of the derived recurring

series, from =, which it was in the primitive, incr to "(n-2— 1),
i
n(n -21.) ;n-2), &c., all of which parts, with the exception of one

part, being rejected as small compared with it, the error arising
evidently increases with the number of rejected terms. Besides the
methods here explained are sufficient to find successively all the real
and imaginary roots, by separating those which are found,
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(81.) The early analysts bestowed much lebour in the invention
of methods for finding the simple and quadratic divisors of equations
when rational ; this branch of research is néarly useless, for in practice
they seldom are rational, and, when they dre so, the easy methods now
existing for determining the limits of the roots of equations reduce the
discovery of such divisors te a few trials.

(82) Newton’s Method of Approximation.

Let a be an approximate value to a root of the equation ¢(r)=0,
and @+ h the correct value ; then

& (a+h) = d(a)+¢'(a) . h4+¢'(a) . i’% + &e. = 0

Now & being, by supposition, .very small, the terms of this series
which contain higher powers of k than the first are also very smal
compared with it; if therefore ¢"(a), ¢//(a), &c., are not very great
comparz:l(with ¢/(c), we have very nearly ¢ (a)+4¢/(a)=0, or
h=— i

'(a)
h, denote this result by &,, then h,=h very nearly, and a+h, is
therefore very near the sought. root; let a+h,=a,, and the same
reasoning shows that @,+ A, or a; is a closer approximation to this

¢ (@) , and by repeating this process we muy con=-

¢'(ay)
¢ (a)

verge in most cases very rapidly to the root required; a,=a— -

¢ (a)’
¢ (a) ;"=a’_¢(a.) ¢ (a)
#(a)’ ¢'(ap) ¢ (@’

nearly, As we have not obtained the accurate value of

root, when h,= —

A=, — ; if therefore we put F(a)=a—
we have
a,=F(@) a =F(a)=F.F@)=F(), ¢; = F(a) =
¥.F.F (a) = F(a) &c.
we thus generate a continued function, converging to the root of the
proposed equation ¢(r)=0. : i

Conversely, suppose a to be the ultimate value, to which converge
a, F(a) , F*(a), F*(a), &c., then when n is infinite we have

F@@) = o FH(a) = a.
therefore . F (2) = «

But F () = a— -ql:‘)
¢ ()

therefore (@) = 0; now if @,, 2y, a;, &c., be the roots of the pro;

posed equation, we have -

P _ 1 1,1 o
()~ azam + + &c. = infinity.

& —Ty x Ty
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Therefore @ must be equal to one of the roots z,, y, Zs, &c., con-
sequently this series of repeated functions, when convergent towards
a limit, determines necessarily one root of the equation. Such are the
principles on which this easy method of approximation is founded ;
it is obvious, however, from the nature of both the direct and converse
processes above pursued, that certain circumstances are necessary to
ensure its success.

(83.) By the application of Sturm’s theorem (Art. 21) we can
find two limits, @, b, of a single root of the equation ¢(z)=0, and
we may suppose them, by subdividing their interval, to be taken
sufficiently near each other, that no root of the equations ¢/(z)=0,
@'(x) =0, may be included between them; this may always be
effected, unless either of the latter equations have one or more roots
in common with the proposed ; and if there is reason to suspect that
such a relation exists, it is only necessary to seek the greatest cominon
divisor of the two functions, and proceed then according to the general
rule to find the root correspouding to this common factor; these
particular cases may therefore be excluded in the following consi-
derations :

Since ¢(x+h) = ¢(z)+h¢'(.t)+% . ()b &e.

and by taking £ sufficiently small, the terms after the second term
will not influence the sign of the quantity added to ¢(z), and ¢'(x)
never changes its sign from z=a to x=sb, therefore ¢(z) is always
increasing or always diminishing between those liits, according as.
that sign is positive or negative, and the same remark must hold
for ¢/(z) , since @"(x) does not vanish in the interval from z=a to
r=b.

"Let this interval, a —b, be divided into a very great number n of

a—=b .

parts, that is, let A= - J

then $(b-+k) = (D) +HAF D)+ D)+ &e.

and @) = ¢(b+h)-h¢'(b+h)+%’. ¢'(b+m) = &e

therefore A ; }
POy 1L g1+ demd G424 G+ &

Now since ¢"(x) does not change sign from @=>b to r=a, therefore

¢"(b), ¢"(b+h) have the same signs, and siuce k is very small,

¢_(b_+_l2_—_¢i(_b_) is necessarily between ¢/(b) and ¢/(b+F£), but ¢'(z)

has a continuous increase or decrease from b to b4k, therefore

B(5+h)—¢(b)
h

, must be exactly equal to ¢/(b,), wherebd, is some
quanfity between b and b+Fk.
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Agaim, b, being between b4-4 and b+42k, b, between b+ 2k, and

b + 3k, we must have
b+ 2h)—p(b+h
b+ 3.¢(+) = ¢/(b)

b - (b+2k ~
PSP )y

DR R N I A N R R X I

POIOHETLR _ gy

and taking the sum of all these differences, we find .
$(@) =d(5) = PG +F B +H B+ .. ...+ (L)}

But ¢'(r) continually increases, or ‘eontinually diminishes from
z=b, to b,, which are between a and b; therefore ¢(a)—¢(b) is

necessarily between 24 ¢'(4,) and nkh . ¢'(5,) or &%?_-:Lb) is be-

tween ¢/(b;) and ¢'(b,), and is therefore exactly equal to ¢’(z), « being
some quantity between &, and b,, or, taking more extended limits, be-
tween a and b.

(84.) To apply this, suppose @ greater and b less than a sought
root of the equation @(x)=0, and such as not to include any root
of the equations ¢/(#)=0 ¢”(r)=0 between them, lete, ¢,, be the
errors, that is, let @ —e=b+e, be the true root, then

d(a—e) = ¢(a)—ed/(a) =0

¢(b+e) = (b)+ed/(B) = 0
Where « is between ¢ and a—-¢, or r, and 3 belween b and b+e,,
or r,and therefore both o and B are certain quantities between a and 5,

¢(a)
¢'()
20)
¢'(B)
Let ¢/(a) be the greatest of the two ¢/'(a), ¢/(b) ; then it will be
greater than ¢'(«), ¢'(3), though with the same sign, and ¢(a), ¢(3),

have obviously contrary signs; therefore, if ¢/(a) be written in the
above expressions for ¢/(«), ¢/(3), the correcting fractions for e, e,

$(a) ,_ o)
‘ ¢'(a)‘ 9'(a)
limits to the sought root than a and b, and are, one greater, the other

less, than it.
Calling these new limits o/, b, we find, in the same way, closer

@) .,y 20)

=4 g@y V=Y gy
thus to the true root from quantities above and below it, it is obvious
that the digits common to the two approximations belong strictly to

" therefore r = g—e = a—

= btey= b~

will both be diminished, and therefore a— ,» are nearer

and so on; and if we converge

limits, a".=a' -
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the true root; thus this method of approximation will proceed with
accuracy and rapidity. - :
Example. 2*—2x-—5=0.
P(x)=a2—2z-5; ¢'(r)=3s"-2; ¢"(z)=6x.

Divide now ¢(x) by ¢'(x), and continue the division in the manner
of finding the greatest common measure of these quantities, observing
to change the sign of the remainders before they are used as new divi~
sors, thus :—

82'-2)3(2*— 22 — 5) (x
82*—2z
—4r—15
Second divisor . . . . . 41-!-15) 4(32*—2) (32

1222+ 452
—45x—8

Multiply by 4. . . . . . . . —180r—32(~45
—180x—675
+ 643
Third divisor . . . . . ... . . —643

The series formed by the given function and the successive divisors
will in this instance be *—2r—5; 81*—2; 4r+5; —43. Thesigns
of the first terms in these expressions are -, -, |, —, whieh have
but one alternation of sign ; therefore the equation has a pair of im-
possible roots. Put successively 2, 3, for z in the same functions, they
become in the first case —1, +10, +13, —43, and in the second
+16, +25, +17, —43; the former substitution giving one alternation
of sign more than the latter, it follows that the equation 2*—2r—5=0
has one, and only one, real root between 2 and 3.

# Also, it is easily seen that neither of the equations 81"—2=0,
6r=0, have any root between the same limits; these numbers will
therefore serve to commence the approximation.

Put therefore 2=38—e=2+-¢,;

then ¢(3 — ) =(8) —ed'(2)=0, .

where « is between z and 3, and ¢'(x) increases between these limits ;

16
therefore ¢/(z)<¢'(8), or 25; and since $(3)=16, therefore §3<e;

therefore w<3—;—g, that is, 2.36 is a superior limit nearer than 3 to

the true root.
Similarly, $(2+¢,)=¢(2)+e,¢'(8). B lying between. 2 and z, we

have ¢/(8) <¢'(8), or 25 ; therefore e, is greater than 25 F z>2.04,

a nearer inferior limit than 2. ‘ -
Though the limits 2.04, 2.86; aré nearer than those first assumed,
yet, as the digits in the first place of decimals differ by more than a
decimal unit, we shall readily obtain a nearer superior' imit by writing
2.1, 2.2, 2.8, for x in ¢(z). The first of them which renders ¢(z)

positive must be a superior limit, since there is but one real yoot be-
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tween 2 and 3, and ¢(z) can only change its sign by passing through
zero. Now, when 2.1 is put for ®, we find ¢(x)=.061, which is
positive, .

We shall therefore recommence the operation with the limits 2
and 2.1, -

$(2.1)=9,261 —4.2 -5=,061

$(2)=8-4=5=—1
¢'(2.1)=18.23-2=11.23; .
: 61 1062
ghercfore . r<2.1— m, or 24 m—g‘o,
1000
and @>2+IW.

These limits of z differ only by Tﬁ%ﬁ’ but the superior limit has a

much nearer approximation to the root than the lower, the divisor of
the correction in the latter being foreign to it, and borrowed from the
superior limit; from this, converted into decimals, we have <2.09456,
which is remarkably close as a second approximation, the true value,
given by repeated processes in Fourier’s ¢ Analyse,’” being

2.09455.14815,42326.59148.23865.40579.30. .. ...

This example was first given as an instance of his method by Newton,
was ofterwards solved differently by Lagrange, ¢ Equations Numé-
riques,’ and the cause of the rapid convergence by Newton's method
pointed out ¢ Note V., and finally was selected by Fourier to exemplify
his improvements in the theory of this approximation. He has, how-
ever, .indulged in numerical calculations which were unnecessary; for
the sign of ¢(z), when any approximation was put for x, would show
whether that value was above or below the trué one, because only one
real root lies between 2 and 3; and since 2 makes ¢(z) negative, and
3 makes it positive, the sign alone for intermediate values would suffice
to determine whether they were superior or inferior limits. We may
observe that the logarithmic method, which gives the same result as
Lagrange's series, would in this example give

5 5 6 5 8,9 5

= atre v g gt Ee
a divergent series corresponding to the imaginary roots.

It is important to consider the degree of accuracy attained by this.
method of approximation. : '

Suppose, as before, that @, b are the superior and inferior limits of
the root to which we wish to approximate, containing between them
no other root of the equation ¢(x)=0, nor any root of the equations

. : . , b)
¢ (2)=0, ¢"(x)==0; and let a—d=hr, a=a—-¢(a), b’=b—¢—(-—-,
(D=0, $=0; V@ =@
W=d'=¥ ; then d', b’ are the limits obtained by the first approxima-
tion, the accuracy of which may be judged by the relation subsisting

between 2’ and A. '




THE THEBORY OF EQUATIONS. 123
Snbotitnh: for b its value a—A; then ¢ (b)=¢(a) — ¢/(a).A
+¢” (y).r’f-z, where it may be seen, by similar reasoning to that we

have already employed, that y is some quantity between @ and b;
we obtain

Y=a—1_2 +,._¢"(7) M

¢/(a) 2¢'(a)’
¥ .
therefore d—bV=k= ‘Zﬁ’(—aj AR

Now, though the quantity y and therefore ¢/'(y) is not accurately known,
- yet we can easily determine a known quantity greater than the latter—
for instance, ¢"(a)—if ¢/”(a) is positive, or ¢(b) in the contrary case,
on the allowable supposition that ¢"'(x) has no root in the interval
from b to a; and dividing this quantity greater than d)”(-y)”by 2¢/(a),

if C be the quotient, we necessarily have #’<CA%; and, as :, (Z; would
diminish for nearer - approximations (since ¢''(y)=¢"(a)—4¢"(3).k,
where & is between @ and b, or to ¢"(b)+4¢"'(€) .1 and ¢''(3), ¢"(e),
must have, one the same sign as ¢/(a), the other the contrary sign ;
=a—7, i{=9—b) ; therefore, when C is properly determined, if i,
k", K", &c., be the differences of the new limits successively obtained,
we have A <Cht, B <CK', K'"<Ch'", &c.; wherefore the rapidity
of the approximation may be compured to that of a descending hyper-
2
geometrical progression ; “for if A'= To® then h”<%,
places of correct decimals, excepting the influence of C, which is always
the same, being thus doubled at each operation. Such great conver-
gence makes this mode of approximation as valuable as it is sure.

When a—e is put for z, if, instead of determining ¢ approximately
by the equation ¢(¢;)—e¢'(a)=0, we lake the more accurate equation

y
$(a)—ed/ () + 05 D)
tion $(a—e)=0 to the second power of ¢ inclusive; and if & be the
difference of new limits obtained in this manuner, the same considera-
tions show that the diminution of the successive errors is still more
rapid, or may be expressed by A’=C#A’, K'=CAh", &c.; but this exten-
sion of the Newtonian approximation, requiring at each operation the
extraction of a root, is less simple, and therefore less fit for use, than
that which we have explained.

For the great improvement of Newton’s approximation by means of
two limits, which include in their interval all the roots of the first and
second derived functions, we are indebted to Fourier; but his method
-would have been incomplete without the assistance of Sturm’s theo-
rems, which show definitively the existence or non-existence of roots
in given intervals. For the employment of parsbolic curves, however
it may tend to illustrate the subject as an application, must be regarded
as foreign to it when used as a mode of investigation; and in reality
it fornishes only a vicious circle, since nothing can be deduced from a
curve which is not implied in the equation from which it is traced.

(85.) Without entering on the general subject of elimination, we

the number of

, then the verification will subsist in the equa-
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shall notice Simpson’s extension of the Newtonian method of approxi-
mation,

Let ¢(x, y)=0, F(z, y)=0, be two equations, containing two un- -
known quantities, » and y, of which we know approximate and co-or-
dinate values a and b respectively, so that ¥=a+h, y=b+k, when
hand k are both very small ; then ¢(a+4, 64 %) may be expanded
in the form ¢(a, b)+ Ah+Bk=0, neglecting higher powers of &, &,
and their rectangles, as compared with their first powers; similarly,
we shall have F(a, b) + A’A4+B’k=0, from which simple equations
the first approximations to the correct values of A and %k are readily
deduced. :

Example. To find the imaginary roots of the equation 2*—2r
~5=0, °

Let a, B be the imaginary roots, of which let the sum be s and the
product p ; let a, 3 be each put for x in the equation, and by summing
the results we find, s2~ 3sp - 25 —10=0, observing that o* 4 (*=3 —3sp.
Again, if we subtract the result of one substitution from the other and
divide the remainder by a—43, we find a*+aB+32—2=0, or s*—p
—2=0, we must now seek approximate and co-ordinate values of
¢ and p, as S, P, and then putting s=S+ % p=P+#, when % and &
are supposed very small, we shall have

1. . .(8—8SP—-2S-10)+Ar(35*'—3P—2) - 3Sk=0.

2) (S*—P—2)+2Sh—k.. . . . .. . .. =0,

$—28+5 , <
‘3573P42° If._.S P-2425h.
The cotemporary values of # and y render S*—p—2=0 and their
approximate values must render S?— P—2 a small quantity ; if we put
S+h for S, P+k for P, we shall obtain second corrections &', ¥/, and
putting S4+h4+4 P+ k4K for S and P, third corrections will be
found, &c.

Form now a recurring series, of which the first three terms are
1, 2, 4, aud the scale of constants are the coefficients in the given
equation, namely 0, 2, 5;

1,2, 4,9, 18, 38, 81, 166, 352, 737, 1534, 3234, 6753, 14138, *
and taking the successive quotients we find them convergent, though
sometimes above and somelimes below the value to which they con-
verge ; if we take only the last 3 terms we have

6753 14138 '

3231 = 2.093. 6753 = 2.099.
The real root being, therefore, 2.09 nearly, we must have S= - 2.09,
and dividing 5 the product of all the roots by 2.09, the quotient is
- 2.39. . . We may therefore take P=2.40.

3) Hence hA=— 2

_ Hence 8*—2S+45=.0506... S*—P—-2=-.0819
3S*+-3P +2=22.3043.
Hence A= — . 90045 =—,0819+4,18 A= —,0131.

The corrected values of S and P are thus, S= —2,0945, .. P=2,3869,
the first of which is correct to the last figure, and the second -is too
small only by .0001 ... And a second approximation is readily effected
by writiug these values for S and P in the formula above given. The

required imaginary roots are therefore —1,0472, . .+1,1862...4/ = 1.
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Example 2. To find all the roots of the equation x4 r4-10=0 (no
possible roots), we must form a primitive recurring series, of which the
scale of constauts is 0, 0,—1,—10, and the first four terms may be
any assumed : we shall take those correspouding to the sums of the
first, second, third, and fourth powers of the roots, viz. 0, 0,—3, — 40.

Primitive series, 0, 0,-3,— 40, 0, 8, 70, 400,—3,—100,—1100,—

3997, 130, 2100, 14997, 39840,—3400.

From the product of the extremes belonging to any four consecutive
terms of the primitive series subtract the product of the means, and thus
another recurring series is generated. :

1st derived series 0,—120,—9,—2800,— 210, — 28009, — 5800, —
440300,— 98009, — 4409700. . .in which the ratios of the consecutive
terms, alternately greater and less than unity, have but little con-
vergence to any definite value; therefore it will be of advantage to
form a second primitive series, of which the first four terms shaull be
nearly proporlional to the four last-computed terms of the preceding
and lower in numerical value, as, for example, when divided by 700 we
have thus

Second primitive series, 3, 21, 57,—5,—51,~267, - 565, 101, 777,
from which the series derived in the manner above mentioned, changing
all the signs, will be

1212, 786, 15475, 10792, 156006, 150394.

In the former derived series the limits of the product of the first pair
of impossible roots which are found by taking the quotients of the
successive terms were § and 45 nearly, and in the latter one they
are 1 and 14% nearly, which are yet too remote ; another primitive
series is therefore to be formed, taking —5,—11, 2, 15 for the first
terms which arise by dividing the four last terms of the above by 51
to obtain low results.

Third prim. series,

-5,—-11, 2, 15, 61, 108,—35,—211,—718,— 1045, 561, 2628

and the three last terms of the derived, with signs taken positively, are

114923, 868681, 1444259,

when the successive quotients are nearly 7} and 13.
Divide the four last terms of this primitive series by 51 and com-
mence a fourth with the quotients.

Fourth prim. series,
—14,—20, 11, 55, 160, 189, —165,—710,~ 1789, - 1625, 2360,

from which we obtain for the three last terins of the derived recurring
series

455271, 1002065, 4552725.
The successive quotients are now 21, 4} nearly ; dividing by 71 we get
similarly
—10,—25,— 23, 33, 125, 273, 197, — 455,— 1523, — 2927, — 1515,
Last derived terms, with signs changed, are
326144, 1269584,'3768496,
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the limits now obtained are 2, 97. . .and 8, 8., . . )

Finally form a primitive series, dividing the four last terms of the
above by — 152,

8, 10, 19, 10,—40,—119, —200,—60, 519, 1890, 2060, 81,

the three last terms of the derived are 246860, 845010, 2821361,
from whence we find 3°34 and 3'42 very nearly as the limits of the
product of the first pair of imaginary roots, and since the product of
all the roots is 10, that of the second pair is between 2.92 and 3.

Again, a second derived series may be formed by taking from the
product of the extremes of 3 terms the square of the meun, and
changing the sign of the remainder, the two last of which correspond-
ing to the two last above obtained are (519)*+460 x 1390 and (1390)*
—~519 x 2060, or 352761 and 861960, therefore the limits for the sum

845010 . 2621361
352761 " "861960 °F *°

and 3.2 nearly, the same quantities taken negatively being the limits
for the sum of the second pair.

The proper limits being thus obtained, let s represent the sum and
p the product of the first pair of roots a, 3, then we have

at4a410=0 B+B+10=0

of the first pair of impossible roots are

4 _ (34
But a*+¢=s'—4sp +2p*; f;_—g— =(®+ ") + af(a+B)=s"—2sp.
Hence ) st—4sp+2p'4-54+20=0
£-2sp+1 =0

and to obtain a first approximation, let
S$=2.5, P=3:4, s=8+h, p=P+k
Hence (S¢—4S'P+ 2P+ S+420)+4 (48*—8SP+1)k—4(S*—=P)k=0.
~ (8°~2SP+1)+(38*-2P)h—28k. . . . « . . . . =0,
or , 0625—4, 5h—11,4k=0
~,3875411,95h—5k.. =0

from whence we find A==,0028 k=, 0043, and for a first approxi-
mation S=2.5028 P=3.4043 and one half the difference of these

: ]
two roots =\/(§——P)=l, 848. . . 1; hence the first pair

of impossible roots are 1,251 . .. +1,348. .. /—1.

For the second pair the sum is —2,5028, and the product =

" ']
=:TO = 8, 231, therefore their semi-difference = ,\/ (g— -P)=

1, 282. .. .therefore the second pair are —1,251. . .%1,282.. .
V=L

This example from the near equality of the moduli of the impossible
roots (that is the square root of the product of each pair) was un-
favourable for the application of the method of recurring series; but
as this method may be said to be the only direct one known for ob-
taining a first notion of the magnitudes of the real and imaginary parts
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of the roots of equations, we have, therefore, developed it at length, that
it may be seen how we are to improve the first arbitrary terms of the
primitive recurring series, namely by commencing other series, the
first terms of which will be small and nearly proportional to the last
terms of the previous recurring series ; we may add that the research
of the impossible roots of equations has been generally overlooked in
modern treatises of algebra, although it is requisite for the integration
of rational fractions.

(86.) Method of Continued Fractions.
~ Let ¢(x)=0 represent a proposed algebraical equation, which we

suppose to have some real roots, and in this method the research is
confined to the positive roots, and the negative roots may be found in
the same manner by mnkmg @ = —y for then all the negative values
of r correspond to positive values of y.

Divide ¢(z) by the derived function ¢/(2)=V,, and change the sign
of the remainder ; let this quantity V; be made a divisor in the same
way for ¢'(x) and the next remainder with a changed sign V, a divisor
for V,. and so on until we arrive at a coustant V,. then when z is put
=0 in the series of functions ¢(r), V,, Vs, Vo. . . . . V,, they are
réduced to their last or absolute terms, and when =4 their signs
are the same as those of their first terms; observe how many alter-
nations of signs there are (from + to —) more in their last than in
their first terms ; we shall thus know how many positive roots exist.

Substitute in the same functions 1, 10, 100, 1000. . . . successively
for x until the results have as few alternalions of signs as the first
terms of the functions ; then observing how many alternations are lost
from a=1 to 10, from =10 to 100, &c., we shall know how many
real roots there are in the same limits.

If r@ots are between 10 and 100 then put 20, 30, 40. . . . 90 for z,
and if, for example, we found them yet between 30 and 40, then put
81, 32, 88,. ., .39 for x, and thus it is plain ‘we shall separate all
the roots of which the difference is greater than unity, and moreover
we shall become acquainted with the integer part of the root or roots ;
in other words the integer which is next less than each root.

Let p be an integer thus found which may belong to only one, or
be common to several rcots, according as the functions ¢(z),
V;....V,, lose only one or several altemauons of signs from x—p
to x—p+l To the remaining roots would conespond other integer .
parts, p', p", &c., to which shounld be applied a similar process to that -
about to be descnbed

Make 2= p+- » the transformed equation is
i lrl(n)(
$(®) « y"+4'(p) . y""+¢’ (p) Tt ‘f 5 ”ZL =

where 7 is used to denote the dlmenswns of ¢(zx).

Our object being to approximate to the value or values of y, which
are between p and p+41, we must take values of y in the transformed
equution which are greater than unity, and positive; the number of
these we already know, being the same as the number of values of z
in the above~mentioned interval. We can now find the integer part
of the value or values of ¥ in the same manner we had employed for z;
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but it should be ohserved, that when there is only one value of z
between p aud p+1, there can be only one positive value of y greater
than unity, it will be therefore sufficient to substitute the natural
numbers, 1, 2, 8, &c., for y in such case, until the ttansformed function
changes signs; we shall thus know the integers ¢, ¢+ 1, which
limit y. i '

We have now merely to repeat this process, making y=q+z—,

z == r+'l—‘ » &c., and however near two roots may be, we shall ultimately

separate them by this process.

Such is the method of continued fractions given by Lagrange, but
the certainty of its application we see depends on Sturm’s theorem.

After the roots are separated, we may, by similar transformations,
converge to one of them, the continued fraction or value of x being

1
+ =
P 71
+; :

+ 5+ &

and it is easily seen that the comverging fraetions which are deduced

- are alternately greater and less thau the true value; as such trans-
formations are, however, in many cases tedious and laborious, it is
practically bettet to use Newton’s method of approximation, after the
separation of the roots.

(87.) To find the imaginary roots, Lagrange recommends to form
the equation fo the squares’ of the differences of the roots,.so’that if
a@+By —1 and a+ B,/ —1 were roots of the proposed, —45* would be
a real root of the transformed and is essentially négative ; but besides
the great labour necessary in general to form this equation, and the

(n—1)

high dimensions “>- 5

‘to which it rises, the labour of approximating

to B by means of this equation, and then of approximating to « by
means of the equation ¢(a+ B8 J-——l—) - ¢(a—8 J= 1)=0; (which,
generally speaking, render the method all but impracticable) ; besides
all these objections, there are several causes to produce an uncertainty
in the determinations, even when all the labour is surmounted. For
instance, when two pairs of impossible roots a4+ BV =1, a— -1,
a+ry~/ -1, a—q~/ —1, have the possible parl « common to all,
then — (B—7)* — (B+19)* will be negative roots of the transformed,
as well as —48}, —472 though they correspond to no conjugate pair
of impossible roots of the proposed. We, thercfore, in seeking such
roots, decidedly recommend the method of recurring series, as before
explained, used with a due regard to the diminution of labour by
praper assumptions ; this being the only other method existing for
the purpose in the present state of analysis, putting out of considera-
tion the purely tentative method of forming a table to double entry,
in which a series of values would be assigned to 8, corresponding to
every assigned value of «.
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(88.) Consider now the fractions converging to the ultimate value
of the continued fraction, .
1
P+ i
q +r;—i'
s+ &e.

they are p, p+;; »y P+ -—l-—l , &c., which may be reduced to simple
q+-
T

fractions, capable of being successively formed, each from two pre-
ceding fractions, in an easy manner.

The (n-+4 1)th converging fraction bein;gr represented by %‘,we
have manifestly ’ )

% _ P

E: 1 or a;=p B=1
e l)..q_ﬂ or ay=qa,+1 Bi=qB,;
B q

in this formula write q+11-‘- for ¢, and multiply numerator and deno-
minator by 7, the resuit will be the uext converging fraction.
1
(g+= Jo+1
. T

Hence F, =

=@t ta _ radta
7. 9B+ 8, ) T Bi+B,

1\
(q+;/ﬁo
orla,=ra+a  Bi=1B+5

e 1 .
In the same manner by writing 74 s for rwe obtain
[

1 .
a _ (f+;>ﬂ|+%— srata)ta st

thatis @ = sayta  Be=sBi+Ai;

and in general if u be the nth and v the (n4-1th) denominator of the

. . . U, .
simple fractions, and if i g —a"—‘-l:—-a#'-‘-, “we see that a,_,, o, s,

B UBuy 4 Ba-s
Ba-1s Bes, depend only on the denominators which precede u, and
should not be altered when, to obtain the next converging fraction, we

. 1
write u+; for u, therefore
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(u+ 1 @,
; -—l+a~—l

[

Bunr

(u+ %) Ba14Baas

L v(ua it ) ta,
- v(“ ﬂ.—l+ p»—!) + ﬁn—l

A
- vﬁu+ﬁu-l

and therefore g1 =v.a,+ a1 Bas1=v8.+B.-1, Whence we see the
generality of this law of formation which may be thus announced.

Calling the denominators ¢, r, 8, &c., the partial quotients, then,
to form the converging fraction when we stop at any given partial
quotient, knowing the two preceding converging fractions, multiply
the numerator which occupies one place before that sought by the
partial quotient for the latter, and to this product add the numerator
two places before.

Multiply the denominator of the place before by the same partial
quotient, and to the product add the denominator two places before.

We shall thus have the new numerator and the new denominator.

Example. Let the continued fraction be

1

——

1
3+ 3 %

3
The first two converging fractions are -%— and 1o’ from which the
others can be formed as follows by the rule given,”

1l 3 10 '33 109 360 &e
8’ 10° 33’ 109’ 360° 1189°

The exact value to which the fractions in this example converge is
incommensurate, for if we represent it by =z, then the actual deno-
minator taken after the first dividing line of the continued fraction is
842, and therefore, .

1
w._3+x or 1248z =1
3 13 .}
Ip == = - + —_' -
‘r 2~ 4’ o

but siice the fraction is clearly positive, we must take only the upper

1
sign, and therefore its correct value is ) {J(3-3}
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(89.) Every continued fraction, of which the partial denominators
circulate, is a root of a quadratic equation ;

Forletz = 1
o+ "
at a,+ &e.

and suppose the partial denominator to circulate after n places, that
is,let @y =@, @uya =y, &....00,,=a,, &

Let 2% 22, % gc., be the converging fractions, then since
By Bt By
’ 1
z =

1
a+

1
Oyt ——

ees o e

1

‘ a3
if we consider «,+ 8s one partial quotient, the corresponding con-
verging fraction ought to be the same as », and by the rule this is

(au+')¢u—l+an—l _

(a. + 't) ﬁl—l + pl-'
from which it is obvious that # is a quadratic syrd ; the converse of
this proposition, namely, that every quadratic surd generates a con-

tinued fraction with recurring periods, we shall shortly find to be
also true.

T,

(90.) Recurring now to the general laws of forming the numerator
and denominator of the converging fractions, we can eliminate the
partial quotient v, and thus arrive at a relation independent of such

quotient ; we have Oty = 0.0ty + oy
ﬁ-+l=v'ﬂl+ﬁu—l; )
therefore ﬁnun-}-l - anﬁu+l = Bn [ -ﬂ.—l H

from which we learn that, when = is increased to n+1, the quantity
Bty = on By retains the same magnitude, but changes its sign,
Now, when # is unity, its value is g.p—(qa+1) = —1; therefore,
when n is 2, the value is + 1; when # is 3, it is —1, and generally
ﬁu On-1 —aﬂﬂl—l = ( - 1).'

Thus, in the numerical example above given, we have the two con-

. . 109 360 )
secutive f;'acugns 360° mdm, accordingly we find

1189 x 109 — (360)* = 1.

From this it follows that every numerator in the series of converging
fractionsis prime to the corresponding denominator and to the preceding
numerator, for if «,,, @, had any common measure, or «,, 3, a com-
mon measure, the same must measure (—1)", which is impossible.

It also follows that the difference of two consecutive fractions is al-
ternatively positive and negative, and is a fraction, of which2the nume-

K
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rator is 1, and the denominator the product of two conseculive de-
noninators.

Thus 2ot s %tPa = e (1) . which, abstracting

ﬁn—l ﬂn ﬂu—l ﬁu ﬁu—l ﬁl

3 ); and since, moreover, the converging
n—1

fractions are alternately greaterand less than the correct value of the
continued fraction, the error is less than unity divided by the square of
the denominator of the fraction so obtained. Thus, the difference be-

from its sign, is less than

109 1 : . . 109
tweenm andé{m — 8} is less than the difference between 360

1 ) .
1189 128010° Thus every fraction approaches

much more nearly to the true value than the preceding.

and —@—; that is, less than

Suppose now & to be below the true value, and P any other fraction

Q
also below the true value, but neater to it than —= A ;;‘“
B 'm 41

since the Eonverging fractions are mlternately above and below the

, then —<

P
true value: hence — — —* is positive, and less than Qatr _ 33, or

Q B'\ ﬁlﬂ'l .

; therefore P8, — Q a, is a positive integer, but less than

1 Q
lguﬁu-fl Bair :
Q therefore cannot be less than 8.4, ; in other words, we can interpolate
no fraction of a denominator inferior to B,,, which shall be nearer the

true value than -——, and 4 fortiori than Tt -

IBO ﬁtfi

(91.) We proceed to illustrate by examples the theory here explained,
with the facility given to its application by Sturm’s theorem.

Example. Given 23 — 7a* 4 172 — 13 =0.
8a® —-14r+4+17)32% - 212°+ Hloe— 39(x
3r*— 14224+ 172 . &
"= 72°+ 34z— 39 Cod
| 212841022 —117(—7
. —2lz’+ 98z—119
T Ar+2
—2r—1)62°—28r+34(~3r
B . _ - 6+ 3z
- ;. —38lz+84
‘ —-62x+68(3l
T 499
T —99
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The equation has but one real root, which lies between 1 and 2, .
Put‘z‘=1+l p@)=a" =T 4 172 = 13; :

7
therefore p()==2¢(1)=6 4’1(;) =4 ‘{’ 2(1; L

' The transformed is 2y* — 6y° +4y — 1 =0.
f There is a root (the only one) between 2 and 3,

‘ 1
' ‘ Puty=2+;¢,(y)=2y'—6y'+4y—l

— - _ @ e B,
s @=-1 9@ =157 =6 70=2;

therefore 2* — 42 — 6z — 2= 0,
The root is between 5 and 6.

,Putz=5+‘-l1-‘ ge (z) = 2* — 45" — 62— 2
e g HG) )
b (B) = =7 ¢ (5) =29 1.2 =1 1.2.3 =1l;
therefore 7u® —29u°—~ 1lu—1 = 0.

The value of u is between 4 and 5.
These transformations may be easily continued. Ilence

—T T T T

=T

=14 l-
T= 241
5+ 1
4 4 &c
. : . . 1 8 16 67
’ The co_n\ergmg fractlons are—l— 5 i—l,z(—i BRI I

Example 2. Given 8z° —6r +1 =10 = ¢ (2) ¢’ (z) =6 (422 -1).
452 =1)82"— 6+ 1(2z

82° -2z
—4zr+1
4z — 1)4x’ 1(x
41—
r—1
4.1:—4(]
4ao—1
-3
+3.

The series of functions in this case is
82°—6x+1, 4r°—1, 4dr~—1, +3.
The equation has therefore no impossible root.

Put 2=0. The signs are 4+, —, —, +; and when 2= + ®, they
are + + 4 4+ ; therefore the equation has two positive roots,
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Put z=1. The signs are + + + +.
The two positive rools lie therefore between 0 and 1.

Put r=0+ -i- ; therefore 3*—6y*+8=0=¢,(y) ¢.(¥)=3(y*—43)-
14 )3;'—6y'+8(y—2
y—% A

—2,°+8
—2y*+8y

—8y +8
y =1y —4y(y-3 .
y—y
—3y
—3y+3
-3
+3.
"The series of functions for determining the limits of y is therefore

¥*—64+8, y (y—-4), y-1, +3.

Put y=0; resulting signs are 4+ * — +
y=1 - - - -4+ - X +
y=2 - - - B T &
y=8 - - - -- - + +
y=4 - - - - - % 4+ 4+
y=>5 - - - -- 4+ + +
y==6 - ~ - -+ + -+ +
Hence there is a root between 1 and 2, and another between 5 and 6.
Pat thereforey = 1 4 %-: 5+ %,

” "
HW)=y"-63"+8; ¢/(¥)=3@" - 4y); ?'—2@:3@’ —2)%2.(3'1/) =1

p(D)=3; p=-9;  HD- 5
. {

$(5)= —17; ¢/ (8)=15; @:9;

therefore 8 — 9%~ 382 ;i-l =0

172"® = 1528 —92/—1 =0,
when z and 2z’ have each only one value greater than unity.

By observing wheu the preceding functions of z and 2’ change sign,
we find z is between 3 and 4, 2/ between 1 and 2,

Put therefore z = 8 + 1 =14 -l_’;
u L)

the transformations and continuation of the process may be then easily
performed, as in the preceding example : whence the two positive roots



THE THEORY OF EQUATIONS. 13%
ofvare0+1,” and0+1

|

141 5+1
3+1 T+
u u'.

Again, in the primitive series of functions, which define the limits of

the roots of the proposed equation, viz. ;
82 —6r+1, 42°—1, 4r -1, +3.
Put 2=0, the signsare + = — 4
z= -1 = - = 4+ = +;

therefore there is a negative root between 0 aud —1.

To find this root, nake r=0— 3—1/;
hence y'°+6y'*-8=0:
¥’ must have one positive value greater than unity : it is easily found to

be between 1 and 2. Put y'=1+ z—l,;, the traunsformed equation is

28-15z"% 92" —1=0.

1
Hence 2" lies between 15 and 16, or 2"=15+ al
The required negative root is therefore 0 —1
irl
B+l

u;
from which we see that the negative roots may be approximated to in
the same manner as the positive,

We shall next take for our example one which has already been
solved by a different methed, that the accuracy of the approximations
may be compared.

Example 8. 2°~2z—-5=0.

By the method so often used before for finding the limits of the roots
of equations, we find that x in this case lies between 2 and 3; we must

therefore make .1:=2+$; and, multiplying the transformed equation

by #*, and changing all the signs, we have

' ¥ =102 —6y—1=0.
Substitute for y the natural positive integers until this function of y
changes its sign from negative to positive, the equation, as we have
shown, having only a single positive root greater than unity ; and,
since the greatest negative coefficient of an equation increased by unity
is a superior limit to the roots, if we commence the substitutions, putting
for ¥ 11 and then 10, 9, &c., the result has contrary signs for the first +
two ; therefore y is between 10 and 11.

i
‘I'he next transformation arises by putting y=10-+~, whence we find

61'—9420=20z2-1=0;
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and, since the greatest negative coefficient when the equation has been
divided by 61 is %, 2 is a superior limit ; substitute, therefore, 0,1, 2

for z, and the function changes sign, the results being —1, —54,
4171, &c.; hence z is between 1 and 2.

] Next make z=l+11-;. and we find the transformed to be

54ut+ 2512 —89u —61=0;
hence %3-+1 is a superior limit to the positive root of the equation;
and, upon substituting, we find that u is between 1 and 2.

, 1
Similarly we put u=l+;—, and we find s between 2 and 3. s=] +Z’
then ¢t is between 1 and 2. ¢=1 +;, and ris between 3 and 4. r=3
- .-l-%, k is between 1 and 2, &c.

Hence xt=2+4

1
QTR Y
from whence we form the converging fractions .
2 21 23 44 111 155 576 731 1307 16415 i
T 10 11" 21’ 53° 71’ 275 549’ 6241’ 7837°
which are alternately greater and less than the true root, the error of

1
last being 1 —— or, 3 i i
the last being less than 7887y or, converted into a decimal, less than

.0000000163. Now this fraction L;jggis the same as 2.0945514865,
[ ' .

and by Newton’s method of approximation we have already found

the true root to be 2.09455148]5, the error being only equal to

.0000000051. . :

The other two roots of the equation are imaginary; but, as the '
dimensions of the proposed are in this case low, they may be readily
enough found by taking the equation ¢f which the roots are the squares
of the differences of the roots of the given equation—the method used
by Waring and Lagrange. . ’

Let a4V = 1.and a—W =1 be the imaginary roots, the difference
of which is 2ﬁ~/ — 1, and the square of the difference is ~48°. Now,
if —X be the square of the difference of any two roots of the proposed,
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the equation for determining X (the method for forming which we have
given at the beginning of this work) is

Xs+12X*+ 36X — 643=0=¢(X) suppose ;
(X 48X +12)=¢'X;
X:48X+12) X*412X2+4 36X — 643 ( X +4
X*4 8X*412X .
T aXr124X—643
4X14-32X + 48

— 8X—691
8X+4691)8X+ 614X+ 96 (X
8X24 691X
— 627X+ 96

. —5016X+ 768 ( —627
- —5016X - 627 X691

remainder positive,

The functions giving the limits in this case are

X2+ 12X+ 36X — 643, X°+8X+12, 8X+ 691 and a negalive
constant.

Put X=5; the signs are — + + =—
X=6. . . . + 4+ + —;
therefore X is comprised between the numbers 5 and 6. .
Make now X=5-|-%, and, changing the signs to render the first
term of the transformed positive, we have
38Y*—231Y*-27Y—1=0;

“a superior limit to the root of which is % +1, or 8. Substitute 8, 7,

6, &c. for Y, and we find a change of sign iu the function in the two
latter ; therefore Y is between 6 and 7.

Hence Y=6 +—1; the transformed equation is

27178 - 1305Z*—~453Z —-38=0;

1305

the superior limit to whiqh is 271

+1, or 6; and by the same process
. l N
repeated we find 2=5 +fj’ U=6+\—}, &e.; -

" 1
wlence X=5+-—-——-1-
.- 6+ .
C S terae
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the converging fractions to which are '
5 31 160 991
1 6 31’ 192
We thus find X=5,161458. . . ; the error being less than .000002.
Hence 28=,/X=2.27188... B=1.13594...

&e.

Now, if we put a+ BV =1 for z in the proposed equation, and equate
the possible and impossible parts separately to zero, we have

a*— (38 +2)a—5=0
3a®— B —

Multiply the former by 3 and the latter by a, and take the ditference
of the product ;

15 15
8 44~ 2(X+2)
whence the sought imaginary roots are

~1.04727... *1.13504... ~=1;

to Whl(.h if we desire greater accuracy,’ we inay now appl) Simpson’s
extension of Newton’s ethod of approximation.
Example 4, for practice.

P =Tx—T7=0.
_ N
This equation has two positive roots and one negative ; they are

a= —

. By 1

:z':l-F'—l_ T

S X T

a -
+irse
L}

L= 3 — 1 "

20+3+&

It may be observed that all the successive transformations required

in the application of this method arise from substitutions of the form
_a+tbz

,i o the quantities a, b, @', &’ being of course different in the

different transformatnons

. Whena’ proper fraction 2 is reduced to a continued fraction, the
number of quotients or partial fractions generated depends on g, but ¢

being given it varies with p, we can find a limit to that varymtr number
in the following manuer. .
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Supposing p to be less than g, divide ¢ by p, let the quotient be a,
p_ 1

and the remaihder phence st =—— .
Y4
a,+ i)"’

Again let p be divided by p, , let ¢, be the second quotient, and p,

1.
the second remainder, then P _ — u
a, +——— 8

Ps
+_
as P
This quantity p,, or second remainder, is necessarily less than the
half of p, for if p, be one-half or less than one-halfof p, it is clear that

. which is less than p,, is less than -12)- , and if p, be greater than the

half of p, then the quotient a; is necessarily unity, and p;=p—p, is yet

P
less than 2° ]
For the same reason when By is reduced to the form
P 1
a,+
a,+ &
Ps

we must have p, < g-!- < g—;similarly P < %.- » and generally P*‘<Z_~ .
If, therefore, 2*be the nearest power of 2 less than p, p,, must be
1 or 0, and the number of partial fractions cunnot exceed 2x. .
Since p may be reduced by division if it exceeds g, it follows geune-
rally, that taking 2™ for the power of 2, which is nearest below ¢, the
number of partial fractions in the continued fraction which represents

g cannot exceed 2m.

Example. 17—1 = —l—i
14 —
1+_T
l+§._

Since 2'=4 is the nearest power of 2 below 7, the number of
partial quotients cannot exceed double the index, which is 4; but is
in this case exactly equal to it.

(91.) TInversion of continued Fractions.
It will be convenient to adopt a notation o express more briefly a

general continued fraction, as
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It will be only necessary to introduce the two extreme quotients a, , ,
in the order in which they stand ; thus this continued fraction will be
understood from the expression (a;....q,).

LetZt P P Pe b the converging fractions, then by this
@ B % q»

notation we shall have

(@) = 3 (f'n(h):’é:— (a,..a.):g—' ceen (a,....a.):f-if

L'l
Theorem. If ;b, !qi. be the two final converging fractions to @
n—1 n .
given continued fraction (a,. ... .a,), the value of the inverted fraction

(@a. .. .a) will be z-—‘—

For we know by the formation of the converging fractions that

q- =anqn-l +9--n
therefore, g, Gns
——=a, —_—

qﬂ—l + Gn-1 ?

whence 1

I
(I" a, + ?'_.—'

chauging successivly 2 into n—1, n—2, &c., this formula will give

Qo 1

I a-_l_‘_q._.
qunl
(LR !
In-s Augt Qn-s
qn-ﬂ
&c &e. :
- Hence qu.. 1§
D
a--l'l' a'-’ +... l

PRI L=

f-m-1
Put m=n-2, and observe that Z—": }7 , and we find
1 1}
LS
('3

. Sorollary. Since p,=a,pu_y+ Pa-s, by following the same steps” we
in

SN (A A R

[



THE THEORY OF EQUATIONS. "

Paa_ 1

Pn 1
n +ah—l+ e e +_l_"' pu—m-! .

Gun +

N—tt—]

Make m=n-—38, and observe that &= -1—, hence

P2 ag
e 1
j; = -7 = (ay....a;)
" a,+ 1
an-l+"0 +

Corollary (2). Since (.. . .a,) = gl—“

Pat

and  (@,. . .ay) =

Therefore .(a"_"'_‘ﬁl.—- Pn Gnr _ (@...a,)

@neiits) G Pus (@e..a)’

(92.) Conversion of algebraical formule into continued fractions,

41\, X . .
1. To convert (—3‘—) into a continued fraction, x being greater

than 2:

First, when z is of the form 2y, then 4y*® cannot be contained more
than once in 4%+ 4y+1, for 2 is greater than the greatest root of the
equation 4y®—4y —1=0; therefore 2, or any quantity greater than 2,
will render 4y*>4y+1, and therefore 8y*> 43244y +1; conseguently
432 cannot be contained twice or oftener in 4y®*J-4y~-1: taking there-
fore 1 as the first quotient, the remainder is 4y + 1.

Again, 4y+1is evidently not contained y times in 42, but trying
y—1 as the quotient we find a positive remainder, which is Sy+1.

Next 8y+1 is only contained once in 4y+1, and the remainder is
v, but y is contained 3 times in 3y 41, with the remainder unity which
terminates the operation, the whole of which is as follows :

494y +4y+1(1
4y
Tdy+DAyt (y-1
4y"—38y—1
8y+1)4y+1Q1 .
. 3y+l
¥)3y+1(3
3y

Dy(y 5
0

the continued fraction required is therefore ' )
. P
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2y+l> =1+(y—11,3,3)
=1 +——1-1—
y-1+

1
l+'—l-
34—

Y.

Secondly, when z is odd the proposed fraction is then of the form

L]
(%_—_-l> , and the following operation will be easily understood.

—4y+l)4y’ a
4y’ —4y+1
dy—i)ay'— 4y+1@,—1
4y*—5y+1
P4y—1(3
3y
y—1y(
y=1
Dy-1(y-1

0.
2y : re
therefore (‘337_) =14+(@y—-1,38,1,y=1).

y+l
6y
2164°)216y°+108y*+18y 4 1(1

1084*418 +1)216y‘ (2y—1

% y 16y — 722~ 16y—l

72ys+ 16y +1)108ys+-18y+- l(l
72yi+16y+1
36y'+2y)72y +16y+1(2

+

2. To convert ) into a continued fraction,

l2y+ l)36y'+2y(3y -1
?f_y’—Qy =1
lly+4+112y+1(1

R 11y+1
. Py+1(1L
11y
Dy(y
0

Tt s A
lIellce(%?) =14+(2y—1,1, 2, 3y—1,1,11, 9).’

-
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3 - (1%
8. To convert _—ﬁ‘ —; into a continued fraction, a, 3 being any

quantities connected by the equation @ 8= —1.
First observe that (a+p) (o* = f*) = (a““ B*+) + (a8 - B*a)
=(a" = BH) — (a1 = 1),
the ordinary operation will be then represented thus :
L= L (a8
a¢+l_ﬁz+l_¢r—l +ﬁa—l
dl—l_ﬁs-—l) “s _ﬁl (a-l—-ﬁ,

when an exactly similar operation recommences; therefore a4 f is
always the quotient, hence

(¢+B, a+B,2+8. v . . .xtimes) = ::-H_zs-u ) s

or if a4 B=a, since zf= —1, therefore a~p=2,/(1 +Z ),

therefore,

(a,a,a....x times)={§+ ,\‘/<g‘+ l)}’ - {g— \/ ‘{+1)}‘
fE /ol = -/ (G0l

whic;h converges to ;1‘, or—p3, that is to the least root of the equation

224az=1,

(93.) Problem. To find the values of finite and indefinite perio-
dical continued fractions.

. 1
Let o, = Uy = ———
1 1
4 — 8 . et 1
e B+ :_'___l
H B,
and generally v, = (a, 8, «, B, a, B....x limes).
Then u,,, = L = _ﬁ.j'_."__
a+-——l-—— l+aﬁ+au_,
B +tu,
to satisfy which equation suppose
Am® +Bn" '
T .m .

Am m* +Bn . 0

whence u,,, =
O . et b
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but if we substitute the assumed value of u, in the former expression
for u,,,; clearing away the denominator @ . m* + b . 7%, we find also
W (A+Ba) . m+(B+BY) . w
= (at+acB+ABM +(b+baB+BB) . n*
and by the comparison of similar terms we have the four following
equations,

A+Ba = mA
B4Bd =nB
ata(A+Ba) =ma
b+a(B+Bb) = nb;
from the first and third of which

a m—l__ m

AT B T m-1"

and similarly from the second and fourth,

a,

which shew that m and n are two roots of the equation;

(m—1) = map
that is m+n =24aB ; mn=1.

Two more equations are necessary for the determination of the
coustants @, b ; from which the values of A, B, may be deduced by the
preceding equations.

B _Am+8n
aB+1" am+bn’
which give the two requisite equations, viz.

Am+Bn=2§5
am+bn = 14a8.

Let therefore 2=1, and we find », =

Putting now for A its value ; 1 R aB , and 1 . bB instead
— n—
of B, the first equation becomes
m n
SRS s

from which we readily find

b= (n—=1) R+aB—m) n=—1
- n (n—m) T n—-m

A= ceeeesrsccassnnee = H

therefore B = L A= —-ﬂ—e = —-B M
n—m m—n
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wheuce finally

u, =8 wox =8 m—m
¢ Bhaad . (-—l)ﬂ'—(l—l) w - © (-xﬂ_--uol,’_(-:_--c).
Example. Let m=2 =1 =3,
hence lﬁ = l—.
120 — 1
3 +——l———'
1+
. 1
b+ —
14 —-
* (] l .
. -r l

Again. Let m+£ = 2Cos 6- =1

then
Sin (z 0) _ 1
Sin(z+1)I—Sinrh _ 4Sin'22+ 1 _:l '
14—

1

I T
L 2 +l+(.t periods).
Lastly. Let x=w, then supposing m > n

= B8_
*“ m-1
(1)
. 1 !

(a’ ﬁ; a’ﬁ: a, ﬁ....admj:): ———-_'—_:'\/(E_‘_é)_?.
r / 248 i a/ 2
ata/ a5

This result may be verified by making v_=2z, and then substituting

z for all the periodical fractions after the first, we thus have

1 e B+ z

a+-—l-—‘ l4+apBtcaz

2 =

therefore a284afz =58 '

St VAT

and since the continued fraction is positive, the upper sign of the surd
must be used.

(94.) Let us next consider a continued fraction which recurs in «,
complete periods, the number of partial denominators in each period
being s ; and the value of the continued fraction to the end of the zth

period being denominated w,, we have to seck the relation subsisting
between 1w, and u, .

L
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" Represent by o, sy aze...a, the partial denominators taken in
the order in which they stand from the beginning to the end of a
period, so that .

1 " =(¢|, @y a....o-.d.)

U=
¢|+——T
ot ——
P RN +_L
a,

then on account of the supposed recurrence of a similar period, we
have
Uy = (@, T2y Feeesoe®rs gtuy)

Uy = (@1, Ggy Gaeeceeeyy a, +u,)

s 0008 e 000000 s 00t sccs 0 e

Uppr = ()y Cgy Tgeeososllayy @4U,).

Suppose that the converging fractions to z, are successively

: PN A R L
@’ @ g o’
or, (ax)='§f (), “t)=‘%: (a5 Un‘ﬂl)=%~
Hence u.=%,

und by the known law of the formation of these fractions,

Pe = % Pey + Pi-s
0= % Qs + uus -

Now we may observe that the expression given above for w.,,,
differs only from the expression for v, , in having «,+u, instcad of a,,

a, pn-l + P.-a

«, qo-l + qo—! ’

s T U;) P- =
teretoe .y, = (RSP E

which formula may be further simpliﬁéd by putting p, instead of
& P,_1+p.-s and g,, instead of o,q,.,4¢, ¢, to which we have seen
they are respectively equal, whence we have the equation sought, viz.
P.+u.: ° Pn—l

=3 —

u“" - 9.+ u: . q--x ’

From this formula we are prepared to find the express value of .,
by a method similar to that which we employed in the siinple case,
when each period contained only two partial denominators.

and since wu, =




THE THEORY OF EQUATIONS. 147

Corollary 1. When the number of partial denominators, s, is ex-
ceedingly great, then the value of the continued fraction for one period
only is the same as that for « periods.

For then since 2= = P
-l q.
therefore if . Py = cp,, wehavegq, ,=cgq,,

which substituted in the preceding equation, gives

So that the hypothesis of a continued fraction commencing to recur
after an infinite number of terms, and so recurring, if necessary, an
infinite number of times, will not alter its value from that obtained
without such an hypothesis.

Corollary 2. Suppose the number of periods infinite, we have
“.(9.4'“.(1.-1) = P-'I'“J’:-l;

or, ul+ p L= v, = 2,
N 7 Qs

the positive root of which .is the value of the fraction continuéd to

" infinity ; the partial denominators also being supposed positive.

p

The product of the roots — - being negative, shews that one of

—1

them is pusitive and the other negative; and their sum — 4P

qt-l
being also negative, shews that the negative root is the greater ;
therefore the continued fraction, ad inf., gives the least root of the
above equation.

Example. To find the value of a continued fraction recurring ad

25
inf., the value of a single period being T
(95.) To find the value of a recurring continuied fraction which con-
tains # complete periods.
By the preceding article we have

u _____p.+".1>.-..

‘+l qa+uzqc—l

. _Am*4Bn®

Let w b
therefore ) —_— (a]’:‘l'APc-l)m"‘"‘ (bpa+ BP:—I)"‘

u — .
7 (aq,+Ag,-y) .m*+ (b, +Bg, ) .m0
Hence ap,+Ap,=Am  aq+Aq,..=am

bP4+BPn-|=Bn bQ:'i‘ Bq:-1=bn 5 2
L
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therefore L_MmPear . G
A P m—q,

b_m=pe_ L

B pi  n—gq’
from wheuce it follows that m, n are the two roots of the equation
m* = (P, +q)m + (P19 PG-1) =073
where the absolute term = *1, or (—1)

Hence m4n=p,.,+q,; ma=(—1).

Let £=1, in order to determine the constants a,bor A, B:

M= T amton 3
therefore Am+Br=p, am+bn=gq,
Pat for A its value P. .a, and P:__ b instead of B;
P n—p.«1 .
a b
therefore m+ a=l,
m—p,.1 N—pP,
and am+b.n=gq,;
whence bn (l—:—::p—‘x) =q+pi—m=n;
- n-l
therefore b= bt 1 -'— ; whence p=-"
n— n—m
Similarly a="—Pe A= ;
, m—n m—n
mF—n*
therefore U=y )
_ n&‘—n"
—P"(m’*"— ) —p,_(n* —n%) ¢
mE—n* B

.—
-—

** qu(m*—n*) — (— 1) (m* ' — ““)
thnce this theorem.

If2 be the value of a single complete period, then that of z com-
plete periods will be _m_'zi.‘__ﬁ‘_:‘ , taking the uppe;' or lower sign
gt~

m n .

accordiug as s is odd or even.
(96.) We propcse, in the next place, to form the converging frac-
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tions successively which express the values of complete periods of a
regurring continued fraction. i
Using the same notation as before, we have

u,:g‘ g =L w=t ..., wu=l=
ql q!l ‘Ia- qn
But by the last article we have also

= p(m*—n*) .

*= g =) — (= (=)}
the numerator and denominator of which may be reduced to rational
and integer formule by means of a common multiplier which we may

represent by %'; hence, we find,
Apa=p,(m" —n°)
MNu=q(m* =) = (=1)"(m*"'=n""").
But since mA = (Piartq)m+(—1)'=0,
therefore m+—(p,_,+ q)m P+ (—1)'.m*=0;
and a similar equation is true for n. Therefore
Petn=(Pir1+¢)Pesn+ (—=1)"" . po,
: 949 =Pei1+ 994+ (= 1)
Thus we find successively
{pn= (Pe-r + 9P,
9u=(P:-1t9). ¢+ (=1)""
{P&=(P:-1+ q.) -put (Gt Vi «P.
7u= o1t ¢)qu+ (1) q.
&e. &c.

Example. To find the converging fractions to the successive periods
of a continued recurring fraction of which one complete period is

1

1
l+—
)

A . 1. p, 2 p 7
In thiscase s=3 D= D2 B__,
@ 1 q 3 ¢ 10°
the general formula above obtained is then (since p,+¢,=12)
Petn=12pe it Pa
Gatn=12¢¢ 41+ e
Pa. T  po_84 Pe__1015
¢ 10 ¢ 121 ¢, 1462
Corollary. Between the expressions for peye ge49. €liminate the
multiplier p,_, +¢,, aund we find

P0G 41 = P i e =(— D'{Petne =Paletod

Hence
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Hence page-ni—Pu-nd==(—1)¢".p

since the first of the converging fractions is %.
(97.) Theorem. Every recurring fraction of a complete number of
periods may be converted into another of which each period consists of
one figure only.
Retaining the same notation, we have, by the article precedmg the
last,

P.
Uy o= e e,
b m;hl__n:-l
Bt
1__pr=1 l
But by Art. (92) : = .
mpnp——— -
m-t-n+m+” (=1 times.);
. therefore =P, . ! 1
¢t ——
pa-|+Q:+ l
Petat Pertgu-(z— I times)”
Example, 2
1
14 ——
. 2+ ————
73+_1__.
1
o S
~ 8...(x periods.)
1
='7.——'—l
104 —
|
. 12+ 124 &c... .(z—1 times.)

(98.) To find the value of a continued fraction commencing arbi-
trarily, but afterwards proceeding in recurring periods.

Let the arbitrary part which does not recur be (8. B,...8:), and let
Pl-! Pt—l

Qt— Ql— Q(

last converging fractions to the first or non-recurring fraction ; let w,
be the value of the recurring fraction taken for z complete periods;
and let v, be the corresponding or requived value of the compound con-
tinued fraction proposed; then

V= (B, Bsy ﬁa- oo Bioyy Bituy).

each recurring period be (@), o,.. . 2,) ;

Pt be the three )
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Now» g::——- (Bu Bsy Bs. . . . Biry BY)
_BPL+Puy
: tht—l+Ql-i’ )
therefore ‘ v,= (Brtu)Piat Py

: : (Bi+u.) Qi1+ Q'
:_PR+ ":Pt--l )
_Qt+uch- l.i

P

mx—l

9,_

But we know that »,=—
1

i ne-

— (I’:q. + Pi_ip,) (m* —n*) + P (m*~'—

'y —

-’-_17_
n-t)
(th:'l'Qg_lp,)(‘m’—-ﬁ’) + Q,(m"' — ,-l) .

Corollary. We may prove, as before, that the law of the formation
of the fractions converging to whole periods is still the same.

{Pm=Pﬂ.+ P._,p.
Q+,=Qq.+Q,, P
{PH-::= (q.+p._.) .PH.,-l-(—l )'-lope

Q:+u=(q.+p.-.) . Q¢+:+ (- l)'-' Qs
[&e. &e.

Hence

-

Ezample. 'To form the fractions converging to the periods of the
compound continued fraction (4,3, 2,1, 2, 3, 1, 2, 3, &c.).
o e P._1 P38, 7__P.
Fll‘St, t=3 —1—4, Q,—IB" --'Q—.,
-3 21 m_2 A
=3 1 0 3 P 10
Hence, Pyu.=Pq+P_ p= Tx10+4 3x7= 91,

Q+=Qq+Q:, p= 30x 10413 x 7=391.

The remaining numerators are formed by multiplying that immedi-
ately preceding by 12=g,4p,-,, and adding the numerator again pre-
ceding ; and the denominators are found by ‘the same law : the required
converging fractions are therefore

7 91 1099 13279 c
80° 391° 4722° 57055°

F Corollary. It may be easily proved in & manner similar to that
cited in the analogous cases which have already occurred, that

PH—ﬂ QH-(:—I)' - P(+(J- l):QH-.u—' ( ll)‘('-l) + P' .

Moreover, it is visible that the converging fractions thus obtained are
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allernately greater and less than the true value; and the error from

the value of the fraction continued to infinity is less than Qip' .

t+ae

(99.) Scholium. This method adds at each operation a number of
accurate decimal places which cannot exceed double the number of digits
in (p,+¢..1)% I have sought a more rapid method of forming the
converging fractions, which quadruples at each operation the number
of accurate decimal places.

First, consider the fraction to complete periods, to whizh the con-

P: Pr Pu
9 Gu -Gz

', p '
verted, let 7—‘ & Z—'—' &ec. be the converging fractions to the new con-

4 ’I:n q 3¢
tinued fraction, which has also complete periods,

verging fractions are &c., and when this fraction is in-

Then, as we have already scen,
I7la=ql-l ‘I'.'—'-'q- ’)'il=q!l-l q’n“: (' &e.
pl ql— +1 ptp’n:t

But since p,=(p,..+¢.)p., nnd p,_._.

q, q" 3
L+
thercfore P q_‘g_.._'{_%"ﬂ 1 Dis
similarly, Plu= ‘M__"'ql’:h s
’)l" ’l [+ /Y
therefore — = IT = 7=m a constant,
2 (] (]
1)1 r ! ’ . .
Hence, m:.-_._‘_—_-.__".—l’i:._" Ps -
. P P Pa=,
T o
Ience, Pu= (9.+ "'_7(1';1_)',,. '
m.pYt *
Qo = (qa l ) q'+(_1)c 3

Write now 2s instead of s :

= 3
therefore, Pu=(qut+m .p !“I+ l).p,; '
28

iy
Ju = (’I:a+’n~m‘ +l)-'h¢-l H
(/0%

and generally, Pet,= (g ot M'{il)-l’i" s

m.phe,+1

e
- the same iultipliers within the brackets give the formula for Pryszin,,

qeetr, = (g 0+ — = Q=1
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and Qe+, ; and since it is evident that g+, >(qu )% therefore
(24, )*>(gs.)*, which chows that the number of accurate figures is
at least quadrupled =t each operation.

It is almost unnecessary to add, that the multipliers within the
brackets are always integers, being the same 8s gys,+py® o §

P:+a'.=P¢.q..,.+ P Pt
Qeys =.=Q.-qg' .+Qt-1~l’a’ o

Ezxample. Reconsider the continued fraction

l —
AL
1
34—
1
14—
241
34 &c
p_ T —3"
g 10 =3
3.7’—1
First multiplier =10+'—T6_—:= 12;
therefore ' Ps — 2—— .
- Qs 121
‘;.84’4—1
Second multiplier =]2l+—lé—l— =146
P €4 % 146 12264

gw  121x146=1" 17665 "

3 12268y 41

Third mulupher = 176601'—%-—: 21214

ps__ 12264x21214 260168496
g 17665x21214—1 " 874745209 °
the error of which frem tl:e value of the fraction continued ad inf.
1

(374745209)* °

must be less than

~ (1€0.) Problem. To find the va.ue of a periodic continued fraction,
not commencing with periodic terms, and continucd to infinity.
Emp'oying sti!l tLe same noiation, let U be the value of the pericdic
part continued to infinity, and V the sought value of the whole. |
Let m Le the greatest root of the equation
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m* = (Pur+g)m+(-1)'=0;
then by the foregoing articles we have

— P - ]
U= _ (=1 Tg-n

9. poo
whence n=q,— %_ .
i _Pf+ UP,_,

Moreover, since V—Q, U

— th - Pt
therefore U=— Vo —p—"
therefure - n=q,+p.. V?;al —g.-.

e Lt
Now since 1t (poor Fg)n+ (= 1)'=0,

therefore (n—9¢)'+@.=p.-) (n—q.) = qap=0;

in which, if we substilute the value of n—gq, in terms of V, and multiply

the resulting equation by v Q;) ) we find

P.(VQ:- —Pc—x)’+ (q. Ps- I(VQ., -P, l)(VQ¢ P.) (I}
(VQ.=P)'=0;

therefore, )
{P.Q‘g_l + (q.—P.-l)Qth-x - q.-lQ't} Ve
- {QI).P: AQ+ (g, —P:-l) (PQei +Q:P_)—2¢,.,. PQ, } .V

+ {P.‘nc-x"l‘ (q. "‘P.-l) . PtPt—l—ql-—l . P’t} =0.

Lagrange has obtained the same eguation by a very different pro-
cess. (Vide Traité de la Résolution des Equations, p. 56.)

By referring to the quadratic, which is arranged according to the
powers of n—gq,, we sce that the absolute term is negative; therefore
n—q, and m—gq,, which are its roots, must have contrary signs;
tlurefure. n—q, muﬂl be negative, m being greater than n, conse-

quently 3‘6‘ Pt st be negative for that value of V which cor-
[

responds to the continued fraction, the other root which is foreign

would make the same frnction posilive one root of the equation in V

must therefore lie between L and , and is that which is sought

Ql—l ) Qt
in this quesuon ; the other root does not lie between the same limits:
we thus know which root it is proper to reject, and which to retain.

Ezample. Fiud the value of the indefinite continued fraction :
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1
1
4+l—-
3=
1+— 1
24—
lv
34—
1
14— 1
s
The non-recurring part consists of two places, t=2; 1
P_, 1 P, 3
t = =- L=
1erefore 0.1 Q=13
"The recurring periods contain each three places, s=3;
Pa 2 p_ T
hence . <3 o= 10
Therefore, 239V:*—103V411=0;
y— 1081493 )
478

" the sign 4 must be given to the radical to obtain that root which lies

between ; and %, which is then the true value of the continued

fraction. ’
(101.) To extract the square root of a number in the form of a con«

tinued fraction.

"Rule. Take the nearest'integer immediately below the true square
root of the number, and put the sought square root equal to this num-
ber + the sought square root minus this number, aud transpose the
surd to the denominator by multiplying this difference by a similar sum,

4
V5
as ¥5 -1 would be changed to J_+1

Take the nearcst integer to the denominator thus formed divided by
the numerator, and then by subtraction make the proper compensation,
and let the surd thus arising be again transferred to the denominator

J_ 1 2

in similar maunner ; for example V3= 4 ——=14 —— .
V3+1
By continuing this process all the partial denommators of the con-
tinued fraction required will be found. '

V17—4 1
Thus, J17 __4+ “ —44
1 Nn7+4+4°

~/—+4——s+“/— —4 gy L1
N17+4
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— . 1

17+4=... .. .. e =84 ———),
v V1744
&e. &e.

therefore, ,/17= 4+1—- 1
8+~
8-*-_S—S‘zc.
To find V2L,

J_ 4+«/_ -4 +;_§_

Vo144
s _ .
LETE S WL C3 S P S
5 V241
s
Vol41 _l+~/21 -3 14 — 3
4 4 J21+3
. V2143 gy N21-8 —ap_ 4
3 3 ~’21+3
V2143 _ le 45
4 4 N2l +1
y_em SIS SN
5 5 Vel +4
N2l —4 5
V2144 =84 =8+ —
1 V21 +4
J21r+4 =14 ~/2‘1—1=1 4
5 5 J2141
f/'_ZH"l =1+@L§=1+ __3_._
4 4 V2143
After which the same formula recur, therefore
— 1
Vol =44 —
14—
f 1+1_l
24— |
14—
1
14—
1
84— |
1+—
1
14—

1

24—

1+ &e.
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and the converging fractions may be found by the method pointed out
in Art. (99.)

T'o extract the square root of a fraction iu the form of a continued
fraction.

Ezrample. To find the square root of % .

V51 :
5 3 3 2
-=14 =14 — =] 4
% Y TR T
§+1

M543 J15—38 3 .
—3 T =MURS
J15+3 V153 2

5 =2t 3 =3 Uhis

after which the periods recur ; therefore

V)
3+
1
24—
1
8+—
34+—

241

3+&e.

Again, to’find the square root of % .

N | |
N2 =1+ ; _.1+~,2_'_1

Jz - 1
=24 ‘2+«/z+1

after which the periods are the same, therefore

V)=

24+

2+l

2 &e.

. 4
Again, to extract the square root of 7°

'\/7 :
. 3
\/<>_1+ _H:/%H =14+ 7=

| W
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V2844 Jag—5 1
=384 =38 —
3 3 +~/28+5
~/28+5_10+~/_ 5 1042
1 V2845
«/28+5=3+~/2—8-4=3+ 4
3 3 V28 +4
V28 28—
zs+4=2+«/§§ 4=2+ 3
4 4 2844

a.fter which the penods recur,

therefore, \/ 7=

1+
al
10+—

1
3+2+ &c.

A similar method is applicable to the solution of quadratic equations
to express the positive roots under the form of continued fractions. ’

Ezample. 21— 32=6.’
8 «/57
"4 =Y
3457 V57 -5 g
Now, — =2+ =24 —
° 4 4 V5745
54v57_, VT3 _ 6
8 8 V57 +3
3+~/57=1+~/57-3____1+ 8]
6 6 J57+3
g-_|-~/_“_l+~/_7 =5t
8 V5145
5+~/:ﬁ_3+~/ﬁ-1 2
4 4 NoT 4
74457 _ +~/ﬁ—7_ .
2 2 WET4
74457 V575
+4 =3+ 57 .)=3+ __8
4 NiT+5

after which the partial denominators recur, therefore,
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.t='2+l N
l+———l-
'l+—l
3+—
nl,

3+— 1

1+—

14 &c.

The successive converging fractions to the first pericd are
1 1 2 7 51 160
1’2’ 3 11" 80' 251

Pe _,160

Ps _.209 % _
Hence, o = 251

0| -

¢s=80, therefore, = =
Ps

2
First multiplier =251+ ;_._1::_:1_+_1=302;

therefore, pu _ 160x302 45320

g 251x802—1 — 75801

:48320°+1_ 51202.

ca 3
Second multiplier, =75801+ 75801

Hence, Pt 4832091202 _ 4406880640
" Gu  75801x91202—1 . 6913202801 °

and this fraction increased by 2, errs from the true value of z by a

quantity which is less than 20,000,000,000,000,000,000 °

(102) Theorem. In applying the method of continued fractions to
the solution of equations, the transformed equations after a few at the
beginning will have uniformly their first and last terms affected with
contrary signs.

Let ¢ (2)=0 be the proposed equation, and X be the nearest integer

1
below one of its roots, then put r=x+ v 3 the transformed equation in

¥ has as many positive roots ‘greater than unity, as there are values of
x included between the consecutive numbers X and A+41.

Again, it is possible that two or more values of y may lie between
two successive integers, A and N'41 ; in which case the transformed

equation arising by making y=»'+ %, has a corresponding number

of positive roots greater than unity.

When, in continuing this process, we arrive at a transformed equa-
tion which has not two or more roots included between two consecutive
uumbers, as :
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au™+bum e e e o+ =03

then, making u=s4 1%, 8 being the nearest integer below a root of this

equation, the transformed equation in w can have but one positive root
greater than unity, and then all the consecutive transformed equations
will be in the sume coudition. . ,
Represent the equation in w by F(w)=0; let ! be the mnearest
integer below the only positive root it has greater than unity, aud let

1

w= 1+ T

Then,

1 " 1K) (]
F+ - ) {F(l) P O T ([).t""-i- f 5 (m)} 0,
therefore the ﬁrs’t, t(el)'m in the trausformed equation would be F(/).",
1-(m;

and the last i%) ; these terms must have conlrary signs.

For, by supposition, there is but a single root of the equation,
F(w) =0 between the limits land 4 w ; therefore, F({) and F(w)

: 1
have contrary signs, or F(/+ t—) must have contrary signs for {=0

Flll(m)(l) A . . 1
123 m when (=03 thlsf,fhere-

fore, must have a contrary sign to that which affects F ().

Again, since the equation in £ has but one positive root between
+1 and o \ therefore the same reasoning applies to show that the next
transtormed equation and all the succeeding ones, have their first and
last terins affected with contrary signs.

-Theorem. 'The root of every quadralic equation expressed in the
form of a coutinued fraction is necessarily recurring.

Suppose the trausformations to be continucd until the first and last
terms have contrary signs, which must eventually happen, as we have
seen in the last article ; let then the equation be,

dut—2br—a=0.
Let X be the nearest integer below the sole positive root which this

.and {=»; now, "F(+ %):

equation' has, and make 1'_)\+ 73

therefore, a2zt -2z’ —d =0,
where ‘@"= —a'\*+2b\+a | changing all the sigus that the
bV=+ar~b } absolute term may be negative ;
from whence we find
b4 a'd' =1+ aa’

similarly, if the next transformed equation be represented by
a’”z”’——2b”.z” - ah=0’
we must have 4"*+a"a"'=b"+d'a" =b*+ad’ ; 2

in fuct this is the quantity which is under the radical sign in the actual
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solution of the primitive equation; and it is manifest that this surd
ought to remain unchanged in all the transformed equations, since the
roots of these different equations are rational functions of each other.

Put, therefore, b~+taa'=C,
then, since b+ a'a"=C, andd, a’, V, are integers,
therefore, ¥ < JC, and a'<C.

"Therefore the coefficients ¢/, ¥/, a’, b”, &e., canmot in any of the trans-

formed equations exceed given integers; and cousequently, after a

sufficient nunber of transformations, the same co-existing system of

values for @’ and b’ must recur; and therefore, also, the same value for
C—b"

a' = i the transformed equation thus arrived at being the
" .

same as ove obtained before in the process, it follows that the whole
operation, and therefore the periods of the continued fraction, must
recur. .

(103.) Problem. To convert a given continued fraction into a series.

Let 5—‘, Z—", 7(;—', &c., be the converging fractions to a given con-
1 1] 3

o P . P
tinued fraction, and —— the value when continued to infinity.

Q
Then PP PP L
’ s O O©WYs G
Pa_ P LA
9a qs Gsqs
PP .2t
9% ¢ Gss
&_}3"_.1=\¢0.-..4..o——(—1):
In a1 . In1qn
Hence, by addition,
1 1 __' N1
&=£L- _l'+ _—-+0000l000+'(__L"’
I T 09 T:0s ‘18’14 Gn-1qn
and I S ! LI &c., ad inf. '

¢ " qat

"The terms of this series continually diminish, and are alternately posi-
tive and negative ; therefore the error committed by taking n terms of
the series, instead of the whole, is less than the (n-1)th term. But in
some cases it is convenient ta take some of the partial denominators
negative. : )

: M

L
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Thus, the continued fraction which represents the ratio of the cir-
cumference to the diameter of a circle may be written either as

b
T+—
+—
L4 — |
292+ — |
14—,
14—

141

2+ &c.

or 3+._l__

T3+ & .

the second of ‘which is bestaadapted to give a converging series, which,
formed after the formula above given, is as follows :

1 1 1 1
77 7x113  113x33215 33215 x 99532

* Periodic continued fractions may be converted into still more con-
vergent series by a similar process.
(104.) To determine the commencetnent of the periods when a qua-
dratic equation is solved in the form of a continued fraction,
‘We have seen that in the process of the successive transfurmations
- of the proposed cquation we arrive at one of the form

. ®=3+

- &e.

a'a*—2br—a=0,

where a and a' have necessarily the same sign, and that thenceforward
all the successive quantities o’, a/, a’”, &c., have the same sign. Oue
of the two commencing equations of this form, namely, that in which
the last term (a or a’ as the case may be) is less than JC , (since ad
=C —d?) will afterwards re-appear, and therefore the fraction will be
periodical from this point of commencement. )

For suppose a to be that which is less than ,/C, then the series of
numbers a, o/, a’, &c., b, V', I/, &e. will all have the same sign as Je.

For the equation above written gives

b+a/q.
a ’

and by the nature of the transformations itis obvious that x> 1.
b+4/C

/
_La

>1; -

Therefore, .
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Cc-b 1’
hence, - -7_6-_—6 >1.
But since C=ad' 45,
" therefore,’ ____a___> 1; similarly _a’__> 1, &-.
JC-b ey .

But since b <Vad'+ 05", therefore YC— b has the same sign as V/C ;
wherefore a must necessarily hive the same sign; and like reasoning
applies to the quantities, o/, a”, &c.

Now, by hypothesis, a< J/C, and it is proved that ‘/f— >1;

/ >=b
therefore b must have also the same sign as 4/C, for if it had a con-
trary sign the denomiuator of this fraction would be numerically greater
than the numerator, and therefore the fraction would be less than unity.

Again, I/ must have the same sign also, for, if it had a contrary sign,
then, since Aa’=b+¥', A being a whole number, and b, ¥, each < NG

—_(—b"
?7(»—2 _is also < A/C; ; whence, as before,

it would follow that a'=

% must have the same sign as ,/C ; therefore the supposition that it
has a contrary sign is wrong ; and the saine reasoning may be extended
to b, b, &c.

Now if any cotemporary coefficients in both these series as o', ¥'”, &e.
are given, the preceding ounes may be thence determined.

For since Y =a" \"—b", and "< J/C,
bl” C
therefore >~"<'—+-,,,L H
a

'+ JC
N <—'*'—a:/-—.

similarly,

Bul by the nature of the operation M\’ is a positive integer ;

therefore, b+ JC>a".
Now, """ =C—b"=(JC=b")JC+b").
whence JC=b'<a". :
In this inequality put for b” its value @”A"—b" ; heuce
JC+V —d"\1<a" ¢

y'4+dC

therefore M'>, — P —1; and it has been proved to be less

1! el
than If—‘—t,—,:/—- , and is a positive integer, therefore it can only be the

blll + JC

nearest positive integer below P and is therefore a known
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quantity ; and from thence the quantities ¥’ = a” M- b"', and
3

— are determined. .
a

Q=

Now we have seen that in the successive transformed equations
a'x*—2br—a=0, a"t*-2r—ad'=0, d"'z'3—2b"1"~a’, &c., the
coefficients of some pair, as (a’’, b""), (@™, b"'™) must be the same,
therefore the coefficients of the preceding pair (a” 5"), (a”'®~?, b"/*~")

" will be alike; and thus we can continue to trace backwards to the first
equation, which answers our supposed conditions, viz., either that in
which the first and last terms obtain contrary signs for the first time
or the next succeeding one, selecting that of the two in which the last
term is less than ,/C; this equation and all the succeeding neces-
sarily produce periodical terms.

Corollary., 1In the extraction of the square root the equation is of
the form

, aa’
a'z® —a=0, .¢=J7- .

In this case ad’=C, and therefore the least of the two numbers a, @’
is necessurily less than /C; if a be the least, then x is the square root
of a proper fraction, and the periods must commence from the first
operation ; but if @’ be the Jeast, the next transformed equation or
second operation will produce a periodical term.

'I'here are many other remarkably elegant properties and applications
of continued fractions, but, being unconnected with the theory of
equations, we must omit them on this occasion.

ON THE FORMATION OF PARTICULAR CLASSES OF
EQUATIONS.

(105.) To form an equation of which the roots are all the natural

numbers taken positively and negatively to infinity, and including zero.
Let us first form a function F,(z), of which the roots are 0, 1,2, 3. .

n, —1, =2,—38,...,~n, thatis
F.@)=c.x(z—1)(x~2)....(@~—n)(x+1)(2+2). ... (z47).
Hence

Fuz+1)=c.(z+1).2(z=1)....(z—n+ 1)(2+2)(z+3)...(z4+n+1)

r4n+1

therefore, o = . F.(2).
herefore F.(z+1) —n F.(z)
Now in the limiting case, where n is infinite, let ¢(z) be the func-
tion sought ; and since w:-:z;_-:-_l then becomes -1, we have
P(2+1)=— ().
To solve this equation let ¢p(x)=Ce™ ;
hence, Ce™.emv==C.e™,

or - "==—1;
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therefore m=tx/—1, +8z/—1, +5«V_1, &e.

Hence the particular forms the sum of which gives the most general
form of ¢(), so as to coincide with the preceding equation of differences,
are the fullowing :

-

A sin 7r4B cos =z,

A’ sin 3xx+4- B’ cos 3xr,

A" sin 5wr+4 B'cos 57z,
&c. &e.

The effect of employing the equation of differences was to insure
that the roots of these functions formed an arithmetical progression ;
but in the problem they must include zero; therefore the cosines must
be rejected ; also the sines of the odd multiples of =z vanish for frac-
tional as well as integer values of z; the only function therefore which
strictly agrees with the conditions of the question is A .sin (xz).

In a similar way we should find that the equation of which the roots
are

1 38 1 _3
2 bl 2 ’ 2 3 eecoe 2 k] 2 ’
Let it now be required to form an equation of which the roots may

1 1 1 l
be L 5 G oo

3 &c. is A cos (7).

Let the sought function be represented by ¢(z) ;

that is  @(x)=(z—-1) (.r - -lé> (w - ;—,—)( — 2-1,—) oos .(a‘ - 2—1.)

Substitute 2x for x, and separate the numerical factors of z.

Hence ¢—2(?;:—)=(I— %)(.r— —;1> . ..(a:-— ;—.).(.r— E;l“_'> s

which, being compared with the preceding function, furnishes the equa-

$2x) _

tion - (==1). T ¢(x)

Now ¢(r) is of the form
2"t — a1 a2 — a2t &l
therefore

(.l' 2,,+,)¢(I)_.1:"+’-(a,+2'+‘ Kaas (a‘+2g+] 2"~ (aa+ ovH -

&e.
aq

i $CD_ @, @
qum, = gt 2 +2,a:

— -2,
2...'&" H

therefore

¢(2J.)_ a, . ay . a, a4, a4 .,y ,
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Compare the general coefficients in both these products, and we find

a,_ a, a,.
aP+ 2:+l " + 2:—1‘ ’
ap 5 1 o
or, a,(2*—1)=a, ,(2—- T )3
1
thus, a,=2- 3
1
2- :Fl
Q3= 1 @,
1
2 =
A= 2,_1 -y,
&e. &e.

To form an equation of which the roots are —a, —(x+a)
—(tostag) e oo c~(mtagtast. . «ootm)
In this case we are to form the product .

@ta)(@tatad(@tatata)....(@tatatot....+a,).
Represent this product by 2"+ Az '+ A" 4., .+ A 2" ™.
+A._x+A,, the general coefficient A, bemg the sums of prodm.te,
each of which contain m factors.
For A, it is easily seen that its value is

noy+ (n—1ag4 (1= 2o+ . « «2otas+ 0.

Again, A, consists of products such as ooy as ogas, &c., and pure
powers, as a%, a?, &c., the general form of the first class of terms is
a,a,; and we now proceed to find its coefficient or the number of times
this combination occurs, which number may be denoted by (e, 5 aud
supposing p less than g, no factor preceding 2+ o+ ag+. . .. 2, will
coucerned in forming the combination in question, and in the faclor
itself and the succeeding ones, the terms preceding @, may also be
neglected.

The factor commencing from the above, arranged horizontally, will
form this diagram :

Tt tap

Tt +..0. +a,,+a,+,

Ttat .o ioptapn oy

T4t a+.... ..a,,+a,,+‘+¢,,+g+ seee +ﬂq¢‘

L T R I T LTh o

1‘+a|+.... ..a,,+................ ,+a,+.+a,+s
&e, , &e.

Now if a,,, were placed where the asterisk standq; the combinations
of a, with o, and «,,, would be alike .". (a,a,) —(a,a,4,) = the number
of combinations of one term at the asterisk with the terms in the ver-
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tical column of «, , except that a,, which is in the same horizontal line
with the asterisk ; it is therefore the number of terms minus one in that
column which (since p —1 factors precede the first above written) will
be n—p,
Therefore A denoting the finite difference when ¢ increases by unity,
we have :
A(aa,)=~—(n—p) ;

therefore (a)=(n—p)(c—q) c being independent of q.

Suppose g=n, (a,a,) will be the number of terms minus one in the
columu of a,, since a, enters only once ; that is, (a,a,)=n—p, there-
fore ¢ —n=1, or c=n+1, which gives

(4u)=m=p)(n—g+1)

Asfor the coefficients of the powers, as %, denoting such by a similar
notation (a',), they will not be affected by the supposition that &,=0
g=0....a,,,;=0 a,4,=0....a,=0; they are therefore the same

O‘——’L)(lw which is ﬁalf of the for-

a8 in (14a,)*"?*, that is 1T

mula obtained by putting g=p.

Hence, .
_n.(n—1) n—1)®n—2) , (n-2)(n-3) ,
A= i3 at4 1.2 a4 13 Y A

(n—1)(n - Daa;+(n—1)(n —-2)a,ug+ (0 —=1)(n—8)a,a,+ .. . .
+ (n—2)(n—2)maz+ (n—2) (n—3)aya,+ .. ..
+(n—3)(n—3)aga,+....

In like manner we may classify the terms of which A, is composed
into terms of the forms apa, a,, %, a,, o, respectively, p,q, r, being
arranged according to maguitude, their coefficients may be represeuted
as before by the same letters in brackets.

Every combination of a, a, may be combined with a,, escept such as
are formed from the a, and ¢, which are in the same horizontal line
with it : if these are erased, the number n is reduced to n—1, and the
combinations ¢of a,a, are then, by what has been already shown,
only (n—p—1)(n—gq) in number ; therefore the excess of the number
of the combinations of &, with a,a, above that of a,, is (n—p—1)
(n—q), or taking the finite difference in reference to r,

A(aaa)=—(n—p—1)(n=q);

thence (q,a0,)=(m—p—1)(n—q)(c—7);
and putting r==n, we find, as before, c=n+41;
therefore (a,a,2,)=(n—p -1)(n—q)(n—7r+1);

and generally, if s>7 7>q ¢>p, &c., then by the same process

(a000,....)=(n—s+ 1)(1¢—r)(n—q—1)(11 -p—2)....
Again, if we erase the a,, which is on the same horizontal line with
a, , the number of combinations of the remaining terms «,, in number
(n—p)(n—p=1)

13 ; and since the number of terms 'in the

n—p, are
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vertical line where o, stands is n - g+1, it follows that

a)= DO (o
_ (n—s+1)(n=3)... .. (¢ times)
= 1.2....¢ )

(n=r)(n—r—=1)....(r'times) (n—q-—1)(n—q-2).. ..q' times
1.2....7 : 1.2....¢ -

Lastly, (a,?) is the same as if all the terms aj, a, &c. were zero,
except a, , and is therefore
(—p+)(n—p)(n-p-1)
1.2.3
_(n—p4+1)(n—=p)....(p' times)
- 1.2....p'
We have thus investig‘al'ed the coefficients of every combination which

enter the whole product, and it may be remarked that the coefficients
of the combinations of consecutive terms are pure powers ; thus,

and geuerally, (a'a,"2,"....)

.o

More generally (& )

(a)=(n-1)" mey=(n-2)* &c. aaqz,=(n—2)"

This example is extracted from a memoir of the Author’s, published
in the ¢ Transactions of the Royal Society for 1837, and is of essen-
tial use in the investigution of general formule for the change of the
independent variable in the * Differential Calculus.”

(106.) Having now given most of the known propetties of algebraic
equations containing a.single unknown gnantity, accompanied by illus-
trative applications, the length to which we have been conducted in these
researches precludes us fromn noticing some other subjects of increasing
interest ; we refer in particular to the * Theory of Elimination;” we
shall therefore conclude with some remarks on the roots of equations
of which the dimensions are infinite; a subject which has varlous im-
portant applications, but is surrounded with difficulties, and has hitherto
received but little attention.

Such an equation may either have neo root real or imaginary, in
which case the series corresponding to its left member is not capable
of reversion, or it may have a finite or infinite number of roots, the
reverse series giving the least when real.

In regarding the proposed as the limit of an equation of finite dimen-
sions, it is convenient to choose the latter, so that the coefficients mnay
be multiplied by factorials of successive orders, because on the hypothesis
of any integer value for the order n, the general infinite series will be
always reduced to a finite equation of 7 dimensions: this is the method
which I purpose to exemplify as appearing to be most sitmple and
general.

Given 14242+ 2+ &e. ad inf. =0.
. 'The derivative series which seems best to assume in this case is
14nz4n(n—1). 22+ (n)(n = 1)(n —2)2°+ &c. =0,
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which is a finite equation when 2 is any positive integer and is re-
ducible to the proposed by making 2= %, and then supposing = in-
finite. l

N . 1 . ’
To discuss the derivative equation, let z= ;, when it becomes

Y4y u(n=-1). " a(n—-1)(n—-2) Y+ &e. =20,
represent the left member by u and its derived by «’, and we find
u=y"+u'=0.

Now if %#=0 admits of real roots, let them bre represented by a, 3,
&c., « being the greatest, B the next, &c. regarding negative quantities
as succeeding positive in magnitude. If a be put for y in »' it must
give a positive result ; and since it renders =0, therefore it must
render 3" uegative, which is impossible when n is even ; there can be
then no real root. -

But as there must be a real root when n is odd, and that a renders
4" negative, therefore « and consequently any other real rools are nega-
tive, and would also render y" negative ; but 8 must render u/ netmhve,
and therefore " positive: hence we see that in this case y has but
one real root.

Now if we put 0 for ¥ in u, it reduces itself {o its last term, which is

positive ; and if we put — A/n for the same, it becomes negative; there-
fore y is between 0 and — ,/n, z between —n % ‘and —, and  be-
tween ---n’k and —cc; therefore when n is infinitely great this root

becomes —w, This equation therefore admits of no root, the series
ceasing to give any expression in the latter case. We see in fact that

the series is equivalent to 1 !

-2

, which cannot vanish except when

x=®, and then the series cannot be said to be represented by that
fraction.

F z’
2.3 + 2.3.4.5
we form in like manner the derivative equation
_n(n—=1)(n— 2) » n(n—1)(n-2)(n-8)(n-4)

5.3 St 1.s.8.4.5  F-%.=0
which is terminating when » lsa positive integer; then put r=nz,
and finally make n infinite.

Now the latter equation is the same as

{l4zy—=1}={1 —zd=1 =0, or {%—E—f—g}”:l;

cos 0+~/ 1sin@
d putti z= tan (6), we ﬁnd{ -————} 1
and putting ()] I e P

or cos 299+ —1 sin 2nf=1, whence 2r0==0, 2, 47, 67..(2n—2)r

To find the roots of the equation 2— — &c, =0,
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and 2=0, ilan:—:. =+ tan 2%:-, &c. ; making now z infinite, we find
+=0, *=,~ t2x, +3r, &, x denoting the number 3,14159.....
Let the proposed equation be

1’ -1:‘
l—x+ '1—:— — m+ &e. —0,

and take for the derivative

n(n-1) , nfn—1)(n—2)
' 1.2 7 1.2.3

or (1 -2)"=0,

which has only the root z=1, therefore x=w, or there is no finite
quantity which will satisfy the proposed. '

Our last example is one, which though differently treated, has already
attracted the attention of mathematicians, not so much with a view to
.its applications in the higher parts of analysis, and its remarkable con-
nexion with important physical problems, but as a test for merely
ulgebraical theorems.

"

2* &c. =0,

1—nz4

?'x!

X
Let 1——1-'— +W—T'—E8—'+ &e. =03

the series which I take for its derivative is
n n4 1 + g:_(vt—])'(n-}-_l_&t_-_l-_?_)'z,_ &, =0;

T YT T 12 - =
all the roots of which we have already proved to be real and positive,
and to lie between 0 and 1 ; and I have shown in my ¢ T'reatize cn

Electricity” that the difference of two successive roots is of the order 1%;

hence the limits of all the values of x may he easily found by the sub-
stitution of the natural numbers for z, and by observing the alternations
of signs which result,

Thus, when <1, all the ferms within brackets of the following
series are obviously positive, viz.:

2 ; at
(1—n+ ;‘. (1— '-‘;:;,) + 5:3,—.‘1,(1— '—:;) &c.

there exists therefore no root less than unity, or equal to it.

When =2 the sum of the 3 first terms vanishes, and the series

2 2 2
becomes — —§;<1 - 2;) -EH‘{I - %,) — &c. which is nega-~

tive, consequently there must be a real root between 1 and 2; and
it is easy to be shown that there is but one. When =38 the sum of
the first five terms is negative, and all the succeeding terms taken in
pairs give necessarily negative results, and d fortiori we find the same
for quantities between 2 and 3; there is therefore no-root in this
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interval, nor as far as =4, 5,6,7, 8; but the results in all these
cases are very small and rapidly diminishing. If we denote the pro-~
posed function in this case by u and by u,, w,, &c., those from which it
is successively derived, each vanishing when z=0, also by «/, »", &c.,
its own successive derived functions, it possesses the following property,
which expresses the relation between its derived and primitive functions
Wy— (— 2)™W/"™=0; thus, if m==1, we have u,+x#’ =0 ; and since the
substitution of the roots of #=0 in % being all real would produce a
series of alternations in the signs, the esame would occur to w, in' the
contrary way, z being always positive. The definite integrals of the func-
tion » when multiplied by other functions, possess very remarkable pro-
perties, intimately allied with the interior arrangemeunt of latent elec-
tricity in bodies ; but oue object in selecting it here was to exemplify
the method we have suggested above for examining transcendents not
algebraically expressible, and to attract the reader’s attention to a func-
tion as remarkable in nature as in analysis, Ihe whole subject of
equations infinite in their dimensions would require more space and
consideration than can be here convenieutly permitted.
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